JP2022127467A - Wireless power supply device - Google Patents

Wireless power supply device Download PDF

Info

Publication number
JP2022127467A
JP2022127467A JP2021025634A JP2021025634A JP2022127467A JP 2022127467 A JP2022127467 A JP 2022127467A JP 2021025634 A JP2021025634 A JP 2021025634A JP 2021025634 A JP2021025634 A JP 2021025634A JP 2022127467 A JP2022127467 A JP 2022127467A
Authority
JP
Japan
Prior art keywords
power
power transmission
power supply
electrode
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021025634A
Other languages
Japanese (ja)
Inventor
孝 大平
Takashi Ohira
晋士 阿部
Shinji Abe
泰正 仲
Yasumasa Naka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Priority to JP2021025634A priority Critical patent/JP2022127467A/en
Publication of JP2022127467A publication Critical patent/JP2022127467A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Transmitters (AREA)

Abstract

To provide a wireless power supply device that supplies power to an electric mobile body including a power receiver with high efficiency regardless of a relative position between the electric mobile body and a power transmitter installed on a road surface or the like.SOLUTION: A wireless power supply device according to the present invention is to transmit power without contact to an electric mobile body moving on a power transmission electrode along the electrode, and includes a power source that supplies high-frequency power, a gyrator, at least four power reception electrodes, and at least four power transmission electrodes using a power transmission line. A physical length of the power transmission electrode is a positive integer multiple of a half of a wavelength of an undulation of transmission power. As for the power transmission electrode, there are two kinds of power transmission electrodes whose terminals are opened or short-circuited as appropriate. The gyrator is loaded between the high-frequency power source and the power transmission electrode with the short-circuited terminal. An input impedance of the power transmission electrode is changed from the short-circuited state to the open state.SELECTED DRAWING: Figure 1

Description

本発明は、無線給電装置に関するものである。特に、無線給電エリア内の路面上において、電動体の位置に依らず、電界結合を用いて、無線で電力を当該電動体へ供給する装置に関する。 The present invention relates to a wireless power feeding device. In particular, the present invention relates to a device that wirelessly supplies electric power to an electric object using electric field coupling regardless of the position of the electric object on a road surface within a wireless power supply area.

無線給電技術において、インフラ設備における電極やコイルなど送電器に生じる送電電力の波動の定在波により電力伝送効率が低下することが知られている。特に、走行中の電動体に備えられた受電器に対し給電するには、受電器と送電器との相対的な位置に依存することなく給電できることが重要である。 In wireless power supply technology, it is known that power transmission efficiency decreases due to standing waves of transmitted power generated in power transmitters such as electrodes and coils in infrastructure equipment. In particular, in order to supply power to a power receiver provided on a moving electric body, it is important to be able to supply power without depending on the relative positions of the power receiver and the power transmitter.

電界結合を用いる無線給電技術には次のものがある。 Wireless power supply technologies using electric field coupling include the following.

例えば、特許文献1および2では、面状の給電(以下、「二次元給電」ということがある。)のための送電電極の構造が開示されている。しかしながら、送電電極に発生する定在波による給電電力の低下の影響を考慮していない。 For example, Patent Literatures 1 and 2 disclose structures of power transmission electrodes for planar power feeding (hereinafter sometimes referred to as "two-dimensional power feeding"). However, no consideration is given to the influence of a drop in power supply due to a standing wave generated in the power transmission electrode.

また、非特許文献1および2では、走行中給電のためのシステムが示されている。非特許文献1では、送電電極の途中に、送電電力の波動の波長に対し一定の間隔で、いわゆる左手系回路を挿入することで定在波を打ち消し、電力供給を一定の水準に保つことができる。さらに、非特許文献2では、送電電極を含む伝送線路を、可変リアクタンスを用いて終端することで、電動体の位置にしたがって定在波の位相を変化させるシステムが示されている。 In addition, Non-Patent Documents 1 and 2 show a system for power feeding while driving. In Non-Patent Document 1, by inserting a so-called left-handed circuit in the middle of the power transmission electrode at regular intervals with respect to the wave wavelength of the power to be transmitted, the standing wave can be canceled and the power supply can be maintained at a constant level. can. Furthermore, Non-Patent Document 2 discloses a system that changes the phase of a standing wave according to the position of an electric body by terminating a transmission line including a power transmission electrode using a variable reactance.

