JP2022129732A - Carbon dioxide reduction catalyst, carbon dioxide reduction device, and artificial photosynthesis device - Google Patents

Carbon dioxide reduction catalyst, carbon dioxide reduction device, and artificial photosynthesis device Download PDF

Info

Publication number
JP2022129732A
JP2022129732A JP2021028531A JP2021028531A JP2022129732A JP 2022129732 A JP2022129732 A JP 2022129732A JP 2021028531 A JP2021028531 A JP 2021028531A JP 2021028531 A JP2021028531 A JP 2021028531A JP 2022129732 A JP2022129732 A JP 2022129732A
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide reduction
reduction catalyst
ion
bipyridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021028531A
Other languages
Japanese (ja)
Other versions
JP7291165B2 (en
Inventor
登美子 毛利
Tomiko Mori
佳太 関澤
Keita Sekizawa
健志 森川
Kenji Morikawa
昭彦 工藤
Akihiko Kudo
友一 山口
Yuichi Yamaguchi
隼矢 吉野
Junya Yoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Toyota Central R&D Labs Inc
Original Assignee
Tokyo University of Science
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science, Toyota Central R&D Labs Inc filed Critical Tokyo University of Science
Priority to JP2021028531A priority Critical patent/JP7291165B2/en
Publication of JP2022129732A publication Critical patent/JP2022129732A/en
Application granted granted Critical
Publication of JP7291165B2 publication Critical patent/JP7291165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

To provide a carbon dioxide reduction catalyst that allows an electrochemical or photocatalytic carbon dioxide reduction reaction to proceed at low bias in an organic solvent and an aqueous solvent, and a carbon dioxide reduction device and an artificial photosynthesis device including the same.SOLUTION: A carbon dioxide reduction catalyst is a metal complex in which at least one molecule of polypyridine having an electron-donating substituent is coordinated to one of metal ions of Groups 6-12. The carbon dioxide reduction catalyst catalyzes an electrochemical or photocatalytic carbon dioxide reduction reaction.SELECTED DRAWING: None

Description

本発明は、二酸化炭素還元触媒、それを用いた二酸化炭素還元装置および人工光合成装置に関する。 TECHNICAL FIELD The present invention relates to a carbon dioxide reduction catalyst, a carbon dioxide reduction device using the same, and an artificial photosynthesis device.

地球環境問題や化石燃料の枯渇等の解決策の一つとして、二酸化炭素(CO)を常温常圧で還元し、CO等の工業原料や燃料(ソーラーフューエル)を合成する触媒技術は極めて重要である。その中で金属錯体は、優れたCO反応選択性を示し、CO還元触媒として有用であることが数多く報告されている。 As one of the solutions to global environmental problems and the depletion of fossil fuels, catalyst technology that reduces carbon dioxide (CO 2 ) at normal temperature and pressure to synthesize industrial raw materials such as CO and fuel (solar fuel) is extremely important. is. Among them, many reports show that metal complexes exhibit excellent CO2 reaction selectivity and are useful as CO2 reduction catalysts.

しかしながら、これまで、高活性である金属錯体触媒は、レニウム(Re)、ルテニウム(Ru)、イリジウム(Ir)等の希少な元素を用いたり、配位子の化学構造が複雑(例えば、特許文献1参照)であった。二酸化炭素還元技術の実用化のためには、大量の触媒が必要となることから、資源量が豊富な中心金属と合成のプロセスが簡便なシンプルな構造の配位子からなる金属錯体の開発が望まれる。 However, until now, highly active metal complex catalysts have used rare elements such as rhenium (Re), ruthenium (Ru), and iridium (Ir), or have complex chemical structures of ligands (e.g., patent documents 1). Since a large amount of catalyst is required for the practical application of carbon dioxide reduction technology, the development of metal complexes consisting of a central metal, which is abundant in resources, and a ligand with a simple structure, which is easy to synthesize. desired.

シンプルな構造の配位子としては、ビピリジン等のポリピリジンがよく知られている。従来技術として、コバルト(Co)のビピリジン錯体を用いた二酸化炭素還元触媒が報告されている。 As ligands with simple structures, polypyridines such as bipyridine are well known. As a conventional technique, a carbon dioxide reduction catalyst using a bipyridine complex of cobalt (Co) has been reported.

例えば、特許文献2には、下記に示す、Coイオンに未置換のビピリジンが3分子配位したコバルトトリスビピリジン錯体([Co(bpy)2+)と光増感剤(ルテニウムトリスビピリジン([Ru(bpy)2+))との組合せによって、光照射下でのCO還元を実現したことが記載されている。 For example, Patent Document 2 discloses a cobalt-tris-bipyridine complex ([Co(bpy) 3 ] 2+ ) in which three molecules of unsubstituted bipyridine are coordinated to a Co ion and a photosensitizer (ruthenium tris-bipyridine ([ Ru(bpy) 3 ] 2+ )) achieved CO 2 reduction under light irradiation.

Figure 2022129732000001
Figure 2022129732000001

特許文献3には、下記に示す、中心金属(M)としてレニウム、マンガン、ルテニウム、鉄にビピリジン等が配位した二酸化炭素還元触媒が記載されている。 Patent Document 3 describes a carbon dioxide reduction catalyst in which bipyridine or the like is coordinated to rhenium, manganese, ruthenium, or iron as the central metal (M), as shown below.

Figure 2022129732000002
Figure 2022129732000002

非特許文献1には、下記に示す、コバルトビスビピリジン錯体[Co(bpy)Cl]と光増感剤(ルテニウムトリスビピリジン([Ru(bpy)2+))との組合せによって、光照射下でのCO還元を実現したことが記載されている。 In Non-Patent Document 1, a combination of a cobalt bis-bipyridine complex [Co(bpy) 2 Cl 2 ] and a photosensitizer (ruthenium tris-bipyridine ([Ru(bpy) 3 ] 2+ )) shown below shows that light Realization of CO2 reduction under irradiation is described.

Figure 2022129732000003
Figure 2022129732000003

しかしながら、特許文献2,3および非特許文献1に記載の二酸化炭素還元触媒は、二酸化炭素還元に要する過電圧が高く、性能のさらなる改善が求められている。 However, the carbon dioxide reduction catalysts described in Patent Documents 2 and 3 and Non-Patent Document 1 have a high overvoltage required for carbon dioxide reduction, and further improvement in performance is required.

特開2018-197225号公報JP 2018-197225 A 特開2003-117402号公報JP-A-2003-117402 国際特許出願公開第2016/136433号パンフレットInternational Patent Application Publication No. 2016/136433 pamphlet

Y.Yao, et al., J. Energy Chem., 2018, 27, pp.502-506Y.Yao, et al., J.Energy Chem., 2018, 27, pp.502-506

本発明の目的は、有機溶媒中および水系溶媒中において、低いバイアスにおいて電気化学的または光触媒的な二酸化炭素還元反応を進行させることができる二酸化炭素還元触媒、それを用いた二酸化炭素還元装置および人工光合成装置を提供することにある。 An object of the present invention is to provide a carbon dioxide reduction catalyst, a carbon dioxide reduction apparatus using the same, and an artificial carbon dioxide reduction catalyst capable of promoting an electrochemical or photocatalytic carbon dioxide reduction reaction in an organic solvent and an aqueous solvent at a low bias. An object of the present invention is to provide a photosynthesis device.

本発明は、電子供与性の置換基を有するポリピリジンが第6族~12族の金属イオンのうちの1つに1分子以上配位した金属錯体(ただし、ビピリジンが前記金属イオンに1分子配位する場合は、前記金属イオンとしてレニウムイオン、マンガンイオン、ルテニウムイオン、鉄イオンを除く)であり、電気化学的または光触媒的な二酸化炭素還元反応を触媒する、二酸化炭素還元触媒である。 The present invention provides a metal complex in which one molecule or more of polypyridine having an electron-donating substituent is coordinated to one of group 6 to group 12 metal ions (provided that one molecule of bipyridine is coordinated to the metal ion If so, the metal ions are excluding rhenium ions, manganese ions, ruthenium ions, and iron ions), and are carbon dioxide reduction catalysts that catalyze electrochemical or photocatalytic carbon dioxide reduction reactions.

前記二酸化炭素還元触媒において、前記ポリピリジンが、式(1)に示すビピリジンであり、前記ビピリジンが前記金属イオンのうちの1つに1分子以上3分子以下配位した金属錯体であることが好ましい。

Figure 2022129732000004
(1)
(式(1)中、R~Rのうちの少なくとも1つは電子供与性の置換基であり、残りは水素原子またはビピリジンに置換可能な置換基を表す。) In the carbon dioxide reduction catalyst, it is preferable that the polypyridine is bipyridine represented by formula (1), and that the bipyridine is a metal complex in which one molecule or more and three molecules or less are coordinated to one of the metal ions.
Figure 2022129732000004
(1)
(In Formula (1), at least one of R 1 to R 8 is an electron-donating substituent, and the rest represent hydrogen atoms or substituents capable of substituting bipyridine.)

前記二酸化炭素還元触媒において、前記電子供与性の置換基は、アルキル基またはアルコキシ基であることが好ましい。 In the carbon dioxide reduction catalyst, the electron-donating substituent is preferably an alkyl group or an alkoxy group.

