JP2022125843A - Urea processor and pure water manufacturing system - Google Patents

Urea processor and pure water manufacturing system Download PDF

Info

Publication number
JP2022125843A
JP2022125843A JP2021023653A JP2021023653A JP2022125843A JP 2022125843 A JP2022125843 A JP 2022125843A JP 2021023653 A JP2021023653 A JP 2021023653A JP 2021023653 A JP2021023653 A JP 2021023653A JP 2022125843 A JP2022125843 A JP 2022125843A
Authority
JP
Japan
Prior art keywords
water
treated
reaction
urea
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021023653A
Other languages
Japanese (ja)
Inventor
尚憲 桃谷
Hisanori Momotani
一重 高橋
Kazushige Takahashi
響介 山田
Kyosuke Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2021023653A priority Critical patent/JP2022125843A/en
Priority to TW111101217A priority patent/TW202233530A/en
Priority to CN202210140143.7A priority patent/CN114940536A/en
Publication of JP2022125843A publication Critical patent/JP2022125843A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • C02F1/766Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens by means of halogens other than chlorine or of halogenated compounds containing halogen other than chlorine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Abstract

To provide a processor used in decomposition of urea and capable of reducing volume of a reaction tank as a whole.SOLUTION: A processor which receives water to be treated, decomposes urea included in water to be treated, and discharges treated water is assembled with addition means for adding a hypochlorite (e.g., NaClO) and a bromide salt (e.g., NaBr) as a urea decomposition agent to water to be treated, and a plurality of reaction tanks 20 where decomposition reaction of urea by the urea decomposition agent is progressed. A plurality of reaction tanks 20 are arranged parallel to each other with the decomposition reaction to be progressed in batch system in each reaction tank, or, are arranged in series to form a multistage complete blending continuous reaction tank to progress decomposition reaction.SELECTED DRAWING: Figure 1

Description

本発明は、被処理水中の尿素を分解する処理装置と、この処理装置を備える純水製造システムとに関する。 The present invention relates to a treatment apparatus for decomposing urea in water to be treated and a pure water production system including this treatment apparatus.

水道水や地下水、工業用水などの原水から純水を製造するために用いられる純水製造装置は、例えば、逆浸透装置、イオン交換装置、紫外線酸化装置などを組み合わせて構成される。原水中に尿素が含まれる場合、尿素は、逆浸透装置、イオン交換装置及び紫外線酸化装置のいずれによっても除去することが難しい物質であるので、生成された純水に尿素が残留することとなって、その純水のTOC(全有機炭素;total organic carbon)濃度が上昇する。半導体製造などの用途のために特に純度が高い純水、すなわち超純水を製造する場合などには、得られる超純水におけるTOC濃度の上限値が厳しく設定されているので、原水から純水や超純水を生成する工程のための前処理として、原水から尿素を除去する工程が必要となる。被処理水である原水に含まれる尿素を除去するための工程として、特許文献1~3に記載されるように、被処理水に対して、臭化物塩と次亜塩素酸塩、具体的には臭化ナトリウムと次亜塩素酸ナトリウムとを添加して次亜臭素酸を生成させ、この次亜臭素酸によって尿素を分解する工程が知られている。 A water purifying apparatus used for producing pure water from raw water such as tap water, groundwater, and industrial water is configured by combining, for example, a reverse osmosis apparatus, an ion exchange apparatus, an ultraviolet oxidation apparatus, and the like. When raw water contains urea, urea is a substance that is difficult to remove by any of a reverse osmosis device, an ion exchange device, and an ultraviolet oxidation device, so urea will remain in the produced pure water. As a result, the TOC (total organic carbon) concentration of the pure water increases. When producing ultrapure water with particularly high purity for applications such as semiconductor manufacturing, the upper limit of the TOC concentration in the resulting ultrapure water is strictly set. A step of removing urea from raw water is required as a pretreatment for the step of producing ultrapure water. As a process for removing urea contained in raw water, which is the water to be treated, bromide salt and hypochlorite, specifically, are added to the water to be treated, as described in Patent Documents 1 to 3. A process is known in which sodium bromide and sodium hypochlorite are added to generate hypobromous acid, and urea is decomposed by this hypobromous acid.

特許第3546548号公報Japanese Patent No. 3546548 特許第5678436号公報Japanese Patent No. 5678436 特許第6279295号公報Japanese Patent No. 6279295

被処理水に臭化物塩と次亜塩素酸塩とを添加して尿素を分解する工程は、反応速度が小さく反応時間がかかる工程である。そのため従来は、後段の純水製造装置に対して連続的に処理水を供給することを前提として、単一の大型の反応槽において被処理水を連続的に受け入れながら、臭化物塩と次亜塩素酸塩とを添加していた。しかしながら、単一の大型の反応槽では流れの制御を行うことができず、反応槽内で不完全なプラグフローが形成され、その結果、ショートパスの影響で滞留時間が短くなって尿素処理の性能が低下する。十分な反応時間を確保するためには反応槽における滞留時間を過剰に設定することになるので、本来必要とされる以上に大きな反応槽を準備する必要があった。 The step of adding bromide salt and hypochlorite to the water to be treated to decompose urea is a step with a slow reaction rate and a long reaction time. Therefore, conventionally, on the premise that treated water is continuously supplied to the downstream pure water production apparatus, bromide salt and hypochlorous acid are added while continuously receiving the water to be treated in a single large reaction tank. acid salt was added. However, in a single large reactor, flow control is not possible and imperfect plug flow is formed within the reactor, resulting in short-path effects resulting in short residence times and poor urea processing. Decreased performance. In order to secure a sufficient reaction time, the residence time in the reaction tank must be set excessively, so it was necessary to prepare a reaction tank larger than originally required.

本発明の目的は、尿素の分解に用いられ、全体での反応槽の体積を小さくできる処理装置と、そのような処理装置を前処理装置として備える純水製造システムとを提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a treatment apparatus which is used for decomposing urea and which can reduce the volume of the reaction tank as a whole, and a pure water production system having such a treatment apparatus as a pretreatment apparatus.

本発明の処理装置は、被処理水を受け入れて、被処理水に含まれる尿素を分解して処理水を排出する処理装置であって、尿素分解剤として臭化物塩と次亜塩素酸塩とを被処理水に添加する添加手段と、尿素分解剤による尿素の分解反応を進行させる複数の反応槽と、を備える。臭化物塩は例えば臭化ナトリウムであり、次亜塩素酸塩は例えば次亜塩素酸ナトリウムである。 The treatment apparatus of the present invention receives water to be treated, decomposes urea contained in the water to be treated, and discharges the treated water. An addition means for adding to the water to be treated and a plurality of reaction tanks for advancing the decomposition reaction of urea by the urea decomposing agent are provided. A bromide salt is for example sodium bromide and a hypochlorite is for example sodium hypochlorite.

