JP2022127802A - Electrically conductive belt, image forming apparatus having the same, and method of manufacturing electrically conductive belt - Google Patents

Electrically conductive belt, image forming apparatus having the same, and method of manufacturing electrically conductive belt Download PDF

Info

Publication number
JP2022127802A
JP2022127802A JP2021025993A JP2021025993A JP2022127802A JP 2022127802 A JP2022127802 A JP 2022127802A JP 2021025993 A JP2021025993 A JP 2021025993A JP 2021025993 A JP2021025993 A JP 2021025993A JP 2022127802 A JP2022127802 A JP 2022127802A
Authority
JP
Japan
Prior art keywords
conductive
belt
conductive belt
surface layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021025993A
Other languages
Japanese (ja)
Inventor
重利 武智
Shigetoshi Takechi
直樹 中村
Naoki Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okura Industrial Co Ltd
Original Assignee
Okura Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okura Industrial Co Ltd filed Critical Okura Industrial Co Ltd
Priority to JP2021025993A priority Critical patent/JP2022127802A/en
Publication of JP2022127802A publication Critical patent/JP2022127802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ink Jet (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a belt for an image forming apparatus that has a base material layer indicative of semiconductivity in a middle-resistance region (105-108 Ω/sq.), small variation in surface resistivity and a surface layer indicative of electric insulation, in which if such a belt is used as a paper-carrying belt, then a suction force of a recording medium (paper) is strong and the recording medium can be positively carried because the surface layer is excellent in electric insulation.SOLUTION: An electrically conductive belt comprises a base material layer consisting of a composition containing a thermoplastic resin and a conductive agent, and a surface layer consisting of a composition containing acid-modified ethylene-tetrafluoroethylene copolymer.SELECTED DRAWING: None

Description

本発明は、インクジェット方式や電子写真方式を用いた画像形成装置に用いる導電性ベルトに関する。 The present invention relates to a conductive belt used in an image forming apparatus using an inkjet system or an electrophotographic system.

従来、電子写真方式やインクジェット方式のプリンター、複写機、ファクシミリ等の画像形成装置はローラで用紙を搬送する方法が採用されてきたが、画像形成が高速化するとローラでは用紙搬送のトラブルが発生しやすくなるため、ベルトで紙を搬送する方法が採用されている。具体的には、(1)吸引口を有するベルトを用いて減圧吸引して用紙をベルトに吸引搬送する方式や(2)導電性を有する基材層と絶縁性を有する表面層からなるベルトを用いて、当該ベルトに電圧を印加することにより発生する静電吸着力を利用して用紙をベルトに吸着し搬送させる方式が知られている。 Conventionally, image forming apparatuses such as electrophotographic and inkjet printers, copiers, and facsimiles have adopted a method of transporting paper using rollers. Since it becomes easier, a method of conveying paper with a belt is adopted. Specifically, (1) a method in which a belt having a suction port is used to vacuum-suck a paper sheet onto the belt, and (2) a belt consisting of a conductive base layer and an insulating surface layer is used. A method is known in which a sheet is conveyed by attracting the sheet to the belt using an electrostatic attraction force generated by applying a voltage to the belt.

これらのうち、(1)減圧で用紙をベルトに吸引する方式は、特許文献1や特許文献2に記載されているような減圧室と当該減圧室を減圧にする減圧装置が必要であり、さらに駆動するベルトと減圧室との間を常に密閉状態に保持しなければならないため画像形成装置の構造が複雑になる。一方、(2)静電吸引力を利用する方法は当該ベルトに電圧を印加する部材と電源があれば印加する電圧を調整するだけで吸引力を制御でき簡便である。 Of these, (1) the method of sucking the paper onto the belt under reduced pressure requires a decompression chamber and a decompression device for decompressing the decompression chamber, as described in Patent Documents 1 and 2. Since the space between the driving belt and the decompression chamber must always be maintained in a sealed state, the structure of the image forming apparatus becomes complicated. On the other hand, (2) the method using the electrostatic attraction force is convenient because the attraction force can be controlled only by adjusting the applied voltage if there is a member for applying a voltage to the belt and a power source.

静電吸着力を利用して紙などの記録媒体を吸引・搬送するベルト(紙搬送ベルト)としては、特許文献3には、内層と外層がともにポリイミド樹脂からなり、内層の体積抵抗率が10~1014Ω・cm、外層の体積抵抗率が1014~1016Ω・cmである紙搬送ベルトが記載されている。しかしながら、特許文献3記載の紙搬送ベルトは遠心成形(金型表面または裏面に内層用または外層のポリアミック酸の溶液を吹付け、高温で溶剤を揮散させた後、高温・無酸素下でイミド化する。二層の場合はこれを2回繰り返す)しなければならず、製造工程が非常に煩雑になる。 As a belt (paper conveying belt) for sucking and conveying a recording medium such as paper using an electrostatic adsorption force, Patent Document 3 discloses that both the inner layer and the outer layer are made of a polyimide resin, and the inner layer has a volume resistivity of 10. A paper transport belt is described with a volume resistivity of 8 to 10 14 Ω·cm and an outer layer volume resistivity of 10 14 to 10 16 Ω·cm. However, the paper conveying belt described in Patent Document 3 is centrifugal molding (spraying a polyamic acid solution for the inner layer or the outer layer on the surface or back of the mold, volatilizing the solvent at high temperature, and then imidizing at high temperature in the absence of oxygen). In the case of two layers, this must be repeated twice), which makes the manufacturing process very complicated.

また、特許文献4には、内層が導電性ポリイミド樹脂からなりその表面抵抗率が1×10~1×10Ω/□、外層がエチレン―テトラフルオロエチレン共重合体(ETFE)からなるインクジェット用紙搬送ベルトが記載されている。この紙搬送ベルトも遠心成形で内層を形成し、その上に予め成形したETFEを被せ溶融接着する工程が必要であるため、製造工程が非常に煩雑である。 Further, Patent Document 4 discloses an ink-jet printer in which the inner layer is made of a conductive polyimide resin and has a surface resistivity of 1×10 4 to 1×10 9 Ω/□, and the outer layer is made of an ethylene-tetrafluoroethylene copolymer (ETFE). A paper transport belt is described. This paper conveying belt also requires a step of forming an inner layer by centrifugal molding, covering the inner layer with a preformed ETFE, and melting and adhering it, so the manufacturing process is very complicated.