前記二酸化炭素還元触媒において、前記ポリピリジンが前記金属イオンに1分子配位している場合、前記金属イオンは、コバルトイオン、ニッケルイオン、またはモリブデンイオンであることが好ましい。 In the carbon dioxide reduction catalyst, when one molecule of the polypyridine is coordinated to the metal ion, the metal ion is preferably a cobalt ion, a nickel ion, or a molybdenum ion.

前記二酸化炭素還元触媒において、前記ポリピリジンが前記金属イオンに2分子または3分子配位している場合、前記金属イオンは、コバルトイオン、鉄イオン、マンガンイオン、ニッケルイオン、銅イオン、またはモリブデンイオンであることが好ましい。 In the carbon dioxide reduction catalyst, when two or three molecules of the polypyridine are coordinated to the metal ion, the metal ion is a cobalt ion, an iron ion, a manganese ion, a nickel ion, a copper ion, or a molybdenum ion. Preferably.

前記二酸化炭素還元触媒において、前記二酸化炭素還元触媒が有機溶媒または水系溶媒に溶解した均一系で駆動されることが好ましい。 The carbon dioxide reduction catalyst is preferably driven in a homogeneous system in which the carbon dioxide reduction catalyst is dissolved in an organic solvent or an aqueous solvent.

本発明は、前記二酸化炭素還元触媒と電解質とを溶媒に溶解させた電解質溶液と、二酸化炭素の還元反応を進行させるカソード電極と、前記カソード電極と電気的に接続され、酸化反応を生起するアノード電極と、を有し、前記カソード電極および前記アノード電極が前記電解質溶液に浸漬されている、二酸化炭素還元装置である。 The present invention comprises an electrolytic solution obtained by dissolving the carbon dioxide reduction catalyst and an electrolyte in a solvent, a cathode electrode for promoting a reduction reaction of carbon dioxide, and an anode electrically connected to the cathode electrode and causing an oxidation reaction. and an electrode, wherein the cathode electrode and the anode electrode are immersed in the electrolyte solution.

本発明は、前記二酸化炭素還元装置と、前記アノード電極および前記カソード電極に供給される電力を生成する太陽電池セルと、を備える、人工光合成装置である。 The present invention is an artificial photosynthesis device comprising the carbon dioxide reduction device, and a solar cell that generates power to be supplied to the anode electrode and the cathode electrode.

本発明により、有機溶媒中および水系溶媒中において、低いバイアスにおいて電気化学的または光触媒的な二酸化炭素還元反応を進行させることができる二酸化炭素還元触媒、それを用いた二酸化炭素還元装置および人工光合成装置を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a carbon dioxide reduction catalyst capable of promoting an electrochemical or photocatalytic carbon dioxide reduction reaction in an organic solvent and an aqueous solvent at a low bias, a carbon dioxide reduction device and an artificial photosynthesis device using the same can be provided.

本実施形態に係る二酸化炭素還元装置の一例を示す概略構成図である。1 is a schematic configuration diagram showing an example of a carbon dioxide reduction device according to an embodiment; FIG. 実施例において電気化学測定に用いた電気化学セルを示す概略構成図である。1 is a schematic configuration diagram showing an electrochemical cell used for electrochemical measurements in Examples. FIG. 実施例1の錯体触媒のサイクリックボルタモグラム(NEtBF/DMA中)を示すグラフである。4 is a graph showing a cyclic voltammogram (in NEt 4 BF 4 /DMA) of the complex catalyst of Example 1. FIG. 実施例2の錯体触媒のサイクリックボルタモグラム(NEtBF/DMA中)を示すグラフである。4 is a graph showing a cyclic voltammogram (in NEt 4 BF 4 /DMA) of the complex catalyst of Example 2. FIG. 実施例3の錯体触媒のサイクリックボルタモグラム(NEtBF/DMA中)を示すグラフである。4 is a graph showing a cyclic voltammogram (in NEt 4 BF 4 /DMA) of the complex catalyst of Example 3. FIG. 実施例4の錯体触媒のサイクリックボルタモグラム(NEtBF/DMA中)を示すグラフである。10 is a graph showing a cyclic voltammogram (in NEt 4 BF 4 /DMA) of the complex catalyst of Example 4. FIG. 比較例1の錯体触媒のサイクリックボルタモグラム(NEtBF/DMA中)を示すグラフである。4 is a graph showing a cyclic voltammogram (in NEt 4 BF 4 /DMA) of the complex catalyst of Comparative Example 1. FIG. 実施例1の錯体触媒のサイクリックボルタモグラム(0.01MNaHCO水溶液中)を示すグラフである。1 is a graph showing a cyclic voltammogram (in 0.01 M NaHCO 3 aqueous solution) of the complex catalyst of Example 1;

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 An embodiment of the present invention will be described below. This embodiment is an example of implementing the present invention, and the present invention is not limited to this embodiment.

[二酸化炭素還元触媒]
本実施形態に係る二酸化炭素還元触媒は、電子供与性の置換基を有するポリピリジンが第6族~12族の金属イオンのうちの1つに1分子以上配位した金属錯体であり、電気化学的または光触媒的な二酸化炭素還元反応を触媒する触媒である。ただし、本実施形態に係る二酸化炭素還元触媒において、ビピリジンが金属イオンに1分子配位する場合は、金属イオンとしてレニウムイオン、マンガンイオン、ルテニウムイオン、鉄イオンを除く。
[Carbon dioxide reduction catalyst]
The carbon dioxide reduction catalyst according to the present embodiment is a metal complex in which one or more molecules of polypyridine having an electron-donating substituent is coordinated to one of group 6 to group 12 metal ions. Alternatively, it is a catalyst that catalyzes a photocatalytic carbon dioxide reduction reaction. However, in the carbon dioxide reduction catalyst according to the present embodiment, when one molecule of bipyridine is coordinated to a metal ion, rhenium ions, manganese ions, ruthenium ions, and iron ions are excluded as metal ions.

本発明者らは、配位子であるポリピリジンへの電子供与性の置換基の導入によって、低いバイアスにおいて電気化学的または光触媒的な二酸化炭素還元反応を進行させることができることを見出した。本実施形態に係る二酸化炭素還元触媒は、電子供与性の置換基を導入したポリピリジンが第6族~12族の金属イオンのうちの1つに1分子以上配位した錯体触媒は、未置換のポリピリジンが配位した場合に比べて、より低い印加電圧で二酸化炭素還元反応が進行する。 The present inventors have found that the introduction of electron-donating substituents into the ligand polypyridine enables the electrochemical or photocatalytic carbon dioxide reduction reaction to proceed at low bias. The carbon dioxide reduction catalyst according to the present embodiment is a complex catalyst in which one or more molecules of polypyridine into which an electron-donating substituent is introduced is coordinated to one of group 6 to group 12 metal ions. The carbon dioxide reduction reaction proceeds at a lower applied voltage than when polypyridine is coordinated.

これは、配位子に電子供与性の置換基を導入することによって、中心金属の電子密度が高くなり、その結果、中心金属へのCOの配位がしやすくなり、二酸化炭素還元反応が有利となると考えられる。また、電子供与性の置換基として炭素化合物を含む置換基を導入することによって、錯体触媒周辺が疎水性の環境となり、CO分子が近づきやすくなると考えられる。 This is because the introduction of electron-donating substituents into the ligand increases the electron density of the central metal, and as a result, facilitates the coordination of CO2 to the central metal, resulting in the carbon dioxide reduction reaction. It is considered to be advantageous. In addition, by introducing a substituent containing a carbon compound as an electron-donating substituent, the surroundings of the complex catalyst become a hydrophobic environment, which makes it easier for CO 2 molecules to approach.

ポリピリジン配位子としては、例えば、ビピリジン、ターピリジン、クアテルピリジン、フェナントロリンおよびその誘導体等が挙げられる。また、その中で特に下記式(1)に示す構造の配位子が好ましい。下記式(1)に示す構造のビピリジン配位子は、主配位子として金属イオンに1~3分子配位し、錯体を形成する。ポリビピリジン錯体分子内の配位子は全て同じ構造であってもよいし、異なる構造であってもよい。 Examples of polypyridine ligands include bipyridine, terpyridine, quaterpyridine, phenanthroline and derivatives thereof. Among them, a ligand having a structure represented by the following formula (1) is particularly preferable. A bipyridine ligand having a structure represented by the following formula (1) coordinates 1 to 3 molecules with a metal ion as a main ligand to form a complex. All the ligands in the polybipyridine complex molecule may have the same structure or different structures.

Figure 2022129732000005
(1)
(式(1)中、R~Rのうちの少なくとも1つは電子供与性の置換基であり、残りは水素原子またはビピリジンに置換可能な置換基を表す。)
Figure 2022129732000005
(1)
(In Formula (1), at least one of R 1 to R 8 is an electron-donating substituent, and the rest represent hydrogen atoms or substituents capable of substituting bipyridine.)

