JP2022122764A - Manufacturing method of titanium-based porous body - Google Patents

Manufacturing method of titanium-based porous body Download PDF

Info

Publication number
JP2022122764A
JP2022122764A JP2021020222A JP2021020222A JP2022122764A JP 2022122764 A JP2022122764 A JP 2022122764A JP 2021020222 A JP2021020222 A JP 2021020222A JP 2021020222 A JP2021020222 A JP 2021020222A JP 2022122764 A JP2022122764 A JP 2022122764A
Authority
JP
Japan
Prior art keywords
titanium
porous body
fibers
mesh
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021020222A
Other languages
Japanese (ja)
Other versions
JP7524098B2 (en
Inventor
貴則 佐藤
Takanori Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2021020222A priority Critical patent/JP7524098B2/en
Publication of JP2022122764A publication Critical patent/JP2022122764A/en
Application granted granted Critical
Publication of JP7524098B2 publication Critical patent/JP7524098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Powder Metallurgy (AREA)

Abstract

To provide a manufacturing method of a titanium-based porous body capable of obtaining a titanium-based porous body having a relatively uniform porosity and relatively high surface smoothness.SOLUTION: A method for producing a titanium-based porous body of the present invention comprises: a raw material deposition step of supplying titanium-based fibers 1 onto a mesh member 21, and causing the titanium-based fibers 1 on the mesh member 21 to drop from the mesh member 21 through only vibration of the mesh member 21 so as to be deposited onto a molding surface 11; and a raw material sintering step of sintering the titanium-based fibers 1 deposited in the raw material deposition step to obtain a titanium-based sintered body, in which an aspect ratio that is a ratio of a fiber length Lf to a fiber thickness Tf of the titanium-based fiber 1 supplied to the mesh member 21 in the raw material deposition step is 10 to 70, and as the mesh member 21 in the raw material deposition step, the mesh member 21 having a ratio of a length of a maximum dimension Lm of an opening of a mesh 22 to the fiber length Lf is 0.9 to 2.4 is used.SELECTED DRAWING: Figure 2

Description

この発明は、チタン系繊維からチタン系多孔質体を製造する方法に関するものである。 The present invention relates to a method for producing a titanium-based porous material from titanium-based fibers.

純チタン製又はチタン合金製のチタン系多孔質体は、たとえば特許文献1又は2に記載された方法により製造されることがある。 A titanium-based porous body made of pure titanium or a titanium alloy may be manufactured by the method described in Patent Document 1 or 2, for example.

特許文献1には、「金属または無機材料の繊維、特に金属繊維を均一に解砕、分散し、型に充填すること」を目的として、「金属繊維を解砕、分散および充填し、シート状多孔質体を作製する方法において、篩上に上記金属繊維を供給し、この金属繊維に断続的に圧力を加えながら篩うことによって上記金属繊維を解砕、分散および充填することを特徴とするシート状多孔質体の製造方法」が提案されている。 In Patent Document 1, for the purpose of "uniformly crushing and dispersing metal or inorganic material fibers, especially metal fibers, and filling them in a mold", "metal fibers are crushed, dispersed, and filled into a sheet form. A method for producing a porous body, characterized in that the metal fibers are supplied onto a sieve, and the metal fibers are pulverized, dispersed, and filled by sieving while intermittently applying pressure to the metal fibers. A method for manufacturing a sheet-like porous body” has been proposed.

特許文献2では、「断面が多角形であり、前記多角形の最長の辺である長稜が200μm以下、最短の辺である短稜の長稜に対する比が0.5以下、全長が1~5mm、アスペクト比が20~200であるチタン繊維を圧縮し、得られた圧縮成形体を焼結することを特徴とするチタン焼結多孔体の製造方法」が開示されている。 In Patent Document 2, "the cross section is a polygon, the long edge that is the longest side of the polygon is 200 μm or less, the ratio of the short edge that is the shortest side to the long edge is 0.5 or less, and the total length is 1 to 1. A method for producing a sintered porous titanium body characterized by compressing titanium fibers having a length of 5 mm and an aspect ratio of 20 to 200, and sintering the obtained compression-molded body.

特開2007-246966号公報JP 2007-246966 A 特開2012-172179号公報JP 2012-172179 A

チタン系多孔質体は、たとえば、水の電気分解のガス拡散層ないし電極や、照明器具等に使用する装飾具として用いられ得る。このような用途では、所要の通気性もしくは通液性又は美観等を実現するため、チタン系多孔質体の均一な空隙率及び、高い表面平滑性が求められる場合がある。 A titanium-based porous material can be used, for example, as a gas diffusion layer or electrode for electrolysis of water, or as a decoration used in lighting fixtures and the like. In such applications, uniform porosity and high surface smoothness of the titanium-based porous material are sometimes required in order to achieve required air permeability, liquid permeability, aesthetic appearance, and the like.

特許文献1に記載された製造方法では、「金属繊維に断続的に圧力を加えながら篩う」こととしているので、その圧力の作用により、「金属繊維」であるチタン系繊維が折れ曲がって変形することがある。この場合、チタン系繊維の当該変形箇所で、焼結後に得られるチタン系多孔質体の空隙率が不均一になり、またチタン系多孔質体の表面に凹凸が生じて平滑性が損なわれる。よって、製造されるチタン系多孔質体の表面性状について、特許文献1に記載の製造方法は改善の余地があった。 In the manufacturing method described in Patent Document 1, "metal fibers are sieved while intermittently applying pressure", so the action of the pressure causes the titanium-based fibers, which are "metal fibers", to bend and deform. Sometimes. In this case, the porosity of the titanium-based porous material obtained after sintering becomes uneven at the deformed portions of the titanium-based fibers, and unevenness occurs on the surface of the titanium-based porous material, which impairs smoothness. Therefore, there is room for improvement in the surface properties of the titanium-based porous material to be produced in the production method described in Patent Document 1.

また、特許文献2に記載の製造方法は、焼結前にチタン系繊維を圧縮することから、その際にチタン系繊維が部分的に押し潰され、チタン系多孔質体の空隙率にばらつきが生じることが懸念される。よって、製造されるチタン系多孔質体の空隙率の制御について、特許文献2に記載の製造方法は改善の余地があった。 Further, in the production method described in Patent Document 2, since the titanium-based fibers are compressed before sintering, the titanium-based fibers are partially crushed at that time, and the porosity of the titanium-based porous body varies. It is feared that it will occur. Therefore, the manufacturing method described in Patent Document 2 has room for improvement in controlling the porosity of the manufactured titanium-based porous body.

この発明の目的は、比較的均一な空隙率を有し、比較的高い表面平滑性を備えたチタン系多孔質体を得ることができるチタン系多孔質体の製造方法を提供することにある。 An object of the present invention is to provide a method for producing a titanium-based porous body that can obtain a titanium-based porous body having relatively uniform porosity and relatively high surface smoothness.