一方、高速度で印刷が可能なインクジェット方式のプリンターなどに用いられているインクは有機溶剤が用いられているものがあり、インクがベルトに付着すると、ベルトに使用されている樹脂の種類によってはその部分が膨潤しベルト表面に凹凸が発生するという問題があった。耐溶剤性に鑑み、表層にフッ素系樹脂を用いることが望まれているが、フッ素系樹脂は接着性が悪い。また、中には表面抵抗率が1014Ω/□未満のものもあり、吸引力が弱くなるという問題もある。なお、特許文献5には含フッ素共重合体を含有する第一の層と、該第一の層に直接積層したポリアミド樹脂を含有する第二の層とを有する積層体が記載されているが、積層体の具体的な用途としては、積層シートや積層ホースが例示されているだけである。 On the other hand, some inks used in inkjet printers, which are capable of printing at high speed, use organic solvents. There is a problem that the portion swells and unevenness occurs on the belt surface. In view of solvent resistance, it is desired to use a fluorine-based resin for the surface layer, but the fluorine-based resin has poor adhesiveness. In addition, some of them have a surface resistivity of less than 10 14 Ω/□, and there is also a problem that the attraction force becomes weak. Incidentally, Patent Document 5 describes a laminate having a first layer containing a fluorine-containing copolymer and a second layer containing a polyamide resin directly laminated on the first layer. Laminated sheets and laminated hoses are only exemplified as specific uses of the laminate.

特開2019-131389号公報JP 2019-131389 A 特開2019-127364号公報JP 2019-127364 A 特開2008-94605号公報JP 2008-94605 A 特開2011-73804号公報JP 2011-73804 A WO2016/195042号公報WO2016/195042

ポリイミド樹脂を使用した多層ベルトは、遠心成形を2回繰り返したり、もしくは遠心成形法で予め製作されたベルト状のポリイミド樹脂層へ予めベルト状に成型したフッ素系樹脂を被せて溶融接着するなどの煩雑な工程を経て製造するため高価である。
本発明はこのような問題に鑑みなされたものであり、基材層は中抵抗領域(10~10Ω/□)の半導電性を示し、表面抵抗率のバラツキが小さく、表面層は絶縁性を示す導電性ベルトを提供することを目的とする。
A multi-layered belt using polyimide resin can be produced by repeating centrifugal molding twice, or by melting and bonding a belt-shaped polyimide resin layer that has been pre-fabricated by centrifugal molding with a belt-shaped fluorine-based resin that has been molded in advance. It is expensive because it is manufactured through a complicated process.
The present invention has been made in view of such problems. An object of the present invention is to provide a conductive belt that exhibits insulating properties.

本発明によれば、
(1)熱可塑性樹脂と導電剤とを含有した組成物からなる基材層と、酸変性したエチレン―テトラフルオロエチレン共重合体を含有した組成物からなる表面層とを備えることを特徴とする導電性ベルト;
(2)前記熱可塑性樹脂がポリアミド系樹脂であることを特徴とする(1)記載の導電性ベルト;
(3)前記導電剤が電子伝導性材料であることを特徴とする(1)または(2)のいずれかに記載の導電性ベルト;
(4)前記電子伝導性材料がカーボンブラックであることを特徴とする(3)記載の導電性ベルト;
(5)前記基材層の温度23℃、相対湿度50%RHにおける表面抵抗率は、1×10以上1×10Ω/□以下であることを特徴とする(1)乃至(4)のいずれかに記載の導電性ベルト;
(6)前記表面層の温度23℃、相対湿度50%RHにおける表面抵抗率は、1×1013Ω/□以上であることを特徴とする(1)乃至(5)のいずれかに記載の導電性ベルト;
(7)(1)乃至(6)のいずれかに記載の導電性ベルトが画像形成装置用導電性ベルトであることを特徴とする導電性ベルト;
(8)前記画像形成装置用導電性ベルトがインクジェット方式紙搬送用であることを特徴とする(7)記載の導電性ベルト;
(9)(1)乃至(8)のいずれかに記載の導電性ベルトを有することを特徴とする画像形成装置;
(10)(1)乃至(8)のいずれかに記載の導電性ベルトの製造方法において、熱可塑性樹脂と導電剤とを含有した基材層を形成する組成物と、酸変性したエチレン―テトラフルオロエチレン共重合体を含有した表面層を形成する組成物をそれぞれ別々の押出機に供給し、環状ダイスより基材層が内層、表面層が外層となるように共押出することを特徴とする導電性ベルトの製造方法;
が提供される。
According to the invention,
(1) A substrate layer comprising a composition containing a thermoplastic resin and a conductive agent, and a surface layer comprising a composition containing an acid-modified ethylene-tetrafluoroethylene copolymer. conductive belt;
(2) The conductive belt according to (1), wherein the thermoplastic resin is a polyamide resin;
(3) The conductive belt according to either (1) or (2), wherein the conductive agent is an electronically conductive material;
(4) The conductive belt according to (3), wherein the electronically conductive material is carbon black;
(5) The substrate layer has a surface resistivity of 1×10 5 or more and 1×10 8 Ω/□ or less at a temperature of 23° C. and a relative humidity of 50% RH (1) to (4). The conductive belt according to any one of;
(6) The surface resistivity of the surface layer at a temperature of 23° C. and a relative humidity of 50% RH is 1×10 13 Ω/□ or more, according to any one of (1) to (5). conductive belt;
(7) A conductive belt, wherein the conductive belt according to any one of (1) to (6) is a conductive belt for an image forming apparatus;
(8) The conductive belt according to (7), wherein the conductive belt for an image forming apparatus is for conveying paper by an inkjet method;
(9) An image forming apparatus comprising the conductive belt according to any one of (1) to (8);
(10) In the method for producing a conductive belt according to any one of (1) to (8), a composition for forming a base layer containing a thermoplastic resin and a conductive agent; A composition for forming a surface layer containing a fluoroethylene copolymer is supplied to separate extruders, and co-extruded from an annular die so that the substrate layer is the inner layer and the surface layer is the outer layer. A method for manufacturing a conductive belt;
is provided.