本発明の処理装置では、複数の反応槽は、直列または並列に設けられる。複数の反応槽を直列に設ける場合には、反応槽ごとに添加手段を設けて、全体を多段の完全混合連続(CSTR)の反応装置として分解反応を進行させる。直列多段に反応槽を設けた場合には、反応槽ごとに被処理水中の尿素の濃度が異なり尿素の濃度勾配が形成されるから反応速度を高めることが可能になり、結果として、反応槽全体での体積を小さくすることができる。直列に設けられる反応槽の数を増加させることによって、全体として、プラグフローでの反応に近付くことになる。一方、複数の反応槽を並列に設ける場合には、それぞれを例えばバッチ式(回分式)の反応槽として使用する。バッチ式の反応槽を1つだけ用いる場合には、連続的に被処理水を受け入れたり連続的に処理水を排出したりすることはできないが、例えば、複数の反応槽のうちの1つを被処理水の受け入れに用い、残りのうちの1つから処理水を排出するようにし、被処理水を受け入れる反応槽と処理水を排出する反応槽とをローテーションで交代させることにより、バッチ式での分解処理を行いながら例えば連続的に処理水を排出することが可能になる。バッチ式での反応は、理想的なプラグフローでの反応と並んで最も効率的に反応を進行させることができるから、複数の反応槽を並列に設けてバッチ式での分解反応を進行させることによって、反応槽全体での体積を小さくすることができる。 In the processing apparatus of the present invention, a plurality of reaction vessels are provided in series or in parallel. When a plurality of reaction tanks are provided in series, an addition means is provided for each reaction tank, and the decomposition reaction proceeds as a multi-stage complete mixing continuous (CSTR) reaction apparatus as a whole. When multiple reaction tanks are provided in series, the concentration of urea in the water to be treated differs for each reaction tank, forming a concentration gradient of urea, making it possible to increase the reaction rate. can be made smaller. By increasing the number of reactors in series, the reaction as a whole approaches a plug flow reaction. On the other hand, when a plurality of reaction tanks are provided in parallel, each of them is used as a batch type (batch type) reaction tank, for example. When only one batch-type reaction tank is used, it is not possible to continuously receive the water to be treated or discharge the treated water continuously. It is used for receiving the water to be treated, and one of the remaining ones is used to discharge the treated water. For example, it is possible to continuously discharge the treated water while performing the decomposition treatment. The reaction in the batch mode, along with the reaction in the ideal plug flow, allows the reaction to proceed most efficiently. can reduce the volume of the entire reactor.

本発明の純水製造システムは、少なくともイオン交換装置と、イオン交換装置を通過した水が供給される逆浸透装置とを備える純水製造システムであって、本発明の処理装置を前処理装置として備える。 The pure water production system of the present invention is a pure water production system comprising at least an ion exchange device and a reverse osmosis device to which water that has passed through the ion exchange device is supplied, and the treatment device of the present invention is used as a pretreatment device. Prepare.

本発明によれば、尿素の分解に用いられ、全体での反応槽の体積を小さくできる処理装置と、そのような処理装置を前処理装置として備える純水製造システムとを得ることができる。 According to the present invention, it is possible to obtain a treatment apparatus that is used for decomposing urea and that can reduce the volume of the reaction tank as a whole, and a pure water production system that includes such a treatment apparatus as a pretreatment apparatus.

本発明の第1の実施形態の処理装置を示す図である。It is a figure which shows the processing apparatus of the 1st Embodiment of this invention. 本発明の第2の実施形態の処理装置を示す図である。It is a figure which shows the processing apparatus of the 2nd Embodiment of this invention. 純水製造システムの一例を示す図である。It is a figure which shows an example of a pure water production system. 比較例1における処理装置を示す図である。3 is a diagram showing a processing apparatus in Comparative Example 1; FIG.

次に、本発明の好ましい実施の形態について、図面を参照して説明する。 Preferred embodiments of the present invention will now be described with reference to the drawings.

本発明に基づく処理装置は、被処理水中の尿素を分解して連続的に処理水を排出するものであり、例えば、純水製造システムにおける前処理装置として好ましく用いられる。本発明に基づく処理装置は、尿素分解剤として臭化物塩と次亜塩素酸塩とを被処理水に添加する添加手段と、尿素分解剤による尿素の分解反応、より詳しくは尿素分解剤によって発生する次亜臭素酸あるいは次亜臭素酸塩による尿素の分解反応を進行させる複数の反応槽と、を備えることを特徴とする。尿素分解剤は臭化物塩と次亜塩素酸塩からなるが、臭化物塩は水溶性のものであることが好ましく、例えば臭化ナトリウム(NaBr)が用いられる。次亜塩素酸塩としては、例えば次亜塩素酸ナトリウム(NaClO)が用いられる。以下の説明では、尿素分解剤として臭化ナトリウムと次亜塩素酸ナトリウムとを用いる場合について説明する。また、本発明では、複数の反応槽を並列配置する場合と直列配置する場合とが考えられるが、反応槽を並列配置する場合を第1の実施形態により説明し、直列配置する場合を第2の実施形態により説明する。 A treatment apparatus based on the present invention decomposes urea in water to be treated and continuously discharges the treated water, and is preferably used as a pretreatment apparatus in a pure water production system, for example. The treatment apparatus according to the present invention comprises addition means for adding bromide salt and hypochlorite as urea decomposition agents to the water to be treated, and a decomposition reaction of urea by the urea decomposition agent, more specifically generated by the urea decomposition agent. and a plurality of reaction tanks for advancing the decomposition reaction of urea with hypobromous acid or hypobromite. The ureolytic agent consists of a bromide salt and a hypochlorite salt, and the bromide salt is preferably water-soluble, such as sodium bromide (NaBr). As hypochlorite, for example, sodium hypochlorite (NaClO) is used. In the following description, the case of using sodium bromide and sodium hypochlorite as the urea decomposing agent will be described. In addition, in the present invention, a case of arranging a plurality of reaction vessels in parallel and a case of arranging them in series are conceivable. The embodiment of