非特許文献1および2では、走行中給電の課題のひとつである、定在波による電力伝送効率の低下および反射電力の増加をともに解決しているが、非特許文献1では、送電電極が長くなるにつれて必要とされる、いわゆる左手系回路の挿入個数が増加し、無線給電システムの煩雑化およびコストの増加につながる課題があった。また、非特許文献2では、無線給電中は絶えず終端リアクタンスの可変制御が必要となり、無線給電システムの煩雑化およびコストの増加につながる課題があった。
Non-Patent Documents 1 and 2 solve both the reduction in power transmission efficiency and the increase in reflected power due to standing waves, which are one of the problems of power supply while driving. The number of so-called left-handed circuits required to be inserted increases as the number of devices increases, leading to the problem of complication and cost increase of the wireless power supply system. In addition, in Non-Patent Document 2, constant variable control of the termination reactance is required during wireless power feeding, which leads to complication of the wireless power feeding system and an increase in cost.

特開2016-32425号公報JP 2016-32425 A 特開2020-43686号公報Japanese Patent Application Laid-Open No. 2020-43686

鈴木良輝, 他5名,"バッテリーレス電動カート連続給電走行のための右手左手複合系電化道路," 電子情報通信学会論文誌C, vol.J99-C, no.4, pp.133-141, Mar.2016.Yoshiteru Suzuki, 5 others, "Right-hand and left-hand compound electrified roads for batteryless electric carts with continuous power supply," IEICE Transactions C, vol.J99-C, no.4, pp.133-141, Mar.2016. Sonshu Sakihara, 他3名, “Far-end reactor matching to a traveling load along an RF power transmission line,” IEICE Trans. Electron., vol.E101-A, no.2, pp.396-401, Feb. 2018.Sonshu Sakihara, 3 others, “Far-end reactor matching to a traveling load along an RF power transmission line,” IEICE Trans. Electron., vol.E101-A, no.2, pp.396-401, Feb. 2018 .

本発明は、無線給電に係る上記の課題を鑑みなされたものであり、受電器を備える電動体と送電器との相対的な位置によらず、電動体への電力供給を高効率で行う無線給電装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems associated with wireless power supply. An object of the present invention is to provide a power supply device.

本発明に係る第一の無線給電装置は、送電電極上を該電極に沿って移動する電動体に対し非接触で電力を伝送する無線給電装置であって、
高周波電力を供給する電源と、ジャイレータと、少なくとも4枚の受電電極と、
伝送線路を用いる少なくとも4枚の送電電極と、を備え、
該送電電極は、送電電力の波動が有する波長の2分の1の正の整数倍だけの物理長であり、かつ、該送電電極は、終端が適宜開放又は短絡される二種類とし、
該ジャイレータは、該高周波電源と終端が短絡された該送電電極との間に装荷され、
該送電電極の入力インピーダンスを短絡から開放に変化させることを特徴とする。
A first wireless power supply device according to the present invention is a wireless power supply device that transmits power in a contactless manner to an electric body that moves on a power transmission electrode along the electrode,
a power supply that supplies high frequency power, a gyrator, at least four power receiving electrodes,
at least four transmitting electrodes using transmission lines;
The power transmission electrode has a physical length equal to a positive integral multiple of half the wavelength of the wave of the power to be transmitted, and the power transmission electrode is of two types whose ends are open or short-circuited as appropriate,
the gyrator is mounted between the high frequency power source and the power transmission electrode shorted at the end;
It is characterized by changing the input impedance of the power transmission electrode from a short circuit to an open circuit.

本発明に係る第二の無線給電装置は、本発明に係る第一の無線給電装置であって、前記受電電極が受ける電力を少なくとも4枚の電極を用いて電力合成を行うことを特徴とする。 A second wireless power supply device according to the present invention is the first wireless power supply device according to the present invention, characterized in that power received by the power receiving electrode is combined using at least four electrodes. .