チタン系多孔質体の空隙率を比較的均一にするとともに表面平滑性を高めるには、その製造時に、網状部材上に供給したチタン系繊維を加圧せずに該網状部材を振動させることにより、すなわち網状部材の振動のみにより、チタン系繊維を網状部材から成形面上に落下させて堆積させることが有効であると考えられる。但し、チタン系繊維は、特許文献1にも記載されているように凝集していることがあり、そのような凝集体では網状部材を通過し難い。これに対し、発明者は鋭意検討の結果、チタン系繊維の寸法形状と網状部材の網目の大きさとを調整すると、チタン系繊維を網状部材に向けて加圧しなくとも、チタン系繊維の凝集体が解砕されながら網状部材を通過して成形面上に良好に堆積されることを見出した。 In order to make the porosity of the titanium-based porous material relatively uniform and improve the surface smoothness, the titanium-based fibers supplied onto the mesh-like member are vibrated without pressurization during the production thereof. That is, it is considered effective to cause the titanium-based fibers to fall from the mesh member onto the molding surface only by the vibration of the mesh member and deposit them thereon. However, titanium-based fibers are sometimes agglomerated as described in Patent Document 1, and such agglomerates are difficult to pass through the mesh member. On the other hand, as a result of extensive research, the inventors found that by adjusting the size and shape of the titanium fiber and the size of the mesh of the mesh member, it is possible to form aggregates of the titanium fiber without pressurizing the titanium fiber toward the mesh member. It was found that the powder passed through the mesh member while being crushed and deposited well on the molding surface.

この発明のチタン系多孔質体の製造方法は、チタン系繊維を網状部材上に供給し、該網状部材の振動のみにより、前記網状部材上の当該チタン系繊維を前記網状部材から成形面上に落下させて堆積させる原料堆積工程と、原料堆積工程で堆積させた前記チタン系繊維を焼結させ、チタン系焼結体を得る原料焼結工程とを含み、原料堆積工程で前記網状部材上に供給する前記チタン系繊維の繊維太さに対する繊維長さの比であるアスペクト比が、10~70であり、原料堆積工程で前記網状部材として、前記繊維長さに対する網目の目開きの最長寸法の長さの比が0.9~2.4である網状部材を用いるというものである。 In the method for producing a titanium-based porous body of the present invention, titanium-based fibers are supplied onto a net-like member, and only by vibration of the net-like member, the titanium-based fibers on the net-like member are transferred from the net-like member onto the molding surface. and a raw material sintering step for obtaining a titanium-based sintered body by sintering the titanium-based fibers deposited in the raw material depositing step. The aspect ratio, which is the ratio of the fiber length to the fiber thickness of the titanium-based fiber to be supplied, is 10 to 70, and in the raw material depositing step, the mesh member is used as the mesh member having the longest dimension of the opening of the mesh with respect to the fiber length. A net member having a length ratio of 0.9 to 2.4 is used.

原料堆積工程で前記網状部材上に供給する前記チタン系繊維の前記繊維長さは、1.0mm~6.0mmの範囲内であることが好ましい。 The fiber length of the titanium-based fibers supplied onto the net-like member in the raw material deposition step is preferably in the range of 1.0 mm to 6.0 mm.

前記チタン系多孔質体の空隙率は60%~95%であることが好ましい。 The porosity of the titanium-based porous body is preferably 60% to 95%.

この発明のチタン系多孔質体の製造方法は、原料焼結工程の後、前記チタン系焼結体の表面を酸化させる表面酸化工程をさらに含むことが好ましい。 It is preferable that the method for producing a titanium-based porous body of the present invention further includes a surface oxidation step of oxidizing the surface of the titanium-based sintered body after the raw material sintering step.

前記チタン系多孔質体の厚みは0.1mm~5.0mmの範囲内であることが好ましい。 The thickness of the titanium-based porous body is preferably within the range of 0.1 mm to 5.0 mm.

この発明のチタン系多孔質体の製造方法では、少なくとも一方の表面の表面粗さRzが100μm以下であるチタン系多孔質体を製造できる場合がある。 In some cases, the titanium-based porous body production method of the present invention can produce a titanium-based porous body having a surface roughness Rz of 100 μm or less on at least one surface.

この発明のチタン系多孔質体の製造方法によれば、比較的均一な空隙率を有し、比較的高い表面平滑性を備えたチタン系多孔質体を得ることができる。 According to the method for producing a titanium-based porous body of the present invention, a titanium-based porous body having relatively uniform porosity and relatively high surface smoothness can be obtained.

チタン系繊維が折れ曲がり繊維であるか否かの判断方法を示す模式図である。FIG. 4 is a schematic diagram showing a method for determining whether or not titanium-based fibers are bent fibers. この発明の一の実施形態に係るチタン系多孔質体の製造方法における原料堆積工程を模式的に示す、鉛直方向に沿う断面図である。1 is a cross-sectional view along the vertical direction schematically showing a raw material depositing step in a method for producing a titanium-based porous body according to an embodiment of the present invention; FIG. 図2の原料堆積工程で用いることができる網状部材の一例を示す部分拡大平面図である。3 is a partially enlarged plan view showing an example of a mesh member that can be used in the raw material depositing step of FIG. 2. FIG. 他の例の網状部材の網目を示す平面図である。FIG. 11 is a plan view showing meshes of a mesh member of another example; 実施例で作製したチタン系多孔質体の空隙率の分布を評価する際の区画領域を示す平面図である。FIG. 2 is a plan view showing a sectioned region when evaluating the porosity distribution of the titanium-based porous material produced in Examples.

以下に図面を参照しながら、この発明の実施の形態について詳細に説明する。
この発明の一の実施形態に係るチタン系多孔質体の製造方法には、チタン系繊維を網状部材上に供給し、該網状部材の振動のみにより、前記網状部材上の当該チタン系繊維を前記網状部材から成形面上に落下させて堆積させる原料堆積工程と、原料堆積工程で堆積させた前記チタン系繊維を焼結させ、チタン系焼結体を得る原料焼結工程とが含まれる。
Embodiments of the present invention will be described in detail below with reference to the drawings.
In a method for producing a titanium-based porous material according to one embodiment of the present invention, titanium-based fibers are supplied onto a mesh member, and only by vibration of the mesh-like member, the titanium-based fibers on the mesh-like member are removed as described above. A raw material depositing step of dropping and depositing the material from the mesh member onto the forming surface, and a raw material sintering step of sintering the titanium-based fibers deposited in the raw material depositing step to obtain a titanium-based sintered body are included.

