JP2022127120A - Pressure generating device - Google Patents

Pressure generating device Download PDF

Info

Publication number
JP2022127120A
JP2022127120A JP2021025076A JP2021025076A JP2022127120A JP 2022127120 A JP2022127120 A JP 2022127120A JP 2021025076 A JP2021025076 A JP 2021025076A JP 2021025076 A JP2021025076 A JP 2021025076A JP 2022127120 A JP2022127120 A JP 2022127120A
Authority
JP
Japan
Prior art keywords
pressure
control valve
gas
primary
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021025076A
Other languages
Japanese (ja)
Other versions
JP7483265B2 (en
Inventor
勝久 本島
Katsuhisa Motojima
良介 古瀬
Ryosuke Furuse
宏 西村
Hiroshi Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Instruments Co Ltd
Original Assignee
Cosmo Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Instruments Co Ltd filed Critical Cosmo Instruments Co Ltd
Priority to JP2021025076A priority Critical patent/JP7483265B2/en
Publication of JP2022127120A publication Critical patent/JP2022127120A/en
Application granted granted Critical
Publication of JP7483265B2 publication Critical patent/JP7483265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

To provide a pressure generating device in which a differential pressure between a pressure of gas to be supplied and a reference pressure is easily kept constant.SOLUTION: A pressure generating device according to the present invention comprises a flow rate control valve, a primary pressure setting part, a flow straightener, a laminar flow pipe, a pressure gauge, and a port. The flow rate control valve keeps a flow rate of gas constant. The primary pressure setting part sets a pressure of the gas on a primary side of the flow rate control valve to a predetermined primary pressure. The flow straightener is connected to a secondary side of the flow rate control valve. The laminar flow pipe discharges the gas outputted from the flow straightener, to a space at a reference pressure. The pressure gauge measures a pressure in a connection portion between the flow straightener and the laminar flow pipe. The port is formed in the connection portion between the flow straightener and the laminar flow pipe, and connected to an external gas circuit.SELECTED DRAWING: Figure 1

Description

本発明は、所定の圧力を発生させるための圧力発生装置に関する。 The present invention relates to a pressure generator for generating a predetermined pressure.

例えば、大気圧に対して少し高い圧力である微圧を発生するときには、図2に示した装置が利用されている。図2は、従来の圧力発生装置の構成例である。圧力発生装置900は、手動で容積が変更できるタンク300とガス回路31で接続された圧力計140とポート150を備える。ポート150には、検査対象物を含む外部のガス回路が接続される。検査対象物の検査には差圧センサが用いられることが一般的であり、外部のガス回路は閉じた空間を形成している。圧力発生装置900は、圧力計140を確認しながら、タンク300の容積を微妙に変更することで、外部のガス回路の圧力を大気圧よりも所定の圧力だけ高い状態に維持する。なお、図2の例の他にも、いろいろな目的でガスの圧力を制御する技術が存在し、例えば、特許文献1,2なども知られている。 For example, the device shown in FIG. 2 is used when generating a slight pressure that is slightly higher than the atmospheric pressure. FIG. 2 is a configuration example of a conventional pressure generator. The pressure generator 900 includes a pressure gauge 140 and a port 150 which are connected to a tank 300 whose volume can be manually changed via a gas circuit 31 . The port 150 is connected to an external gas circuit containing the test object. A differential pressure sensor is generally used for inspection of an object to be inspected, and an external gas circuit forms a closed space. The pressure generator 900 subtly changes the volume of the tank 300 while checking the pressure gauge 140, thereby maintaining the pressure of the external gas circuit at a predetermined pressure higher than the atmospheric pressure. In addition to the example shown in FIG. 2, there are techniques for controlling gas pressure for various purposes, such as those disclosed in Patent Documents 1 and 2, for example.