本発明の導電性ベルトは、熱可塑性樹脂と導電剤とを含有した組成物からなる基材層と酸変性したエチレンーテトラフルオロエチレン共重合体を含有した組成物からなる表面層とを積層したものであり、表面層側の表面抵抗率が1×1014Ω/□以上(絶縁領域)であり、基材層側(表面層が形成されていない側)の表面抵抗率が1×10~1×10Ω/□の範囲(中抵抗領域)であるベルトが得られる。このようなベルトを紙搬送ベルトとして使用すると、表面層が絶縁性に優れているため、記録媒体(紙)の吸着力が強く、記録媒体を確実に搬送することができる。
また、本発明の導電性ベルトは、従来品のポリイミド樹脂を使用した多層構成のベルトより安価に製造することができる。本発明の導電性ベルトは、溶剤タイプのインクが付着したとしてもベルト表面が膨潤しないため、特にインクジェット方式の紙搬送ベルトに好適に使用できる。
The conductive belt of the present invention comprises a substrate layer made of a composition containing a thermoplastic resin and a conductive agent, and a surface layer made of a composition containing an acid-modified ethylene-tetrafluoroethylene copolymer. The surface resistivity on the surface layer side is 1×10 14 Ω/□ or more (insulating region), and the surface resistivity on the substrate layer side (the side on which the surface layer is not formed) is 1×10 5 A belt with a resistance in the range of ˜1×10 8 Ω/□ (medium resistance region) is obtained. When such a belt is used as a paper transport belt, since the surface layer has excellent insulating properties, the adsorption force of the recording medium (paper) is strong, and the recording medium can be reliably transported.
In addition, the conductive belt of the present invention can be manufactured at a lower cost than conventional multi-layered belts using polyimide resin. The conductive belt of the present invention does not swell on the belt surface even when solvent-type ink adheres to it, so it can be suitably used particularly as a paper transport belt for an ink jet system.

[基材層]
本発明の基材層は、熱可塑性樹脂と導電剤とを含有していることが必須である。成形性を考慮すると、熱可塑性樹脂としては、例えば、フッ素系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミドイミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂などを、単独で、または2種以上をブレンドして、或いは多層化して用いることができる。これらの中でも、フッ素系樹脂は、他の樹脂とは異なりそれ自身が難燃性を有し、また押出成形が容易で、防汚性、離型性をも有しているので、画像形成装置用ベルトには好適である。このようなフッ素系樹脂としては、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、エチレン-テトラフルオロエチレン共重合体、ポリヘキサフルオロプロピレン、エチレン-フッ化ビニリデン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体等を採用することができる。
[Base layer]
The substrate layer of the present invention must contain a thermoplastic resin and a conductive agent. Considering moldability, thermoplastic resins include, for example, fluorine-based resins, polyamide-based resins, polyester-based resins, polycarbonate-based resins, polyamide-imide-based resins, polyimide-based resins, polyolefin-based resins, and the like. More than one species can be blended or used in multiple layers. Among these, fluorine-based resins, unlike other resins, are flame-retardant in themselves, are easy to extrude, and have antifouling properties and releasability. It is suitable for use belts. Examples of such fluorine-based resins include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, polyhexafluoropropylene, ethylene-vinylidene fluoride copolymer, and vinylidene fluoride. -tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, and the like can be employed.

ポリアミド系樹脂は、ジアミンとジカルボン酸との重縮合、α,ω-アミノカルボン酸の重縮合、ラクタム類の開環重合などによって得られ、十分な分子量を有する熱可塑性樹脂である。ポリアミド樹脂としては、例えば、ナイロン6、ナイロン4、ナイロン6,6、ナイロン11、ナイロン12、ナイロン6,10、ナイロン6,12、ナイロン6/6,6、ナイロン6/6,6/12、ナイロン6,MXD(MXDはm-キシリレンジアミン成分を表す)、ナイロン6,6T(Tはテレフタル酸成分を表す)、ナイロン6,6I(Iはイソフタル酸成分を表す)などが挙げられる。これらの中でも、吸水率が低いポリアミド樹脂が好ましく、吸水率が低いポリアミド樹脂は、カーボンブラックの分散性に優れるとともに、高湿度環境における電気抵抗の安定性に優れる。ポリアミド樹脂の吸水率は、1.5%以下であることが好ましく、1.0%以下であることがより好ましい。吸水率が1.5%以下のポリアミド樹脂としては、ナイロン11、ナイロン12、ナイロン6,10、ナイロン6,12などが挙げられ、吸水率が1.0%以下のポリアミド樹脂としては、ナイロン11、ナイロン12が挙げられる。なお、これらのポリアミドは、単独或は2種以上を組み合わせて用いても良い。 A polyamide-based resin is a thermoplastic resin having a sufficient molecular weight obtained by polycondensation of diamine and dicarboxylic acid, polycondensation of α,ω-aminocarboxylic acid, ring-opening polymerization of lactams, or the like. Examples of polyamide resins include nylon 6, nylon 4, nylon 6,6, nylon 11, nylon 12, nylon 6,10, nylon 6,12, nylon 6/6,6, nylon 6/6, 6/12, Nylon 6,MXD (MXD represents the m-xylylenediamine component), nylon 6,6T (T represents the terephthalic acid component), nylon 6,6I (I represents the isophthalic acid component), and the like. Among these, polyamide resins with low water absorption are preferred, and polyamide resins with low water absorption are excellent in the dispersibility of carbon black and in the stability of electrical resistance in high-humidity environments. The water absorption of the polyamide resin is preferably 1.5% or less, more preferably 1.0% or less. Polyamide resins with a water absorption of 1.5% or less include nylon 11, nylon 12, nylon 6,10, nylon 6,12, etc. Polyamide resins with a water absorption of 1.0% or less include nylon 11 , and nylon 12. These polyamides may be used alone or in combination of two or more.

また、近年、プリンター等の高速化に伴い画像形成装置用ベルトには高い弾性率が求められる。弾性率が低いと、駆動時にベルトが伸びて、転写位置がずれる恐れがある。基材層の引張弾性率は500MPa以上であることが好ましく、更には800MPa以上が好ましい。ベルトの引張弾性率を上げるためには、上述した熱可塑性樹脂に、平板状フィラー、ウィスカー等の補強材を添加することもできる。また、基材層の厚みは、上記性能を満たすように50~300μmが好ましく、75~200μmがより好ましい。厚さが50μm未満では十分な引張強度を得ることが難しく、厚さが300μmを超えると屈曲性が悪化する。 In recent years, along with the speeding up of printers and the like, belts for image forming apparatuses are required to have a high elastic modulus. If the elastic modulus is low, the belt may stretch during driving, causing the transfer position to shift. The tensile modulus of the substrate layer is preferably 500 MPa or more, more preferably 800 MPa or more. In order to increase the tensile modulus of the belt, reinforcing materials such as flat fillers and whiskers can be added to the thermoplastic resin. The thickness of the substrate layer is preferably 50-300 μm, more preferably 75-200 μm, so as to satisfy the above performance. If the thickness is less than 50 μm, it is difficult to obtain sufficient tensile strength, and if the thickness exceeds 300 μm, flexibility deteriorates.