ここで、原料堆積工程で網状部材上に供給するチタン系繊維は、繊維太さに対する繊維長さの比であるアスペクト比が10~70であるものとする。そして、原料堆積工程で用いる網状部材としては、前記繊維長さに対する前記網目の目開きの最長寸法の長さの比が0.9~2.4であるものとする。この場合、チタン系繊維の一部が凝集していたとしても、網状部材上のチタン系繊維をその網状部材に向けて加圧せずに網状部材を振動させるだけで、チタン系繊維が網状部材の網目を通過しやすくなる。それにより網状部材上のチタン系繊維をその網状部材に向けて加圧しなくとも、成形面上に多くのチタン系繊維が堆積するので、網状部材上で加圧されることに起因するチタン系繊維の折れ曲がり変形が抑制されて、チタン系繊維が成形面上に良好に堆積する。その結果として、空隙率がある程度均一で高い表面平滑性を有するチタン系多孔質体を製造することができる。 Here, it is assumed that the titanium-based fibers supplied onto the net-like member in the raw material deposition step have an aspect ratio of 10 to 70, which is the ratio of fiber length to fiber thickness. In the mesh member used in the raw material deposition step, the ratio of the length of the longest opening of the mesh to the fiber length is 0.9 to 2.4. In this case, even if some of the titanium-based fibers are agglomerated, the titanium-based fibers on the net-like member are not pressurized toward the net-like member but vibrated only by vibrating the net-like member. It becomes easier to pass through the mesh of As a result, even if the titanium-based fibers on the mesh-like member are not pressurized toward the mesh-like member, many titanium-based fibers are deposited on the molding surface. bending deformation is suppressed, and the titanium-based fibers are well deposited on the molding surface. As a result, it is possible to produce a titanium-based porous body having a relatively uniform porosity and high surface smoothness.

(チタン系繊維)
チタン系繊維は、チタンを含有するものであり、たとえば純チタン製又はチタン合金製である。純チタン製又はチタン合金製のいずれであっても、チタン系多孔質体のチタン含有量は、75質量%以上である場合がある。
(Titanium fiber)
Titanium-based fibers contain titanium, and are made of, for example, pure titanium or a titanium alloy. The titanium content of the titanium-based porous body may be 75% by mass or more, regardless of whether it is made of pure titanium or a titanium alloy.

チタン系繊維は、純チタン製の場合、JIS H4600(2012)の純チタン1~4種に相当する純度とすることができる。チタン系繊維のチタン含有量(純度)は、たとえば98質量%以上、典型的には99.0質量%~99.8質量%とする場合がある。 When the titanium-based fiber is made of pure titanium, it can have a purity corresponding to pure titanium types 1 to 4 of JIS H4600 (2012). The titanium content (purity) of the titanium-based fiber may be, for example, 98% by mass or more, typically 99.0% to 99.8% by mass.

チタン合金製のチタン系繊維の場合、チタン合金は、Tiと、Fe、Sn、Cr、Al、V、Mn、Zr、Mo、白金族(Pt、Pd、Ru等)、Ni等から選ばれる少なくとも1種の金属との合金である。具体例としては、Ti-6-4(Ti-6Al-4V)、Ti-5Al-2.5Sn、Ti-8-1-1(Ti-8Al-1Mo-1V)、Ti-6-2-4-2(Ti-6Al-2Sn-4Zr-2Mo-0.1Si)、Ti-6-6-2(Ti-6Al-6V-2Sn-0.7Fe-0.7Cu)、Ti-6-2-4-6(Ti-6Al-2Sn-4Zr-6Mo)、SP700(Ti-4.5Al-3V-2Fe-2Mo)、Ti-17(Ti-5Al-2Sn-2Zr-4Mo-4Cr)、β-CEZ(Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe)、TIMETAL555、Ti-5553(Ti-5Al-5Mo-5V-3Cr-0.5Fe)、TIMETAL21S(Ti-15Mo-2.7Nb-3Al-0.2Si)、TIMETAL LCB(Ti-4.5Fe-6.8Mo-1.5Al)、10-2-3(Ti-10V-2Fe-3Al)、Beta C(Ti-3Al-8V-6Cr-4Mo-4Cr)、Ti-8823(Ti-8Mo-8V-2Fe-3Al)、15-3(Ti-15V-3Cr-3Al-3Sn)、BetaIII(Ti-11.5Mo-6Zr-4.5Sn)、Ti-13V-11Cr-3Al等のチタン合金を挙げることができる。なお、上記の合金の具体例において、各金属元素の前に付記した数字は、当該金属元素の含有量(質量%)を表している。例えば、「Ti-6Al-4V」は、合金元素として6質量%のAlと4質量%のVとを含有するチタン合金を意味する。チタン合金製のチタン系繊維の場合、チタン系繊維のチタン含有量は、たとえば75質量%~97質量%、典型的には85質量%~97質量%とする場合がある。 In the case of titanium-based fibers made of titanium alloy, the titanium alloy contains at least Ti, Fe, Sn, Cr, Al, V, Mn, Zr, Mo, platinum group (Pt, Pd, Ru, etc.), Ni, etc. It is an alloy with one kind of metal. Specific examples include Ti-6-4 (Ti-6Al-4V), Ti-5Al-2.5Sn, Ti-8-1-1 (Ti-8Al-1Mo-1V), Ti-6-2-4 -2 (Ti-6Al-2Sn-4Zr-2Mo-0.1Si), Ti-6-6-2 (Ti-6Al-6V-2Sn-0.7Fe-0.7Cu), Ti-6-2-4 -6 (Ti-6Al-2Sn-4Zr-6Mo), SP700 (Ti-4.5Al-3V-2Fe-2Mo), Ti-17 (Ti-5Al-2Sn-2Zr-4Mo-4Cr), β-CEZ ( Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe), TIMETAL555, Ti-5553 (Ti-5Al-5Mo-5V-3Cr-0.5Fe), TIMETAL21S (Ti-15Mo-2.7Nb-3Al-0. 2Si), TIMETAL LCB (Ti-4.5Fe-6.8Mo-1.5Al), 10-2-3 (Ti-10V-2Fe-3Al), Beta C (Ti-3Al-8V-6Cr-4Mo-4Cr ), Ti-8823 (Ti-8Mo-8V-2Fe-3Al), 15-3 (Ti-15V-3Cr-3Al-3Sn), Beta III (Ti-11.5Mo-6Zr-4.5Sn), Ti-13V Titanium alloys such as -11Cr-3Al may be mentioned. In the specific examples of the alloys described above, the number added before each metal element represents the content (% by mass) of the metal element. For example, "Ti-6Al-4V" means a titanium alloy containing 6 wt% Al and 4 wt% V as alloying elements. In the case of titanium-based fibers made from titanium alloys, the titanium content of the titanium-based fibers may be, for example, 75% to 97% by weight, typically 85% to 97% by weight.