特開昭60-98274号公報JP-A-60-98274 特開2004-138104号公報JP 2004-138104 A

図2に示した従来技術は、閉じた空間内の気圧を一定に保つ技術であるが、気温が変化すると気圧も変化してしまうため、気圧の制御が難しいという問題がある。さらに、外部のガス回路が差圧センサを備え、ポート150から供給するガスの圧力と大気圧との差圧を検出している場合、大気圧の変動に伴ってポート150から供給するガスの圧力も調整する必要があるが、この調整も難しかった。特に、供給するガスの圧力が微圧の場合は、調整が困難である。 The prior art shown in FIG. 2 is a technique for keeping the air pressure in a closed space constant. Furthermore, if the external gas circuit is equipped with a differential pressure sensor and detects the differential pressure between the pressure of the gas supplied from the port 150 and the atmospheric pressure, the pressure of the gas supplied from the port 150 will change as the atmospheric pressure fluctuates. This adjustment was also difficult. In particular, when the pressure of the gas to be supplied is very low, adjustment is difficult.

本発明は、供給するガスの圧力と基準となる圧力との差圧を一定に保ちやすい圧力発生装置を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a pressure generator capable of easily maintaining a constant differential pressure between the pressure of a supplied gas and the reference pressure.

本発明の圧力発生装置は、流量制御弁、一次圧設定部、整流器、層流管、圧力計、ポートを備える。流量制御弁は、ガスの流量を一定に保つ。一次圧設定部は、流量制御弁の一次側のガスの圧力をあらかじめ定めた一次圧に設定する。整流器は、流量制御弁の二次側に接続される。層流管は、整流器から出力されるガスを、基準となる圧力の空間に排出する。圧力計は、整流器と層流管との接続部分の圧力を計測する。ポートは、整流器と層流管との接続部分に形成され、外部のガス回路に接続される。 A pressure generator according to the present invention includes a flow control valve, a primary pressure setting section, a rectifier, a laminar flow tube, a pressure gauge, and a port. A flow control valve keeps the gas flow constant. The primary pressure setting unit sets the pressure of the gas on the primary side of the flow control valve to a predetermined primary pressure. A rectifier is connected to the secondary side of the flow control valve. The laminar flow tube discharges the gas output from the rectifier into a reference pressure space. A pressure gauge measures the pressure at the connection between the rectifier and the laminar flow tube. A port is formed at the connection between the rectifier and the laminar flow tube and is connected to an external gas circuit.

本発明の圧力発生装置は、流体抵抗が一定の層流管に一定の流量のガスを流す構造である。したがって、気温の変化、基準となる圧力の変化(大気圧の変化)の影響を受けることなく、供給するガスの圧力を一定に保てる。 The pressure generator of the present invention has a structure in which a constant flow rate of gas is passed through a laminar flow tube with constant fluid resistance. Therefore, the pressure of the supplied gas can be kept constant without being affected by changes in temperature and changes in reference pressure (changes in atmospheric pressure).

本発明の圧力発生装置の構成例を示す図。The figure which shows the structural example of the pressure generator of this invention. 従来の圧力発生装置の構成例を示す図。The figure which shows the structural example of the conventional pressure generator.

以下、本発明の実施の形態について、詳細に説明する。なお、同じ機能を有する構成部には同じ番号を付し、重複説明を省略する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail. Components having the same function are given the same number, and redundant description is omitted.

図1に本発明の圧力発生装置の構成例を示す。圧力発生装置100は、流量制御弁110、一次圧設定部200、整流器120、層流管130、圧力計140、ポート150を備える。ガス回路22は一次圧設定部200と流量制御弁110とを接続する。ガス回路23は流量制御弁110と整流器120を接続する。ガス回路24は、整流器120、層流管130、圧力計140、ポート150を接続する。 FIG. 1 shows a configuration example of the pressure generator of the present invention. The pressure generator 100 includes a flow control valve 110 , a primary pressure setting section 200 , a rectifier 120 , a laminar flow tube 130 , a pressure gauge 140 and a port 150 . The gas circuit 22 connects the primary pressure setting section 200 and the flow control valve 110 . Gas circuit 23 connects flow control valve 110 and rectifier 120 . Gas circuit 24 connects rectifier 120 , laminar flow tube 130 , pressure gauge 140 and port 150 .

