JP2022124163A - vacuum valve - Google Patents

vacuum valve Download PDF

Info

Publication number
JP2022124163A
JP2022124163A JP2021021768A JP2021021768A JP2022124163A JP 2022124163 A JP2022124163 A JP 2022124163A JP 2021021768 A JP2021021768 A JP 2021021768A JP 2021021768 A JP2021021768 A JP 2021021768A JP 2022124163 A JP2022124163 A JP 2022124163A
Authority
JP
Japan
Prior art keywords
insulating container
dielectric constant
vacuum valve
insulating
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021021768A
Other languages
Japanese (ja)
Other versions
JP7566658B2 (en
Inventor
智博 竪山
Tomohiro Tateyama
宏光 平井
Hiromitsu Hirai
直紀 浅利
Naoki Asari
滉太 濱田
Kota Hamada
淳一 近藤
Junichi Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2021021768A priority Critical patent/JP7566658B2/en
Publication of JP2022124163A publication Critical patent/JP2022124163A/en
Application granted granted Critical
Publication of JP7566658B2 publication Critical patent/JP7566658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

To provide a vacuum valve capable of suppressing progress of surface discharge while alleviating electric field concentration (that is, while uniformizing electric field intensity (electric field distribution)).SOLUTION: A vacuum valve comprises: a dielectric insulation container 1 that accommodates a pair of electrodes E1 and E2 separable from and contactable with each other; and discharge progress suppression means that suppresses progress of surface discharge when surface discharge occurs along an outer surface S2 of the insulation container. The discharge progress suppression means sets a dielectric constant of a part of the insulation container (a low-dielectric constant region 1b) to a value different from that of the other part (a high-dielectric constant region 1a).SELECTED DRAWING: Figure 1

Description

この発明の実施形態は、真空バルブに関する。 Embodiments of the invention relate to vacuum valves.

ビルや大型施設に設けられる受配電用の開閉装置として、例えば、遮断器や断路器などの開閉器を具備したスイッチギヤが知られている。スイッチギヤには、開閉器の構成要素として真空バルブが適用されている。真空バルブの内部は、絶縁容器(真空容器)によって一定の絶縁状態に維持され、この絶縁容器の内部に一対の電極が離接可能に収容されている。この場合、一対の電極を離接操作することで、事故電流の遮断や負荷電流の開閉が行われ、スイッチギヤから電力が安定して供給される。 2. Description of the Related Art A switchgear equipped with a switch such as a circuit breaker or a disconnecting switch is known as a switchgear for receiving and distributing power provided in a building or a large facility. A vacuum valve is applied to the switchgear as a component of the switchgear. The inside of the vacuum valve is maintained in a constant insulating state by an insulating container (vacuum container), and a pair of electrodes are detachably accommodated inside this insulating container. In this case, by connecting and disconnecting the pair of electrodes, the fault current is interrupted and the load current is opened and closed, and electric power is stably supplied from the switchgear.

特許第6161354号公報Japanese Patent No. 6161354 特許第6122577号公報Japanese Patent No. 6122577

ところで、真空バルブの用途として、真空バルブの外部が大気中に晒された使用状態が想定される。この状態において、大気を構成する空気は絶縁性能が低いため、大気に直接晒された絶縁容器の外面(例えば、円筒形状の絶縁容器であればその外周面)に沿って絶縁破壊が進行する放電形態、即ち、沿面放電(沿面コロナ放電)が生じ易くなる。 By the way, as a use of the vacuum valve, it is assumed that the outside of the vacuum valve is exposed to the atmosphere. In this state, since the air that constitutes the atmosphere has low insulation performance, the discharge progresses along the outer surface of the insulating container that is directly exposed to the atmosphere (for example, the outer peripheral surface of a cylindrical insulating container). Form, that is, creeping discharge (creeping corona discharge) is likely to occur.

ここで、沿面放電に際し、絶縁容器の外面には、当該外面に沿って「電子なだれ」が発生する場合がある。「電子なだれ」とは、絶縁容器の外面に形成された電場において、自由電子が気体分子に衝突すると新たな電子が叩き出され、これが電場で加速されて更に別の気体分子と衝突することで、加速度的に電子数が増えていく現象を指す。 Here, when creeping discharge occurs, an "electron avalanche" may occur along the outer surface of the insulating container. "Electron avalanche" is an electric field formed on the outer surface of an insulating container. When free electrons collide with gas molecules, new electrons are ejected, which are accelerated by the electric field and collide with other gas molecules. , refers to the phenomenon in which the number of electrons increases at an accelerating rate.

このような「電子なだれ」が発生すると、沿面放電が進展し、絶縁破壊が更に進行してしまう。沿面放電の進展を抑制するためには、真空バルブの外部の絶縁性能を向上させることが有効である。真空バルブの外部の絶縁性能を向上させる方法として、従来では、絶縁容器の外面に襞状成形体を設けて絶縁容器の外面における沿面距離を伸ばす方法や、絶縁容器の外面に高誘電率絶縁層を設けて絶縁容器の封着部(例えば、トリプルジャンクション部を有する絶縁容器の開口部)における電界を緩和させる方法などが知られている。 When such an "electron avalanche" occurs, creeping discharge progresses and dielectric breakdown further progresses. In order to suppress the development of creeping discharge, it is effective to improve the insulation performance of the outside of the vacuum valve. As a method for improving the insulation performance of the outside of the vacuum valve, conventionally, there is a method of providing a pleated molded body on the outer surface of the insulating container to extend the creepage distance on the outer surface of the insulating container, or a method of forming a high dielectric constant insulating layer on the outer surface of the insulating container. is provided to relax the electric field at the sealed portion of the insulating container (for example, the opening of the insulating container having a triple junction).

しかしながら、真空バルブの小型化に伴って沿面距離を伸ばすことが困難になっていると共に、封着部以外で沿面放電が発生した場合に充分な電界緩和効果が得られないといった課題があると共に、高誘電率絶縁層を設けたことで逆に沿面放電を進展させてしまうといった課題もある。このため、真空バルブの外部における絶縁性能の向上には限界があった。 However, along with the miniaturization of the vacuum valve, it has become difficult to extend the creepage distance. There is also a problem that the provision of the high-dielectric-constant insulating layer conversely promotes creeping discharge. For this reason, there is a limit to improvement in insulation performance outside the vacuum valve.