式(1)におけるビピリジンの置換基であるR~Rのうちの少なくとも1つは電子供与性の置換基であり、残りは水素原子またはビピリジンに置換可能な置換基である。電子供与性の置換基としては、電子供与性を有していればよく、特に制限はない。電子供与性の置換基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等の直鎖アルキル基、環状アルキル基、または分岐アルキル基が挙げられる。アルキル基の長さは特に制限はないが、金属錯体の溶媒への溶解性等を考慮し、C~Cの範囲であることが好ましい。また、電子供与性の置換基としては、メトキシ基、エトキシ基、プロピルオキシ基、ブチルオキシ基等の直鎖アルコキシ基、環状アルコキシ基、または分岐アルコキシ基が挙げられる。アルコキシ基の長さは特に制限はないが、金属錯体の溶媒への溶解性等を考慮し、C~Cの範囲であることが好ましい。電子供与性の置換基としては、その他、ヒドロキシル基、アセトキシ基、アミノ基、アセトアミド基、ジメチルアミノ基等が挙げられる。その他、アルキル基の末端にホスホン酸が連結したアルキルホスホン酸基、アルキル基の末端にカルボキシル基が連結したアルキルカルボキシル基、アルキル基の末端にスルホン酸基が連結したアルキルスルホン酸基、アルキル基の末端にシラノール基が連結したアルキルシラノール基、アルキル基の末端にメルカプト基が連結したアルキルメルカブト基およびこれらの誘導体であってもよい。これらのうち、溶媒への溶解性、合成のし易さ等の点から、電子供与性の置換基は、アルキル基またはアルコキシ基であることが好ましい。それ以外の置換基は、水素原子、または、ビピリジンに置換可能であればどのような置換基であってもよいが、水素原子が好ましい。ビピリジンに置換可能な置換基としては、例えば、カルボキシル基、ホスホン酸基およびその誘導体等が挙げられる。 At least one of the substituents R 1 to R 8 of bipyridine in formula (1) is an electron-donating substituent, and the rest are hydrogen atoms or substituents capable of substituting bipyridine. The electron-donating substituent is not particularly limited as long as it has electron-donating properties. Examples of electron-donating substituents include straight-chain alkyl groups such as methyl, ethyl, propyl, and butyl groups, cyclic alkyl groups, and branched alkyl groups. Although the length of the alkyl group is not particularly limited, it is preferably in the range of C 1 to C 4 in consideration of the solubility of the metal complex in solvents. Examples of electron-donating substituents include linear alkoxy groups such as methoxy, ethoxy, propyloxy, and butyloxy groups, cyclic alkoxy groups, and branched alkoxy groups. Although the length of the alkoxy group is not particularly limited, it is preferably in the range of C 1 to C 4 in consideration of the solubility of the metal complex in solvents. Other electron-donating substituents include a hydroxyl group, an acetoxy group, an amino group, an acetamide group, a dimethylamino group, and the like. In addition, an alkylphosphonic acid group in which a phosphonic acid group is linked to the end of an alkyl group, an alkylcarboxyl group in which a carboxyl group is linked to the end of an alkyl group, an alkylsulfonic acid group in which a sulfonic acid group is linked to the end of an alkyl group, an alkyl group An alkylsilanol group having a silanol group linked to the end, an alkylmercapto group having a mercapto group linked to the end of an alkyl group, and derivatives thereof may be used. Among these, the electron-donating substituent is preferably an alkyl group or an alkoxy group in terms of solubility in a solvent, ease of synthesis, and the like. Other substituents may be hydrogen atoms or any substituents that can be substituted on bipyridine, but hydrogen atoms are preferred. Substituents that can be substituted on bipyridine include, for example, a carboxyl group, a phosphonic acid group and derivatives thereof.

電子供与性の置換基の位置は、R~Rのどこに置換してもよいが、錯体形成のし易さ等の観点から、ビピリジンの4,4’位(R,R)または5,5’位(R,R)が好ましい。 The position of the electron-donating substituent may be any of R 1 to R 8 , but from the viewpoint of ease of complex formation, etc., the 4,4′ positions (R 3 , R 6 ) of bipyridine or The 5,5′ positions (R 2 , R 7 ) are preferred.

ポリビピリジン配位子以外に金属イオンが配位する配位子としては、主配位子、補助配位子のいずれについても特に制限はない。例えば、主配位子としては、含窒素複素環化合物、含酸素複素環化合物、含酸素化合物、含硫黄複素環化合物等が挙げられる。また、補助配位子としては、Cl、Br等のハロゲン原子、カルボニル、アクア、アンミン、オキソ、シアノ、ニトロ、ニトリト、チオシアナト、ピリジン、トリフェニルホスフィン、トリエチルホスフィン、トリエチルホスファイト等が挙げられる。反応の過程で、主配位子、補助配位子がCO、塩基、または水と接触して一部乖離し、副配位子へ変換されてもよい。副配位子としては、例えば、-CO、-CO、-COOH、-COH、-(CO)-、-OH、-OH等が挙げられる。これらの配位子は1種を単独で使用しても2種以上を併用してもよい。これらの配位子において、金属に配位する元素としては特に制限がないが、例えば、O、N、C、P、S、Si、ハロゲン等が挙げられる。このような元素は1種が配位していても2種以上が配位していてもよい。 Besides the polybipyridine ligand, the ligand to which the metal ion is coordinated is not particularly limited, either as the main ligand or the auxiliary ligand. Examples of main ligands include nitrogen-containing heterocyclic compounds, oxygen-containing heterocyclic compounds, oxygen-containing compounds, sulfur-containing heterocyclic compounds, and the like. Examples of ancillary ligands include halogen atoms such as Cl and Br, carbonyl, aqua, ammine, oxo, cyano, nitro, nitrite, thiocyanato, pyridine, triphenylphosphine, triethylphosphine, and triethylphosphite. During the course of the reaction, the primary ligand and the ancillary ligand may come into contact with CO 2 , a base, or water and partly dissociate and be converted into an ancillary ligand. Examples of auxiliary ligands include -CO, -CO 2 , -COOH, -COH, -(CO 2 )-, -OH, -OH 2 and the like. These ligands may be used alone or in combination of two or more. In these ligands, the element that coordinates to the metal is not particularly limited, and examples thereof include O, N, C, P, S, Si, and halogen. One of such elements may be coordinated, or two or more may be coordinated.

含窒素複素環化合物としては、例えば、ピリジン、ビピリジン、ジホスホネートピリジン、フェナントロリン、ターピリジン、クアテルピリジン、ピロール、インドールカルバゾール、イミダゾール、ピラゾール、キノリン、イソキノリン、アクリジン、ピリダジン、ピリミジン、ピラジン、フタラジン、キナゾリン、キノキサリンおよびその誘導体等が挙げられる。含酸素化合物としては、ポリオキソメタレートおよびその誘導体が挙げられる。含硫黄複素環化合物としては、チオフェン、チオナフテン、チアゾールおよびそれらの誘導体等が挙げられる。 Examples of nitrogen-containing heterocyclic compounds include pyridine, bipyridine, diphosphonatepyridine, phenanthroline, terpyridine, quaterpyridine, pyrrole, indolecarbazole, imidazole, pyrazole, quinoline, isoquinoline, acridine, pyridazine, pyrimidine, pyrazine, phthalazine, and quinazoline. , quinoxaline and its derivatives. Oxygenates include polyoxometalates and their derivatives. Sulfur-containing heterocyclic compounds include thiophene, thionaphthene, thiazole and derivatives thereof.

本実施形態に係る二酸化炭素還元触媒において、3分子が配位した錯体が、反応系中で配位子の一部が脱離、分解し、1分子配位の構造または2分子配位の構造に変化してもよい。また、1分子配位の構造、2分子配位の構造、および3分子配位の構造のうちのいずれか2つ以上の構造の混合物として系中に存在してもよい。 In the carbon dioxide reduction catalyst according to the present embodiment, a complex in which three molecules are coordinated desorbs and decomposes a part of the ligand in the reaction system, resulting in a monomolecular coordination structure or a bimolecular coordination structure. may change to It may also exist in the system as a mixture of two or more structures selected from the monomolecular coordination structure, the bimolecular coordination structure, and the trimolecular coordination structure.

金属錯体としては、周期表の第6族から第12族のいずれかに属する金属から選ばれる少なくとも1種の金属と配位子との錯体が挙げられる。ただし、ビピリジンが金属イオンに1分子配位する場合は、金属イオンとしてレニウムイオン、マンガンイオン、ルテニウムイオン、鉄イオンを除く。金属イオンとしては、触媒活性等の点から、コバルト(Co)、鉄(Fe)、銅(Cu)、ニッケル(Ni)、マンガン(Mn)、モリブデン(Mo)のイオンからなる群から選択されることが好ましく、資源量が豊富であることから、Co、Feがより好ましい。このような錯体は単核であっても2核以上の多核であってもよい。また、2種以上の金属が含まれていてもよい。 Examples of metal complexes include complexes of ligands and at least one metal selected from metals belonging to any one of Groups 6 to 12 of the periodic table. However, when one molecule of bipyridine is coordinated to a metal ion, rhenium ion, manganese ion, ruthenium ion and iron ion are excluded as metal ions. The metal ions are selected from the group consisting of ions of cobalt (Co), iron (Fe), copper (Cu), nickel (Ni), manganese (Mn) and molybdenum (Mo) from the viewpoint of catalytic activity. Co and Fe are more preferable because they are abundant in resources. Such complexes may be mononuclear or polynuclear with two or more nuclei. Moreover, two or more kinds of metals may be contained.