本発明に係る第三の無線給電装置は、本発明に係る第一および第二の無線給電装置であって、
前記高周波電源と少なくとも4枚の前記送電電極の始端との間に装荷される第一の整合回路と、
終端が開放された該送電電極と該終端に接続された第一の負荷との間に装荷される第二の整合回路と、
終端が短絡された該送電電極と該終端に接続された第二の負荷との間に装荷される第三の整合回路と、を備え、
前記整合回路のうち第二および第三の整合回路が同一のインダクタ素子およびコンデンサ素子から構成されることを特徴とする。
A third wireless power supply device according to the present invention is the first and second wireless power supply devices according to the present invention,
a first matching circuit loaded between the high-frequency power supply and the leading ends of the at least four power transmission electrodes;
a second matching circuit loaded between the open-ended transmitting electrode and a first load connected to the terminal;
a third matching circuit loaded between the short-circuited transmitting electrode and a second load connected to the terminal;
Of the matching circuits, the second and third matching circuits are characterized by being composed of the same inductor element and capacitor element.

本発明に係る無線給電装置によれば、送電電力の波動の影響を受けることなく、高効率に電力伝送を行うことができる。さらに、回路構成が能動素子や複雑な制御回路および制御ソフトウェアを必要としないため安定に動作する無線給電装置を安価に実装できる。
According to the wireless power supply device of the present invention, power can be transmitted with high efficiency without being affected by waves in transmitted power. Furthermore, since the circuit configuration does not require active elements, complicated control circuits and control software, a wireless power supply device that operates stably can be implemented at low cost.

本発明に係る無線給電装置の一実施形態を示す概要図である。1 is a schematic diagram showing an embodiment of a wireless power feeding device according to the present invention; FIG. 本発明に係る整合回路を示す模式図である。1 is a schematic diagram showing a matching circuit according to the present invention; FIG. 本発明に係る無線給電装置の一実施形態におけるジャイレータのキャパシタおよびインダクタの比率(変換比率)による入力インピーダンスの変動を示すスミスチャートである。4 is a Smith chart showing variations in input impedance depending on the ratio (conversion ratio) of the capacitor and inductor of the gyrator in one embodiment of the wireless power supply device according to the present invention. 本発明に係る無線給電装置の一実施形態における入力および短絡終端との2ポートのインピーダンス整合を行うための回路トポロジの模式図である。1 is a schematic diagram of a circuit topology for impedance matching two ports with input and short-circuit termination in one embodiment of a wireless power supply device according to the present invention; FIG. 本発明に係る無線給電装置の一実施形態における入力側およびと出力側の整合回路による2ポート同時のインピーダンス整合を示すグラフである。4 is a graph showing impedance matching at two ports simultaneously by matching circuits on the input side and the output side in one embodiment of the wireless power supply device according to the present invention. 本発明に係る無線給電装置の一実施形態における入力および開放および短絡終端とのインピーダンス整合を行うための回路トポロジの模式図である。1 is a schematic diagram of a circuit topology for impedance matching with an input and open and short terminations in an embodiment of a wireless power supply device according to the present invention; FIG. 本発明に係る無線給電装置において送電電極に用いる伝送線路の始端の位置を揃えない場合の一実施形態を示す概要図である。FIG. 4 is a schematic diagram showing an embodiment of the wireless power feeder according to the present invention in which the starting ends of the transmission lines used for the power transmission electrodes are not aligned. 本発明に係る無線給電装置において位相調整回路を用いる場合の一実施形態を示す概要図である。1 is a schematic diagram showing an embodiment in which a phase adjustment circuit is used in a wireless power feeder according to the present invention; FIG. 本発明に係る無線給電装置による電力伝送効率の位置依存性に関する物理シミュレーションの結果を示すグラフである。4 is a graph showing the results of a physical simulation on the position dependence of power transmission efficiency by the wireless power feeder according to the present invention; 本発明に係る無線給電装置による電力反射率の位置依存性に関する物理シミュレーションの結果を示すグラフである。5 is a graph showing the results of a physical simulation on position dependence of power reflectance by the wireless power feeder according to the present invention.

本発明の実施形態について、以下、図を参照しながら説明する。ただし、説明に使用する図面及び以下の説明は、本開示を十分に理解するために提供されるものであり、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 Embodiments of the present invention will be described below with reference to the drawings. However, the illustrative drawings and the following description are provided for a thorough understanding of the disclosure and are not intended to limit the claimed subject matter thereby.

終端条件もしくは長さの異なる送電伝送線路(送電電極)を用意し、送電電力の波動の定在波の節の発生位置を移動させる。当該送電伝送線路それぞれに受電電極を配置して受電することで、送電電力の波動の節に影響を避けた無線給電を実現できる。このとき、終端条件の可変制御を必要としない。 Power transmission lines (power transmission electrodes) with different termination conditions or lengths are prepared, and the generation position of the node of the standing wave of the wave of the power to be transmitted is moved. By arranging a power receiving electrode on each of the power transmission lines to receive power, it is possible to realize wireless power feeding that avoids the influence of the wave node of the power to be transmitted. At this time, variable control of termination conditions is not required.