流量制御弁110は、ガスの流量を一定に保つ。流量制御弁110には、例えばニードルバルブを用いればよい。ニードルバルブであれば、流量制御弁の一次圧と二次圧は、流量が一定となる条件を満たすように設定すればよい。このように設定すれば、ガスの流量を一定にできる。流量制御弁110に、サーボバルブを利用してもよい。サーボバルブを利用する場合は、サーボバルブのオリフィスプレートの穴をできるだけ細くする方が望ましい。なお、サーボバルブに関しては、実開昭62-81109の記載を参考にすればよい。 A flow control valve 110 keeps the gas flow constant. A needle valve, for example, may be used for the flow control valve 110 . In the case of a needle valve, the primary pressure and secondary pressure of the flow control valve may be set so as to keep the flow rate constant. With this setting, the gas flow rate can be kept constant. A servo valve may be used for the flow control valve 110 . When using a servovalve, it is desirable to make the hole in the orifice plate of the servovalve as thin as possible. As for the servo valve, the description of Japanese Utility Model Application Laid-Open No. 62-81109 can be referred to.

一次圧設定部200は、流量制御弁110の一次側のガスの圧力をあらかじめ定めた一次圧に設定する。一次圧設定部200は、例えば、図1に示すように一次圧よりも高い圧力のガスを供給するガス供給源210、ガス圧を調整する調整弁220、一次圧を計測する圧力計230を備えればよい。ガス回路21は、ガス供給源210と調整弁220を接続する。ガス回路22は、調整弁220と圧力計230に接続されると共に、流量制御弁110に接続される。ただし、一次圧設定部200は、その他の構成でも構わない。 The primary pressure setting unit 200 sets the pressure of the gas on the primary side of the flow control valve 110 to a predetermined primary pressure. The primary pressure setting unit 200 includes, for example, a gas supply source 210 that supplies gas having a pressure higher than the primary pressure, a regulating valve 220 that adjusts the gas pressure, and a pressure gauge 230 that measures the primary pressure, as shown in FIG. All you have to do is The gas circuit 21 connects the gas supply source 210 and the regulating valve 220 . The gas circuit 22 is connected to the regulating valve 220 and the pressure gauge 230 as well as to the flow control valve 110 . However, the primary pressure setting unit 200 may have other configurations.

整流器120は、流量制御弁110の二次側に接続される。整流器120は、流量制御弁110から出力されるガスの流れを整流する役割を果たす。 A rectifier 120 is connected to the secondary side of the flow control valve 110 . The rectifier 120 serves to rectify the gas flow output from the flow control valve 110 .

層流管130は、整流器120から出力されるガスを、基準となる圧力の空間に排出する。基準となる圧力としては、大気圧を想定している。しかし、大気圧でなくても本発明の効果は得られる。層流管130は一定の流体抵抗を有するので、層流管130に一定の流量のガスを流すと、ガス回路24内の圧力と基準となる圧力との差圧を、あらかじめ定めた圧力に維持できる。したがって、気温の変化、基準となる圧力の変化(大気圧の変化)の影響を受けることなく、供給するガスの差圧を一定に保てる。 The laminar flow tube 130 discharges the gas output from the rectifier 120 to a reference pressure space. Atmospheric pressure is assumed as the reference pressure. However, the effect of the present invention can be obtained even if the pressure is not atmospheric pressure. Since the laminar flow tube 130 has a constant fluid resistance, when a constant flow rate of gas flows through the laminar flow tube 130, the pressure difference between the pressure in the gas circuit 24 and the reference pressure is maintained at a predetermined pressure. can. Therefore, the differential pressure of the supplied gas can be kept constant without being affected by changes in temperature and changes in reference pressure (changes in atmospheric pressure).

圧力計140は、整流器120と層流管130との接続部分の圧力を計測する。ポート150は、整流器120と層流管130との接続部分に形成され、外部のガス回路に接続される。外部のガス回路は、正常なときは閉じた空間であり、基準となる圧力との差圧を検出する差圧センサを利用するガス回路にすればよい。「正常なとき」とは、例えば外部のガス回路で検査する対象物に亀裂などの穴がない状態を意味している。 Pressure gauge 140 measures the pressure at the connection between rectifier 120 and laminar flow tube 130 . A port 150 is formed at the connecting portion between the rectifier 120 and the laminar flow tube 130 and is connected to an external gas circuit. The external gas circuit is normally a closed space, and may be a gas circuit that utilizes a differential pressure sensor that detects a pressure difference from a reference pressure. "Normal" means, for example, a state in which there are no holes such as cracks in the object to be inspected in the external gas circuit.