(第1の実施形態)
図1は、本発明の第1の実施形態の処理装置を示している。図1に示す処理装置10は、並列に配置された複数個の反応槽20を備え、各反応槽20においてバッチ式あるいはセミバッチ式で尿素の分解反応を実行させるものである。並列配置される反応槽20の数は2であってもよいが、3以上であることが好ましい。図示した例では、並列配置される反応槽20の数は3である。複数の反応槽20に共通に設けられて被処理水が供給される入口配管21が設けられている。入口配管21は、各反応槽20に対して被処理水を分配するために設けられており、各反応槽20の入口は、それぞれ弁23を介して入口配管21の末端に接続する。弁23は、対応する反応槽20への被処理水の供給を制御する。入口配管21では、臭化ナトリウムと次亜塩素酸ナトリウムとを含む水溶液である尿素分解剤が注入される。このように尿素分解剤を被処理水に注入、添加するための構成は、添加手段を構成する。入口配管21において尿素分解剤の注入位置より下流側の位置には、被処理水における尿素分解剤の濃度を均一とするラインミキサー22が設けられている。ラインミキサー22を設けることによって、反応槽20に流入する時点での被処理水における尿素分解剤濃度が均一となる。ラインミキサー22の代わりに、撹拌機や水中ポンプ、曝気装置などを用いて被処理水における尿素分解剤濃度が均一となるようにしてもよい。
(First embodiment)
FIG. 1 shows a processing apparatus according to a first embodiment of the invention. A processing apparatus 10 shown in FIG. 1 includes a plurality of reaction tanks 20 arranged in parallel, and each reaction tank 20 performs a urea decomposition reaction in a batch or semi-batch manner. The number of reaction vessels 20 arranged in parallel may be two, but preferably three or more. In the illustrated example, the number of reaction vessels 20 arranged in parallel is three. An inlet pipe 21 is provided in common to a plurality of reaction tanks 20 to which water to be treated is supplied. The inlet pipe 21 is provided for distributing the water to be treated to each reaction tank 20 , and the inlet of each reaction tank 20 is connected to the end of the inlet pipe 21 through a valve 23 . The valve 23 controls the supply of water to be treated to the corresponding reaction tank 20 . A urea decomposition agent, which is an aqueous solution containing sodium bromide and sodium hypochlorite, is injected into the inlet pipe 21 . The configuration for injecting and adding the urea decomposing agent to the water to be treated in this manner constitutes adding means. A line mixer 22 for making the concentration of the urea decomposing agent uniform in the water to be treated is provided at a position on the downstream side of the injection position of the urea decomposing agent in the inlet pipe 21 . By providing the line mixer 22, the concentration of the urea decomposing agent in the water to be treated becomes uniform when it flows into the reaction tank 20. Instead of the line mixer 22, a stirrer, a submersible pump, an aerator, or the like may be used to make the concentration of the urea decomposing agent in the water to be treated uniform.

各反応槽20の出口は、それぞれ、弁24を介して出口配管25に接続する。弁24は、反応槽20において尿素分解剤による被処理水中の尿素を分解させる反応を実行させて得られる処理水の反応槽20から排出を制御する。各反応槽20からの処理水は、出口配管25を介して処理装置10の外部に排出される。 The outlet of each reaction tank 20 is connected to an outlet pipe 25 through a valve 24 . The valve 24 controls the discharge from the reaction tank 20 of the treated water obtained by causing the urea decomposing agent to decompose urea in the water to be treated in the reaction tank 20 . Treated water from each reaction tank 20 is discharged to the outside of the treatment apparatus 10 through an outlet pipe 25 .

本実施形態の処理装置10では、弁23,24の操作により、複数設けられた反応槽20のうちの少なくとも1つの反応槽において被処理水を受け入れながら、被処理水を受け入れる反応槽20を除いた少なくとも1つの反応槽20から処理水を排出し、処理水の排出が終わったら、ローテーションにより、被処理水を受け入れる反応槽20と処理水を排出する反応槽20とをそれぞれ交代させる。処理水を排出する反応槽20をローテーションによって交代させることから、各反応槽20においてはバッチ式で処理を行っているとしても、出口配管25を介して所定の流量で連続して処理水を排出することができる。 In the treatment apparatus 10 of the present embodiment, the valves 23 and 24 are operated to receive the water to be treated in at least one of the plurality of reaction tanks 20, except for the reaction tank 20 that receives the water to be treated. The treated water is discharged from at least one reaction tank 20, and when the discharge of the treated water is completed, the reaction tank 20 for receiving the water to be treated and the reaction tank 20 for discharging the treated water are alternated by rotation. Since the reaction tank 20 that discharges the treated water is alternated by rotation, the treated water is continuously discharged at a predetermined flow rate through the outlet pipe 25 even if the batch type treatment is performed in each reaction tank 20. can do.

反応槽20においてバッチ式で尿素分解反応を実行する場合を考えると、反応槽20では、被処理水の受け入れ、尿素分解反応の進行、及び処理水の排出の3段階を逐次実行することになる。例えばA~Cの3個の反応槽20を並列に配置している場合には、Aの反応槽20において被処理水の受け入れ(すなわち被処理水の張り込み)を行い、同時に、Bの反応槽20において尿素分解反応を進行させ、Cの反応槽20において処理水の排出を行い、Cの反応槽20からの処理水の排出が終了したら、Cの反応槽20において被処理水の受け入れを行い、Aの反応槽20において尿素分解反応を進行させ、Bの反応槽20から処理水の排出を行う。さらに、Bの反応槽20からの処理水の排出が終了したら、Bの反応槽20において被処理水の受け入れを行い、Cの反応槽20において尿素分解反応を進行させ、Aの反応槽20から処理水の排出を行う。その後は、このローテーションによる動作を繰り返す。各反応槽20が、被処理水の受け入れ→尿素分解反応→処理水の排出→被処理水の受け入れ→…と動作を繰り返し、かつ、3個の反応槽が繰り返しの周期の3分の1ずつずれてローテーション動作することにより、被処理水を連続的に受け入れ、かつ、処理水を連続的に排出しつつ、バッチ式の尿素分解処理を実行することが可能になる。並列に設けられる反応槽20の数が4以上であれば、被処理水の受け入れを行う反応槽20と処理水の排出に用いられる反応槽20を除いた2以上の反応槽20において尿素分解反応を進行させることが可能となり、各反応槽20での動作の繰返し周期における尿素分解反応が占める割合を長くすることができ、その分、反応槽20の利用効率が高まるので、処理装置10の全体での反応槽20の体積を小さくすることができる。 When the urea decomposition reaction is performed batchwise in the reaction tank 20, the reaction tank 20 sequentially performs three steps of receiving the water to be treated, progressing the urea decomposition reaction, and discharging the treated water. . For example, when three reaction vessels 20 A to C are arranged in parallel, the water to be treated is received in the reaction vessel 20 A (that is, the water to be treated is charged), and at the same time, the reaction vessel B In 20, the urea decomposition reaction proceeds, the treated water is discharged in the reaction tank 20 of C, and when the discharge of the treated water from the reaction tank 20 of C is completed, the water to be treated is received in the reaction tank 20 of C. , and the urea decomposition reaction is allowed to proceed in the reaction tanks 20 of A, and the treated water is discharged from the reaction tank 20 of B. Furthermore, when the discharge of the treated water from the reaction tank 20 of B is completed, the water to be treated is received in the reaction tank 20 of B, the urea decomposition reaction is allowed to proceed in the reaction tank 20 of C, and from the reaction tank 20 of A Discharge the treated water. After that, the operation by this rotation is repeated. Each reaction tank 20 repeats the operation of receiving the water to be treated → urea decomposition reaction → discharging the treated water → receiving the water to be treated → . By shifting the rotation operation, it is possible to continuously receive the water to be treated and continuously discharge the treated water while executing the batch-type urea decomposition treatment. If the number of reaction tanks 20 provided in parallel is four or more, the urea decomposition reaction occurs in two or more reaction tanks 20 excluding the reaction tank 20 for receiving the water to be treated and the reaction tank 20 used for discharging the treated water. can be advanced, and the proportion of the urea decomposition reaction in the repetition period of the operation in each reaction tank 20 can be increased, and the efficiency of utilization of the reaction tank 20 is increased accordingly, so that the entire processing apparatus 10 The volume of the reaction vessel 20 can be reduced at .