チタン系繊維は繊維状であり、より詳細には、繊維太さTfに対する繊維長さLfの比であるアスペクト比(Lf/Tf)が10~70であるものとする。チタン系繊維のアスペクト比(Lf/Tf)を10~70の範囲内とし、後述の原料堆積工程で、所定の目開きの網目を有する網状部材を使用すれば、チタン系繊維が網状部材を通過しやすくなり成形面上に良好に堆積する。このような観点から、チタン系繊維のアスペクト比(Lf/Tf)は、20~50であることが好ましい。なお、チタン系繊維のアスペクト比(Lf/Tf)が10未満となるとチタン系繊維が網状部材を過度に通過しやすくなり、場合によってはチタン系繊維のダマ(凝集)がほぐれる前に網状部材を通過してしまい、チタン系焼結体内における空隙率のばらつきが大きくなる。チタン系繊維のアスペクト比(Lf/Tf)が70を超えるとチタン系繊維が過度に長いために網状部材を通過しにくくなり、チタン系焼結体内における空隙率のばらつきが大きくなる。
ここでいうアスペクト比(Lf/Tf)は、走査電子顕微鏡(SEM)により各チタン系繊維の繊維太さ及び繊維長さを測定し、それらの繊維太さに対する繊維長さの比として算出される各チタン系繊維のアスペクト比の平均値を意味する。走査電子顕微鏡で、100本の各チタン系繊維について、チタン系繊維の輪郭線上の任意の二点間の最も長い直線距離を繊維長さとし、その繊維長さに直交する方向で輪郭線上の任意の二点間の最も長い直線距離を繊維太さとしてそれぞれ測定する。測定した各繊維の繊維長さと繊維太さから平均値を求め、該平均値をそれぞれチタン系繊維の長さ、チタン系繊維の太さの値とする。
Titanium-based fibers are fibrous, and more specifically, have an aspect ratio (Lf/Tf) of 10-70, which is the ratio of fiber length Lf to fiber thickness Tf. If the aspect ratio (Lf/Tf) of the titanium-based fiber is within the range of 10 to 70, and a net-like member having a mesh with a predetermined opening is used in the raw material deposition step described later, the titanium-based fiber can pass through the net-like member. and deposits well on the molding surface. From this point of view, the aspect ratio (Lf/Tf) of the titanium-based fiber is preferably 20-50. In addition, when the aspect ratio (Lf/Tf) of the titanium-based fibers is less than 10, the titanium-based fibers tend to pass through the mesh member excessively, and in some cases, the titanium-based fibers may pass through the mesh-like member before clumps (agglomeration) of the titanium fibers are loosened. As a result, the variation in porosity in the titanium-based sintered body increases. If the aspect ratio (Lf/Tf) of the titanium-based fibers exceeds 70, the titanium-based fibers are too long to pass through the mesh member with difficulty, resulting in large variations in porosity in the titanium-based sintered body.
The aspect ratio (Lf/Tf) here is calculated by measuring the fiber thickness and fiber length of each titanium-based fiber with a scanning electron microscope (SEM) and calculating the ratio of the fiber length to the fiber thickness. It means the average aspect ratio of each titanium-based fiber. With a scanning electron microscope, for each of 100 titanium-based fibers, the fiber length is the longest straight line distance between any two points on the contour line of the titanium-based fiber. The longest linear distance between two points is measured as the fiber thickness. An average value is obtained from the measured fiber length and fiber thickness of each fiber, and the average value is defined as the length of the titanium-based fiber and the thickness of the titanium-based fiber, respectively.

チタン系繊維の繊維長さLfは、好ましくは1.0mm~6.0mmの範囲内、より好ましくは1.5mm~4.0mmの範囲内とする。繊維長さLfがこのような範囲内であれば、後述する原料堆積工程にて使用する網状部材の網目の目開きとの関係で、比較的短時間のうちに、振動する網状部材上にてチタン系繊維の凝集が解消されつつチタン系繊維が網状部材を通過しやすくなる。また、その結果、チタン系多孔質体の空隙率が良好に均一になる。チタン系繊維のこの繊維長さLfは、上述したアスペクト比を求める際に測定される各チタン系繊維の繊維長さの平均値とする。 The fiber length Lf of the titanium-based fiber is preferably within the range of 1.0 mm to 6.0 mm, more preferably within the range of 1.5 mm to 4.0 mm. If the fiber length Lf is within such a range, in relation to the opening of the mesh of the mesh member used in the raw material deposition step described later, the fiber can be placed on the vibrating mesh member in a relatively short time. Aggregation of the titanium-based fibers is eliminated, and the titanium-based fibers easily pass through the mesh member. In addition, as a result, the porosity of the titanium-based porous body becomes excellently uniform. The fiber length Lf of the titanium-based fibers is the average value of the fiber lengths of the respective titanium-based fibers measured when obtaining the aspect ratio described above.

上述したようなチタン系繊維は、たとえば、チタン含有塊ないし板等に対してコイル切削法又はびびり振動切削法等を行うことにより作製することができる。この場合、球状ではなく繊維状の粉末が得られやすく、これをチタン系繊維として良好に用いることができる。 The titanium-based fibers as described above can be produced, for example, by applying a coil cutting method, a chatter vibration cutting method, or the like to a titanium-containing lump or plate. In this case, it is easy to obtain a fibrous powder instead of a spherical powder, which can be favorably used as the titanium-based fiber.

チタン系繊維は、折れ曲がり繊維の割合が、本数基準で7%以下であることが好ましい。折れ曲がり繊維の割合がこのように少ないと、チタン系多孔質体の表面から突出し得る繊維部分が減るので、チタン系多孔質体がさらに高い表面平滑性を有するものになる。ここで、チタン系繊維が折れ曲がり繊維であるか否かの判断は、次のようにして行う。光学顕微鏡でチタン系繊維を観察し、図1(a)に示すように、チタン系繊維1の周囲を取り囲む最小包含円Cmin上に位置する二点の端点Pe1及びPe2を結ぶ線分をLS1とする。そして、端点Pe1及びPe2を結ぶ線分LS1に直交する垂線のうち、その線分LS1から、垂線方向の外側(線分LS1から離れた側)にあるチタン系繊維1の外輪郭線上の点までの距離が最も長くなる垂線の線分をLS2とする。端点Pe1及びPe2間の線分LS1の長さL1に対する、最も長い垂線の線分LS2の長さL2の比(L2/L1)が0.1以上であれば、当該チタン系繊維1は折れ曲がり繊維であると判断する。なお、図1(b)に示すように途中で二股以上に分岐し、二点の端点Pe1及びPe2以外にさらに他の一点以上の端点Pe3があるチタン系繊維1a(つまり、三点以上の端点Pe1、Pe2及びPe3があるチタン系繊維1a)であっても、端点Pe1及びPe2が二点だけであるチタン系繊維1と同様に、最小包含円Cminを用いて比(L2/L1)を算出し、折れ曲がり繊維であるか否かの判断を行う。仮に三点以上の端点が最少包含円上に位置するチタン系繊維である場合、上記の判断を行わず、そのようなチタン系繊維は折れ曲がり繊維とみなすものとする。 It is preferable that the ratio of bent fibers in the titanium-based fibers is 7% or less based on the number of fibers. When the proportion of bent fibers is thus small, the portion of fibers that can protrude from the surface of the titanium-based porous body is reduced, so that the titanium-based porous body has a higher surface smoothness. Here, whether or not the titanium-based fibers are bent fibers is determined as follows. Observing the titanium-based fiber with an optical microscope, as shown in FIG. do. Then, of the perpendicular line perpendicular to the line segment LS1 connecting the end points Pe1 and Pe2, from the line segment LS1 to a point on the outer contour line of the titanium-based fiber 1 on the outside of the perpendicular direction (the side away from the line segment LS1) Let LS2 be the perpendicular line segment with the longest distance. If the ratio (L2/L1) of the length L2 of the longest perpendicular line segment LS2 to the length L1 of the line segment LS1 between the end points Pe1 and Pe2 is 0.1 or more, the titanium-based fiber 1 is a bent fiber We judge that it is. In addition, as shown in FIG. 1(b), the titanium-based fiber 1a branches into two or more on the way and has one or more end points Pe3 in addition to the two end points Pe1 and Pe2 (that is, three or more end points). Even with the titanium-based fiber 1a) having Pe1, Pe2 and Pe3, the ratio (L2/L1) is calculated using the minimum inclusive circle Cmin in the same manner as the titanium-based fiber 1 having only two end points Pe1 and Pe2. Then, it is determined whether or not it is a bent fiber. If the titanium-based fiber has three or more end points on the minimum inclusive circle, the above determination is not made, and such titanium-based fiber is regarded as a folded fiber.