本発明の導電性ベルトは、基材層に導電剤を含有することにより、基材層の表面抵抗率が調整される。基材層の表面抵抗率は、10~1012Ω/□であることが好ましく、特には中抵抗領域である10~10Ω/□であることが好ましい。導電剤には電子伝導性材料とイオン伝導性材料がある。また、基材層が中抵抗領域のなかでもより低い抵抗領域(例えば10~10Ω/□)が必要な場合には、少ない添加量で低い抵抗領域を得ることが可能な電子伝導性材料を使用することが好ましい。 In the conductive belt of the present invention, the surface resistivity of the base layer is adjusted by containing a conductive agent in the base layer. The surface resistivity of the substrate layer is preferably 10 5 to 10 12 Ω/square, and more preferably 10 5 to 10 8 Ω/square, which is in the medium resistance range. Conductive agents include electronically conductive materials and ionically conductive materials. In addition, when the substrate layer requires a lower resistance region (for example, 10 5 to 10 6 Ω/□) among the medium resistance regions, an electron conductive material capable of obtaining a low resistance region with a small amount of addition Materials are preferably used.

電子伝導性材料としては、例えば、カーボンブラック、グラファイト、カーボンナノチューブ等のカーボン系材料、ポリアニリン、ポリチオフェン、ポリアセチレン等の導電性高分子、アルミニウム・亜鉛酸化物、アンチモン・スズ酸化物、インジウム・スズ酸化物、カーボンブラック等で表面処理を行った無機粒子等の導電性無機粒子を挙げることができる。カーボンブラックとしては、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等の導電性カーボンブラックを挙げることができ、特に、平均粒子径50nm以下のカーボンブラックが少量の配合で電気抵抗を下げることができるので好ましい。また、カーボンブラックのストラクチャー構造が発達し、導電パスを形成する観点からDBP(Dibutyl phthalate)吸油量が100~500ml/100gが好ましく、100~300ml/100gであることが好ましく、150~250ml/100gであることがより好ましい。また導電性の観点から30~1500m/gの範囲のBET表面積であるカーボンブラックが好ましい。また、本発明においては、カルボキシル基、水酸基、エポキシ基、アミノ基、オキサゾリン基、から選ばれる1種以上の官能基を有するポリマーがグラフト付加されたグラフト化カーボンブラック、或いは低分子量化合物で表面処理したカーボンブラックも用いることができる。 Examples of electron conductive materials include carbon-based materials such as carbon black, graphite, and carbon nanotubes; conductive polymers such as polyaniline, polythiophene, and polyacetylene; aluminum/zinc oxides, antimony/tin oxides, and indium/tin oxides. conductive inorganic particles such as inorganic particles surface-treated with carbon black or the like. Examples of carbon black include conductive carbon black such as furnace black, channel black, ketjen black, and acetylene black. In particular, a small amount of carbon black having an average particle size of 50 nm or less can reduce electrical resistance. It is preferable because it can be done. In addition, from the viewpoint of developing the structural structure of carbon black and forming a conductive path, the DBP (Dibutyl phthalate) oil absorption is preferably 100 to 500 ml/100 g, preferably 100 to 300 ml/100 g, and 150 to 250 ml/100 g. is more preferable. Carbon black having a BET surface area in the range of 30 to 1500 m 2 /g is preferred from the viewpoint of conductivity. In the present invention, the surface is treated with a grafted carbon black in which a polymer having one or more functional groups selected from a carboxyl group, a hydroxyl group, an epoxy group, an amino group, and an oxazoline group is grafted, or a low molecular weight compound. Carbon blacks containing carbon black can also be used.

導電剤に電子導電性材料を使用する場合、導電剤の配合量は、熱可塑性樹脂100重量部に対して、1~50重量部であることが好ましい。その配合量は5~35重量部が好ましく、15~30重量部がより好ましい。電子導電性材料の配合量が1重量部未満であると所定の導電性を示す組成物が得られないので好ましくなく、50重量部を超えると組成物の溶融粘度が高くなり押出成形が困難となる。 When an electronically conductive material is used as the conductive agent, the blending amount of the conductive agent is preferably 1 to 50 parts by weight with respect to 100 parts by weight of the thermoplastic resin. The blending amount is preferably 5 to 35 parts by weight, more preferably 15 to 30 parts by weight. If the amount of the electronically conductive material is less than 1 part by weight, a composition exhibiting the desired conductivity cannot be obtained. Become.

イオン伝導性材料としては、例えば、ポリエーテルエステルアミド、ポリエーテルエステル、ポリエーテルアミド、ポリエチレンオキサイド、ポリエチレンオキサイド共重合体、部分架橋ポリエチレンオキサイド共重合体、イオン電解質等があげられ、これらを単独で、あるいは二種類以上併用することができる。尚、イオン電解質としては、アルカリ金属のチオシアン酸塩、リン酸塩、硫酸塩、ハロゲン含有酸素酸塩、テトラアルキルアンモニウム塩を単独、あるいは、複数種組合せて用いることができる。これらの中でも、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリウム、チオシアン酸リチウム、チオシアン酸ナトリウム、チオシアン酸カリウムが好ましい。 Examples of the ion conductive material include polyether ester amide, polyether ester, polyether amide, polyethylene oxide, polyethylene oxide copolymer, partially crosslinked polyethylene oxide copolymer, ion electrolyte, and the like. , or two or more types can be used in combination. As the ion electrolyte, alkali metal thiocyanates, phosphates, sulfates, halogen-containing oxates, and tetraalkylammonium salts can be used singly or in combination. Among these, lithium perchlorate, sodium perchlorate, potassium perchlorate, lithium thiocyanate, sodium thiocyanate, and potassium thiocyanate are preferred.

導電剤にイオン電導性材料を使用する場合、導電剤の配合量は、熱可塑性樹脂100重量部に対して、1~50重量部であることが好ましい。その配合量は1~30重量部が好ましく、2~25重量部が好ましく、15~25重量部がより好ましい。イオン導電性材料の配合量が1重量部未満であると所定の導電性を示す組成物が得られないので好ましくなく、50重量部を超えると吸湿性が高くなり、引張弾性率が低くなるので好ましくない。 When an ion conductive material is used as the conductive agent, the amount of the conductive agent is preferably 1 to 50 parts by weight with respect to 100 parts by weight of the thermoplastic resin. The blending amount is preferably 1 to 30 parts by weight, preferably 2 to 25 parts by weight, more preferably 15 to 25 parts by weight. If the amount of the ion-conductive material is less than 1 part by weight, a composition exhibiting the desired conductivity cannot be obtained. I don't like it.