本実施形態では、並列に配置される反応槽20の数を2とすることもできる。その場合、例えば、一方の反応槽20に対して短時間で被処理水を供給してその後その反応槽20において尿素の分解反応を進行させ、他方の反応槽20からは連続的に処理水を排出し、他方の反応槽20からの処理水の排出が終わったら、両方の反応槽20の機能を入れ替えることができる。このときは、連続的に処理水を排出することはできるが、連続的に被処理水を受け入れることはできない。あるいは、一方の反応槽20において連続的に被処理水を受け入れ、他方の反応槽20では尿素の分解反応を進行させ、尿素の分解反応が終わり次第、短時間で処理水を排出し、被処理水の受け入れと処理水の排出とが終わったら、両方の反応槽20の機能を入れ替えることができる。このときは、連続的に被処理水を受け入れることはできるが、連続的に処理水を排出することはできない。 In this embodiment, the number of reaction vessels 20 arranged in parallel can be two. In this case, for example, the water to be treated is supplied to one of the reaction tanks 20 in a short period of time, then the urea decomposition reaction proceeds in the reaction tank 20, and the treated water is continuously supplied from the other reaction tank 20. After draining and draining of treated water from the other reactor 20, the functions of both reactors 20 can be switched. In this case, the treated water can be discharged continuously, but the water to be treated cannot be received continuously. Alternatively, the water to be treated is continuously received in one reaction tank 20, the decomposition reaction of urea is allowed to proceed in the other reaction tank 20, and as soon as the decomposition reaction of urea is completed, the treated water is discharged in a short time, and the water to be treated is discharged. After receiving water and discharging treated water, the functions of both reactors 20 can be switched. In this case, the water to be treated can be continuously received, but the treated water cannot be discharged continuously.

図1に示した例では入口配管21にラインミキサー22を設けているが、ラインミキサー22を設ける代わりに、反応槽20ごとに、撹拌機、水中ポンプあるいは曝気装置などの撹拌機構を設けてもよい。また図1に示したものでは、入口配管21において被処理水に尿素分解剤を添加しているが、入口配管21ではなく各反応槽20において尿素分解剤を添加することも可能である。反応槽20において尿素分解剤を添加するときは、例えば反応槽20に被処理水を注入しつつ同じ反応槽20に対して尿素分解剤を添加するときは、セミバッチ式(半回分式)での尿素分解処理となるので、反応槽20に撹拌機構を設けることが必須である。反応槽20に対して被処理水を張り込みながら尿素分解反応も進行させるセミバッチ式の処理を行う場合、被処理水の張り込み時間を変化させることにより、被処理水の張り込みの開始時を始点として被処理水中の尿素濃度を所定値以下とするために必要となる反応時間が変化する。そこで、被処理水を反応槽20に給送するために用いられるポンプの能力と、反応時間とに基づいて、被処理水の張り込み時間の数値範囲を定めることができる。 In the example shown in FIG. 1, the inlet pipe 21 is provided with the line mixer 22, but instead of providing the line mixer 22, each reaction tank 20 may be provided with a stirring mechanism such as a stirrer, a submersible pump, or an aerator. good. 1, the urea decomposition agent is added to the water to be treated through the inlet pipe 21, but it is also possible to add the urea decomposition agent to each reaction vessel 20 instead of the inlet pipe 21. FIG. When adding the urea decomposition agent to the reaction tank 20, for example, when adding the urea decomposition agent to the same reaction tank 20 while injecting the water to be treated into the reaction tank 20, a semi-batch type (semi-batch type) is used. Since the urea decomposition treatment is performed, it is essential to provide the reaction tank 20 with a stirring mechanism. When performing a semi-batch type treatment in which the urea decomposition reaction proceeds while charging the water to be treated into the reaction tank 20, by changing the charging time of the water to be treated, the starting time of charging the water to be treated is used as a starting point. The reaction time required to reduce the urea concentration in the treated water to a predetermined value or less changes. Therefore, based on the performance of the pump used to supply the water to be treated to the reaction tank 20 and the reaction time, the numerical range of the charging time of the water to be treated can be determined.

次亜臭素酸による尿素の分解反応は、被処理水におけるpHに依存することが知られているが、pHの調整は、反応槽20において行うことができる。また、本実施形態では、反応槽20ごとにその反応槽20内の水が循環する循環配管を設けてその循環配管に尿素濃度計を設置し、尿素濃度を監視して反応槽20からの処理水の排出タイミングを決定するようにしてもよい。 It is known that the decomposition reaction of urea by hypobromous acid depends on the pH of the water to be treated, and the pH can be adjusted in the reaction tank 20 . Further, in the present embodiment, a circulation pipe for circulating the water in the reaction tank 20 is provided for each reaction tank 20, and a urea concentration meter is installed in the circulation pipe to monitor the urea concentration and treat the water from the reaction tank 20. You may make it determine the discharge|emission timing of water.

(第2の実施形態)
図2は、本発明の第2の実施形態の処理装置を示している。図2に示す処理装置10は、直列に配置された複数個の反応槽20を備え、全体として多段の完全混合連続の反応装置として構成したものである。図では2個の反応槽20が直列に設けられ、上流側の反応槽20の入口には、被処理水が供給される入口配管21が接続し、下流側の反応槽20の出口には、処理水を排出する出口配管25が接続している。各反応槽20には、添加手段が設けられて臭化ナトリウムと次亜塩素酸ナトリウムとを含む水溶液である尿素分解剤が注入され、また、不図示の撹拌機構が設けられている。撹拌機構は、撹拌機、水中ポンプあるいは曝気装置などによって構成される。
(Second embodiment)
FIG. 2 shows a processing apparatus according to a second embodiment of the invention. The processing apparatus 10 shown in FIG. 2 includes a plurality of reaction vessels 20 arranged in series, and is configured as a multi-stage complete mixing continuous reaction apparatus as a whole. In the figure, two reaction tanks 20 are provided in series, the inlet of the upstream reaction tank 20 is connected to an inlet pipe 21 for supplying water to be treated, and the outlet of the downstream reaction tank 20 is An outlet pipe 25 for discharging treated water is connected. Each reaction vessel 20 is provided with an addition means for injecting a urea decomposition agent, which is an aqueous solution containing sodium bromide and sodium hypochlorite, and is provided with a stirring mechanism (not shown). The stirring mechanism is composed of a stirrer, a submersible pump, an aerator, or the like.

直列に複数の反応槽20を設けた場合、反応槽20ごとにその反応槽20内の水における尿素濃度が異なるので、処理装置10の全体としてみたときに濃度勾配が生じ、反応速度を高めることができる。その観点から、図2に示した例では反応槽20を2つ直列に設けているが、直列に設けられる反応槽20の数を4以上とすることがより好ましい。 When a plurality of reaction tanks 20 are provided in series, the urea concentration in the water in each reaction tank 20 is different for each reaction tank 20, so that a concentration gradient occurs when the treatment apparatus 10 is viewed as a whole, increasing the reaction rate. can be done. From that point of view, although two reaction vessels 20 are provided in series in the example shown in FIG. 2, it is more preferable to set the number of reaction vessels 20 provided in series to four or more.