図1に本発明に係る無線給電装置の概要を示す。 FIG. 1 shows an outline of a wireless power feeding device according to the present invention.

本発明に係る無線給電装置は、電源、ジャイレータ、4枚の受電電極および開放終端又は短絡終端の送電伝送線路から構成される。当該無線給電装置では、nを自然数、送電電力の波動の波長をλとするとき、nλ/2の物理長を持つ送電伝送線路上に受電電極を備えた電動体が配置される。このとき、送電電力の波長に応じ当該伝送線路上に定在波が発生する。定在波の形状は終端条件により異なり、開放終端条件では電力波動の節は当該伝送路上の中央に、一方、短絡終端条件では電力波動の節は当該伝送路上の両端に発生する。 A wireless power supply device according to the present invention includes a power supply, a gyrator, four power receiving electrodes, and an open-ended or short-ended power transmission line. In the wireless power supply device, an electric body having a power receiving electrode is arranged on a power transmission line having a physical length of nλ/2, where n is a natural number and λ is the wave wavelength of transmitted power. At this time, a standing wave is generated on the transmission line according to the wavelength of the transmitted power. The shape of the standing wave differs depending on the termination conditions: under open termination conditions, the power wave node occurs at the center of the transmission line, while under short termination conditions, power wave nodes occur at both ends of the transmission line.

また、送電電力の反射率は、送電電力(入力電力)に対する電源への反射された電力の割合である。大きい反射電力は、電力伝送効率の低下に加えて、電源の故障の原因となる。そのため、電力反射率を低く抑える必要がある。 Also, the transmitted power reflectance is the ratio of the reflected power to the power supply to the transmitted power (input power). A large reflected power causes a failure of the power supply in addition to a decrease in power transmission efficiency. Therefore, it is necessary to keep the power reflectance low.

当該物理シミュレーションでは、終端条件が異なる伝送線路、ジャイレータ、4枚の受電電極を使用する。当該ジャイレータは、短絡終端の伝送線路の入力部に装荷され、該伝送線路の入力インピーダンスを短絡から開放に変化させる役割を担う。これにより、短絡終端側の伝送線路において、入力部での仮想的な短絡による過電流の発生を抑制する。 In the physical simulation, a transmission line, a gyrator, and four power receiving electrodes with different termination conditions are used. The gyrator is loaded at the input of a short terminated transmission line and is responsible for changing the input impedance of the transmission line from short to open. This suppresses the occurrence of overcurrent due to a virtual short circuit at the input section in the transmission line on the short-circuit termination side.

送電伝送線路上に発生する電界分布は、開放終端では該伝送線路の中央部に定在波の節が発生し、短絡終端では該伝送線路の端に定在波の節が発生する。 As for the electric field distribution generated on the power transmission line, a standing wave node occurs at the center of the transmission line at the open termination, and a standing wave node occurs at the end of the transmission line at the short termination.

電動体が前記伝送線路の中央に位置した場合、終端開放された伝送線路上では、発生する定在波の節により電力伝送効率が低下する。一方、終端短絡された伝送線路では、発生する定在波は腹となる。そこで、4枚の受電電極から受電電力を合成する。受電電力の合成により、発生する定在波の節の影響を低減させる。 When the electric body is positioned in the center of the transmission line, the power transmission efficiency is reduced due to the nodes of the standing wave generated on the transmission line with the open end. On the other hand, in a transmission line with a short-circuited end, the generated standing wave becomes an antinode. Therefore, received power is synthesized from four power receiving electrodes. Combining the received power reduces the effects of the generated standing wave nodes.

図2に本発明に係る整合回路を示す。当該整合回路は、送電側、開放終端側、短絡終端側の3つ(以下、第一から第三の整合回路と記す。)が必要である。当該整合回路は、送受電電極に50Ωの抵抗値を持つポートおよび電源の設置、該送電電極の電源側とは反対側のもう一方の他端(すなわち、終端)に50Ω負荷の設置を想定し、インピーダンス整合のため装荷される。 FIG. 2 shows a matching circuit according to the present invention. Three matching circuits on the power transmission side, the open termination side, and the short termination side (hereinafter referred to as first to third matching circuits) are required. The matching circuit assumes that a port with a resistance value of 50Ω and a power supply are installed on the power transmission/reception electrodes, and a 50Ω load is installed on the other end (that is, the termination) of the power transmission electrode opposite to the power supply side. , loaded for impedance matching.