そこで、このような課題を解決するために、絶縁容器の全体に亘って電界集中を緩和(即ち、電界強度(電界分布)を均一化)させつつ同時に、絶縁容器の外面における沿面放電の進展を抑制する技術を適用した真空バルブが求められている。 Therefore, in order to solve such a problem, the electric field concentration is alleviated over the entire insulating container (that is, the electric field strength (electric field distribution) is made uniform), and at the same time, the creeping discharge progresses on the outer surface of the insulating container. There is a demand for a vacuum valve to which a suppressing technique is applied.

本発明の目的は、電界集中を緩和(即ち、電界強度(電界分布)を均一化)させつつ同時に、沿面放電の進展を抑制することが可能な真空バルブを提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a vacuum valve capable of alleviating electric field concentration (that is, making the electric field strength (electric field distribution) uniform) and at the same time suppressing the progress of creeping discharge.

実施形態によれば、離接可能な一対の電極を収容し、誘電性を有する絶縁容器と、絶縁容器の外面に沿って沿面放電が生じた際に、沿面放電の進展を抑制する放電進展抑制手段と、を具備し、放電進展抑制手段は、絶縁容器の一部を他の部分とは異なる誘電率に設定する。 According to the embodiment, when a creeping discharge occurs along the outer surface of the insulating container containing a pair of separable electrodes and having a dielectric property, the discharge progress suppression suppresses the progress of the creeping discharge. and the discharge progression suppressing means sets a part of the insulating container to a dielectric constant different from that of the other part.

一実施形態に係る真空バルブの内部構成を示す断面図。Sectional drawing which shows the internal structure of the vacuum valve which concerns on one Embodiment. 図1の絶縁容器における誘電率分布を示す模式図。FIG. 2 is a schematic diagram showing a dielectric constant distribution in the insulating container of FIG. 1; (a)は、既存の絶縁容器の等電位分布を示す模式図、(b)は、図1の絶縁容器の等電位分布を示す模式図。(a) is a schematic diagram showing the equipotential distribution of the existing insulating container, and (b) is a schematic diagram showing the equipotential distribution of the insulating container of FIG. 他の実施形態に係る絶縁容器における誘電率分布を示す模式図。FIG. 4 is a schematic diagram showing a dielectric constant distribution in an insulating container according to another embodiment; 他の実施形態に係る絶縁容器における誘電率分布を示す模式図。FIG. 4 is a schematic diagram showing a dielectric constant distribution in an insulating container according to another embodiment;

「一実施形態」
図1は、本実施形態に係る真空バルブPの配置構成図である。本実施形態では、真空バルブPの用途として、真空バルブPの外部(例えば、後述する円筒形状の絶縁容器1の外面(外周面)S2)が大気(空気)中に晒された使用状態を想定している。
"one embodiment"
FIG. 1 is an arrangement configuration diagram of a vacuum valve P according to this embodiment. In this embodiment, as the application of the vacuum valve P, it is assumed that the outside of the vacuum valve P (for example, the outer surface (peripheral surface) S2 of the cylindrical insulating container 1 described later) is exposed to the atmosphere (air). is doing.

図1の例において、真空バルブPは、固定電極E1と、可動電極E2と、絶縁容器1(真空容器とも言う)と、固定側封着部材2と、可動側封着部材3と、気密維持機構4と、アークシールド5と、を有している。 In the example of FIG. 1, the vacuum valve P includes a fixed electrode E1, a movable electrode E2, an insulating container 1 (also referred to as a vacuum container), a fixed side sealing member 2, a movable side sealing member 3, and an airtight maintenance electrode. It has a mechanism 4 and an arc shield 5 .

図1に示すように、固定電極E1、可動電極E2、気密維持機構4、アークシールド5は、絶縁容器1に収容されている。なお、絶縁容器1は、後述するような絶縁性を有する材料で構成されている。固定側封着部材2及び可動側封着部材3は、例えば、ステンレス鋼を主成分とする金属材料で構成されている。 As shown in FIG. 1, the fixed electrode E1, the movable electrode E2, the airtight maintenance mechanism 4, and the arc shield 5 are accommodated in the insulating container 1. As shown in FIG. The insulating container 1 is made of a material having insulating properties as described later. The fixed-side sealing member 2 and the movable-side sealing member 3 are made of, for example, a metal material whose main component is stainless steel.

絶縁容器1は、真空バルブPの中心を規定する仮想軸線Pxを中心とした円筒形状を成している。円筒形状の絶縁容器1は、仮想軸線Px方向で見て、その両端が開口されている。双方の開口(固定側開口K1、可動側開口K2)は、固定側封着部材2、及び、可動側封着部材3によって覆われている。具体的には、固定側封着部材2は、固定側封着金具6を介して、絶縁容器1の一方の固定側開口K1を閉塞している。可動側封着部材3は、可動側封着金具7を介して、絶縁容器1の他方の可動側開口K2を閉塞している。 The insulating container 1 has a cylindrical shape centered on an imaginary axis Px defining the center of the vacuum valve P. As shown in FIG. The cylindrical insulating container 1 is open at both ends when viewed in the direction of the imaginary axis Px. Both openings (the fixed side opening K1 and the movable side opening K2) are covered with the fixed side sealing member 2 and the movable side sealing member 3 . Specifically, the fixed-side sealing member 2 closes one fixed-side opening K<b>1 of the insulating container 1 via the fixed-side sealing fitting 6 . The movable-side sealing member 3 closes the other movable-side opening K2 of the insulating container 1 via the movable-side sealing fitting 7 .

アークシールド5は、例えば、銅やステンレス鋼などを主成分とする金属材料で構成されている。アークシールド5は、中空円筒形状を成し、絶縁容器1の内面S1に固定されている。アークシールド5は、その内部(内側)に、後述する固定電極E1の固定接点8、並びに、可動電極E2の可動接点10を収容するように配置されている。 The arc shield 5 is made of, for example, a metallic material containing copper, stainless steel, or the like as a main component. The arc shield 5 has a hollow cylindrical shape and is fixed to the inner surface S<b>1 of the insulating container 1 . The arc shield 5 is arranged inside (inside) so as to accommodate a fixed contact 8 of the fixed electrode E1 and a movable contact 10 of the movable electrode E2, which will be described later.