本実施形態の処理装置10では、反応槽20ごとに、その反応槽20に対して注入される尿素処理剤の量を変化させることもできる。例えば、直列接続された反応槽20のうちの最上流の反応槽20においては常に尿素分解剤を注入することとし、最上流の反応槽20から排出される水での尿素濃度を測定して、この尿素濃度が規定値を超える場合に、次段の反応槽20においても尿素分解剤を注入し、また状況によっては、最上流の反応槽20における尿素分解剤の注入率を増やし、最上流の反応槽20から排出される水における尿素濃度が規定値以下となったら、次段の反応槽20での尿素分解剤の注入を中止することができる。3段あるいはそれ以上に反応槽20を配置する場合には、各反応槽20から排出される水における尿素濃度を測定して、前段側の反応槽20での尿素分解剤の注入量を決定し、決定した注入量に応じて前段側の反応槽20の添加手段を自動的に制御することもできる。 In the processing apparatus 10 of the present embodiment, the amount of urea treatment agent to be injected into each reaction tank 20 can be changed for each reaction tank 20 . For example, the urea decomposition agent is always injected into the most upstream reaction tank 20 among the reaction tanks 20 connected in series, and the urea concentration in the water discharged from the most upstream reaction tank 20 is measured. When the urea concentration exceeds the specified value, the urea decomposition agent is also injected into the reaction tank 20 at the next stage, and depending on the situation, the injection rate of the urea decomposition agent is increased in the reaction tank 20 at the most upstream stage, When the urea concentration in the water discharged from the reaction tank 20 becomes equal to or less than the specified value, the injection of the urea decomposing agent in the next reaction tank 20 can be stopped. When the reaction tanks 20 are arranged in three or more stages, the urea concentration in the water discharged from each reaction tank 20 is measured to determine the injection amount of the urea decomposition agent in the front-stage reaction tank 20. It is also possible to automatically control the addition means of the reaction vessel 20 on the front stage side according to the determined injection amount.

(純水製造システム)
本発明に基づく処理装置は、純水製造のための前処理装置として用いることができる。図3は、本発明に基づく処理装置を組み込んだ純水製造システムを示している。図示される純水製造システムは、原水から一次純水を製造するものであって、原水が供給される直列2段に設けられた熱交換器(HEX)31,32と、下流側の熱交換器32から排出される原水が被処理水として供給される処理装置10と、ろ過器33と、活性炭装置(ACF)34と、イオン交換装置35と、逆浸透膜装置(RO)36と、を備えている。処理装置10としては、例えば、図1または図2に示す処理装置10が用いられる。ろ過器33、活性炭装置34及びイオン交換装置35は、この順で、処理装置10の出口に接続されている。イオン交換装置35は、その入口側から、カチオン交換樹脂塔(CER)、脱炭酸塔(DG)及びアニオン交換樹脂塔(AER)を配置したものである。イオン交換装置35から排出される水は、上流側の熱交換器31に供給されて原水を昇温する熱源として用いられ、その後、逆浸透膜装置36に供給される。逆浸透膜装置36からは一次純水が排出される。結局、図3に示す純水製造システムでは、ろ過器33、活性炭装置34、イオン交換装置35及び逆浸透膜装置36からなる純水製造装置に対する前処理装置として、処理装置11が設けられていることになる。もちろん、処理装置10の後段に設けられる純水製造装置の構成は、図3に示したものに限定されるものではない。
(pure water production system)
The treatment device according to the invention can be used as a pretreatment device for pure water production. FIG. 3 shows a pure water production system incorporating a treatment device according to the invention. The illustrated pure water production system produces primary pure water from raw water. A treatment device 10 to which raw water discharged from a vessel 32 is supplied as water to be treated, a filter 33, an activated carbon device (ACF) 34, an ion exchange device 35, and a reverse osmosis membrane device (RO) 36. I have. As the processing device 10, for example, the processing device 10 shown in FIG. 1 or 2 is used. Filter 33 , activated carbon device 34 and ion exchange device 35 are connected in this order to the outlet of treatment device 10 . The ion exchange device 35 has a cation exchange resin tower (CER), a decarboxylation tower (DG) and an anion exchange resin tower (AER) arranged from the inlet side. The water discharged from the ion exchange device 35 is supplied to the upstream heat exchanger 31 and used as a heat source for raising the temperature of the raw water, and then supplied to the reverse osmosis membrane device 36 . Primary pure water is discharged from the reverse osmosis membrane device 36 . After all, in the pure water production system shown in FIG. 3, the treatment device 11 is provided as a pretreatment device for the pure water production device comprising the filter 33, the activated carbon device 34, the ion exchange device 35 and the reverse osmosis membrane device 36. It will be. Of course, the configuration of the pure water production device provided downstream of the processing device 10 is not limited to that shown in FIG.

熱交換器31,32について説明する。後述の実施例からも明らかになるように、次亜臭素酸による尿素の分解反応は、反応温度を高めた方が速く進行する。そのため、熱交換器31,32は、被処理水を加温するために設けられている。上流側の熱交換器31に対しては、イオン交換装置35から排出される水が熱源として供給される。イオン交換装置35から排出される水は、処理装置10からの処理水をろ過器33、活性炭装置34及びイオン交換装置35に通水して得られる水であり、処理装置10の前段で加温されているにことによって温度が高められたものであるが、これだけでは処理装置10に供給される被処理水の温度を所定の温度まで昇温させることは難しい。そこで、下流側の熱交換器32には、より高温の熱源からの熱媒が供給されており、これによって処理装置10に対して被処理水として供給される原水の温度を所定の温度にまで昇温させている。 The heat exchangers 31 and 32 will be explained. As will be apparent from the examples described later, the decomposition reaction of urea with hypobromous acid proceeds faster as the reaction temperature is raised. Therefore, the heat exchangers 31 and 32 are provided to heat the water to be treated. Water discharged from the ion exchange device 35 is supplied as a heat source to the heat exchanger 31 on the upstream side. The water discharged from the ion exchange device 35 is water obtained by passing the treated water from the treatment device 10 through the filter 33, the activated carbon device 34 and the ion exchange device 35, and is heated before the treatment device 10. However, it is difficult to raise the temperature of the water to be treated supplied to the treatment apparatus 10 to a predetermined temperature only by this. Therefore, a heat medium from a heat source having a higher temperature is supplied to the heat exchanger 32 on the downstream side. I am raising the temperature.