チタン系繊維に折れ曲がり繊維が含まれる場合、当該折れ曲がり繊維は、先述したアスペクト比(Lf/Tf)や繊維長さLfの測定に考慮しないものとする。チタン系繊維から折れ曲がり繊維を除外して残った残部及び別途加える補充部について、先に述べた方法によりアスペクト比(Lf/Tf)や繊維長さLfを求める。たとえばチタン系繊維から100本のサンプルを抽出し、そのなかに折れ曲がり繊維が含まれていた場合は、サンプルから当該折れ曲がり繊維を除外し、その除外した分の本数をさらに補充することにより、折れ曲がり繊維が含まれなくなったサンプルに対してアスペクト比(Lf/Tf)や繊維長さLfの測定を行うことができる。 When bent fibers are included in the titanium-based fibers, the bent fibers are not considered in the measurement of the aspect ratio (Lf/Tf) and the fiber length Lf described above. The aspect ratio (Lf/Tf) and the fiber length Lf of the titanium-based fiber remaining after removing the bent fiber and the replenishment portion to be added separately are determined by the method described above. For example, 100 samples are extracted from titanium-based fibers, and if bent fibers are included in them, the bent fibers are excluded from the sample, and the number of the removed fibers is supplemented to obtain bent fibers. Aspect ratio (Lf/Tf) and fiber length Lf can be measured for a sample that does not contain .

(原料堆積工程)
原料堆積工程では、上記のチタン系繊維1を、図2に示すように、バインダー等を用いず乾式で成形面11上に堆積させる。このとき、たとえば図3に示すような、チタン系繊維1が通過する網目22を有する網状部材21を用いる。より詳細には、空気などの気体中もしくは真空中にて、網状部材21上にチタン系繊維1を供給し、その状態で網状部材21を、たとえば図2に矢印で示すように振動させることにより、チタン系繊維1を網状部材21の網目22から通過させ、チタン系繊維1を網状部材21から成形面11上に落下させて堆積させる。
(Raw material deposition process)
In the raw material depositing step, the titanium-based fibers 1 are deposited on the forming surface 11 in a dry manner without using a binder or the like, as shown in FIG. At this time, for example, a mesh member 21 having meshes 22 through which the titanium-based fibers 1 pass is used as shown in FIG. More specifically, the titanium-based fibers 1 are supplied onto the mesh member 21 in a gas such as air or in a vacuum, and in that state, the mesh member 21 is vibrated, for example, as indicated by the arrows in FIG. , the titanium-based fiber 1 is passed through the mesh 22 of the mesh-like member 21, and the titanium-based fiber 1 is dropped from the mesh-like member 21 onto the molding surface 11 and deposited thereon.

網状部材21の網目22の平面形状は特に問わず、多角形状又は、真円や楕円、長円を含む円形状等とすることができる。そしてここでは、該網目22の寸法に関し、平面視で網目22に内包されて網目22の図心Cmを通る最も長い線分Smaxの長さLmの、先述したチタン系繊維1の繊維長さLfに対する比(Lm/Lf)が、0.9~2.4になるように、網目22の寸法が調整された網状部材21を用いる。網目22における上記の最も長い線分の長さLmは、目開きの最長寸法Lmともいう。 The planar shape of the mesh 22 of the mesh member 21 is not particularly limited, and may be a polygonal shape, a perfect circle, an ellipse, or a circular shape including an oval. Here, regarding the dimensions of the mesh 22, the length Lm of the longest line segment Smax included in the mesh 22 and passing through the centroid Cm of the mesh 22 in plan view, the fiber length Lf of the titanium-based fiber 1 described above, is A net-like member 21 is used in which the dimensions of the mesh 22 are adjusted so that the ratio (Lm/Lf) to the .DELTA. The length Lm of the longest line segment in the mesh 22 is also referred to as the longest dimension Lm of the mesh opening.

上記の比(Lm/Lf)を満たす寸法の網目22を有する網状部材21を用いることにより、網状部材21を振動させると、当該網状部材21上のチタン系繊維1が網状部材21の網目22を通過して成形面11上に落下しやすいので、成形面11上にチタン系繊維1を良好に堆積させることができる。この際、網状部材21上のチタン系繊維1を加圧する必要はない。 By using the mesh member 21 having the meshes 22 having dimensions satisfying the above ratio (Lm/Lf), when the mesh member 21 is vibrated, the titanium-based fibers 1 on the mesh member 21 move the meshes 22 of the mesh member 21. Since it easily passes through and falls onto the molding surface 11 , the titanium-based fibers 1 can be favorably deposited on the molding surface 11 . At this time, it is not necessary to press the titanium-based fibers 1 on the mesh member 21 .

チタン系繊維1を網状部材21から成形面上に落下させるに際しては、チタン系繊維1が供給された網状部材21を振動させるだけで十分である。このとき、網状部材21上のチタン系繊維1に対し、チタン系繊維1が網状部材21の網目22を通る方向へ圧力を意図的に作用させることは要しないので、チタン系繊維1の折れ曲がり変形の発生が抑制される。なお、網状部材21が平板状の外輪郭形状を有する場合、上述したチタン系繊維1が網目22を通る方向とは、その平板状の網状部材21に直交する方向に相当する。好ましくは、チタン系繊維1を網状部材21から落下させる際に、チタン系繊維1が網目22を通る方向以外の方向にもチタン系繊維1を加圧しないこととする。 When dropping the titanium-based fibers 1 from the mesh member 21 onto the molding surface, it is sufficient to vibrate the mesh-like member 21 supplied with the titanium-based fibers 1 . At this time, since it is not necessary to intentionally apply pressure to the titanium-based fibers 1 on the net-like member 21 in the direction in which the titanium-based fibers 1 pass through the meshes 22 of the net-like member 21, bending deformation of the titanium-based fibers 1 does not occur. is suppressed. When the mesh member 21 has a flat plate-like outline shape, the direction in which the titanium-based fibers 1 pass through the mesh 22 corresponds to a direction orthogonal to the flat plate-shaped mesh member 21 . Preferably, when the titanium-based fibers 1 are dropped from the mesh member 21 , the titanium-based fibers 1 are not pressurized in a direction other than the direction in which the titanium-based fibers 1 pass through the mesh 22 .