固定電極E1及び可動電極E2は、仮想軸線Pxに沿って整列して延在されている。固定電極E1は、固定接点8と、固定通電軸9と、を備えている。可動電極E2は、可動接点10と、可動通電軸11と、を備えている。 The fixed electrode E1 and the movable electrode E2 are aligned and extended along the imaginary axis Px. The fixed electrode E<b>1 includes a fixed contact 8 and a fixed conducting shaft 9 . The movable electrode E<b>2 includes a movable contact 10 and a movable current-carrying shaft 11 .

固定接点8と可動接点10とは互いに対向して配置されている。固定接点8は、固定通電軸9の一端に接続され、固定通電軸9の他端は、固定側封着部材2を介して、仮想軸線Pxに沿って移動不能に真空バルブPに固定されている。可動接点10は、可動通電軸11の一端に接続され、可動通電軸11の他端は、可動側封着部材3を介して、図示しない操作機構に連結されている。 The fixed contact 8 and the movable contact 10 are arranged facing each other. The fixed contact 8 is connected to one end of a fixed current-carrying shaft 9, and the other end of the fixed current-carrying shaft 9 is immovably fixed to the vacuum valve P via the fixed-side sealing member 2 along the virtual axis Px. there is The movable contact 10 is connected to one end of a movable current-carrying shaft 11 , and the other end of the movable current-carrying shaft 11 is connected to an operation mechanism (not shown) via a movable-side sealing member 3 .

ここで、操作機構によって可動通電軸11を仮想軸線Pxに沿って移動させる。これにより、可動接点10を固定接点8に対して離接させることができる。この結果、真空バルブPを開閉操作(即ち、一対の電極E1,E2を離接操作)することができる。 Here, the movable current-carrying shaft 11 is moved along the imaginary axis Px by the operating mechanism. Thereby, the movable contact 10 can be separated from and contacted with the fixed contact 8 . As a result, the vacuum valve P can be opened and closed (that is, the pair of electrodes E1 and E2 can be opened and closed).

更に、可動通電軸11と可動側封着部材3との間には、気密維持機構4が配置されている。気密維持機構4は、伸縮性を有するベローズで構成され、当該ベローズ(気密維持機構)4は、例えば、ステンレスなどの薄い金属で構成されている。ベローズ4は、仮想軸線Px方向に伸縮可能な蛇腹状を成し、可動通電軸11の外側を隙間無く覆っている。 Further, an airtightness maintaining mechanism 4 is arranged between the movable current-carrying shaft 11 and the movable-side sealing member 3 . The airtightness maintaining mechanism 4 is made of elastic bellows, and the bellows (airtightness keeping mechanism) 4 is made of thin metal such as stainless steel. The bellows 4 has a bellows shape that can be expanded and contracted in the direction of the virtual axis Px, and covers the outside of the movable current-carrying shaft 11 without gaps.

ベローズ4は、その一端が可動側封着部材3に隙間無く接合され、その他端が可動通電軸11に隙間無く接合されている。これにより、絶縁容器1の内部は、常に気密状態(即ち、真空状態)に維持される。この結果、真空バルブPの開閉操作に際し、可動通電軸11を仮想軸線Pxに沿って移動させている間も、絶縁容器1の内部に大気(空気)が浸入することはない。 One end of the bellows 4 is joined to the movable side sealing member 3 with no gap, and the other end is joined to the movable current-carrying shaft 11 without any gap. Thereby, the inside of the insulating container 1 is always maintained in an airtight state (that is, in a vacuum state). As a result, when the vacuum valve P is opened and closed, the atmosphere (air) does not enter the insulating container 1 even while the movable current-carrying shaft 11 is being moved along the imaginary axis Px.

ところで、大気(空気)に直接晒された絶縁容器1には、その外面S2に沿って絶縁破壊が進行する放電形態(即ち、沿面放電)が生じる場合がある。沿面放電に際しては、絶縁容器1の外面S2に沿って「電子なだれ」が発生する。この場合、例えば、アルミナセラミックスなどの誘電率の高い絶縁材料で構成された既存の絶縁容器1では、沿面放電が進展してしまう。 By the way, in the insulating container 1 directly exposed to the atmosphere (air), there is a case where a form of discharge (that is, creeping discharge) occurs in which dielectric breakdown progresses along the outer surface S2. During creeping discharge, an “electron avalanche” is generated along the outer surface S2 of the insulating container 1 . In this case, creeping discharge develops in the existing insulating container 1 made of an insulating material having a high dielectric constant, such as alumina ceramics.

そこで、本実施形態に係る真空バルブPは、絶縁容器1の外面S2に沿って沿面放電が生じた際に、当該沿面放電の進展を抑制する放電進展抑制手段を有している。放電進展抑制手段は、絶縁容器1の一部を他の部分とは異なる誘電率に設定する。具体的には、放電進展抑制手段は、絶縁容器1の一部の誘電率と、他の部分の誘電率との間に高低差を与える。 Therefore, the vacuum valve P according to the present embodiment has discharge progress suppression means for suppressing the progress of the creeping discharge when the creeping discharge occurs along the outer surface S2 of the insulating container 1 . The discharge progress suppressing means sets a part of the insulating container 1 to a dielectric constant different from that of the other part. Specifically, the discharge progression suppressing means provides a height difference between the dielectric constant of a part of the insulating container 1 and the dielectric constant of the other part.

誘電率の高低差を付与する方法の一例として、絶縁容器1の一部には、誘電率の低い絶縁材料(以下、低誘電率材料という)が適用され、絶縁容器1の他の部分には、誘電率の高い絶縁材料(以下、高誘電率材料という)が適用されている。絶縁容器1のうち低誘電率材料が適用された部分は、そこに蓄えられる静電エネルギー量が小さくなって絶縁性能が向上するため、沿面放電の進展を抑制する効果を高めることができる。なお、低誘電率材料、並びに、高誘電率材料については、例えば、真空バルブP(絶縁容器1)の使用目的や使用環境に応じて設定されるため、ここでは特に限定しない。 As an example of a method of providing a difference in dielectric constant, an insulating material with a low dielectric constant (hereinafter referred to as a low dielectric constant material) is applied to a part of the insulating container 1, and the other part of the insulating container 1 is made of , an insulating material with a high dielectric constant (hereinafter referred to as a high dielectric constant material) is applied. A portion of the insulating container 1 to which the low-dielectric-constant material is applied reduces the amount of electrostatic energy stored there and improves the insulation performance, so that the effect of suppressing the progress of creeping discharge can be enhanced. Note that the low dielectric constant material and the high dielectric constant material are set according to, for example, the purpose of use and the environment of use of the vacuum valve P (insulating container 1), and are not particularly limited here.