図3に示した純水製造システムでは、イオン交換装置35から排出されて逆浸透膜装置36に供給される前の水を熱交換器31に対して熱源として供給しているが、処理装置10の後段に設けられる純水製造装置のどの部分を流れる水を熱交換器31に供給させるかは、純水製造装置の構成などに応じて適宜に定めることができる。例えば、純水製造装置において活性炭装置が設けられる場合には、活性炭装置よりも後段を流れる水を熱交換器31に供給する構成とすれば、活性炭装置に供給される水は加温された状態であるので、生物活性炭の活性を高めることができる。逆に、活性炭装置よりも前段を流れる水を熱交換器31に供給する構成としたときは、活性炭装置の入口での水温が低下しているので、活性炭装置における吸着量を大きくすることができる。純水製造装置内に凝集槽が設けられる場合には、処理装置10から排出される加温された水が凝集槽に供給されるようにすることにより、低水温による凝集不良を抑制することができる。 In the pure water production system shown in FIG. 3, the water discharged from the ion exchange device 35 and before being supplied to the reverse osmosis membrane device 36 is supplied to the heat exchanger 31 as a heat source. In which part of the pure water production apparatus provided in the subsequent stage, the water flowing through the heat exchanger 31 is supplied to the heat exchanger 31 can be appropriately determined according to the configuration of the pure water production apparatus. For example, when an activated carbon device is provided in the pure water production apparatus, if the water flowing downstream of the activated carbon device is supplied to the heat exchanger 31, the water supplied to the activated carbon device is in a heated state. Therefore, the activity of the biological activated carbon can be enhanced. Conversely, when water flowing upstream of the activated carbon device is supplied to the heat exchanger 31, the water temperature at the inlet of the activated carbon device is lowered, so the amount of adsorption in the activated carbon device can be increased. . In the case where a coagulation tank is provided in the pure water production apparatus, by supplying heated water discharged from the treatment apparatus 10 to the coagulation tank, poor coagulation due to low water temperature can be suppressed. can.

原水から純水を製造する純水製造装置では、その入口部分に、原水を一時的に貯留するタンクを配置し、純水製造装置への原水の供給量を平滑化することが一般的である。図3に示す純水製造システムでは、処理装置10内の反応槽20が、原水を一時的に貯留するタンクとしての機能も果たすので、原水を一時的に貯留するタンクを別途に設ける必要がなくなる。 In a water purifier that produces pure water from raw water, it is common to place a tank for temporarily storing raw water at the inlet of the water purifier to smooth the supply of raw water to the water purifier. . In the pure water production system shown in FIG. 3, the reaction tank 20 in the treatment apparatus 10 also functions as a tank for temporarily storing raw water, so there is no need to provide a separate tank for temporarily storing raw water. .

処理装置10の入口において熱交換器により被処理水を加温する構成は、純水製造システムにおける前処理装置としてではなく、処理装置10を単独で使用する場合においても有効である。その場合は、処理装置10において、複数の反応槽20に被処理水を供給する配管に、処理水から回収した熱によって被処理水を加熱するための熱交換器31を設け、さらに熱交換器31の下流側に、より高温側の熱交換器32を設ければよい。 The configuration in which the water to be treated is heated by the heat exchanger at the inlet of the treatment device 10 is also effective when the treatment device 10 is used alone, not as a pretreatment device in a pure water production system. In that case, in the treatment apparatus 10, a heat exchanger 31 for heating the water to be treated by the heat recovered from the treated water is provided in the piping for supplying the water to be treated to the plurality of reaction tanks 20, and the heat exchanger A heat exchanger 32 on the higher temperature side may be provided on the downstream side of 31 .

以下、実施例と比較例により、本発明をさらに詳しく説明する。 The present invention will be described in more detail below with reference to examples and comparative examples.

(実施例1)
図1に示した処理装置10を組み立てた。並列配置される反応槽20の数は3とした。尿素濃度100ppbである水を被処理水とし、入口配管21に対し、被処理水中における臭化ナトリウム濃度が3ppm、次亜塩素酸ナトリウム濃度が3.5ppmとなるように尿素分解剤を被処理水に添加して混合した。このように尿素分解剤が添加された被処理水を1つの反応槽20に供給し、pH 6.0、温度22℃の条件で尿素の分解反応を進行させたところ、2.3時間の経過後に反応槽20中の水の尿素濃度は1ppb未満となっていた。また、3つの反応槽20を用いて被処理水の受け入れ、尿素分解反応の進行、及び処理水の排出をローテーションで実行したところ、連続的に被処理水を受け入れることができ、連続的に処理水を排出することができた。このとき、3つの反応槽20を含む処理装置10の全体での水理学的滞留時間(HRT)は6.9時間となった。
(Example 1)
A processing apparatus 10 as shown in FIG. 1 was assembled. The number of reaction tanks 20 arranged in parallel was three. Water having a urea concentration of 100 ppb is treated water, and a urea decomposing agent is added to the inlet pipe 21 so that the sodium bromide concentration in the treated water is 3 ppm and the sodium hypochlorite concentration is 3.5 ppm. was added to and mixed. The water to be treated to which the urea decomposing agent was added in this manner was supplied to one reaction tank 20, and the urea decomposition reaction was allowed to proceed under the conditions of pH 6.0 and temperature 22°C, and 2.3 hours elapsed. Afterwards, the urea concentration in the water in reactor 20 was less than 1 ppb. In addition, when three reaction tanks 20 were used to rotate the reception of the water to be treated, the progress of the urea decomposition reaction, and the discharge of the treated water, the water to be treated could be continuously received and treated continuously. I was able to get the water out. At this time, the hydraulic retention time (HRT) of the entire treatment apparatus 10 including the three reaction tanks 20 was 6.9 hours.

(実施例2)
図2に示す処理装置10を組み立てた。ただし、直列に設けられる反応槽20の数は4とした。尿素を100ppb含む被処理水を最上流の反応槽20に供給し、各反応槽20には、その反応槽20内の水における臭化ナトリウム濃度が3ppm、次亜塩素酸ナトリウム濃度が3.5ppmとなるように尿素分解剤を添加した。各反応槽20でのpHが6.0、温度が22℃となり、かつ、4つの反応槽20の全体としての水力学的滞留時間が5時間となるように尿素分解を行ったところ、最下流の反応槽20から排出される処理水における尿素濃度は1ppb未満となった。
(Example 2)
A processing apparatus 10 shown in FIG. 2 was assembled. However, the number of reaction tanks 20 provided in series was four. Water to be treated containing 100 ppb of urea is supplied to the most upstream reaction tank 20, and each reaction tank 20 has a sodium bromide concentration of 3 ppm and a sodium hypochlorite concentration of 3.5 ppm in the water in the reaction tank 20. The urea decomposing agent was added so that Urea decomposition was carried out so that the pH in each reaction tank 20 was 6.0, the temperature was 22° C., and the total hydraulic retention time in the four reaction tanks 20 was 5 hours. The urea concentration in the treated water discharged from the reaction tank 20 was less than 1 ppb.