これにより、多くは折れ曲がり変形がほぼ生じておらず直線状に近いチタン系繊維1がより多く成形面11上に堆積するので、成形面11上でチタン系繊維1間の隙間の大きさが均一になる傾向がある。また、折れ曲がり変形が生じたチタン系繊維が、成形面11上の堆積表面から突出しにくくなる。その結果、後述する原料焼結工程で、空隙率が均一で表面平滑性が確保されたチタン系焼結体が得られる。 As a result, most of the titanium-based fibers 1 that are almost straight without bending deformation are deposited on the molding surface 11, so that the sizes of the gaps between the titanium-based fibers 1 on the molding surface 11 are uniform. tend to be In addition, the bent and deformed titanium-based fibers are less likely to protrude from the deposition surface on the molding surface 11 . As a result, a titanium-based sintered body having a uniform porosity and secured surface smoothness can be obtained in the raw material sintering process described later.

チタン系繊維1の繊維長さLfに対する網目22の目開きの最長寸法Lmの比(Lm/Lf)が0.9未満である場合は、チタン系繊維1に対して網目22の大きさが小さすぎることにより、網目22をチタン系繊維1が通過しにくくなる。上記の比(Lm/Lf)が2.4を超える場合は、チタン系繊維1に対して網目22の大きさが大きすぎるので、網目22をチタン系繊維1が過度に通過しやすくなる。いずれの場合であっても、チタン系焼結体内で空隙率がばらつきやすくなってしまう。チタン系繊維1の繊維長さLfに対する網目22の目開きの最長寸法Lmの比(Lm/Lf)は、0.9~1.2であることが好ましい。 When the ratio of the longest dimension Lm of the opening of the mesh 22 to the fiber length Lf of the titanium-based fiber 1 (Lm/Lf) is less than 0.9, the size of the mesh 22 is smaller than that of the titanium-based fiber 1. If it is too thick, it becomes difficult for the titanium-based fibers 1 to pass through the mesh 22 . If the above ratio (Lm/Lf) exceeds 2.4, the size of the meshes 22 is too large relative to the titanium-based fibers 1, so that the titanium-based fibers 1 easily pass through the meshes 22 excessively. In either case, the porosity tends to vary in the titanium-based sintered body. The ratio (Lm/Lf) of the longest dimension Lm of the opening of the mesh 22 to the fiber length Lf of the titanium-based fiber 1 is preferably 0.9 to 1.2.

図3に示すところでは、平面視で正方形状の網目22を有する網状部材21としている。但し、網状部材はこれに限らず、三角形、長方形等の他の四角形状又は、それらよりも角の多い多角形状、あるいは、真円、長円もしくは楕円等の円形状等の網目を有するものとすることができる。 As shown in FIG. 3, the mesh member 21 has square meshes 22 in plan view. However, the mesh member is not limited to this, and may have meshes of other quadrangular shapes such as triangles and rectangles, polygonal shapes with more corners than those, or circular shapes such as perfect circles, ovals, and ellipses. can do.

たとえば、図4(a)に示す網目22aは正三角形状である。この網目22aでは、一つの頂点Vm及び図心Cmを通り当該三角形に内包される線分の長さが、目開きの最長寸法Lmになる。なお、いずれの頂点Vmから図心Cmを通るように引いた線分も同じ長さになり、それらの全てが最も長い線分Smaxであるとみなすことができる。
図4(b)には、平面視で等脚台形状をなす網目22bを示している。この網目22bでは、その等脚台形の底辺側の頂点Vmと図心Cmとを通る線分が最も長い線分Smaxになり、当該線分Smaxの長さが目開きの最長寸法Lmに相当する。
For example, the mesh 22a shown in FIG. 4(a) has an equilateral triangular shape. In this mesh 22a, the length of a line segment that passes through one vertex Vm and the centroid Cm and is included in the triangle is the longest dimension Lm of the mesh opening. Line segments drawn from any vertex Vm through the centroid Cm have the same length, and all of them can be regarded as the longest line segment Smax.
FIG. 4(b) shows a mesh 22b having an isosceles trapezoidal shape in plan view. In this mesh 22b, the line segment passing through the vertex Vm on the base side of the isosceles trapezoid and the centroid Cm is the longest line segment Smax, and the length of the line segment Smax corresponds to the longest dimension Lm of the opening. .

図4(c)に示す真円形状の網目22cでは、その直径が最も長い線分Smaxになる。また、図4(d)に示す楕円形状の網目22dでは、長軸が最も長い線分Smaxである。 In the perfectly circular mesh 22c shown in FIG. 4(c), the line segment Smax has the longest diameter. In the elliptical mesh 22d shown in FIG. 4D, the major axis is the longest line segment Smax.

網状部材21は、チタン系繊維1を通過させる孔としての網目22が複数設けられたものであればよい。網状部材21は、金属板等に網目22を構成する多数の孔が形成されたもの(いわゆるパンチングメタル等)であってもよいが、図3に示すような、多数本の線材23が格子状等に並んで配置されたことにより当該線材23間に上記の孔としての網目22が形成されたもののほうが好ましい。これは、パンチングメタルでは隣り合う孔間がある程度の距離で離れていることから、チタン系繊維1の落下に時間がかかる可能性があり、原料堆積工程の長期化のおそれがあるからである。なお網状部材21は、篩別に用いる篩としてもよい。図2に示す例のように、網状部材21は、網部分の周囲が周壁部分24で囲まれたものとすることもできる。この場合、網状部材21上のチタン系繊維1の、網部分の周囲からの意図しない落下が周壁部分24で抑制される。網状部材21の外観形状は平板状でもよいし、その少なくとも一部に曲面を含む形状でもよい。曲面を含む場合、目開きの最長寸法は、平板状にしてから測定する。 The mesh member 21 may be provided with a plurality of meshes 22 as holes through which the titanium-based fibers 1 pass. The mesh member 21 may be a metal plate or the like having a large number of holes forming a mesh 22 (so-called punching metal or the like), but as shown in FIG. It is preferable that the meshes 22 as the holes are formed between the wire rods 23 by arranging them side by side. This is because adjacent holes are separated by a certain distance in the punching metal, so it may take time for the titanium-based fibers 1 to fall, and the raw material deposition process may be prolonged. Note that the mesh member 21 may be a sieve used for sieving. As in the example shown in FIG. 2 , the mesh member 21 can also be configured such that the periphery of the mesh portion is surrounded by the peripheral wall portion 24 . In this case, the peripheral wall portion 24 prevents the titanium-based fibers 1 on the mesh member 21 from falling unintentionally from the periphery of the mesh portion. The net-like member 21 may have a flat plate shape, or may have a curved surface at least partially. When curved surfaces are included, the longest dimension of the opening shall be measured after making it into a flat plate.