更に、沿面放電の進展方向の一例として、固定側開口K1から可動側開口K2(或いは、可動側開口K2から固定側開口K1)に向かう方向を想定すると、放電進展抑制手段は、絶縁容器1の外面S2に沿って進展する沿面放電の進展方向を横断する方向(即ち、円筒形状絶縁容器であればその周方向)に連続して設けられている。これにより、絶縁容器1の外面S2に沿って進展する「電子なだれ」を堰き止めるように抑制することができる。 Furthermore, assuming a direction from the fixed-side opening K1 to the movable-side opening K2 (or from the movable-side opening K2 to the fixed-side opening K1) as an example of the progress direction of creeping discharge, the discharge progress suppressing means It is provided continuously in a direction transverse to the direction in which creeping discharge develops along the outer surface S2 (that is, in the circumferential direction in the case of a cylindrical insulating container). As a result, the “electron avalanche” that develops along the outer surface S<b>2 of the insulating container 1 can be dammed up and suppressed.

図1の例において、絶縁容器1の一部(即ち、中央)に低誘電率領域1bが設けられ、絶縁容器1の他の部分(即ち、中央の両側)に高誘電率領域1aが設けられている。高誘電率領域1a及び低誘電率領域1bは、上記した仮想軸線Pxを中心とした同心円状に構成されている。 In the example of FIG. 1, a low dielectric constant region 1b is provided in a portion (ie, center) of the insulating container 1, and a high dielectric constant region 1a is provided in other portions (ie, both sides of the center) of the insulating container 1. ing. The high dielectric constant region 1a and the low dielectric constant region 1b are formed concentrically around the virtual axis line Px.

低誘電率領域1bは、その内部にアークシールド5の全体を収容する中空円筒形状を成している。高誘電率領域1aは、低誘電率領域1bの両側に隣接して設けられている。一方側の高誘電率領域1aは、低誘電率領域1bの一端から固定側開口K1に亘って延在する中空円筒形状を成している。他方側の高誘電率領域1aは、低誘電率領域1bの他端(一端の反対側)から可動側開口K2に亘って延在する中空円筒形状を成している。 The low dielectric constant region 1b has a hollow cylindrical shape that accommodates the entire arc shield 5 therein. The high dielectric constant region 1a is provided adjacent to both sides of the low dielectric constant region 1b. The high dielectric constant region 1a on one side has a hollow cylindrical shape extending from one end of the low dielectric constant region 1b to the fixed side opening K1. The high dielectric constant region 1a on the other side has a hollow cylindrical shape extending from the other end (opposite side of the one end) of the low dielectric constant region 1b to the movable side opening K2.

ここで、絶縁容器1の製造方法としては、例えば、低誘電率材料と高誘電率材料を組み合わせて絶縁容器1の全体を一体成形する方法や、低誘電率材料と高誘電率材料を絶縁容器1の内面S1又は外面S2、或いは、内面S1及び外面S2の双方(以下、両面S1,S2という)に設ける方法などを適用することができる。 Here, as a method of manufacturing the insulating container 1, for example, a method of integrally molding the entire insulating container 1 by combining a low dielectric constant material and a high dielectric constant material, or a method of combining a low dielectric constant material and a high dielectric constant material into an insulating container. 1, or a method of providing on both the inner surface S1 and the outer surface S2 (hereinafter referred to as both surfaces S1 and S2).

まず、低誘電率材料と高誘電率材料を組み合わせて絶縁容器1の全体を一体成形する方法では、例えば、粉末状の低誘電率材料及び高誘電率材料を用意して、絶縁容器1の中央となる部分に低誘電率材料を配置すると共に、その中央の両側となる部分に高誘電率材料を配置しつつ、これを所定の厚さまで積層させて焼成する。これにより、低誘電率領域1bの両側に高誘電率領域1aが隣接した絶縁容器1を一体成形することができる。 First, in the method of integrally molding the entire insulating container 1 by combining a low dielectric constant material and a high dielectric constant material, for example, powdery low dielectric constant material and high dielectric constant material are prepared, and the center of the insulating container 1 is While arranging the low dielectric constant material on the part to be the center and arranging the high dielectric constant material on both sides of the central part, these are laminated to a predetermined thickness and fired. Thereby, the insulating container 1 in which the high dielectric constant regions 1a are adjacent to both sides of the low dielectric constant region 1b can be integrally molded.

次に、低誘電率材料と高誘電率材料を絶縁容器1の内面S1又は外面S2或いは両面S1,S2に設ける方法では、例えば、所定の絶縁材料で一体成形された既存の絶縁容器1を用意して、当該絶縁容器1の中央の内面S1又は外面S2或いは両面S1,S2に低誘電率材料を被覆(塗布)すると共に、当該絶縁容器1の中央の両側の内面S1又は外面S2或いは両面S1,S2に高低誘電率材料を被覆(塗布)する。これにより、既存の絶縁容器1をそのまま用いて、低誘電率領域1bの両側に高誘電率領域1aが隣接した新たな絶縁容器1を実現することができる。 Next, in the method of providing the low-dielectric-constant material and the high-dielectric-constant material on the inner surface S1 or the outer surface S2 of the insulating container 1, or on both surfaces S1 and S2, for example, an existing insulating container 1 integrally molded with a predetermined insulating material is prepared. Then, the central inner surface S1 or outer surface S2 or both surfaces S1 and S2 of the insulating container 1 are coated (applied) with a low dielectric constant material, and the central inner surface S1 or outer surface S2 or both surfaces S1 of the insulating container 1 are coated (applied). , S2 are coated (applied) with a high-low dielectric constant material. As a result, the existing insulating container 1 can be used as it is, and a new insulating container 1 in which the high dielectric constant regions 1a are adjacent to both sides of the low dielectric constant region 1b can be realized.