本発明の基材層に使用する樹脂組成物には、必要に応じてその特性を損なわない範囲で添加剤を配合しても良い。添加剤としては、酸化防止剤、熱安定剤、有機フィラーや無機フィラー、アンチブロッキング剤、可塑剤、滑剤、加工助剤等が挙げられる。これらの樹脂や添加剤は、目的に応じて適量を使用することができる。 Additives may be blended into the resin composition used for the base layer of the present invention, if necessary, as long as the properties are not impaired. Examples of additives include antioxidants, heat stabilizers, organic fillers and inorganic fillers, antiblocking agents, plasticizers, lubricants, processing aids, and the like. These resins and additives can be used in appropriate amounts depending on the purpose.

[表面層]
本発明の表面層は、酸変性したエチレン―テトラフルオロエチレン共重合体を含有していることが必須である。酸変性したエチレンーテトラフルオロエチレン共重合体は、エチレンに基づく重合単位とテトラフルオロエチレンに基づく重合単位と酸構造を有する重合単位とを少なくとも含有する共重合体である。
酸構造を有する構成する重合単位としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等の不飽和カルボン酸無水物、ウンデシレン酸、アクリル酸、メタクリル酸、マレイン酸などの不飽和カルボン酸等が挙げられる。酸構造を有する重合単位の含有量は、酸変性したエチレン―テトラフルオロエチレン共重合体中の全重合単位に対して0.01~10モル%が好ましく、0.1~5モル%がより好ましい。
[Surface layer]
It is essential that the surface layer of the present invention contains an acid-modified ethylene-tetrafluoroethylene copolymer. The acid-modified ethylene-tetrafluoroethylene copolymer is a copolymer containing at least polymerized units based on ethylene, polymerized units based on tetrafluoroethylene, and polymerized units having an acid structure.
Polymerized units having an acid structure include unsaturated carboxylic anhydrides such as maleic anhydride, itaconic anhydride and citraconic anhydride, and unsaturated carboxylic acids such as undecylenic acid, acrylic acid, methacrylic acid and maleic acid. mentioned. The content of polymerized units having an acid structure is preferably 0.01 to 10 mol%, more preferably 0.1 to 5 mol%, relative to the total polymerized units in the acid-modified ethylene-tetrafluoroethylene copolymer. .

表面層に酸変性したエチレンーテトラフルオロエチレン共重合体を含有することにより、基材層を形成する樹脂組成物との層間接着強度が高まるため、共押出成形が可能となる。
また、本発明で使用する表面層は絶縁性に優れており、表面抵抗率は1×1013Ω/□以上が好ましく、1×1014Ω/□以上がより好ましい。そして、フッ素系樹脂の中でも特にエチレン―テトラフルオロエチレン共重合体や酸変性したエチレンーテトラフルオロエチレン共重合体は、表面抵抗率が1×1014Ω/□以上であり絶縁性が高いことが分かった。さらに、本発明で使用する表面層は、フッ素系樹脂を使用しているため溶剤インクが付着したとしてもその表面が膨潤しないことが分かった。また、本発明の表面層を形成するための組成物は、必要に応じてその特性を損なわない範囲でその他の樹脂や添加剤を配合してもよい。
By containing the acid-modified ethylene-tetrafluoroethylene copolymer in the surface layer, the interlayer adhesion strength with the resin composition forming the substrate layer is increased, so coextrusion molding becomes possible.
Moreover, the surface layer used in the present invention has excellent insulating properties, and the surface resistivity is preferably 1×10 13 Ω/□ or more, more preferably 1×10 14 Ω/□ or more. Among fluorine-based resins, ethylene-tetrafluoroethylene copolymers and acid-modified ethylene-tetrafluoroethylene copolymers in particular have a surface resistivity of 1×10 14 Ω/□ or more, and have high insulating properties. Do you get it. Furthermore, it was found that the surface layer used in the present invention does not swell even if the solvent ink adheres because the surface layer used in the present invention uses a fluororesin. In addition, the composition for forming the surface layer of the present invention may optionally contain other resins and additives within a range that does not impair the properties of the composition.

[画像形成装置用ベルトの製造方法]
本発明の基材層を形成するための組成物の製造方法は特に制限はないが、例えば熱可塑性樹脂、導電剤、必要に応じて用いられる添加剤を配合してドライブレンドした後、溶融混練する方法、熱可塑性樹脂に導電剤を予め溶融混練してマスターバッチを作製し、これに必要に応じて熱可塑性樹脂や必要に応じて用いられる添加剤を溶融混練する方法等が上げられる。
[Manufacturing method of image forming apparatus belt]
The method for producing the composition for forming the base material layer of the present invention is not particularly limited. a method of preliminarily melt-kneading a conductive agent into a thermoplastic resin to prepare a masterbatch, and a method of melt-kneading a thermoplastic resin and additives used as necessary.

溶融混練するための装置としては、バッチ式混練機、ニーダー、コニーダー、バンバリーミキサー、ロールミル、単軸もしくは二軸押出機等、公知の種々の混練機が挙げられる。これらの中でも、混練能力や生産性に優れる点から単軸押出機や二軸押出機が好ましく用いられる。 Apparatuses for melt-kneading include various known kneaders such as batch-type kneaders, kneaders, co-kneaders, Banbury mixers, roll mills, and single-screw or twin-screw extruders. Among these, single-screw extruders and twin-screw extruders are preferably used from the viewpoint of excellent kneading ability and productivity.

溶融混練時の温度は、使用する熱可塑性樹脂の種類や溶融粘度等により適宜選択できるが、通常、150~300℃の範囲であり、樹脂の劣化防止の観点から、好ましくは170~280℃である。 The temperature during melt kneading can be appropriately selected depending on the type of thermoplastic resin to be used, the melt viscosity, etc., but it is usually in the range of 150 to 300° C., and preferably 170 to 280° C. from the viewpoint of preventing deterioration of the resin. be.