二酸化炭素還元触媒において、ポリピリジンが金属イオンに1分子配位している場合、金属イオンは、コバルトイオン、ニッケルイオン、またはモリブデンイオンであることが好ましい。ポリピリジンが金属イオンに2分子または3分子配位している場合、金属イオンは、コバルトイオン、鉄イオン、マンガンイオン、ニッケルイオン、銅イオン、またはモリブデンイオンであることが好ましい。 In the carbon dioxide reduction catalyst, when one molecule of polypyridine is coordinated to a metal ion, the metal ion is preferably cobalt ion, nickel ion, or molybdenum ion. When polypyridine is bimolecularly or trimolecularly coordinated to a metal ion, the metal ion is preferably cobalt ion, iron ion, manganese ion, nickel ion, copper ion, or molybdenum ion.

金属錯体触媒の具体例としては、例えば、4,4’-ジメチル-2,2’-ビピリジン(4,4’-dmbpy)、4-メチル-2,2’-ビピリジン(4-mbpy)、4,4’-ジエチル-2,2’-ビピリジン(4,4’-debpy)、4,4’-ジブチル-2,2’-ビピリジン(4,4’-dbbpy)、4,4’-ジtert-ブチル-2,2’-ビピリジン(4,4’-dtbbpy)、4,4’-ジメトキシ-2,2’-ビピリジン(4,4’-dmobpy)、4,4’-ジエトキシ-2,2’-ビピリジン(4,4’-deobpy)、4,4’-ジメチルホスホネート-2,2’-ビピリジン(4,4’-dmpbpy)、4,4’-ジメチルホスホネートエチル-2,2’-ビピリジン(4,4’-dmpebpy)、4,4’-ジメチルカルボキシ-2,2’-ビピリジン(4,4’-dmcbpy)、5,5’-ジメチル-2,2’-ビピリジン(5,5’-dmbpy)からなる群より選択される少なくとも1つを主配位子として有するCo,Fe,Cu,Ni,Mn,Mo錯体等が挙げられる。 Specific examples of metal complex catalysts include 4,4′-dimethyl-2,2′-bipyridine (4,4′-dmbpy), 4-methyl-2,2′-bipyridine (4-mbpy), 4 ,4′-diethyl-2,2′-bipyridine (4,4′-debpy), 4,4′-dibutyl-2,2′-bipyridine (4,4′-dbbpy), 4,4′-ditert -butyl-2,2'-bipyridine (4,4'-dtbbpy), 4,4'-dimethoxy-2,2'-bipyridine (4,4'-dmobpy), 4,4'-diethoxy-2,2 '-bipyridine (4,4'-deobpy), 4,4'-dimethylphosphonate-2,2'-bipyridine (4,4'-dmpbpy), 4,4'-dimethylphosphonate-ethyl-2,2'-bipyridine (4,4′-dmpebpy), 4,4′-dimethylcarboxy-2,2′-bipyridine (4,4′-dmcbpy), 5,5′-dimethyl-2,2′-bipyridine (5,5′ -dmbpy) having at least one selected from the group consisting of Co, Fe, Cu, Ni, Mn, and Mo complexes as main ligands.

より具体的には、Co錯体の場合は、[Co(4,4’-dmbpy)2+、[Co(4,4’-dmbpy)3+、[Co(4,4’-dmbpy)(CO)]2+、[Co(4,4’-dmbpy)(CO)]、[Co(4,4’-dmbpy)(CO)]、[Co(4,4’-dmbpy)(bpy)]2+、[Co(4,4’-dmbpy)Cl]、[Co(4,4’-dmbpy)Cl、[Co(4-mbpy)2+、[Co(4,4’-debpy)2+、[Co(4,4’-dbbpy)2+、[Co(4,4’-dtbbpy)2+、[Co(4,4’-dmobpy)2+、[Co(4,4’-deobpy)2+、[Co(4,4’-dmpbpy)(bpy)2+、[Co(4,4’-dpbpy)2+、[Co(4,4’-dmpebpy)2+、[Co(4,4’-dmcbpy)2+、[Co(5,5’-dmbpy)2+等が挙げられる。また、これらを重合させた金属錯体ポリマーであってもよい。 More specifically, in the case of a Co complex, [Co(4,4′-dmbpy) 3 ] 2+ , [Co(4,4′-dmbpy) 3 ] 3+ , [Co(4,4′-dmbpy) 2 (CO 3 )] 2+ , [Co(4,4′-dmbpy) 2 (CO 3 )], [Co(4,4′-dmbpy) 2 (CO 3 )] + , [Co(4,4′ -dmbpy) 2 (bpy)] 2+ , [Co(4,4′-dmbpy) 2 Cl 2 ], [Co(4,4′-dmbpy) 2 Cl 2 ] + , [Co(4-mbpy) 3 ] 2+ , [Co(4,4′-debpy) 3 ] 2+ , [Co(4,4′-dbbpy) 3 ] 2+ , [Co(4,4′-dtbbpy) 3 ] 2+ , [Co(4,4 '-dmobpy) 3 ] 2+ , [Co(4,4'-deobpy) 3 ] 2+ , [Co(4,4'-dmpbpy)(bpy) 2 ] 2+ , [Co(4,4'-dpbpy) 3 ] 2+ , [Co(4,4′-dmpebpy) 3 ] 2+ , [Co(4,4′-dmcbpy) 3 ] 2+ , [Co(5,5′-dmbpy) 3 ] 2+ and the like. Moreover, the metal complex polymer which polymerized these may be used.

錯体の対イオンは、アニオン性であれば特に制限はない。本実施形態に係る二酸化炭素還元触媒において、電子供与性の置換基を有するポリピリジンの金属錯体の対イオンを選択することによって、水溶性または有機溶媒可溶性とすることができる。水溶性の金属錯体とすれば、水系溶媒に溶解した均一系で駆動される二酸化炭素還元触媒とすることができ、有機溶媒可溶性とすれば、有機溶媒に溶解した均一系で駆動される二酸化炭素還元触媒とすることができる。水に溶解する対イオンとしては、硝酸イオン、硫酸イオン、塩化物イオン、炭酸イオン、Cl,Br等のハロゲンが挙げられる。水に溶解せず、有機溶媒に溶解する対イオンとしては、PFイオン、BFイオン等が挙げられる。 The counter ion of the complex is not particularly limited as long as it is anionic. The carbon dioxide reduction catalyst according to the present embodiment can be made water-soluble or organic solvent-soluble by selecting the counter ion of the metal complex of polypyridine having an electron-donating substituent. If it is a water-soluble metal complex, it can be a homogeneous system-driven carbon dioxide reduction catalyst dissolved in an aqueous solvent, and if it is organic solvent-soluble, it can be a homogeneous system-driven carbon dioxide dissolved in an organic solvent. It can be a reduction catalyst. Counter ions that dissolve in water include nitrate ions, sulfate ions, chloride ions, carbonate ions, and halogens such as Cl and Br. Counter ions that are insoluble in water but soluble in organic solvents include PF 6 ion, BF 4 ion, and the like.

[二酸化炭素還元装置および人工光合成装置]
本実施形態に係る二酸化炭素還元装置は、上記二酸化炭素還元触媒と電解質とを溶媒に溶解させた電解質溶液と、二酸化炭素の還元反応を進行させるカソード電極と、カソード電極と電気的に接続され、酸化反応を生起するアノード電極と、を有し、カソード電極およびアノード電極が電解質溶液に浸漬されている装置である。
[Carbon dioxide reduction device and artificial photosynthesis device]
The carbon dioxide reduction device according to the present embodiment includes an electrolyte solution obtained by dissolving the carbon dioxide reduction catalyst and the electrolyte in a solvent, a cathode electrode for advancing the carbon dioxide reduction reaction, and electrically connected to the cathode electrode, and an anode electrode that causes an oxidation reaction, wherein the cathode electrode and the anode electrode are immersed in an electrolyte solution.

本実施形態に係る二酸化炭素還元装置の一例の概略構成を図1に示す。図1に示す二酸化炭素還元装置1は、例えば、上記二酸化炭素還元触媒と電解質とを溶媒に溶解させた電解質溶液14が収容容器16に収容され、二酸化炭素の還元反応を進行させるカソード電極(作用電極)12および酸化反応を生起するアノード電極(対電極)10が電解質溶液14に浸漬されており、カソード電極12とアノード電極10とが電気的に接続されている装置である。電解質溶液14には、二酸化炭素を含有させている。二酸化炭素は予め電解質溶液に飽和させても、系内に二酸化炭素ガスをフローさせた状態でもよい。 FIG. 1 shows a schematic configuration of an example of a carbon dioxide reduction device according to this embodiment. The carbon dioxide reduction apparatus 1 shown in FIG. 1 has, for example, an electrolyte solution 14 in which the carbon dioxide reduction catalyst and the electrolyte are dissolved in a solvent is contained in a container 16, and a cathode electrode (action) that advances the reduction reaction of carbon dioxide. 12 and an anode electrode (counter electrode) 10 that causes an oxidation reaction are immersed in an electrolytic solution 14, and the cathode electrode 12 and the anode electrode 10 are electrically connected. The electrolyte solution 14 contains carbon dioxide. Carbon dioxide may be saturated in advance in the electrolyte solution, or may be in a state in which carbon dioxide gas is allowed to flow in the system.