図2は、上記した製造方法で製造された絶縁容器1の誘電率分布図である。図2に示すように、絶縁容器1の誘電率は、その中央の低誘電率領域1bで最も低く、中央の両側の高誘電率領域1aで最も高くなっている。これにより、他の部分よりも絶縁性能の高められた低誘電率領域1bが、絶縁容器1の中央において、絶縁容器1の外面S2に沿って進展する沿面放電の進展方向を横断する周方向に連続して設けられていることが分かる。 FIG. 2 is a dielectric constant distribution diagram of the insulating container 1 manufactured by the manufacturing method described above. As shown in FIG. 2, the dielectric constant of the insulating container 1 is lowest in the central low dielectric constant region 1b and highest in the high dielectric constant regions 1a on both sides of the center. As a result, the low dielectric constant region 1b, which has higher insulation performance than other portions, is formed in the center of the insulating container 1 in the circumferential direction crossing the progress direction of the creeping discharge that develops along the outer surface S2 of the insulating container 1. It can be seen that they are set continuously.

図3(a)は、既存の絶縁容器(図示しない)の等電位分布図であり、図3(b)は、本実施形態の絶縁容器1の等電位分布図である。両者を比較すると、既存の絶縁容器の等電位分布(図3(a))は、その両端側(固定側開口K1、可動側開口K2)で密になっているのに対し、本実施形態の絶縁容器1の等電位分布(図3(b))は、その両端側(固定側開口K1、可動側開口K2)で疎になっていることが分かる。即ち、本実施形態の等電位分布(図3(b))は、絶縁容器1の全体に亘って、ほぼ均一化され、これにより、絶縁容器1の全体に亘って電界集中が緩和されていることが分かる。 FIG. 3(a) is an equipotential distribution map of an existing insulating container (not shown), and FIG. 3(b) is an equipotential distribution map of the insulating container 1 of this embodiment. Comparing the two, the equipotential distribution of the existing insulating container (FIG. 3(a)) is dense at both ends (the fixed side opening K1 and the movable side opening K2). It can be seen that the equipotential distribution of the insulating container 1 (FIG. 3(b)) is sparse at both ends (the fixed side opening K1 and the movable side opening K2). That is, the equipotential distribution (FIG. 3(b)) of the present embodiment is substantially uniform over the entire insulating container 1, thereby relaxing the electric field concentration over the entire insulating container 1. I understand.

以上、本実施形態によれば、絶縁容器1の一部に低誘電率領域1bが設けられ、絶縁容器1の他の部分に高誘電率領域1aが設けられている。この場合、低誘電率領域1bは、絶縁容器1の外面S2に沿って進展する沿面放電の進展方向を横断する方向に連続して設けられる。低誘電率領域1bでは、そこに蓄えられる静電エネルギー量が小さくなって絶縁性能が向上し、沿面放電の進展を抑制する効果が高められる。これにより、絶縁容器1の外面S2に沿って進展する「電子なだれ」を、当該低誘電率領域1bによって堰き止めるように抑制することができる。この結果、絶縁容器1の全体に亘って電界集中を緩和(即ち、電界強度(電界分布)を均一化)させつつ同時に、絶縁容器1の外面S2における沿面放電の進展を抑制することができる。 As described above, according to the present embodiment, the insulating container 1 is partially provided with the low dielectric constant region 1b, and the other portion of the insulating container 1 is provided with the high dielectric constant region 1a. In this case, the low dielectric constant region 1b is provided continuously in a direction transverse to the progress direction of the creeping discharge that develops along the outer surface S2 of the insulating container 1. As shown in FIG. In the low dielectric constant region 1b, the amount of electrostatic energy stored there is reduced, the insulation performance is improved, and the effect of suppressing the progress of creeping discharge is enhanced. As a result, the "electron avalanche" that develops along the outer surface S2 of the insulating container 1 can be suppressed so as to be blocked by the low dielectric constant region 1b. As a result, the electric field concentration can be alleviated (that is, the electric field strength (electric field distribution) can be made uniform) over the entire insulating container 1, and at the same time, the creeping discharge on the outer surface S2 of the insulating container 1 can be suppressed.

更に、本実施形態によれば、従来のように絶縁容器1の外面S2における沿面距離を伸ばす必要がないので、絶縁容器1(即ち、真空バルブP)の小型化を図りつつ同時に、絶縁容器1の外面S2における沿面放電の進展を抑制することができる。 Furthermore, according to the present embodiment, unlike the prior art, it is not necessary to extend the creepage distance on the outer surface S2 of the insulating container 1. Therefore, the insulating container 1 (that is, the vacuum valve P) can be downsized and at the same time development of creeping discharge on the outer surface S2 of the can be suppressed.

「他の実施形態」
上記した実施形態では、絶縁容器1の一部(即ち、中央)に低誘電率領域1bを設け、他の部分(即ち、中央の両側)に高誘電率領域1aを設ける場合を想定したが、これに代えて、特に図示しないが、中央に高誘電率領域1aを設け、その両側に低誘電率領域1bを設けてもよい。
"other embodiments"
In the above-described embodiment, it is assumed that the insulating container 1 is provided with the low dielectric constant region 1b in one portion (ie, the center) and provided with the high dielectric constant region 1a in the other portion (ie, both sides of the center). Alternatively, although not shown, the high dielectric constant region 1a may be provided in the center and the low dielectric constant regions 1b may be provided on both sides thereof.

上記した実施形態では、絶縁容器1の一部(即ち、中央の1箇所)を他の部分とは異なる誘電率に設定する場合を想定したが、これに代えて、特に図示しないが、複数箇所を他の部分とは異なる誘電率に設定してもよい。例えば、絶縁容器1の中央と両端の3か所に低誘電率領域1bを設けると共に、低誘電率領域1bの相互間に高誘電率領域1aを介在させる。或いは、絶縁容器1の中央と両端の3か所に高誘電率領域1aを設けると共に、高誘電率領域1aの相互間に低誘電率領域1bを介在させる。 In the above-described embodiment, it is assumed that a part of the insulating container 1 (that is, one central part) is set to have a dielectric constant different from that of the other parts. may be set to a dielectric constant different from that of other portions. For example, low dielectric constant regions 1b are provided at the center and both ends of the insulating container 1, and high dielectric constant regions 1a are interposed between the low dielectric constant regions 1b. Alternatively, high dielectric constant regions 1a are provided at the center and both ends of the insulating container 1, and low dielectric constant regions 1b are interposed between the high dielectric constant regions 1a.