本発明の導電性ベルトは、押出成形法、遠心成形法、ディッピング法などで製造することができる。押出成形法、特に環状ダイスを用いた押出成形法は、継ぎ目のないベルトが得られるので好ましい。環状ダイスを用いた押出成形法としては、例えば押出機を2台と、該押出機の下方に該押出機に連通して環状ダイスが配置され、該環状ダイスの下方には、該環状ダイスから下向きに押し出される溶融樹脂をその外周に担持させて冷却固化するマンドレルが配設された押出成形装置を用いることができる。基材層を形成する組成物と表面層を形成する組成物をそれぞれの押出機に供給して、一つの環状ダイスからチューブ状に共押出し、マンドレルの外周に沿わせて冷却固化することによりチューブ状の成形体を得て、チューブ状の該成形体を所望の幅に切断することでベルトとすることができる。なお、これらの説明は2層の場合であったが、3層以上の時は、層数に応じた押出機及びダイスを準備すればよい。 The conductive belt of the present invention can be produced by an extrusion molding method, a centrifugal molding method, a dipping method, or the like. Extrusion molding, particularly extrusion molding using an annular die, is preferred because it yields a seamless belt. As an extrusion molding method using an annular die, for example, two extruders are arranged, and an annular die is arranged below the extruder in communication with the extruder, and below the annular die, from the annular die An extrusion molding apparatus provided with a mandrel for cooling and solidifying a molten resin extruded downward can be used. The composition for forming the base layer and the composition for forming the surface layer are supplied to respective extruders, co-extruded into a tubular shape from one annular die, and cooled and solidified along the outer circumference of the mandrel to form a tube. A belt can be obtained by obtaining a tubular molded body and cutting the tubular molded body into a desired width. These descriptions are for the case of two layers, but when three or more layers are used, an extruder and a die corresponding to the number of layers may be prepared.

本発明の導電性ベルトは、中間転写ベルト、転写搬送ベルト、紙搬送ベルト等の画像形成装置用部品や、自動車関連部品、電子・電気部品、機械部品、半導体包装用フィルム等として好適に用いることができる。特に本発明の導電性ベルトは、ベルト表面に溶剤インクが付着してもベルト表面が膨潤しないため、特に溶剤インクを使用するインクジェット方式の紙搬送ベルトとして好適に使用できる。 The conductive belt of the present invention can be suitably used as image forming apparatus parts such as intermediate transfer belts, transfer/transport belts, and paper transport belts, automobile-related parts, electronic/electrical parts, mechanical parts, semiconductor packaging films, and the like. can be done. In particular, the conductive belt of the present invention does not swell even when solvent ink adheres to the belt surface, so that it can be suitably used as a paper transport belt for an ink jet method using solvent ink.

以下、本発明について、実施例によりさらに詳しく説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例における物性の測定方法は次の通りである。
(1)溶融粘度
溶融粘度は、長さ10mm×直径1mmのダイを取り付けた島津製作所製高化式フローテスターを用いて測定した。
(2)表面抵抗率
表面抵抗率は、URSプローブ(荷重2kg)を取り付けたハイレスタUX(MCP-HT800、ダイヤインスツルメンツ社製)を用いて測定(基材層は印加電圧10V、表面層は印加電圧1000V)した。
また、表面抵抗率の均一性(バラつき)は以下の式で求めた。
表面抵抗率の均一性[桁]=log10(表面抵抗率の最大値/表面抵抗率の最小値)
(3)耐溶剤インク性
各実施例・比較例により得られたベルトの表面層に、溶剤インク(高沸点石油系溶剤)を滴下して60℃中に24時間放置後、その表面を観察し、以下の評価基準に基づき評価した。
〇:フィルム表面は膨潤せず、変形しなかった。
△:フィルム表面がわずかに膨潤し、若干変形した。
×:フィルム表面が膨潤し明らかに変形した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples. Methods for measuring physical properties in Examples are as follows.
(1) Melt Viscosity Melt viscosity was measured using a Koka flow tester manufactured by Shimadzu Corporation equipped with a die having a length of 10 mm and a diameter of 1 mm.
(2) Surface resistivity The surface resistivity is measured using Hiresta UX (MCP-HT800, manufactured by Dia Instruments) equipped with a URS probe (load 2 kg) (applied voltage 10 V for the base layer, applied voltage 1000V).
Further, the uniformity (variation) of the surface resistivity was determined by the following formula.
Uniformity of surface resistivity [digit] = log10 (maximum value of surface resistivity / minimum value of surface resistivity)
(3) Solvent-ink resistance A solvent ink (high-boiling petroleum-based solvent) was dropped on the surface layer of the belt obtained in each of the examples and comparative examples, and the surface was observed after being left at 60°C for 24 hours. , was evaluated based on the following evaluation criteria.
◯: The film surface did not swell and was not deformed.
Δ: The film surface was slightly swollen and slightly deformed.
x: The film surface swelled and was clearly deformed.

原料としては、下記のものを用いた。
<熱可塑性樹脂(A)>
・ポリアミド12(A-1)[融点:178℃、溶融粘度:1100poise(測定温度200℃、荷重100kg)]
・ポリアミド12(A-2)[融点:178℃、溶融粘度:5440poise(測定温度200℃、荷重100kg)]
・高密度ポリエチレン(A-3)[融点:132℃、溶融粘度:7500poise(測定温度200℃、荷重100kg)]
・酸変性したエチレン―テトラフルオロエチレン共重合体(A-4)[融点:190℃、溶融粘度:6750poise(測定温度220℃、荷重100kg)]
・ポリフッ化ビニリデン(A-5)[融点:168℃、溶融粘度:4500poise(測定温度200℃、荷重100kg)]
<導電剤(B)>
・カーボンブラック(B-1)[DBP吸油量:190ml/100g、BET表面積:70m2/g]
・カーボンナノチューブ(B-2)[平均直径:10~15nm、長さ:10μm以下、比表面積:180~250m2/g]
The following materials were used as raw materials.
<Thermoplastic resin (A)>
・Polyamide 12 (A-1) [melting point: 178°C, melt viscosity: 1100 poise (measurement temperature: 200°C, load: 100 kg)]
・Polyamide 12 (A-2) [melting point: 178°C, melt viscosity: 5440 poise (measurement temperature: 200°C, load: 100 kg)]
・High-density polyethylene (A-3) [melting point: 132°C, melt viscosity: 7500 poise (measurement temperature: 200°C, load: 100 kg)]
- Acid-modified ethylene-tetrafluoroethylene copolymer (A-4) [melting point: 190°C, melt viscosity: 6750 poise (measurement temperature: 220°C, load: 100 kg)]
・Polyvinylidene fluoride (A-5) [melting point: 168°C, melt viscosity: 4500 poise (measurement temperature: 200°C, load: 100 kg)]
<Conductive agent (B)>
・Carbon black (B-1) [DBP oil absorption: 190ml/100g, BET surface area: 70m2/g]
・Carbon nanotubes (B-2) [average diameter: 10 to 15 nm, length: 10 μm or less, specific surface area: 180 to 250 m2/g]