(実施例3)
実施例1と同じ処理装置10を用い、尿素濃度100ppbである水を被処理水とし、入口配管21に対し、被処理水中における臭化ナトリウム濃度が3ppm、次亜塩素酸ナトリウム濃度が2.4ppmとなるように尿素分解剤を被処理水に添加して混合した。このように尿素分解剤が添加された被処理水を25℃まで加温して1つの反応槽20に供給し、その後、pH 6.0の条件で尿素の分解反応を進行させたところ、3時間の経過後に反応槽20中の水の尿素濃度は1ppb未満となっていた。被処理水の加温は、入口配管21に熱交換器を設置し、熱交換器に熱媒を流すことで行った。
(Example 3)
Using the same treatment apparatus 10 as in Example 1, the water having a urea concentration of 100 ppb is used as the water to be treated. The urea decomposing agent was added to and mixed with the water to be treated so that The water to be treated to which the urea decomposing agent was added in this way was heated to 25° C. and supplied to one reaction tank 20, and then the urea decomposition reaction was allowed to proceed under the condition of pH 6.0. After a period of time, the urea concentration in the water in the reactor 20 was less than 1 ppb. The water to be treated was heated by installing a heat exchanger in the inlet pipe 21 and flowing a heat medium through the heat exchanger.

(比較例1)
図4に平面図を示す、8枚の壁で区切られた迂流式の反応槽40を組み立てた。尿素濃度100ppbである水を被処理水とし、被処理水中における臭化ナトリウム濃度が3ppm、次亜塩素酸ナトリウム濃度が3.5ppmとなるように尿素分解剤を被処理水に添加して混合した。このように尿素分解剤が添加された被処理水を反応槽40に通水させ、pH 6.0、温度22℃の条件で尿素の分解反応を実行させた。反応槽40の体積を被処理水の供給流量で除算したものを滞留時間RTとして、RTが5時間であるように被処理水を反応槽40に供給したところ、定常状態に達したときに反応槽40から排出される処理水の尿素濃度は6ppbであった。RTが7時間であるようにした場合には、定常状態に達したときに反応槽40から排出される処理水の尿素濃度は2ppbであった。RTが8時間であるようにした場合には、定常状態に達したときに反応槽40から排出される処理水の尿素濃度は1ppb未満となった。
(Comparative example 1)
An eight-wall baffled reaction vessel 40 was assembled, the plan view of which is shown in FIG. Water with a urea concentration of 100 ppb was used as the water to be treated, and a ureolytic agent was added to and mixed with the water to be treated so that the sodium bromide concentration in the treated water was 3 ppm and the sodium hypochlorite concentration was 3.5 ppm. . The water to be treated to which the urea decomposing agent was added was passed through the reaction tank 40, and the urea decomposition reaction was carried out under the conditions of pH 6.0 and temperature of 22°C. The volume of the reaction tank 40 divided by the supply flow rate of the water to be treated was defined as the residence time RT, and the water to be treated was supplied to the reaction tank 40 so that RT was 5 hours. The urea concentration in the treated water discharged from tank 40 was 6 ppb. When the RT was allowed to be 7 hours, the urea concentration in the treated water discharged from the reactor 40 when steady state was reached was 2 ppb. When the RT was allowed to be 8 hours, the urea concentration in the treated water discharged from the reactor 40 was less than 1 ppb when steady state was reached.

実施例1,2と比較例1とを比較すると、尿素分解反応の条件はいずれもpHが6、温度22℃であって同一であり、尿素分解剤の濃度も同一であるが、処理装置10の全体として処理水における尿素濃度が1ppb未満となるまでのHRT及びRTを比較すると、実施例1ではHRTが6.9時間、実施例2ではHRTが5時間であったのに対し、比較例1ではRTが8.5時間であった。HRTあるいはRTが長いということは、その分、反応槽における滞留時間が長いことを意味する。処理水流量が同じであるとすれば、滞留時間が長いほど反応槽の全体の体積を大きく必要が生じるから、本発明によれば、尿素の分解に用いられる処理装置において、処理装置の全体での反応槽の体積を小さくできることが分かる。 Comparing Examples 1 and 2 with Comparative Example 1, the conditions for the urea decomposition reaction were the same, i.e., pH of 6 and temperature of 22° C., and the concentration of the urea decomposition agent was also the same. Comparing the HRT and RT until the urea concentration in the treated water as a whole is less than 1 ppb, the HRT was 6.9 hours in Example 1 and 5 hours in Example 2, whereas the HRT was 5 hours in Comparative Example 1 had an RT of 8.5 hours. A long HRT or RT means a correspondingly long residence time in the reactor. Assuming that the flow rate of the treated water is the same, the longer the residence time, the larger the total volume of the reaction tank. It can be seen that the volume of the reaction tank can be reduced.

(実施例4)
被処理水を加温せず、温度10℃で尿素の分解反応を行わせたことを除けば実施例3と同様にして、尿素の分解を行った。その結果、12時間の経過後に反応槽20中の水の尿素濃度は1ppb未満となっていた。実施例3に比べて尿素の分解反応に要する時間が長くなっているが、これは、反応温度が低いためであると考えられる。加温することにより、尿素の分解反応を速く進行させることができることが分かった。すなわち、第1及び第2の実施形態の処理装置10において、入口配管21に熱交換器を配置して被処理水を加温することにより、より短い滞留時間としても、したがって反応槽20の体積をより小さくしても、十分に低い尿素濃度となるように尿素を分解できることが分かった。
(Example 4)
Urea was decomposed in the same manner as in Example 3 except that the urea decomposition reaction was carried out at a temperature of 10° C. without heating the water to be treated. As a result, after 12 hours had passed, the urea concentration in the water in the reaction tank 20 was less than 1 ppb. The time required for the urea decomposition reaction is longer than in Example 3, and this is considered to be due to the low reaction temperature. It was found that heating can accelerate the decomposition reaction of urea. That is, in the treatment apparatus 10 of the first and second embodiments, by arranging a heat exchanger in the inlet pipe 21 to heat the water to be treated, even if the residence time is shortened, the volume of the reaction vessel 20 is reduced. It was found that the urea can be degraded to a sufficiently low urea concentration even if the is made smaller.

10 処理装置
20,40 反応槽
21 入口配管
22 ラインミキサー
23,24 弁
25 出口配管
31,32 熱交換器
33 ろ過器
34 活性炭装置
35 イオン交換装置
36 逆浸透膜装置
10 treatment device 20, 40 reaction tank 21 inlet pipe 22 line mixer 23, 24 valve 25 outlet pipe 31, 32 heat exchanger 33 filter 34 activated carbon device 35 ion exchange device 36 reverse osmosis membrane device

Claims (9)