網状部材21の振動方向は、チタン系繊維1を堆積させる成形面11に実質的に平行な方向(水平方向等)とすることが多いが、成形面11に平行な方向に対して傾斜もしくは直交する方向でもよい。網状部材21の振動は、人手により行うことが可能であり、あるいは装置を用いて行ってもよい。網状部材21の網部分の下面と成形面11との間の距離である落下高さは、例えば2cm~50cmとすることができる。 The vibrating direction of the mesh-like member 21 is often set substantially parallel to the forming surface 11 on which the titanium-based fibers 1 are deposited (horizontal direction, etc.). It can be in any direction. Vibration of the mesh member 21 can be performed manually or may be performed using a device. The drop height, which is the distance between the lower surface of the mesh portion of the mesh member 21 and the molding surface 11, can be, for example, 2 cm to 50 cm.

チタン系繊維1を成形面11上に堆積させるに当っては、成形面11上の所期した堆積領域の全域にチタン系繊維1が堆積するように、成形面11の上方側にて網状部材21を振動させつつ移動させることができる。成形面11の上方側での網状部材21の移動態様は適宜設定することができるが、たとえば、成形面11の平面視で、網状部材21を、上記の堆積領域の一方の側部と他方の側部との間で往復させつつ、堆積領域の一端部から他端部に向かって徐々に動かして蛇行させることができる。網状部材21が成形面11上の同じ堆積位置を複数回通るように、網状部材21を移動させてもよい。但し、成形面11上のチタン系繊維1の堆積厚みが所定の厚みになるようにすることが好適である。 In depositing the titanium-based fibers 1 on the molding surface 11, a mesh member is formed above the molding surface 11 so that the titanium-based fibers 1 are deposited over the entire desired deposition area on the molding surface 11. 21 can be moved while being vibrated. The mode of movement of the mesh member 21 on the upper side of the molding surface 11 can be appropriately set. While reciprocating between the sides, it can be gradually moved from one end of the deposition area to the other end to meander. The mesh member 21 may be moved such that the mesh member 21 passes the same deposition location on the forming surface 11 multiple times. However, it is preferable to set the deposited thickness of the titanium-based fibers 1 on the molding surface 11 to a predetermined thickness.

網状部材21から落下したチタン系繊維1を堆積させる成形面11は、たとえば図2に示すように、実質的に平板状の成形型12上に設けられたものとすることができる。図示は省略するが、板状部材に、成形面を取り囲む側壁が一体に又は、別個の部材として着脱可能に設けられた成形型を用いることもできる。成形型12の材質は、たとえば、石英、炭素、窒化ホウ素、アルミナ、ジルコニア、マグネシア等とすることができる。 The molding surface 11 on which the titanium-based fibers 1 dropped from the mesh member 21 are deposited can be provided on a substantially flat mold 12 as shown in FIG. 2, for example. Although not shown, it is also possible to use a molding die in which side walls surrounding the molding surface are detachably provided integrally with the plate-like member or as separate members. The material of the mold 12 can be, for example, quartz, carbon, boron nitride, alumina, zirconia, magnesia, or the like.

チタン系繊維1を堆積させるに先立って、成形面11の少なくともチタン系繊維1の堆積領域には、窒化ホウ素(BN)及び/又はホウ化チタン(TiB2)等を含む離型層をコーティングすることができる。これにより、原料焼結工程での焼結後の成形面11からのチタン系焼結体の剥離が容易になる。炭素製の成形型12では、窒化ホウ素(BN)を含む離型剤を用いることが好ましい。 Prior to depositing the titanium-based fibers 1, at least the deposition area of the titanium-based fibers 1 on the molding surface 11 is coated with a release layer containing boron nitride (BN) and/or titanium boride (TiB 2 ) or the like. be able to. This facilitates the separation of the titanium-based sintered body from the molding surface 11 after sintering in the raw material sintering step. For mold 12 made of carbon, it is preferable to use a release agent containing boron nitride (BN).

チタン系繊維1を網状部材21から落下させて成形面11上に堆積させるに当っては、成形面11の面積として72900cm2を基準面積としたとき、堆積に要する時間は、成形面11のその基準面積当たり、10分~25分、さらに15分~20分であることが好ましい。 When the titanium-based fibers 1 are dropped from the net-like member 21 and deposited on the forming surface 11, the time required for deposition is determined by the amount of the forming surface 11, assuming that the area of the forming surface 11 is 72,900 cm 2 . It is preferably 10 to 25 minutes, more preferably 15 to 20 minutes per reference area.

(原料焼結工程)
成形面上にチタン系繊維を堆積させた後は、堆積したチタン系繊維を加熱炉内に配置し、チタン系繊維を加熱して焼結させる原料焼結工程を行う。これにより、シート状のチタン系焼結体が得られる。なお、多くの場合では、成形型とともにチタン系繊維を加熱炉内に配置するが、成形型は加熱炉に入れないこともある。
(raw material sintering process)
After depositing the titanium-based fibers on the molding surface, the deposited titanium-based fibers are placed in a heating furnace, and a raw material sintering step is performed in which the titanium-based fibers are heated and sintered. Thereby, a sheet-like titanium-based sintered body is obtained. In many cases, the titanium-based fiber is placed in the heating furnace together with the mold, but the mold may not be placed in the heating furnace.

原料焼結工程では、堆積したチタン系繊維の全体を十分に焼結させるため、チタン系繊維を900℃~1100℃の温度に、1時間~3時間にわたって加熱することが好ましい。また、チタン系繊維を加熱する際には、たとえば10-2Pa~10-4Pa程度の真空等の減圧雰囲気または、アルゴンガス等の不活性ガス雰囲気とすることが好適である。これにより、チタン系繊維の過剰な酸窒化を防ぐことができる。ここでは、窒素ガスは不活性ガスには該当しないものとする。 In the raw material sintering step, the titanium-based fibers are preferably heated to a temperature of 900° C. to 1100° C. for 1 to 3 hours in order to sufficiently sinter the deposited titanium-based fibers as a whole. When heating the titanium-based fibers, it is preferable to use a reduced pressure atmosphere such as a vacuum of about 10 −2 Pa to 10 −4 Pa or an inert gas atmosphere such as argon gas. This can prevent excessive oxynitridation of the titanium-based fibers. Here, nitrogen gas shall not correspond to an inert gas.