[基材層]
表1に示した配合比となるように、ポリアミド樹脂または高密度ポリエチレンと導電剤とをスクリュー径38Φmmの二軸混練押出機を用いて溶融混練し、コンパウンドを得た。次いで、得られたコンパウンドを環状ダイスを備えた単軸押出機(押出径:50Φmm)に供給し、溶融状態でチューブ状に押出すことでチューブ状のフィルムを得た。得られたフィルムについて押出し方向に50mm毎に20点の表面抵抗値を測定しその均一性を表1に示す。
[Base material layer]
A polyamide resin or high-density polyethylene and a conductive agent were melt-kneaded using a twin-screw kneading extruder with a screw diameter of 38 Φmm so as to obtain a compounding ratio shown in Table 1, to obtain a compound. Then, the obtained compound was supplied to a single-screw extruder (extrusion diameter: 50Φmm) equipped with an annular die, and extruded in a molten state into a tubular shape to obtain a tubular film. The surface resistance values of the obtained film were measured at 20 points every 50 mm in the extrusion direction, and the uniformity thereof is shown in Table 1.

Figure 2022127802000001
Figure 2022127802000001

表1に示すように、ポリアミド樹脂と導電剤としてカーボンブラックを配合した基材層1乃至3、高密度ポリエチレンとポリアミド樹脂と導電剤としてカーボンブラックを配合した基材層6は、表面抵抗率は10~10Ω/□の値を示し、表面抵抗率の均一性(0.5桁以内)及び製膜性も優れていた。ポリアミド樹脂と導電剤としてカーボンナノチューブを配合した基材層4及び基材層5は、表面抵抗率が基材層1乃至3よりも若干高く10~10Ω/□の値を示し、表面抵抗率をさげるためにカーボンナノチューブの配合割合を増やした基材層5は押出し方向の厚みムラが大きく、表面抵抗率の均一性も悪かった。 As shown in Table 1, base layers 1 to 3 containing polyamide resin and carbon black as a conductive agent, and base layer 6 containing high-density polyethylene, polyamide resin and carbon black as a conductive agent have surface resistivities of It showed a value of 10 5 to 10 7 Ω/□, and was excellent in surface resistivity uniformity (within 0.5 digit) and film formability. The base layer 4 and the base layer 5, which contain polyamide resin and carbon nanotubes as a conductive agent, have a surface resistivity of 10 6 to 10 8 Ω/□, which is slightly higher than that of the base layers 1 to 3. The substrate layer 5 in which the blending ratio of the carbon nanotubes was increased in order to lower the resistivity had large thickness unevenness in the extrusion direction, and the uniformity of the surface resistivity was also poor.

[実施例・比較例]
シリンダー径50mmの押出機2台の先端に2層の環状ダイを装着した装置を用い、表2に示す基材層を形成する樹脂組成物と表面層を形成する樹脂組成物とを共押出してチューブ状に成形後、長さ400mmにカットし、基材層を内層とし、表面層を外層とする周長800mm、幅350mmのシームレスベルトを得た。
実施例、及び比較例で作製したシームレスベルトは、以下の項目について評価し、その結果を表2に示す。
[Example/Comparative example]
Using an apparatus equipped with two layers of annular dies at the tips of two extruders with a cylinder diameter of 50 mm, the resin composition forming the base layer and the resin composition forming the surface layer shown in Table 2 are co-extruded. After forming into a tubular shape, it was cut to a length of 400 mm to obtain a seamless belt having a circumference of 800 mm and a width of 350 mm, with the substrate layer as the inner layer and the surface layer as the outer layer.
The seamless belts produced in Examples and Comparative Examples were evaluated for the following items, and the results are shown in Table 2.

Figure 2022127802000002
Figure 2022127802000002

表2に示すように、基材層1と表面層が酸変性したエチレン―テトラフルオロエチレン共重合体(A-4)からなるベルトの実施例1乃至3は、基材層側の表面抵抗率が10~10Ω/□の値を示し、表面抵抗率の均一性(1ケタ未満)も優れていた。表面層の表面抵抗率も1014Ω/□以上の値を示し、絶縁性に優れていた。また、表面層の耐溶剤インク性も良好であった。
それに対し、ポリアミド樹脂または高密度ポリエチレンを表面層とした比較例1及び比較例2は基材層の表面抵抗率の均一性に優れているものの、表面層に溶剤インクを滴下し60℃中に24時間放置すると膨潤が見られた。この結果より、比較例1及び比較例2のベルトは、特に溶剤インクを使用したインクジェット方式の紙搬送ベルトとして不適であった。一方、ポリフッ化ビニリデンを表面層とした比較例3は表面層の耐溶剤インク性は良好なものの、基材層1との接着性が悪く層間剥離し、表面層側の表面抵抗率も1013~1014Ω/□の範囲を示し絶縁性に劣った。
As shown in Table 2, in Examples 1 to 3 of belts in which the substrate layer 1 and the surface layer are made of an acid-modified ethylene-tetrafluoroethylene copolymer (A-4), the surface resistivity of the substrate layer side is showed a value of 10 6 to 10 7 Ω/□, and the uniformity of the surface resistivity (less than one digit) was also excellent. The surface resistivity of the surface layer also showed a value of 10 14 Ω/□ or more, indicating excellent insulation. In addition, the solvent ink resistance of the surface layer was also good.
On the other hand, in Comparative Examples 1 and 2 in which the polyamide resin or high-density polyethylene was used as the surface layer, the uniformity of the surface resistivity of the substrate layer was excellent. Swelling was observed after standing for 24 hours. From this result, the belts of Comparative Examples 1 and 2 were particularly unsuitable as paper transport belts for an inkjet system using solvent ink. On the other hand, in Comparative Example 3, in which polyvinylidene fluoride was used as the surface layer, the solvent ink resistance of the surface layer was good, but the adhesion to the substrate layer 1 was poor, resulting in delamination, and the surface resistivity of the surface layer was also 10 13 . It showed a range of ~10 14 Ω/□ and was inferior in insulation.