被処理水を受け入れて、前記被処理水に含まれる尿素を分解して処理水を排出する処理装置であって、
尿素分解剤として臭化物塩と次亜塩素酸塩とを前記被処理水に添加する添加手段と、
前記尿素分解剤による尿素の分解反応を進行させる複数の反応槽と、
を備える処理装置。
A treatment apparatus that receives water to be treated, decomposes urea contained in the water to be treated, and discharges treated water,
addition means for adding a bromide salt and a hypochlorite as a ureolytic agent to the water to be treated;
a plurality of reaction tanks for advancing the decomposition reaction of urea by the urea decomposing agent;
A processing device comprising:
前記複数の反応槽が直列に設けられ、前記反応槽ごとに前記添加手段を備える、請求項1に記載の処理装置。 2. The processing apparatus according to claim 1, wherein said plurality of reaction vessels are provided in series, and said adding means is provided for each of said reaction vessels. 前記複数の反応槽が並列に設けられて前記複数の反応槽に共通に設けられた入口配管から前記被処理水が前記複数の反応槽に分配される構成を有し、
少なくとも1つの前記反応槽において前記被処理水を受け入れながら、前記被処理水を受け入れる前記反応槽を除いた少なくとも1つの前記反応槽から前記処理水を排出し、
前記被処理水を受け入れた前記反応槽において前記分解反応が終了したら当該反応槽から前記処理水を排出し、
前記処理水の排出が終了した反応槽を、その後、前記被処理水の受け入れに使用する、請求項1に記載の処理装置。
The plurality of reaction vessels are provided in parallel, and the water to be treated is distributed to the plurality of reaction vessels from an inlet pipe provided in common to the plurality of reaction vessels,
While receiving the water to be treated in at least one of the reaction tanks, discharging the water to be treated from at least one of the reaction tanks other than the reaction tank receiving the water to be treated;
discharging the treated water from the reaction tank when the decomposition reaction is completed in the reaction tank receiving the water to be treated;
2. The treatment apparatus according to claim 1, wherein the reaction tank from which the treated water has been discharged is then used for receiving the water to be treated.
前記入口配管に前記添加手段が備えられるとともに、前記入口配管に、前記被処理水における前記尿素分解剤の濃度を均一とするための機構を備える、請求項3に記載の処理装置。 4. The treatment apparatus according to claim 3, wherein said inlet pipe is provided with said adding means, and said inlet pipe is provided with a mechanism for uniformizing the concentration of said urea decomposing agent in said water to be treated. 前記複数の反応槽のそれぞれに撹拌機構を備える、請求項1乃至3のいずれか1項に記載の処理装置。 4. The processing apparatus according to any one of claims 1 to 3, wherein each of said plurality of reaction vessels is equipped with a stirring mechanism. 前記次亜塩素酸塩は次亜塩素酸ナトリウムであり、前記臭化物塩は臭化ナトリウムである、請求項1乃至5のいずれか1項に記載の処理装置。 6. A treatment apparatus according to any preceding claim, wherein the hypochlorite is sodium hypochlorite and the bromide salt is sodium bromide. 前記複数の反応槽に前記被処理水を供給する配管に、前記処理水から回収した熱によって前記被処理水を加温するための熱交換器を備える、請求項1乃至6のいずれか1項に記載の処理装置。 7. The piping for supplying the water to be treated to the plurality of reaction tanks is provided with a heat exchanger for heating the water to be treated by heat recovered from the water to be treated. The processing device according to . 少なくともイオン交換装置と、前記イオン交換装置を通過した水が供給される逆浸透装置とを備える純水製造システムであって、
請求項1乃至6のいずれか1項に記載の処理装置を前処理装置として備える、純水製造システム。
A pure water production system comprising at least an ion exchange device and a reverse osmosis device supplied with water that has passed through the ion exchange device,
A pure water production system comprising the treatment apparatus according to any one of claims 1 to 6 as a pretreatment apparatus.
少なくともイオン交換装置と、前記イオン交換装置を通過した水が供給される逆浸透装置とを備える純水製造システムであって、
請求項7に記載の処理装置を前処理装置として備え、前記イオン交換装置を通過し、前記逆浸透装置に供給される前の水が、前記被処理水を加温するための熱源として前記熱交換器に供給される、純水製造システム。
A pure water production system comprising at least an ion exchange device and a reverse osmosis device supplied with water that has passed through the ion exchange device,
The treatment apparatus according to claim 7 is provided as a pretreatment apparatus, and the water passing through the ion exchange apparatus and before being supplied to the reverse osmosis apparatus is the heat source for heating the water to be treated. A pure water production system that feeds the exchanger.
JP2021023653A 2021-02-17 2021-02-17 Urea processor and pure water manufacturing system Pending JP2022125843A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021023653A JP2022125843A (en) 2021-02-17 2021-02-17 Urea processor and pure water manufacturing system
TW111101217A TW202233530A (en) 2021-02-17 2022-01-12 Urea treatment device and pure water production system
CN202210140143.7A CN114940536A (en) 2021-02-17 2022-02-16 Urea treatment device and pure water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021023653A JP2022125843A (en) 2021-02-17 2021-02-17 Urea processor and pure water manufacturing system

Publications (1)

Publication Number Publication Date
JP2022125843A true JP2022125843A (en) 2022-08-29

Family

ID=82905751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021023653A Pending JP2022125843A (en) 2021-02-17 2021-02-17 Urea processor and pure water manufacturing system

Country Status (3)

Country Link
JP (1) JP2022125843A (en)
CN (1) CN114940536A (en)
TW (1) TW202233530A (en)

Also Published As

Publication number Publication date
TW202233530A (en) 2022-09-01
CN114940536A (en) 2022-08-26

Similar Documents

Publication Publication Date Title
TW200922884A (en) Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
CN109205960A (en) A kind of highly salt containing organic waste water processing system and method
US20210238071A1 (en) Process to treat waste brine
CN109248565B (en) Saline water recovery system based on bipolar membrane
US20230002261A1 (en) Multi-stage apparatus and process for advanced oxidation treatment of wastewater
CN101254972A (en) Water treatment method and water treatment apparatus
JP2022125843A (en) Urea processor and pure water manufacturing system
CN105084518A (en) High-salinity water pretreatment method and device
CN111704296A (en) Ultraviolet oxidation treatment method for high-salinity organic wastewater
CN103102003B (en) Heterogeneous Fenton reaction continuous device for treating industrial wastewater and treatment technology
CN204958501U (en) High salt pretreatment of water device
TWI552965B (en) Method and device for treating wastewater containing ammonia nitrogen
CN110563223A (en) process method for treating difficultly degraded COD (chemical oxygen demand) in produced water of high-sulfur-content gas field
CN109912007B (en) Degradation method and degradation system for organic wastewater
WO2016199268A1 (en) Water recovery method and device
JP2022125844A (en) Urea treatment device and treatment method
JP2000288561A (en) Water treatment method and apparatus using ozone
CN220703463U (en) Recycling system of acid-base wastewater in semiconductor industry
CN216998016U (en) Multistage bipolar membrane electrodialysis device of high salt waste water of coal chemical industry
CN212713109U (en) Treatment system for fine chemical wastewater
CN214115298U (en) System for preparing boiler make-up water from circulating cooling sewage of power plant
CN211570406U (en) Landfill leachate MBR goes out advanced treatment system of water
CN112321099B (en) Method for treating urea in reclaimed water
CN111886206A (en) Sludge discharge control device, water treatment system, and sludge discharge control method
JP7188942B2 (en) MEMBRANE FILTRATION SYSTEM AND MEMBRANE FILTRATION METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231013