閉じた空間の場合は、気温が変化するとボイルシャルルの法則により、気圧が変化してしまう。しかし、圧力発生装置100によれば、層流管130を介して基準となる圧力の空間(例えば、大気)とつながっている。そして、層流管130には一定の流量のガスが流れるので、気温に関わらず、層流管130の整流器120側と基準となる圧力の空間側との差圧を一定にできる。したがって、気温の変化、基準となる圧力の変化(大気圧の変化)の影響を受けることなく、供給するガスの圧力を基準となる圧力に対して一定に保てる。 In the case of a closed space, when the temperature changes, the air pressure changes according to Boyle-Charles' law. However, according to the pressure generator 100 , it is connected to a reference pressure space (for example, the atmosphere) via the laminar flow tube 130 . Since a constant flow rate of gas flows through the laminar flow tube 130, the differential pressure between the rectifier 120 side of the laminar flow tube 130 and the reference pressure space side can be made constant regardless of the temperature. Therefore, the pressure of the gas to be supplied can be kept constant with respect to the reference pressure without being affected by temperature changes and reference pressure changes (atmospheric pressure changes).

実際に圧力発生装置100を構成して実験した。実験では、一次圧を大気圧に対して約100kPa高い圧力とし、ポート150の圧力(流量制御弁110にニードルバルブを用いて層流管130の整流器120側の圧力)が大気圧よりも500Pa高い状態とした。約3分の計測時間では、ポート150の大気圧との差圧の変化の最大値を0.5Pa未満に抑えることができた。 The pressure generator 100 was actually constructed and tested. In the experiment, the primary pressure was about 100 kPa higher than the atmospheric pressure, and the pressure at the port 150 (pressure on the rectifier 120 side of the laminar flow tube 130 using a needle valve for the flow control valve 110) was 500 Pa higher than the atmospheric pressure. state. In the measurement time of about 3 minutes, the maximum value of the change in the pressure difference from the atmospheric pressure at the port 150 could be suppressed to less than 0.5 Pa.

21、22、23、24、31 ガス回路
100、900 圧力発生装置
110 流量制御弁 120 整流器
130 層流管 140、230 圧力計
150 ポート 200 一次圧設定部
210 ガス供給源 220 調整弁
300 タンク
21, 22, 23, 24, 31 gas circuits 100, 900 pressure generator 110 flow control valve 120 rectifier 130 laminar flow tube 140, 230 pressure gauge 150 port 200 primary pressure setting unit 210 gas supply source 220 regulating valve 300 tank

Claims (5)