Claims (10)

熱可塑性樹脂と導電剤とを含有した組成物からなる基材層と、酸変性したエチレン―テトラフルオロエチレン共重合体を含有した組成物からなる表面層とを備えることを特徴とする導電性ベルト。 A conductive belt comprising a substrate layer made of a composition containing a thermoplastic resin and a conductive agent, and a surface layer made of a composition containing an acid-modified ethylene-tetrafluoroethylene copolymer. . 前記熱可塑性樹脂がポリアミド系樹脂であることを特徴とする請求項1記載の導電性ベルト。 2. The conductive belt according to claim 1, wherein said thermoplastic resin is a polyamide resin. 前記導電剤が電子伝導性材料であることを特徴とする請求項1または2のいずれかに記載の導電性ベルト。 3. The conductive belt according to claim 1, wherein said conductive agent is an electronically conductive material. 前記電子伝導性材料がカーボンブラックであることを特徴とする請求項3記載の導電性ベルト。 4. The conductive belt of claim 3, wherein said electronically conductive material is carbon black. 前記基材層の温度23℃、相対湿度50%RHにおける表面抵抗率は、1×10以上1×10Ω/□以下であることを特徴とする請求項1乃至4のいずれかに記載の導電性ベルト。 5. The surface resistivity of the substrate layer at a temperature of 23° C. and a relative humidity of 50% RH is 1×10 5 or more and 1×10 8 Ω/□ or less. conductive belt. 前記表面層の温度23℃、相対湿度50%RHにおける表面抵抗率は、1×1013Ω/□以上であることを特徴とする請求項1乃至5のいずれかに記載の導電性ベルト。 6. The conductive belt according to claim 1, wherein the surface resistivity of the surface layer at a temperature of 23° C. and a relative humidity of 50% RH is 1×10 13 Ω/□ or more. 請求項1乃至6のいずれかに記載の導電性ベルトが画像形成装置用導電性ベルトであることを特徴とする導電性ベルト。 A conductive belt according to any one of claims 1 to 6, which is a conductive belt for an image forming apparatus. 前記画像形成装置用導電性ベルトがインクジェット方式紙搬送用であることを特徴とする請求項7記載の導電性ベルト。 8. The conductive belt according to claim 7, wherein said conductive belt for an image forming apparatus is for conveying paper by an ink jet method. 請求項1乃至8のいずれかに記載の導電性ベルトを有することを特徴とする画像形成装置。 An image forming apparatus comprising the conductive belt according to claim 1 . 請求項1乃至8のいずれかに記載の導電性ベルトの製造方法において、熱可塑性樹脂と導電剤とを含有した基材層を形成する組成物と、酸変性したエチレン―テトラフルオロエチレン共重合体を含有した表面層を形成する組成物をそれぞれ別々の押出機に供給し、環状ダイスより基材層が内層、表面層が外層となるように共押出することを特徴とする導電性ベルトの製造方法。 9. The method for producing a conductive belt according to any one of claims 1 to 8, wherein a composition for forming a base layer containing a thermoplastic resin and a conductive agent; and an acid-modified ethylene-tetrafluoroethylene copolymer. The composition forming the surface layer containing Method.
JP2021025993A 2021-02-22 2021-02-22 Electrically conductive belt, image forming apparatus having the same, and method of manufacturing electrically conductive belt Pending JP2022127802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021025993A JP2022127802A (en) 2021-02-22 2021-02-22 Electrically conductive belt, image forming apparatus having the same, and method of manufacturing electrically conductive belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021025993A JP2022127802A (en) 2021-02-22 2021-02-22 Electrically conductive belt, image forming apparatus having the same, and method of manufacturing electrically conductive belt

Publications (1)

Publication Number Publication Date
JP2022127802A true JP2022127802A (en) 2022-09-01

Family

ID=83061374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021025993A Pending JP2022127802A (en) 2021-02-22 2021-02-22 Electrically conductive belt, image forming apparatus having the same, and method of manufacturing electrically conductive belt

Country Status (1)

Country Link
JP (1) JP2022127802A (en)

Similar Documents

Publication Publication Date Title
US11719364B2 (en) Barrier layer for hoses
KR100941487B1 (en) Intermediate Transfer Belt Having Multilayered Structure
EP2013020B1 (en) Multilayer polymer structure
EP1658165A4 (en) Impact-modified polyamide film
US20070202287A1 (en) Method of producing fuel hose material and fuel hose material produced by the same
KR20170122306A (en) Electroconductive carbon composite material, molded article and process for preparing thereof
JP2022127802A (en) Electrically conductive belt, image forming apparatus having the same, and method of manufacturing electrically conductive belt
TWI698469B (en) Method for manufacturing fluororesin film
JP7247017B2 (en) SEAMLESS BELT WITH CARRIER LAYER, MANUFACTURING METHOD THEREOF, AND METHOD FOR MANUFACTURING TRANSFER BELT WITH ELASTIC LAYER FOR IMAGE FORMING APPARATUS
JP2002202668A (en) Endless belt, belt for image forming device and image forming device
JP2023024836A (en) Conductive belt, image forming device with the same, and method of manufacturing conductive belt
JP7309444B2 (en) RESIN COMPOSITION, RESIN MOLDED PRODUCT, RESIN LAMINATED BODY, CARTRIDGE, IMAGE FORMING APPARATUS, METHOD FOR MANUFACTURING RESIN MOLDED BODY, METHOD FOR MANUFACTURING RESIN LAMINATED BODY, AND METHOD FOR MANUFACTURING CARTRIDGE
JP6752137B2 (en) Method for manufacturing transfer belt for image forming apparatus and transfer belt for image forming apparatus
JP5765880B2 (en) Inkjet conveyor belt
JP6800023B2 (en) Method for manufacturing transfer belt for image forming apparatus and transfer belt for image forming apparatus
JP5701128B2 (en) Conductive endless belt and manufacturing method thereof
JP2021147447A (en) Semi-conductive polyethylene-based resin composition and molding using the same, and seamless belt
JP6808418B2 (en) Semi-conductive polyamide resin composition, molded article using it, and seamless belt for electrophotographic
JP2023027848A (en) Semi-conductive polyamide-based resin composition, semi-conductive belt using the same, image formation device, and method for manufacturing conductive belt
JP6918597B2 (en) Semi-conductive resin composition and seamless belt for electrophotographic using it
JP7167563B2 (en) CONDUCTIVE SEAMLESS BELT AND IMAGE FORMING APPARATUS
JP2001105545A (en) Conductive stretched multi-layer film and its production method
JP6598669B2 (en) Semiconductive resin composition and electrophotographic seamless belt using the same
JP6590708B2 (en) Method for producing semiconductive resin composition
KR20090059296A (en) Semiconductive resin composition and image forming intermediate transfer belt using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240730

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240924