上記した実施形態では、絶縁容器1の一部(即ち、中央)の誘電率と、他の部分(即ち、中央の両側)の誘電率との間に単数段階的に高低差を与える場合を想定したが、これに代えて、例えば図4に示すように、絶縁容器1の一部(即ち、中央)の誘電率と、他の部分(即ち、中央の両側)の誘電率との間に複数段階的に高低差を与えてもよい。これにより、絶縁容器1の等電位分布をより均一化させることができる。この結果、絶縁容器1の全体に亘って電界集中をより緩和(即ち、電界強度(電界分布)をより均一化)させることができる。 In the above-described embodiment, it is assumed that the dielectric constant of a portion (ie, the center) of the insulating container 1 and the dielectric constant of the other portions (ie, both sides of the center) are provided with a single stepped height difference. However, instead of this, for example, as shown in FIG. A height difference may be given step by step. Thereby, the equipotential distribution of the insulating container 1 can be made more uniform. As a result, the electric field concentration can be more relaxed (that is, the electric field strength (electric field distribution) can be made more uniform) over the entire insulating container 1 .

上記した実施形態では、絶縁容器1の一部(即ち、中央)の誘電率と、他の部分(即ち、中央の両側)の誘電率との間に段階的に高低差を与える場合を想定したが、これに代えて、例えば図5に示すように、絶縁容器1の一部(即ち、中央)の誘電率と、他の部分(即ち、中央の両側)の誘電率との間に連続的に高低差を与えてもよい。この結果、絶縁容器1の全体に亘って電界集中をより緩和(即ち、電界強度(電界分布)をより均一化)させることができる。 In the above-described embodiment, it is assumed that the dielectric constant of a portion (ie, the center) of the insulating container 1 and the dielectric constant of the other portions (ie, both sides of the center) are provided with a stepwise height difference. Alternatively, however, as shown for example in FIG. 5, there is a continuous may be given a height difference. As a result, the electric field concentration can be more relaxed (that is, the electric field strength (electric field distribution) can be made more uniform) over the entire insulating container 1 .

「変形例」
本変形例に係る真空バルブPの絶縁容器1は、その内面S1又は外面S2或いは両面S1,S2を含めた所定部位に亘って、表面抵抗制御材料、低二次電子放出係数材料、非線形抵抗材料、非線形誘電材料のいずれかを付加して構成されている。以下、各材料について個別に説明する。
"Variation"
The insulating container 1 of the vacuum valve P according to this modification is coated with a surface resistance control material, a low secondary electron emission coefficient material, and a nonlinear resistance material over a predetermined portion including its inner surface S1, outer surface S2, or both surfaces S1 and S2. , a nonlinear dielectric material. Each material will be described individually below.

<表面抵抗制御材料>
上記した実施形態に係る真空バルブPにおいて、その一部を他の部分とは異なる誘電率に設定された絶縁容器1は、内面S1及び外面S2の表面抵抗によって絶縁性能が大きく変化する場合がある。例えば、自由電子が絶縁容器1の表面に衝突した際に、当該絶縁容器1の表面から二次電子が放出されることで、絶縁容器1の表面(内面S1、外面S2)が帯電し易くなり、絶縁性能を一定に維持するのが困難になる。この場合、絶縁容器1の内面S1又は外面S2或いは両面S1,S2の全体に亘って、表面抵抗制御材料を塗布する。これにより、絶縁容器1表面の帯電の発生を抑えつつ、上記した実施形態と同様の効果を確保することができる。なお、表面抵抗制御材料としては、例えば、酸化クロム、炭化ケイ素、窒化チタン、バナジウムなどを適用することができる。
<Surface resistance control material>
In the vacuum valve P according to the above-described embodiment, the insulation performance of the insulating container 1 in which a part thereof is set to have a dielectric constant different from that of the other part may greatly change depending on the surface resistance of the inner surface S1 and the outer surface S2. . For example, when free electrons collide with the surface of the insulating container 1, secondary electrons are emitted from the surface of the insulating container 1, so that the surfaces (the inner surface S1 and the outer surface S2) of the insulating container 1 are easily charged. , it becomes difficult to keep the insulation performance constant. In this case, the surface resistance control material is applied all over the inner surface S1 or the outer surface S2 of the insulating container 1 or both surfaces S1 and S2. As a result, it is possible to ensure the same effect as the above-described embodiment while suppressing the occurrence of electrification on the surface of the insulating container 1 . As the surface resistance control material, for example, chromium oxide, silicon carbide, titanium nitride, vanadium, etc. can be applied.

<低二次電子放出係数材料>
低二次電子放出係数材料は、上記した表面抵抗制御材料としての機能と共に、絶縁容器1の表面からの二次電子の放出を抑制する機能を有している。この場合、上記した表面抵抗制御材料に代えて、絶縁容器1の内面S1又は外面S2或いは両面S1,S2の全体に亘って、低二次電子放出係数材料を塗布する。これにより、絶縁容器1表面の帯電の発生並びに二次電子の放出を抑えつつ、上記した実施形態と同様の効果を確保することができる。なお、低二次電子放出係数材料としては、例えば、バナジウム、クロム、炭素、鉄、炭化ケイ素、銅、モリブデン、窒化チタンなどを適用することができるが、低二次電子放出係数そのものの抵抗が非常に小さい場合が多いため、薄膜処理等によって表面抵抗の急激な低下を防ぐ必要がある。
<Low secondary electron emission coefficient material>
The low secondary electron emission coefficient material has the function of suppressing emission of secondary electrons from the surface of the insulating container 1 as well as the function of the surface resistance control material described above. In this case, a low secondary electron emission coefficient material is applied over the entire inner surface S1, outer surface S2, or both surfaces S1 and S2 of the insulating container 1 instead of the surface resistance control material. As a result, it is possible to secure the same effects as those of the above-described embodiment while suppressing the generation of electrification on the surface of the insulating container 1 and the emission of secondary electrons. As materials with a low secondary electron emission coefficient, for example, vanadium, chromium, carbon, iron, silicon carbide, copper, molybdenum, and titanium nitride can be applied. Since it is often very small, it is necessary to prevent a sudden drop in surface resistance by thin film processing or the like.