アノード電極10においては、酸化反応が生起されるとともに、電位が得られる。カソード電極12においては、酸化反応を生起する電極から電位を得ることによって、例えば二酸化炭素(CO)が還元されて一酸化炭素(CO)やギ酸(HCOOH)等が生成される。 At the anode electrode 10, an oxidation reaction occurs and a potential is obtained. At the cathode electrode 12 , carbon monoxide (CO), formic acid (HCOOH), and the like are generated by reducing carbon dioxide (CO 2 ), for example, by obtaining a potential from an electrode that causes an oxidation reaction.

カソード電極12とアノード電極10との間を電気的に接続し、適切なバイアス電圧を印加した状態とする。バイアス電圧を印加する手段は、特に限定されるものではなく、化学的電池(一次電池、二次電池等を含む)、定電圧源、太陽電池等が挙げられる。このとき、アノード電極10に正極が接続され、カソード電極12に負極が接続される。 The cathode electrode 12 and the anode electrode 10 are electrically connected, and an appropriate bias voltage is applied. Means for applying a bias voltage are not particularly limited, and include chemical batteries (including primary batteries, secondary batteries, etc.), constant voltage sources, solar batteries, and the like. At this time, the positive electrode is connected to the anode electrode 10 and the negative electrode is connected to the cathode electrode 12 .

バイアス電圧を印加する手段として太陽電池セルを用いることにより、上記二酸化炭素還元装置と、アノード電極およびカソード電極に供給される電力を生成する太陽電池セルと、を備える人工光合成装置とすることができる。バイアス電圧を印加する手段として太陽電池セルを用いる場合、太陽電池セルの正極をアノード電極10に接続し、負極をカソード電極12に接続すればよい。本実施形態に係る人工光合成装置は、二酸化炭素還元装置1のアノード電極10とカソード電極12が太陽電池を介して接続され、太陽光をエネルギー源として駆動される。 By using a solar cell as a means for applying a bias voltage, an artificial photosynthesis device can be provided that includes the carbon dioxide reduction device and a solar cell that generates power to be supplied to the anode electrode and the cathode electrode. . When a solar cell is used as means for applying a bias voltage, the positive electrode of the solar cell should be connected to the anode electrode 10 and the negative electrode should be connected to the cathode electrode 12 . In the artificial photosynthesis apparatus according to this embodiment, the anode electrode 10 and the cathode electrode 12 of the carbon dioxide reduction apparatus 1 are connected via a solar cell, and driven using sunlight as an energy source.

溶媒としては、錯体触媒を溶解する媒体であれば適宜使用可能である。溶媒は、電気化学反応を進行しやすくするため、電解質の溶液であることが好ましい。水性媒体の場合は、水および電解質を含有する他、メタノール、メタノール、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)等の水溶性有機溶媒を含有していてもよい。また水を含まない有機溶媒単独でもよい。 As the solvent, any medium can be appropriately used as long as it dissolves the complex catalyst. The solvent is preferably an electrolyte solution in order to facilitate the progress of the electrochemical reaction. In the case of an aqueous medium, in addition to containing water and an electrolyte, it contains a water-soluble organic solvent such as methanol, methanol, acetonitrile, N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA). good too. Alternatively, an organic solvent containing no water may be used alone.

有機溶媒単独の場合の電解質としては、テトラエチルアンモニウムテトラフルオロボレート(NEtBF)、過塩素酸ナトリウム、テトラエチルアンモニウムヘキサフルオロホスフェート等が挙げられる。水系溶媒の電解質としては、例えばオキソ酸およびオキソ酸塩が挙げられる。オキソ酸としては例えば炭酸、リン酸、硝酸、硫酸、ホウ酸、ハロゲンオキソ酸(次亜塩素酸塩、塩素酸および過塩素酸塩)等が挙げられる。オキソ酸塩を構成する陽イオンとしては、例えばナトリウム、カリウム、セシウム等のアルカリ金属が挙げられる。具体的な電解質としては、例えば炭酸ナトリウム、炭酸カリウム等の炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等の重炭酸塩、リン酸カリウム、リン酸ナトリウム等のリン酸塩(リン酸二水素塩、リン酸水素塩を含む)、硫酸ナトリウム、硫酸カリウム等の硫酸塩、ホウ酸カリウム等のホウ酸塩、過塩素酸ナトリウムおよび過塩素酸カリウム等の過塩素酸塩が挙げられる。また、水性媒体に使用される電解質としては、炭酸塩、重炭酸塩、リン酸塩およびホウ酸塩が好ましい。また2種以上の組合せであってもよい。 Electrolytes in the case of organic solvents alone include tetraethylammonium tetrafluoroborate (NEt 4 BF 4 ), sodium perchlorate, tetraethylammonium hexafluorophosphate, and the like. Electrolytes for aqueous solvents include, for example, oxoacids and oxoacid salts. Examples of oxoacids include carbonic acid, phosphoric acid, nitric acid, sulfuric acid, boric acid, halogen oxoacids (hypochlorite, chloric acid and perchlorate) and the like. Examples of cations constituting oxoacid salts include alkali metals such as sodium, potassium, and cesium. Examples of specific electrolytes include carbonates such as sodium carbonate and potassium carbonate, bicarbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate, phosphates such as potassium phosphate and sodium phosphate (dihydrogen phosphate, including hydrogen phosphate), sulfates such as sodium sulfate and potassium sulfate, borates such as potassium borate, and perchlorates such as sodium perchlorate and potassium perchlorate. Carbonates, bicarbonates, phosphates and borates are preferred as electrolytes used in aqueous media. Also, a combination of two or more kinds may be used.

溶媒に対する二酸化炭素還元触媒の濃度は、溶媒に対する二酸化炭素還元触媒の溶解性等に応じて決めればよい。 The concentration of the carbon dioxide reduction catalyst in the solvent may be determined according to the solubility of the carbon dioxide reduction catalyst in the solvent.

溶媒に対する電解質の濃度は、例えば、0.001mol/L~0.5mol/Lの範囲であり、0.005mol/L~0,25mol/Lの範囲であることが好ましい。 The concentration of the electrolyte with respect to the solvent is, for example, in the range of 0.001 mol/L to 0.5 mol/L, preferably in the range of 0.005 mol/L to 0.25 mol/L.

カソード電極12(還元反応用電極)は、還元反応によって物質を還元するために利用される電極である。カソード電極12としては、グラッシーカーボン等のカーボン材料、白金、金等の金属等を用いることができる。 The cathode electrode 12 (electrode for reduction reaction) is an electrode used for reducing a substance by a reduction reaction. As the cathode electrode 12, a carbon material such as glassy carbon, a metal such as platinum or gold, or the like can be used.

アノード電極10(酸化反応用電極)は、酸化反応によって物質を酸化するために利用される電極である。アノード電極10としては、カーボン材料、白金、金等の金属等を用いることができる。 The anode electrode 10 (electrode for oxidation reaction) is an electrode used for oxidizing a substance by an oxidation reaction. As the anode electrode 10, a carbon material, a metal such as platinum or gold, or the like can be used.

収容容器16としては、例えば、金属製、プラスチック製、ガラス製等の密閉容器、およびガスを流通する機構を有する反応容器等を用いることができる。 As the storage container 16, for example, a sealed container made of metal, plastic, glass, or the like, a reaction container having a mechanism for circulating gas, or the like can be used.

二酸化炭素還元装置において、二酸化炭素の還元反応に伴う還元電流(CO還元波)の立ち上がり電位は、溶媒がN,N-ジメチルアセトアミドである場合、Ag/AgNO電極基準で-1.6V以下、好ましくは-1.2V以下、水系溶媒を用いた場合、Ag/AgCl電極基準で-1.9V以下、好ましくは-1.6V以下であることが好ましい。 In the carbon dioxide reduction device, the rising potential of the reduction current (CO 2 reduction wave) accompanying the reduction reaction of carbon dioxide is −1.6 V or less based on the Ag/AgNO 3 electrode when the solvent is N,N-dimethylacetamide. , preferably -1.2 V or less, and when an aqueous solvent is used, -1.9 V or less, preferably -1.6 V or less based on the Ag/AgCl electrode.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.

1.錯体触媒の合成
<実施例1>
[Co(4,4’-dimethyl-2,2’-bipyridine)](NOの合成
Co(NO・6HO(和光純薬)1.5mmolと配位子として4,4’-dimethyl-2,2’-bipyridine(東京化成)4.5mmolとをメタノールに溶解し、室温(20±5℃)で2時間撹拌後、減圧濃縮した。残渣をメタノールとジエチルエーテルによって再結晶化することにより、1.09gの下記に示す[Co(4,4’-dimethyl-2,2’-bipyridine)](NOを得た。
1. Synthesis of complex catalyst <Example 1>
Synthesis of [Co(4,4′-dimethyl - 2,2′ - bipyridine) 3 ] ( NO 3 ) 2 , 4′-dimethyl-2,2′-bipyridine (Tokyo Kasei Co., Ltd.) (4.5 mmol) was dissolved in methanol, stirred at room temperature (20±5° C.) for 2 hours, and then concentrated under reduced pressure. The residue was recrystallized with methanol and diethyl ether to obtain 1.09 g of [Co(4,4′-dimethyl-2,2′-bipyridine) 3 ](NO 3 ) 2 shown below.