当該整合回路は終端条件ごとに設計される必要がある。開放終端用の第二の整合回路は、電動体すなわち受電電極を送電伝送線路上の隅に設置した場合の物理シミュレーション結果を基に設計される。また、短絡終端用の第三の整合回路は、電動体すなわち受電電極を送電伝送線路上の中央に設置した場合の物理シミュレーション結果を基に設計される。 The matching circuit must be designed for each termination condition. The second matching circuit for the open termination is designed based on the results of physical simulation when the electric body, ie, the power receiving electrode is installed at the corner of the power transmission line. Also, the third matching circuit for short-circuit termination is designed based on the results of physical simulation when the electric body, that is, the power receiving electrode is placed in the center of the power transmission line.

整合回路の設計ステップは次の通りである。 The design steps for the matching circuit are as follows.

ステップ1 受電電極を開放および短絡終端条件の電力定在波の腹に置く。 Step 1 Place the receiving electrodes at the antinodes of the power standing wave for open and short termination conditions.

ステップ2 ジャイレータの素子値を調整して終端条件毎の入力インピーダンスを一致させる。 Step 2 Adjust the element values of the gyrator to match the input impedance for each termination condition.

ステップ3 一方の終端条件で2ポート同時のインピーダンス整合を行う。 Step 3 Simultaneously perform impedance matching for two ports under one termination condition.

ステップ4 もう一方の受電電極にも整合回路を装荷して、電力伝送効率の位置依存性を求める。 Step 4 A matching circuit is also mounted on the other power receiving electrode to determine the position dependence of the power transmission efficiency.

従来は、高周波回路ネットワークの入力が1ポート、出力が2ポートであるため、3ポート同時のインピーダンス整合が必要になるが、上記のステップを行うことで、2ポート同時のインピーダンス整合で設計した整合回路を用いることができるため、3ポート同時のインピーダンス整合を行う必要はなくなる。負荷が三つ以上になった場合も同様で、2ポート同時のインピーダンス整合を行うことで整合回路を設計できる。 Conventionally, the high-frequency circuit network has one port for input and two ports for output, so it is necessary to perform impedance matching for three ports at the same time. Since the circuit can be used, it is no longer necessary to perform impedance matching for three ports at the same time. Similarly, when there are three or more loads, a matching circuit can be designed by performing impedance matching for two ports at the same time.

図3に示すとおり、短絡終端の短絡部に発生する、インダクタンスによる影響が無視できない場合、ジャイレータの変換比率を調整することでその影響を抑えることができる。ジャイレータの変換比率は、送電伝送線路の特性インピーダンスZとジャイレータに搭載されるインダクタLおよびキャパシタCのリアクタンス値との比率である。本発明に係る実施形態では、インダクタンスが小さくなるようするため、当該変換比率を1として設計する。 As shown in FIG. 3, when the influence of the inductance generated at the short-circuit end cannot be ignored, the influence can be suppressed by adjusting the conversion ratio of the gyrator. The conversion ratio of the gyrator is the ratio between the characteristic impedance Zc of the power transmission line and the reactance values of the inductor L and capacitor C mounted on the gyrator. In the embodiment according to the present invention, the conversion ratio is designed to be 1 in order to reduce the inductance.

図4は、入出力各2ポートを有するインピーダンス整合回路を設計するためのモデルを示す。入出力各3ポートへ拡張する場合においても、当該モデルをそのまま利用できる。 FIG. 4 shows a model for designing an impedance matching circuit with two ports each for input and output. The model can be used as it is even when expanding to three ports for input and output.

図5は、図4に示したインピーダンス整合回路の計算結果を示す。伝送電力を表すS21が高く、反射電力を表すS11が低くなっていることから、整合状態が確認できる。 FIG. 5 shows calculation results of the impedance matching circuit shown in FIG. Since S21 representing the transmission power is high and S11 representing the reflected power is low, the matching state can be confirmed.

上記ステップ3における2ポート同時のインピーダンス整合により電力伝送効率は99.1%を達成した。 A power transmission efficiency of 99.1% was achieved by simultaneous impedance matching of the two ports in step 3 above.