<非線形抵抗材料>
上記した表面抵抗制御材料や低二次電子放出係数材料に代えて、非線形抵抗材料を、絶縁容器1の内面S1又は外面S2或いは両面S1,S2の全面に亘って塗布してもよい。非線形抵抗材料は、高誘電率領域1aでの抵抗値が小さくなり、低誘電率領域1bでの抵抗値が大きくなる特性を有している。これにより、電圧印加時に仮想軸線Px方向に誘電率分布を有する絶縁容器1の表面(内面S1、外面S2)に沿って非線形抵抗特性を発現させ、高電界箇所(例えば、絶縁容器1の開口K1,K2付近)の電界を緩和させることができる。なお、非線形抵抗材料としては、例えば、酸化亜鉛、炭化ケイ素、炭素、四酸化三鉄などを適用することができる。ここで、真空環境下の絶縁容器1の内面S1に非線形抵抗材料を塗布する場合、非線形抵抗材料のバインダとして、エポキシ樹脂などの有機系材料を使用することは好ましくないので、有機物を含まない無機系バインダを使用することが好ましい。
<Nonlinear resistance material>
Instead of the surface resistance control material and the low secondary electron emission coefficient material described above, a nonlinear resistance material may be applied over the inner surface S1, the outer surface S2, or both surfaces S1 and S2 of the insulating container 1. FIG. The non-linear resistance material has a characteristic that the resistance value becomes small in the high dielectric constant region 1a and the resistance value becomes large in the low dielectric constant region 1b. As a result, nonlinear resistance characteristics are developed along the surfaces (inner surface S1, outer surface S2) of the insulating container 1 having a dielectric constant distribution in the direction of the virtual axis Px when a voltage is applied. , K2) can be relaxed. As the nonlinear resistance material, for example, zinc oxide, silicon carbide, carbon, triiron tetroxide, etc. can be applied. Here, when the nonlinear resistance material is applied to the inner surface S1 of the insulating container 1 in a vacuum environment, it is not preferable to use an organic material such as an epoxy resin as a binder for the nonlinear resistance material. It is preferred to use a system binder.

<非線形誘電材料>
上記した非線形抵抗材料に代えて、非線形誘電材料を、絶縁容器1の所定部位に亘って添加(混合)してもよい。非線形誘電材料は、高誘電率領域1aでの誘電率が高くなり、低誘電率領域1bでの誘電率が低くなる特性を有している。この場合、上記した実施形態に係る絶縁容器1の製造方法において、低誘電率材料及び高誘電率材料に対して、非線形誘電材料を添加(混合)する。これにより、商用周波数から雷インパルス電圧などの比較的高い周波数に対する応答性を向上させることができる。この結果、特に、雷サージなどの高電圧ないし高周波サージに際しても、絶縁容器1の全体に亘って電界集中を緩和(即ち、電界強度(電界分布)を均一化)させつつ同時に、絶縁容器1の外面S2における沿面放電の進展を抑制することができる。なお、非線形誘電材料としては、例えば、二酸化チタン、二酸化ケイ素、チタン酸カリウム、チタン酸バリウムなどの無機粒子を適用することができる。ここで、非線形誘電材料が添加(混合)された高誘電率領域1aは、放電進展のし易い状態となり得るので、これを回避すべく、沿面放電が接触しない領域、例えば絶縁容器1の内面S1側のみに非線形誘電材料を添加(混合)することが好ましい。
<Nonlinear dielectric material>
Instead of the nonlinear resistance material described above, a nonlinear dielectric material may be added (mixed) over a predetermined portion of the insulating container 1 . The nonlinear dielectric material has a characteristic that the dielectric constant in the high dielectric constant region 1a is high and the dielectric constant in the low dielectric constant region 1b is low. In this case, in the method of manufacturing the insulating container 1 according to the embodiment described above, the nonlinear dielectric material is added (mixed) to the low dielectric constant material and the high dielectric constant material. As a result, the responsiveness to relatively high frequencies such as commercial frequencies and lightning impulse voltages can be improved. As a result, even in the event of a high voltage or high frequency surge such as a lightning surge in particular, the electric field concentration is alleviated (that is, the electric field strength (electric field distribution) is made uniform) over the entire insulating container 1, and at the same time, It is possible to suppress the development of creeping discharge on the outer surface S2. Inorganic particles such as titanium dioxide, silicon dioxide, potassium titanate, and barium titanate can be used as the nonlinear dielectric material. Here, since the high dielectric constant region 1a to which the non-linear dielectric material is added (mixed) may become a state in which discharge progresses easily, in order to avoid this, a region where the creeping discharge does not contact, for example, the inner surface S1 of the insulating container 1 It is preferred to add (mix) the nonlinear dielectric material only on the side.

以上、本発明の一実施形態及びいくつかの変形例を説明したが、これらの実施形態及び変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態及び変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態及び変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although one embodiment and several modifications of the present invention have been described above, these embodiments and modifications are presented as examples and are not intended to limit the scope of the invention. These embodiments and modifications can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

1…絶縁容器(真空容器)、1a…高誘電率領域、1b…低誘電率領域、2…固定側封着部材、3…可動側封着部材、4…気密維持機構、5…アークシールド、6…固定側封着金具、7…可動側封着金具、8…固定接点、9…固定通電軸、10…可動接点、11…可動通電軸、P…真空バルブ、Px…仮想軸線、E1…固定電極、E2…可動電極、K1…固定側開口、K2…可動側開口、S1…内面、S2…外面。 DESCRIPTION OF SYMBOLS 1... Insulating container (vacuum container), 1a... High dielectric constant area, 1b... Low dielectric constant area, 2... Fixed side sealing member, 3... Movable side sealing member, 4... Airtight maintenance mechanism, 5... Arc shield, 6 Fixed-side sealing fitting 7 Movable-side sealing fitting 8 Fixed contact 9 Fixed current-carrying shaft 10 Movable contact 11 Movable current-carrying shaft P Vacuum valve Px Virtual axis E1 Fixed electrode, E2... Movable electrode, K1... Fixed side opening, K2... Movable side opening, S1... Inner surface, S2... Outer surface.