<実施例2>
[Co(4,4’-dimethoxy-2,2’-bipyridine)](NOの合成
実施例1の合成において、配位子として4,4’-dimethyl-2,2’-bipyridineの代わりに4,4’-dimethoxy-2,2’-bipyridineを用いた以外は同じ方法で合成して、0.96gの下記に示す[Co(4,4’-dimethoxy-2,2’-bipyridine)](NOを得た。
<Example 2>
Synthesis of [Co(4,4′-dimethyl-2,2′-bipyridine) 3 ](NO 3 ) 2 In the synthesis of Example 1, 4,4′-dimethyl-2,2′-bipyridine was used as a ligand. 0.96 g of the following [Co(4,4′-dimethoxy-2,2′- bipyridine) 3 ](NO 3 ) 2 was obtained.

<実施例3>
[Co(5,5’-dimethyl-2,2’-bipyridine)](NOの合成
実施例1の合成において、配位子として4,4’-dimethyl-2,2’-bipyridineの代わりに5,5’-dimethyl-2,2’-bipyridineを用いた以外は同じ方法で合成して、0.95gの下記に示す[Co(5,5’-dimethyl-2,2’-bipyridine)](NOを得た。
<Example 3>
Synthesis of [Co(5,5′-dimethyl-2,2′-bipyridine) 3 ](NO 3 ) 2 In the synthesis of Example 1, 4,4′-dimethyl-2,2′-bipyridine as a ligand 0.95 g of the following [Co(5,5′-dimethyl-2,2′- bipyridine) 3 ](NO 3 ) 2 was obtained.

<実施例4>
[Co(4,4’-dimethyl-2,2’-bipyridine)(CO)](NO)の合成
Co(NO・6HO(和光純薬)1mmolと配位子として4,4’-dimethyl-2,2’-bipyridine(東京化成)2mmolとをメタノール25mLに溶解させた後、0.16MNaHCO(和光純薬)水溶液25mLを加え、40℃で2時間撹拌した。その後、大気下で終夜撹拌することによって酸化させた後、溶媒が少量になるまで減圧留去し、ろ過した。残渣を水およびアセトニトリルで洗浄し、風乾させることによって、504.8mg(0.919mmol)の下記に示す[Co(4,4’-dimethyl-2,2’-bipyridine)(CO)](NO)を得た。
<Example 4>
Synthesis of [Co(4,4′-dimethyl-2,2′-bipyridine) 2 (CO 3 )](NO 3 ) 1 mmol of Co(NO 3 ) 2.6H 2 O (Wako Pure Chemical Industries) as a ligand After dissolving 2 mmol of 4,4'-dimethyl-2,2'-bipyridine (Tokyo Kasei) in 25 mL of methanol, 25 mL of 0.16M NaHCO 3 (Wako Pure Chemical) aqueous solution was added and stirred at 40° C. for 2 hours. After that, the mixture was oxidized by stirring overnight in the air, and then the solvent was distilled off under reduced pressure until the solvent became small, followed by filtration. The residue was washed with water and acetonitrile and air-dried to give 504.8 mg (0.919 mmol) of [Co(4,4′-dimethyl-2,2′-bipyridine) 2 (CO 3 )] ( NO 3 ) was obtained.

<比較例1>
[Co(2,2’-bipyridine)](NOの合成
実施例1の合成において、配位子として4,4’-dimethyl-2,2’-bipyridineの代わりに2,2’-bipyridineを用いた以外は同じ方法で合成して、0.934gの下記に示す[Co(2,2’-bipyridine)](NOを得た。
<Comparative Example 1>
Synthesis of [Co(2,2′-bipyridine) 3 ](NO 3 ) 2 In the synthesis of Example 1, instead of 4,4′-dimethyl-2,2′-bipyridine as a ligand, 2,2′ -Bipyridine was synthesized in the same manner to obtain 0.934 g of [Co(2,2'-bipyridine) 3 ](NO 3 ) 2 shown below.

Figure 2022129732000006
Figure 2022129732000006

2.電気化学的なCO還元(有機溶媒中)
電気化学測定には、図2に示す電気化学セルを用いた。ポテンショスタットを使用し、作用電極としてグラッシーカーボン電極(Φ3mm)、対電極として白金(Pt)線、参照電極として10mmol/L Ag/AgNO電極を用いた、三電極方式で行った。電解質溶液は、N,N-ジメチルアセトアミド(DMA)溶液に電解質として、0.1mol/Lのテトラエチルアンモニウムテトラフルオロボレート(NEtBF)と0.5mmol/Lの測定試料の各種錯体をそれぞれ溶解させたものを用いた。収容容器としては、パイレックス(登録商標)ガラス製容器を用いた。測定は、アルゴン(Ar)または二酸化炭素(CO)を電解質溶液中に流通させた後に行った。サイクリックボルタメトリ(CV)は、10mV/sの掃引速度で0Vから-2.0V(または-1.5V)vsAg/AgNOの電位領域で測定した。
2. Electrochemical CO2 reduction (in organic solvent)
The electrochemical cell shown in FIG. 2 was used for the electrochemical measurement. Using a potentiostat, a three-electrode method was used with a glassy carbon electrode (Φ3 mm) as the working electrode, a platinum (Pt) wire as the counter electrode, and a 10 mmol/L Ag/AgNO 3 electrode as the reference electrode. The electrolyte solution was prepared by dissolving 0.1 mol/L of tetraethylammonium tetrafluoroborate (NEt 4 BF 4 ) and 0.5 mmol/L of various complexes of the measurement sample as electrolytes in an N,N-dimethylacetamide (DMA) solution. I used what I made. As the storage container, a Pyrex (registered trademark) glass container was used. Measurements were taken after passing argon (Ar) or carbon dioxide (CO 2 ) through the electrolyte solution. Cyclic voltammetry (CV) was measured in the potential range from 0 V to −2.0 V (or −1.5 V) vs Ag/AgNO 3 at a sweep rate of 10 mV/s.

3.電気化学的なCO還元(水系溶媒中)
電気化学測定には、図2に示す電気化学セルを用いた。ポテンショスタットを使用し、作用電極としてグラッシーカーボン電極(Φ3mm)、対電極として白金(Pt)線、参照電極としてAg/AgCl電極を用いた、三電極方式で行った。電解質溶液は、0.01mol/L NaHCO溶液(Ar雰囲気の場合は、予め希硫酸溶液でpH5.9に調整し、CO雰囲気の場合は予めCOで飽和させて、pH5.9とした)に0.5mmol/Lの測定試料の各種錯体をそれぞれ溶解させたものを用いた。収容容器としては、パイレックスガラス製容器を用いた。測定は、アルゴン(Ar)または二酸化炭素(CO)を電解質溶液中に流通させた後に行った。サイクリックボルタメトリは、10mV/sの掃引速度で0Vから-1.5VvsAg/AgClの電位領域で測定した。
3. Electrochemical CO2 reduction (in aqueous media)
The electrochemical cell shown in FIG. 2 was used for the electrochemical measurement. Using a potentiostat, a three-electrode system was used, using a glassy carbon electrode (Φ3 mm) as a working electrode, a platinum (Pt) wire as a counter electrode, and an Ag/AgCl electrode as a reference electrode. The electrolyte solution was a 0.01 mol/L NaHCO3 solution (in the case of Ar atmosphere, the pH was adjusted to 5.9 with a dilute sulfuric acid solution in advance, and in the case of CO2 atmosphere, the pH was adjusted to 5.9 by saturating with CO2 in advance). ) in which 0.5 mmol/L of various complexes of the measurement sample were dissolved respectively. As a storage container, a Pyrex glass container was used. Measurements were taken after passing argon (Ar) or carbon dioxide (CO 2 ) through the electrolyte solution. Cyclic voltammetry was measured in the potential range from 0 V to −1.5 V vs Ag/AgCl at a sweep rate of 10 mV/s.

4.結果
[有機溶媒中での電気化学的CO還元]
実施例1~4および比較例1の錯体触媒のアルゴン(Ar)雰囲気下およびCO雰囲気下における有機溶媒中でのサイクリックボルタモグラムを、それぞれ図3~7に示す(Arは点線、COは実線)。
4. Results [Electrochemical CO2 reduction in organic solvents]
The cyclic voltammograms of the complex catalysts of Examples 1-4 and Comparative Example 1 in an organic solvent under an argon (Ar) atmosphere and a CO2 atmosphere are shown in FIGS. solid line).

Ar中のサイクリックボルタモグラムでは、触媒自身の酸化還元に帰属されるピークが観察される。一方、CO中では、CO還元触媒として働く場合には、COに電子を供与することに起因するCO還元波が生じる。すなわち、Ar中とCO中でサイクリックボルタモグラムに差がある場合は、CO還元の触媒として作用していることを意味する。 In the cyclic voltammogram in Ar, peaks attributed to redox of the catalyst itself are observed. On the other hand, in CO2 , when acting as a CO2 reduction catalyst, a CO2 reduction wave is generated due to donating electrons to CO2 . That is, if there is a difference in the cyclic voltammograms in Ar and CO2 , it means that it acts as a catalyst for CO2 reduction.