図6において、開放及び短絡終端に装荷されるの第二および第三の整合回路は同じトポロジであり、同じ素子値を有する同一の整合回路とする。 In FIG. 6, the second and third matching circuits loaded at the open and short terminations are of the same topology and are identical matching circuits with the same element values.

なお、上記の一実施形態では、すべての送電電極の両端の位置が揃い、仮想のひとつの矩形内に設置されているが、図7に示すように、すべての送電電力の定在波の節が同じ位置に存在するのであれば、開放終端の送電伝送線路の開始位置をずらし、仮想のひとつの平行四辺形内に設置されるように配置してもよい。開放終端の伝送線路の2枚を1ペアとして、それを複数個、位置をずらして並列に並べる。こうすることで、電動体(受電器)の位置によらず、一定の電界強度で送受電器が結合される。つまり伝送効率の変動を抑制できる。 In the above embodiment, both ends of all the power transmission electrodes are aligned and installed within one virtual rectangle, but as shown in FIG. are at the same position, the start positions of the open-ended power transmission lines may be shifted and placed within a single imaginary parallelogram. Two open-ended transmission lines are regarded as one pair, and a plurality of them are arranged in parallel with their positions shifted. By doing so, the power transmitter/receiver is coupled with a constant electric field intensity regardless of the position of the electric body (power receiver). That is, fluctuations in transmission efficiency can be suppressed.

さらに、図8のように、送電伝送線路の入出力段に、整合回路の代わりに位相調整回路を挿入することでも同様の効果が得られる。任意の位相調整回路(例えばコンデンサやインダクタ)で終端することでも効果を得られる。電源に近い位相調整回路のうち、図8中の上に位置する位相調整回路は、本発明に係る無線給電装置において送電電極の短絡端の伝送線路に対応し、同図中下に位置する位相調整回路は、本発明に係る無線給電装置においてジャイレータに対応する。 Furthermore, as shown in FIG. 8, the same effect can be obtained by inserting a phase adjustment circuit in place of the matching circuit in the input/output stage of the power transmission line. An effect can be obtained by terminating with an arbitrary phase adjustment circuit (for example, a capacitor or an inductor). Among the phase adjustment circuits close to the power supply, the phase adjustment circuit positioned at the top in FIG. The adjustment circuit corresponds to the gyrator in the wireless power supply device according to the present invention.

電力伝送効率を入力電力Pinに対する、開放終端の負荷への出力電力Pout2および短絡終端の負荷への出力電力Pout3の合成電力Pout2+Pout3の割合とする。図9に、本発明の係る無線給電装置による電力伝送効率の位置依存性に関する物理シミュレーションの結果を示す。本発明に係る無線給電装置は、受電器を備える電動体の位置に寄らず、95%以上の電力を安定して伝送できていることが示されている。 Let the power transfer efficiency be the ratio of the combined power P out2 +P out3 of the output power P out2 to the open-terminated load and the output power P out3 to the short-terminated load to the input power P in . FIG. 9 shows the result of a physical simulation on position dependence of power transmission efficiency by the wireless power supply device according to the present invention. It is shown that the wireless power supply device according to the present invention can stably transmit 95% or more of power regardless of the position of the electric body having the power receiver.

図10は、本発明の係る無線給電装置による電力反射率の位置依存性に関する物理シミュレーションの結果を示している。本発明に係る無線給電装置では、受電器を備える電動体の位置に寄らず、電力反射率を5%以内に抑制されており、図9の結果とともに高効率に電力の伝送ができていることが明らかである。 FIG. 10 shows the results of a physical simulation on position dependence of power reflectance by the wireless power feeder according to the present invention. In the wireless power supply device according to the present invention, the power reflectance is suppressed to within 5% regardless of the position of the electric body provided with the power receiver, and the result of FIG. 9 shows that power can be transmitted with high efficiency. is clear.