Claims (9)

離接可能な一対の電極を収容し、誘電性を有する絶縁容器と、
前記絶縁容器の外面に沿って沿面放電が生じた際に、前記沿面放電の進展を抑制する放電進展抑制手段と、を具備し、
前記放電進展抑制手段は、前記絶縁容器の一部を他の部分とは異なる誘電率に設定する真空バルブ。
an insulating container containing a pair of separable electrodes and having dielectric properties;
discharge progress suppression means for suppressing the progress of the creeping discharge when the creeping discharge occurs along the outer surface of the insulating container,
The discharge progression suppressing means is a vacuum valve that sets a part of the insulating container to a dielectric constant different from that of the other part.
前記放電進展抑制手段は、前記絶縁容器の一部の誘電率と、他の部分の誘電率との間に高低差を与える請求項1に記載の真空バルブ。 2. The vacuum valve according to claim 1, wherein said discharge progress suppressing means provides a height difference between a dielectric constant of a part of said insulating container and a dielectric constant of another part. 前記放電進展抑制手段は、前記絶縁容器の一部の誘電率と、他の部分の誘電率との間に段階的或いは連続的に高低差を与える請求項2に記載の真空バルブ。 3. The vacuum valve according to claim 2, wherein said discharge progress suppressing means provides a stepwise or continuous height difference between a dielectric constant of a part of said insulating container and a dielectric constant of another part. 前記放電進展抑制手段は、前記絶縁容器の外面に沿って進展する前記沿面放電の進展方向を横断する方向に連続して設けられている請求項1に記載の真空バルブ。 2. The vacuum valve according to claim 1, wherein said discharge progress suppressing means is provided continuously in a direction transverse to the progress direction of said surface discharge progressing along the outer surface of said insulating container. 前記放電進展抑制手段は、前記絶縁容器の外面又は内面、或いは、前記絶縁容器の外面及び内面の双方に設けられている請求項1に記載の真空バルブ。 2. The vacuum valve according to claim 1, wherein said discharge progress suppressing means is provided on the outer surface or the inner surface of said insulating container, or on both the outer surface and the inner surface of said insulating container. 前記絶縁容器は、その外面が大気中に晒された使用状態に設定されている請求項1に記載の真空バルブ。 2. The vacuum valve according to claim 1, wherein the insulating container is set in a state of use in which the outer surface thereof is exposed to the atmosphere. 前記放電進展抑制手段は、前記絶縁容器の一部及び他の部分に設けられ、互いに異なる誘電率を有する複数の絶縁材料から構成され、
前記絶縁容器は、複数の前記絶縁材料によって一体成形され、
前記絶縁容器の一部に一体成形された前記絶縁材料と、他の部分に一体成形された前記絶縁材料とは、互いに異なる誘電率に設定されている請求項1に記載の真空バルブ。
The discharge progress suppressing means is provided in a part and another part of the insulating container and is composed of a plurality of insulating materials having different dielectric constants,
The insulating container is integrally molded with a plurality of the insulating materials,
2. The vacuum valve according to claim 1, wherein said insulating material integrally molded on a part of said insulating container and said insulating material integrally molded on another part are set to have different dielectric constants.
前記放電進展抑制手段は、前記絶縁容器の一部及び他の部分に設けられ、互いに異なる誘電率を有する複数の絶縁材料から構成され、
前記絶縁容器の一部及び他の部分の外面又は内面、或いは、前記絶縁容器の一部及び他の部分の外面及び内面の双方は、互いに異なる前記絶縁材料によって被覆され、
前記絶縁容器の一部に被覆された前記絶縁材料と、他の部分に被覆された前記絶縁材料とは、互いに異なる誘電率に設定されている請求項5に記載の真空バルブ。
The discharge progress suppressing means is provided in a part and another part of the insulating container and is composed of a plurality of insulating materials having different dielectric constants,
The outer surface or the inner surface of a part of the insulating container and the other part, or both the outer surface and the inner surface of the part of the insulating container and the other part are coated with the insulating material different from each other,
6. The vacuum valve according to claim 5, wherein the insulating material covering a portion of the insulating container and the insulating material covering the other portion are set to have different dielectric constants.
請求項7又は請求項8に記載の前記真空バルブの前記絶縁容器は、その外面或いは内面又は両面を含めた所定部位に亘って、表面抵抗制御材料、低二次電子放出係数材料、非線形抵抗材料、非線形誘電材料のいずれかを付加して構成されている真空バルブ。 The insulating container of the vacuum valve according to claim 7 or claim 8 is coated with a surface resistance control material, a low secondary electron emission coefficient material, or a nonlinear resistance material over a predetermined portion including its outer surface, inner surface, or both surfaces. , a vacuum valve constructed with the addition of one of the nonlinear dielectric materials.
JP2021021768A 2021-02-15 2021-02-15 Vacuum valve Active JP7566658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021021768A JP7566658B2 (en) 2021-02-15 2021-02-15 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021021768A JP7566658B2 (en) 2021-02-15 2021-02-15 Vacuum valve

Publications (2)

Publication Number Publication Date
JP2022124163A true JP2022124163A (en) 2022-08-25
JP7566658B2 JP7566658B2 (en) 2024-10-15

Family

ID=82941575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021021768A Active JP7566658B2 (en) 2021-02-15 2021-02-15 Vacuum valve

Country Status (1)

Country Link
JP (1) JP7566658B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381951B2 (en) 2010-10-04 2014-01-08 三菱電機株式会社 Vacuum valve
JP7143195B2 (en) 2018-11-28 2022-09-28 株式会社東芝 vacuum valve

Also Published As

Publication number Publication date
JP7566658B2 (en) 2024-10-15

Similar Documents

Publication Publication Date Title
US10102989B2 (en) Electric switching device for medium and/or high-voltage uses
EP1675143B1 (en) Gas-insulated switchgear
US10211603B2 (en) Surge protection element
JP2022124163A (en) vacuum valve
WO2016072161A1 (en) Vacuum circuit breaker and direct current circuit breaker
JP4940020B2 (en) Gas insulated switchgear
JP5475559B2 (en) Vacuum switchgear
Heinz et al. Why vacuum technology is not a simple scaling from medium to high voltage?
JP2023127251A (en) vacuum valve
JP7143195B2 (en) vacuum valve
CN109564835B (en) Ceramic insulator for vacuum switch tube
US6495786B1 (en) Vacuum exhaust element of vacuum switch
WO2017036796A1 (en) Improved interrupter
US6506067B2 (en) Disconnector
JP7170499B2 (en) vacuum valve
US11862419B2 (en) Toroidal encapsulation for high voltage vacuum interrupters
JP2002093293A (en) Vacuum valve for disconnecting switch
JP2006080036A (en) Vacuum circuit breaker
JP7374668B2 (en) electrical equipment
JP7109911B2 (en) vacuum valve
JP7403664B2 (en) vacuum valve
JP2006172847A (en) Vacuum switching device
US20240047159A1 (en) Electric Switching Device for Medium- and/or High-Voltage Uses
WO2024018568A1 (en) Charged particle beam device
JP2024126422A (en) Vacuum valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241002

R150 Certificate of patent or registration of utility model

Ref document number: 7566658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150