図7に示すように、比較例1の錯体触媒を用いた場合では、Ar雰囲気とCO雰囲気下との間で、-0.4Vから-1.9VvsAg/AgNOの領域でほとんど明確なサイクリックボルタモグラムの違いはみられなかった。-1.9V以降の負のバイアスでようやく若干のCO還元電流が生じていた。このことより、比較例1の錯体触媒は、電気化学的なCO還元触媒として機能するものの、負側の高い印加電位を必要とし、その機能は極めて低いことがわかった。高い印加電圧を必要とするということは、より多くのエネルギーを消費することに加え、作用極上での副生成物である水素生成反応が進行するため、できるだけ低いバイアスで駆動することが望ましい。 As shown in FIG. 7, when the complex catalyst of Comparative Example 1 was used, there was almost a clear transition between the Ar atmosphere and the CO 2 atmosphere in the region of −0.4 V to −1.9 V vs Ag/AgNO 3 . No difference was observed in click voltammograms. Some CO 2 reduction current occurred only at a negative bias of -1.9 V or higher. From this, it was found that the complex catalyst of Comparative Example 1 functions as an electrochemical CO 2 reduction catalyst, but requires a high applied potential on the negative side, and its function is extremely low. Requiring a high applied voltage consumes more energy, and in addition, the hydrogen production reaction, which is a by-product on the working electrode, proceeds. Therefore, it is desirable to drive with a bias as low as possible.

一方、配位子に電子供与性の置換基が導入されたビピリジンが3配位した実施例1~3の錯体触媒、および2配位した実施例4の錯体触媒を用いた場合は、図3~6に示すように、-0.7V付近より負のバイアスにおいて、CO雰囲気の方がAr雰囲気よりも大きな電流が観測された。すなわち、実施例1~4の錯体触媒は低いバイアスで駆動する優れたCO還元触媒として作用していることがわかる。 On the other hand, when using the complex catalysts of Examples 1 to 3 in which the bipyridine having an electron-donating substituent introduced into the ligand is tricoordinated and the complex catalyst of Example 4 in which bipyridine is bicoordinated, FIG. 6, a larger current was observed in the CO 2 atmosphere than in the Ar atmosphere at a negative bias from around -0.7V. That is, it can be seen that the complex catalysts of Examples 1 to 4 act as excellent CO 2 reduction catalysts driven at a low bias.

この理由としては、配位子に電子供与性の置換基を導入することにより、中心金属のCoイオンの電子密度が向上し、電子を蓄積しやすくなり、このサイトにCOが配位しやすくなり、CO還元反応が促進されると推定される。また、炭素化合物を含む置換基の導入により、錯体触媒周辺が疎水性の環境となり、CO分子が近づきやすくなり、水素生成の原料であるプロトン(H)との還元反応が抑制されると推定される。 The reason for this is that by introducing an electron-donating substituent to the ligand, the electron density of the Co ion of the central metal is improved, electrons are easily accumulated, and CO2 is easily coordinated to this site. It is presumed that the CO2 reduction reaction is accelerated. In addition, the introduction of a substituent containing a carbon compound creates a hydrophobic environment around the complex catalyst, making it easier for CO2 molecules to approach, suppressing the reduction reaction with protons (H + ), which are the raw materials for hydrogen generation. Presumed.

[水系溶媒中での電気化学的CO還元]
実施例1の錯体触媒のアルゴン(Ar)雰囲気下およびCO雰囲気下における水系溶媒中でのサイクリックボルタモグラムを、図8に示す(Arは点線、COは実線)。水素生成反応が進行しやすい水系溶媒中においても、-0.4V(vsAg/AgCl)付近より負のバイアスにおいて、CO雰囲気の方がAr雰囲気よりも大きな電流が観測された。-1.2Vの電位印加のときにセル中の気相をサンプリングしてガスクロマトグラフで分析を行った結果、COと水素が1:1の割合で生成していた。また、溶液中のイオンクロマトグラフ測定により、ギ酸を検出した。このことより、水系溶媒中においてもCO還元反応が進行していることを確認した。
[Electrochemical CO2 reduction in aqueous solvents]
Cyclic voltammograms of the complex catalyst of Example 1 in an aqueous solvent under an argon (Ar) atmosphere and a CO2 atmosphere are shown in FIG. 8 (Ar: dotted line, CO2 : solid line). Even in an aqueous solvent in which the hydrogen generation reaction proceeds easily, a larger current was observed in the CO 2 atmosphere than in the Ar atmosphere at a negative bias near -0.4 V (vs Ag/AgCl). When a potential of −1.2 V was applied, the gas phase in the cell was sampled and analyzed by a gas chromatograph. As a result, CO and hydrogen were produced at a ratio of 1:1. Also, formic acid was detected by ion chromatography in solution. From this, it was confirmed that the CO 2 reduction reaction proceeded even in the aqueous solvent.

このように、資源量豊富な元素とシンプルな配位子を用いた金属錯体により、有機溶媒中はもちろんのこと、水系溶媒中においても低いバイアスにおいて電気化学的なCO還元反応を進行させるCO還元触媒を得ることができた。 In this way, metal complexes using abundantly abundant elements and simple ligands can be used to promote the electrochemical CO2 reduction reaction at low bias not only in organic solvents but also in aqueous solvents. 2 reduction catalyst was obtained.

以上の通り、実施例によって、有機溶媒中および水系溶媒中において、低いバイアスにおいて電気化学的または光触媒的な二酸化炭素還元反応を進行させることができる二酸化炭素還元触媒が得られた。また、その二酸化炭素還元触媒を用いた二酸化炭素還元装置が得られた。この二酸化炭素還元装置は、人工光合成装置に適用可能である。 As described above, according to the examples, carbon dioxide reduction catalysts were obtained that are capable of causing an electrochemical or photocatalytic carbon dioxide reduction reaction to proceed at a low bias in organic solvents and aqueous solvents. Also, a carbon dioxide reduction device using the carbon dioxide reduction catalyst was obtained. This carbon dioxide reduction device is applicable to an artificial photosynthesis device.

1 二酸化炭素還元装置、10 アノード電極、12 カソード電極、14 電解質溶液、16 収容容器。 1 carbon dioxide reduction device, 10 anode electrode, 12 cathode electrode, 14 electrolyte solution, 16 container.

Claims (8)

電子供与性の置換基を有するポリピリジンが第6族~12族の金属イオンのうちの1つに1分子以上配位した金属錯体(ただし、ビピリジンが前記金属イオンに1分子配位する場合は、前記金属イオンとしてレニウムイオン、マンガンイオン、ルテニウムイオン、鉄イオンを除く)であり、電気化学的または光触媒的な二酸化炭素還元反応を触媒することを特徴とする二酸化炭素還元触媒。 A metal complex in which one molecule or more of polypyridine having an electron-donating substituent is coordinated to one of group 6 to group 12 metal ions (however, when one molecule of bipyridine is coordinated to the metal ion, A carbon dioxide reduction catalyst characterized in that the metal ions are excluding rhenium ions, manganese ions, ruthenium ions, and iron ions, and catalyzes an electrochemical or photocatalytic carbon dioxide reduction reaction. 請求項1に記載の二酸化炭素還元触媒であって、
前記ポリピリジンが、式(1)に示すビピリジンであり、
前記ビピリジンが前記金属イオンのうちの1つに1分子以上3分子以下配位した金属錯体であることを特徴とする二酸化炭素還元触媒。
Figure 2022129732000007
(1)
(式(1)中、R~Rのうちの少なくとも1つは電子供与性の置換基であり、残りは水素原子またはビピリジンに置換可能な置換基を表す。)
The carbon dioxide reduction catalyst according to claim 1,
The polypyridine is bipyridine represented by formula (1),
A carbon dioxide reduction catalyst, wherein the bipyridine is a metal complex in which one molecule or more and three molecules or less are coordinated to one of the metal ions.
Figure 2022129732000007
(1)
(In Formula (1), at least one of R 1 to R 8 is an electron-donating substituent, and the rest represent hydrogen atoms or substituents capable of substituting bipyridine.)
請求項1または2に記載の二酸化炭素還元触媒であって、
前記電子供与性の置換基は、アルキル基またはアルコキシ基であることを特徴とする二酸化炭素還元触媒。
The carbon dioxide reduction catalyst according to claim 1 or 2,
The carbon dioxide reduction catalyst, wherein the electron-donating substituent is an alkyl group or an alkoxy group.
請求項1~3のいずれか1項に記載の二酸化炭素還元触媒であって、
前記ポリピリジンが前記金属イオンに1分子配位している場合、前記金属イオンは、コバルトイオン、ニッケルイオン、またはモリブデンイオンであることを特徴とする二酸化炭素還元触媒。
The carbon dioxide reduction catalyst according to any one of claims 1 to 3,
The carbon dioxide reduction catalyst, wherein one molecule of the polypyridine is coordinated to the metal ion, and the metal ion is a cobalt ion, a nickel ion, or a molybdenum ion.
請求項1~3のいずれか1項に記載の二酸化炭素還元触媒であって、
前記ポリピリジンが前記金属イオンに2分子または3分子配位している場合、前記金属イオンは、コバルトイオン、鉄イオン、マンガンイオン、ニッケルイオン、銅イオン、またはモリブデンイオンであることを特徴とする二酸化炭素還元触媒。
The carbon dioxide reduction catalyst according to any one of claims 1 to 3,
When the polypyridine is coordinated with two or three molecules of the metal ion, the metal ion is a cobalt ion, an iron ion, a manganese ion, a nickel ion, a copper ion, or a molybdenum ion. Carbon reduction catalyst.
請求項1~5のいずれか1項に記載の二酸化炭素還元触媒であって、
前記二酸化炭素還元触媒が有機溶媒または水系溶媒に溶解した均一系で駆動されることを特徴とする二酸化炭素還元触媒。
The carbon dioxide reduction catalyst according to any one of claims 1 to 5,
A carbon dioxide reduction catalyst characterized by being driven by a homogeneous system in which the carbon dioxide reduction catalyst is dissolved in an organic solvent or an aqueous solvent.
請求項1~6のいずれか1項に記載の二酸化炭素還元触媒と電解質とを溶媒に溶解させた電解質溶液と、
二酸化炭素の還元反応を進行させるカソード電極と、
前記カソード電極と電気的に接続され、酸化反応を生起するアノード電極と、
を有し、
前記カソード電極および前記アノード電極が前記電解質溶液に浸漬されていることを特徴とする二酸化炭素還元装置。
an electrolyte solution obtained by dissolving the carbon dioxide reduction catalyst according to any one of claims 1 to 6 and an electrolyte in a solvent;
a cathode electrode that advances the reduction reaction of carbon dioxide;
an anode electrode that is electrically connected to the cathode electrode and causes an oxidation reaction;
has
A carbon dioxide reduction apparatus, wherein the cathode electrode and the anode electrode are immersed in the electrolyte solution.
請求項7に記載の二酸化炭素還元装置と、
前記アノード電極および前記カソード電極に供給される電力を生成する太陽電池セルと、
を備えることを特徴とする人工光合成装置。
The carbon dioxide reduction device according to claim 7;
a solar cell that generates power to be supplied to the anode electrode and the cathode electrode;
An artificial photosynthesis device comprising:
JP2021028531A 2021-02-25 2021-02-25 Carbon dioxide reduction catalyst, carbon dioxide reducer, and artificial photosynthesis device Active JP7291165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021028531A JP7291165B2 (en) 2021-02-25 2021-02-25 Carbon dioxide reduction catalyst, carbon dioxide reducer, and artificial photosynthesis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021028531A JP7291165B2 (en) 2021-02-25 2021-02-25 Carbon dioxide reduction catalyst, carbon dioxide reducer, and artificial photosynthesis device