ガスの流量を一定に保つ流量制御弁と、
前記流量制御弁の一次側のガスの圧力をあらかじめ定めた一次圧に設定する一次圧設定部と、
前記流量制御弁の二次側に接続された整流器と、
前記整流器から出力されるガスを、基準となる圧力の空間に排出する層流管と、
前記整流器と前記層流管との接続部分の圧力を計測する圧力計と、
前記整流器と前記層流管との接続部分に形成された外部のガス回路と接続するためのポート
を備える圧力発生装置。
a flow control valve that keeps the gas flow rate constant;
a primary pressure setting unit that sets the pressure of the gas on the primary side of the flow control valve to a predetermined primary pressure;
a rectifier connected to the secondary side of the flow control valve;
a laminar flow tube for discharging the gas output from the rectifier to a space having a reference pressure;
a pressure gauge for measuring the pressure at the connecting portion between the rectifier and the laminar flow tube;
A pressure generator comprising a port for connection with an external gas circuit formed at a connection portion between the rectifier and the laminar flow tube.
請求項1記載の圧力発生装置であって、
前記流量制御弁はニードルバルブであり、前記一次圧と前記流量制御弁の二次圧は、流量が一定となる条件を満たすように設定される
ことを特徴とする圧力発生装置。
A pressure generator according to claim 1,
The pressure generator, wherein the flow rate control valve is a needle valve, and the primary pressure and the secondary pressure of the flow rate control valve are set so as to satisfy a condition that the flow rate is constant.
請求項1記載の圧力発生装置であって、
前記流量制御弁はサーボバルブである
ことを特徴とする圧力発生装置。
A pressure generator according to claim 1,
A pressure generator, wherein the flow control valve is a servo valve.
請求項1~3のいずれかに記載の圧力発生装置であって、
前記基準となる圧力とは大気圧である
ことを特徴とする圧力発生装置。
The pressure generator according to any one of claims 1 to 3,
The pressure generator, wherein the reference pressure is atmospheric pressure.
請求項1~4のいずれかに記載の圧力発生装置であって、
前記ポートは、正常なときは閉じた空間を形成しているガス回路に接続される
ことを特徴とする圧力発生装置。
The pressure generator according to any one of claims 1 to 4,
A pressure generator, wherein the port is connected to a gas circuit that normally forms a closed space.
JP2021025076A 2021-02-19 2021-02-19 Pressure Generator Active JP7483265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021025076A JP7483265B2 (en) 2021-02-19 2021-02-19 Pressure Generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021025076A JP7483265B2 (en) 2021-02-19 2021-02-19 Pressure Generator

Publications (2)

Publication Number Publication Date
JP2022127120A true JP2022127120A (en) 2022-08-31
JP7483265B2 JP7483265B2 (en) 2024-05-15

Family

ID=83060142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021025076A Active JP7483265B2 (en) 2021-02-19 2021-02-19 Pressure Generator

Country Status (1)

Country Link
JP (1) JP7483265B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6925785B2 (en) 2015-08-27 2021-08-25 住友重機械工業株式会社 Actuator system
JP6653100B2 (en) 2015-10-06 2020-02-26 アルメックスコーセイ株式会社 Flow control valve, flow control device and air cylinder device

Also Published As

Publication number Publication date
JP7483265B2 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
US8104323B2 (en) Flow controller, flow measuring device testing method, flow controller testing system, and semiconductor manufacturing apparatus
KR102084447B1 (en) Flow control method, flow calibration method of flow control device, flow measurement method using flow measurement device and flow measurement device
KR20140003611A (en) Pressure-based flow control device with flow monitor
US20100030386A1 (en) Pressure Regulator and Vibration Isolator
JP6650166B2 (en) Gas supply device capable of measuring flow rate, flow meter, and flow rate measuring method
SG191758A1 (en) Flow rate measurement device and flow rate measurement method of flow rate controller for gas feeder
WO2018047644A1 (en) Flow ratio control device, program for flow ratio control device, and flow ratio control method
JP5620184B2 (en) Leak inspection apparatus and leak inspection method
CN109791099A (en) Concentration detection method and pressure flow-rate controller
KR20180068297A (en) Flow rate calculation system and flow rate calculation method
JP4923957B2 (en) Leak inspection device
US11326921B2 (en) Flow rate measuring method and flow rate measuring device
JP3989629B2 (en) Flow inspection device
JP2022127120A (en) Pressure generating device
KR20200054994A (en) Mass flow control system and semiconductor manufacturing apparatus and vaporizer comprising the system
US20170075361A1 (en) Method of inspecting gas supply system
JPWO2020026784A1 (en) Flow control system and flow measurement method
JP2007038179A (en) Gas mixer
JP5113894B2 (en) Flow rate measuring method and flow rate measuring apparatus using the same
CN110243444B (en) Negative pressure source device, gas meter verification gas circuit system and verification method
JP6770388B2 (en) Leakage element evaluation device and evaluation method
KR101958289B1 (en) Valve assembled flowmeter
JP2005077310A (en) Gas measuring device and self-diagnosis method therefor
WO2012034183A1 (en) Testing of flow meters
US11680866B2 (en) Bleeding air regulator control pneumatic circuit, and leakage detection system for testing a device under test

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240423

R150 Certificate of patent or registration of utility model

Ref document number: 7483265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150