Claims (3)

送電電極上を該電極に沿って移動する電動体に対し非接触で電力を伝送する無線給電装置であって、
高周波電力を供給する電源と、ジャイレータと、少なくとも4枚の受電電極と、
伝送線路を用いる少なくとも4枚の送電電極と、を備え、
該送電電極は、送電電力の波動が有する波長の2分の1の正の整数倍だけの物理長であり、かつ、該送電電極は、終端が適宜開放又は短絡される二種類とし、
該ジャイレータは、該高周波電源と終端が短絡された該送電電極との間に装荷され、
該送電電極の入力インピーダンスを短絡から開放に変化させることを特徴とする無線給電装置。
A wireless power supply device that transmits power in a non-contact manner to an electric body that moves on a power transmission electrode along the electrode,
a power supply that supplies high frequency power, a gyrator, at least four power receiving electrodes,
at least four transmitting electrodes using transmission lines;
The power transmission electrode has a physical length equal to a positive integral multiple of half the wavelength of the wave of the power to be transmitted, and the power transmission electrode is of two types whose ends are open or short-circuited as appropriate,
the gyrator is mounted between the high frequency power source and the power transmission electrode shorted at the end;
A wireless power supply device, wherein the input impedance of the power transmission electrode is changed from a short circuit to an open circuit.
前記受電電極が受ける電力を少なくとも4枚の電極を用いて電力合成を行うことを特徴とする請求項1に記載の無線給電装置。 2. The wireless power supply device according to claim 1, wherein power received by said power receiving electrode is combined using at least four electrodes. 前記高周波電源と少なくとも4枚の前記送電電極の始端との間に装荷される第一の整合回路と、
終端が開放された該送電電極と該終端に接続された第一の負荷との間に装荷される第二の整合回路と、
終端が短絡された該送電電極と該終端に接続された第二の負荷との間に装荷される第三の整合回路と、を備え、
前記整合回路のうち第二および第三の整合回路が同一のインダクタ素子およびコンデンサ素子から構成されることを特徴とする請求項1および2に記載の無線給電装置。
a first matching circuit loaded between the high-frequency power supply and the leading ends of the at least four power transmission electrodes;
a second matching circuit loaded between the open-ended transmitting electrode and a first load connected to the terminal;
a third matching circuit loaded between the short-circuited transmitting electrode and a second load connected to the terminal;
3. The wireless power supply device according to claim 1, wherein the second and third matching circuits of said matching circuits are composed of the same inductor element and capacitor element.
JP2021025634A 2021-02-19 2021-02-19 Wireless power supply device Pending JP2022127467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021025634A JP2022127467A (en) 2021-02-19 2021-02-19 Wireless power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021025634A JP2022127467A (en) 2021-02-19 2021-02-19 Wireless power supply device

Publications (1)

Publication Number Publication Date
JP2022127467A true JP2022127467A (en) 2022-08-31

Family

ID=83060035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021025634A Pending JP2022127467A (en) 2021-02-19 2021-02-19 Wireless power supply device

Country Status (1)

Country Link
JP (1) JP2022127467A (en)

Similar Documents

Publication Publication Date Title
CN101263630B (en) Filter and radio communication device using the same
JP5191530B2 (en) Transformer power combiner
CN101699767B (en) Feed circuit of radio frequency power amplifier
US8760240B2 (en) Method for designing coupling-function based millimeter wave electrical elements
CN104811150B (en) Circuit
WO1995024744A1 (en) A balun apparatus and method of designing same
CN109167144B (en) Microstrip circuit implementation method of conjugate matching coupling suppression network
CN103579723B (en) High-selectivity bandpass filter based on I-shaped dual-mode resonator
CN101908881A (en) Directional coupler and radio-frequency power amplifier containing same
US7443266B2 (en) Variable power coupling device
JP7298700B2 (en) doherty power amplifier
JP2022127467A (en) Wireless power supply device
US10438732B2 (en) Monolithic wideband trifilar transformer
CN109687828B (en) Radio frequency power amplifier and base station
US5345200A (en) Coupling network
KR20200067455A (en) Compact low loss millimeter-wave power divider and combiner device
US11716056B2 (en) Power amplifier with series transformer combiners and harmonic tuning
US11011818B1 (en) Transformer having series and parallel connected transmission lines
CN114123994A (en) Active multi-reactance compensation output topological structure based on switch E-type mode power amplifier
US7812780B2 (en) Antenna architecture and LC coupler
Samanta et al. Design and development of high efficiency rectenna at 24 GHz for wireless power transfer
KR102660183B1 (en) Impedance conversion circuit and harmonic impedance tuner using parallel-connected transmission line
US9985584B2 (en) High-frequency semiconductor amplifier
CN117353694B (en) Differential impedance converter and electronic equipment
US20060262573A1 (en) On-die coupled inductor structures for improving quality factor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240130