Publications (2)

Publication Number Publication Date
JP2022129732A true JP2022129732A (en) 2022-09-06
JP7291165B2 JP7291165B2 (en) 2023-06-14

Family

ID=83150708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021028531A Active JP7291165B2 (en) 2021-02-25 2021-02-25 Carbon dioxide reduction catalyst, carbon dioxide reducer, and artificial photosynthesis device

Country Status (1)

Country Link
JP (1) JP7291165B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894494A (en) * 2022-12-29 2023-04-04 南方科技大学 Ligand, complex and application in electrochemical reaction

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004224715A (en) * 2003-01-21 2004-08-12 National Institute Of Advanced Industrial & Technology Method for producing formic acid from carbon dioxide and hydrogen and method for fixing carbon dioxide and method for accelerating the reactions by irradiation of light
CN102532170A (en) * 2011-12-21 2012-07-04 南京大学 Monovalent copper complex, preparation method thereof, method for catalyzing and reducing carbon dioxide by utilizing visible light and dye-sensitized solar cell
JP2013180943A (en) * 2012-03-05 2013-09-12 Nippon Telegr & Teleph Corp <Ntt> Method for reducing carbon dioxide, photocatalyst for reduction, and method for producing photocatalyst for reduction
WO2016136433A1 (en) * 2015-02-27 2016-09-01 国立研究開発法人科学技術振興機構 Electrochemical reduction of carbon dioxide
WO2019065258A1 (en) * 2017-09-27 2019-04-04 積水化学工業株式会社 Carbon dioxide reduction device, and porous electrode
CN109705168A (en) * 2019-01-16 2019-05-03 云南师范大学 A kind of double-core nickel coordination compound and the preparation method and application thereof
JP2019127646A (en) * 2018-01-26 2019-08-01 株式会社豊田中央研究所 Electrolysis system and artificial photosynthesis system
CN110372757A (en) * 2019-06-25 2019-10-25 云南师范大学 Using dimethylbipyridine as metal complex of ligand and the preparation method and application thereof
JP2020147783A (en) * 2019-03-12 2020-09-17 株式会社豊田中央研究所 Electrode for carbon dioxide reduction, carbon dioxide reduction device, and artificial light synthesis device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004224715A (en) * 2003-01-21 2004-08-12 National Institute Of Advanced Industrial & Technology Method for producing formic acid from carbon dioxide and hydrogen and method for fixing carbon dioxide and method for accelerating the reactions by irradiation of light
CN102532170A (en) * 2011-12-21 2012-07-04 南京大学 Monovalent copper complex, preparation method thereof, method for catalyzing and reducing carbon dioxide by utilizing visible light and dye-sensitized solar cell
JP2013180943A (en) * 2012-03-05 2013-09-12 Nippon Telegr & Teleph Corp <Ntt> Method for reducing carbon dioxide, photocatalyst for reduction, and method for producing photocatalyst for reduction
WO2016136433A1 (en) * 2015-02-27 2016-09-01 国立研究開発法人科学技術振興機構 Electrochemical reduction of carbon dioxide
WO2019065258A1 (en) * 2017-09-27 2019-04-04 積水化学工業株式会社 Carbon dioxide reduction device, and porous electrode
JP2019127646A (en) * 2018-01-26 2019-08-01 株式会社豊田中央研究所 Electrolysis system and artificial photosynthesis system
CN109705168A (en) * 2019-01-16 2019-05-03 云南师范大学 A kind of double-core nickel coordination compound and the preparation method and application thereof
JP2020147783A (en) * 2019-03-12 2020-09-17 株式会社豊田中央研究所 Electrode for carbon dioxide reduction, carbon dioxide reduction device, and artificial light synthesis device
CN110372757A (en) * 2019-06-25 2019-10-25 云南师范大学 Using dimethylbipyridine as metal complex of ligand and the preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894494A (en) * 2022-12-29 2023-04-04 南方科技大学 Ligand, complex and application in electrochemical reaction

Also Published As

Publication number Publication date
JP7291165B2 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
Fang et al. A water-soluble dinuclear copper electrocatalyst,[Cu (oxpn) Cu (OH) 2] for both water reduction and oxidation
EP3242964B1 (en) Electrochemical and photoelectrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and 2,5-diformylfuran
US8524066B2 (en) Electrochemical production of urea from NOx and carbon dioxide
JP2013536319A (en) Reduction of carbon dioxide to product
Ni et al. Deciphering electrolyte selection for electrochemical reduction of carbon dioxide and nitrogen to high‐value‐added chemicals
Hardwick et al. Interfacial Photoelectrochemical Catalysis: Solar‐Induced Green Synthesis of Organic Molecules
Kafentzi et al. Electrochemical Water Oxidation and Stereoselective Oxygen Atom Transfer Mediated by a Copper Complex
WO2021177359A1 (en) Ammonia decomposition method and fuel cell using same
Huang et al. Electrochemical study of Pt and Fe and electrodeposition of PtFe alloys from air-and water-stable room temperature ionic liquids
KR101750279B1 (en) Electrochemical conversion system of carbon dioxide
Zhang et al. Transition metal tetrapentafluorophenyl porphyrin catalyzed hydrogen evolution from acetic acid and water
US8999134B2 (en) Manufacturing carbon-based combustibles by electrochemical decomposition of CO2
EP3253905B1 (en) Selective porphyrin-catalyzed electrochemical reduction of co2 into co in water
JP7291165B2 (en) Carbon dioxide reduction catalyst, carbon dioxide reducer, and artificial photosynthesis device
US11056705B2 (en) Organic anolyte materials for flow batteries
JP2018034152A (en) Multi-electron oxidation-reduction catalyst
Seka et al. Mechanism of the electrochemical conversion of aryl halides to arylzinc compounds by cobalt catalysis in DMF/pyridine
Klinova McMillan et al. BiVO4 Photoanodes for TEMPO‐Mediated Benzyl Alcohol Oxidation in Organic Media
Xue et al. A coordinatively saturated nickel complex supported by triazenido ligands: a new electrocatalyst for hydrogen generation via ligand-centered proton-transfer
Pahari et al. In situ observation of photoelectrochemical water oxidation intermediates for selective biomass upgrading with simultaneous hydrogen production
Mitchell et al. Investigation of Iron (III) Tetraphenylporphyrin as a Redox Flow Battery Anolyte: Unexpected Side Reactivity with the Electrolyte
Masoumi et al. Photo-electrochemical ep-oxidation using environmentally friendly oxidants: Overview of recent advances in efficiently designed photo-electrode
Klimaeva et al. Electrocatalytic Activity of 4, 4'-Bipyridine in the Production of Molecular Hydrogen in the Presence of Acids of Different Nature
CA3088908A1 (en) Aqueous composition as electrolyte comprising ionic liquids or lithium salts
Otsuka et al. Dimethyl carbonate synthesis by electrolytic carbonylation of methanol in the gas phase

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230602

R150 Certificate of patent or registration of utility model

Ref document number: 7291165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150