成形面上でチタン系繊維を加熱してチタン系焼結体を得た場合は、チタン系焼結体を成形面から剥離させることがある。このとき、先述の離型剤は、チタン系焼結体の容易な剥離を可能にする。なお、成形面から剥離させたチタン系焼結体は、必要に応じてその外縁部分を切断して除去してもよい。また、チタン系焼結体に対してプレス加工又はロール圧延を行って厚みを調整することもある。プレス加工やロール圧延の圧下率は、たとえば60%以下、好ましくは10~50%、より好ましくは20~50%である。圧下率Rは、圧下前(プレス又は圧延前等)の厚みT1と、圧下後(プレス又は圧延後等)の厚みT2から、次式:R=100×(T1-T2)/T1より求める。プレス加工又はロール圧延の後、さらに加熱による焼結を行ってもよい。プレス加工又はロール圧延後の焼結は、上記の初めの焼結と同様の条件とすることができる。 When the titanium-based sintered body is obtained by heating the titanium-based fibers on the molding surface, the titanium-based sintered body may be separated from the molding surface. At this time, the release agent described above enables easy separation of the titanium-based sintered body. In addition, the titanium-based sintered body separated from the molding surface may be removed by cutting the outer edge portion, if necessary. Also, the thickness may be adjusted by pressing or rolling the titanium-based sintered body. The reduction ratio of press working or roll rolling is, for example, 60% or less, preferably 10 to 50%, more preferably 20 to 50%. The reduction ratio R is obtained from the thickness T1 before reduction (before pressing or rolling, etc.) and the thickness T2 after reduction (after pressing or rolling, etc.) from the following formula: R=100×(T1−T2)/T1. After pressing or rolling, sintering by heating may be performed. Sintering after pressing or rolling can be performed under the same conditions as the initial sintering described above.

これにより得られたチタン系焼結体を、チタン系多孔質体とすることができる。あるいは、チタン系焼結体にさらに次に述べる表面酸化工程を行い、表面酸化工程を経た後のものをチタン系多孔質体とすることもできる。 The titanium-based sintered body thus obtained can be used as a titanium-based porous body. Alternatively, the titanium-based sintered body can be further subjected to the surface oxidation step described below, and the titanium-based porous body can be obtained after the surface oxidation step.

(表面酸化工程)
表面酸化工程では、公知の手法にて、所定の電解浴を用いた陽極酸化等により、チタン系焼結体に酸化処理を施すことができる。酸化処理で適切な電解条件を設定することにより、チタン系焼結体を覆う酸化被膜層厚を調整することができる。それにより、その酸化被膜層でチタン含有繊維が所定の色に着色され、所期した美観を呈するチタン系多孔質体が得られる。
(Surface oxidation process)
In the surface oxidation step, the titanium-based sintered body can be oxidized by a known method such as anodization using a predetermined electrolytic bath. By setting appropriate electrolysis conditions in the oxidation treatment, the thickness of the oxide film layer covering the titanium-based sintered body can be adjusted. As a result, the titanium-containing fiber is colored in a predetermined color by the oxide film layer, and a titanium-based porous body exhibiting the desired aesthetic appearance is obtained.

酸化処理は、これに限定されないが、たとえば、次に述べるようにして行うことができる。
まず、チタン系焼結体を脱脂処理および酸洗処理に供する。脱脂処理は酸化被膜層形成時の濡れ性を向上し、色むらを抑制するために行う。エタノールやアセトン、アルカリ性溶液を用いて脱脂処理を行うことができる。酸洗処理は表面粗さを均一にする、スマットを除去するために実施する。酸洗処理は1回でもよいし複数回行ってもよい。例えばフッ酸-硝酸混合液やフッ酸-過酸化水素系水溶液を用いて酸洗処理を行うことができる。チタンイオンをキレート化し安定化させることで、より均一な表面を得られることから、フッ酸-過酸化水素系水溶液を用いて酸洗処理を行うことが好ましい。
その後、酸化処理を実施することができる。酸化処理の手順の一例は以下の通りである。非導電性電解槽中(プラスチック製、ガラス製、塩化ビニル製等)に硫酸銅(II)水溶液を注入する。非導電性電解槽内部にステンレスまたはチタン製の陰極を挿入する。チタン系焼結体をクリップで挟み込み陽極とし、硫酸銅(II)水溶液に浸漬する。狙いの干渉色が発色する電圧に調整して通電する。電圧の変化によって発色を変化させることが可能である。酸化被膜層形成後は通電を停止し、非導電性電解槽からチタン系焼結体を取り出し、水洗する。水洗後、変色防止の目的で適宜表面塗装等をしてもよい。
The oxidation treatment is not limited to this, but can be performed, for example, as described below.
First, a titanium-based sintered body is subjected to degreasing treatment and pickling treatment. The degreasing treatment is performed to improve the wettability during the formation of the oxide film layer and to suppress color unevenness. A degreasing treatment can be performed using ethanol, acetone, or an alkaline solution. The pickling treatment is performed to make the surface roughness uniform and to remove smut. The pickling treatment may be performed once or multiple times. For example, a hydrofluoric acid-nitric acid mixture or a hydrofluoric acid-hydrogen peroxide aqueous solution can be used for pickling. By chelating and stabilizing titanium ions, a more uniform surface can be obtained, so it is preferable to perform pickling treatment using a hydrofluoric acid-hydrogen peroxide-based aqueous solution.
An oxidation treatment can then be carried out. An example of the oxidation treatment procedure is as follows. An aqueous solution of copper (II) sulfate is poured into a non-conductive electrolytic bath (made of plastic, glass, vinyl chloride, etc.). A cathode made of stainless steel or titanium is inserted inside the non-conductive electrolytic cell. A titanium-based sintered body is sandwiched between clips to form an anode, which is immersed in an aqueous solution of copper (II) sulfate. Adjust the voltage to produce the desired interference color and turn on the power. It is possible to change the color development by changing the voltage. After the oxide film layer is formed, the energization is stopped, and the titanium-based sintered body is taken out from the non-conductive electrolytic bath and washed with water. After washing with water, the surface may be coated as appropriate for the purpose of preventing discoloration.

(チタン系多孔質体)
以上に述べたようにして製造されるチタン系多孔質体は、チタンを含有し、たとえば純チタン製又はチタン合金製であり、先述したチタン系繊維と実質的に同様の組成になることが多い。チタン合金製のチタン系多孔質体のチタン含有量は、75質量%以上である場合がある。また、純チタン製のチタン系多孔質体のチタン含有量は、98質量%以上である場合がある。
(Titanium-based porous body)
The titanium-based porous body produced as described above contains titanium, for example, is made of pure titanium or a titanium alloy, and often has substantially the same composition as the titanium-based fiber described above. . The titanium content of the titanium-based porous body made of a titanium alloy may be 75% by mass or more. In some cases, the titanium-based porous body made of pure titanium has a titanium content of 98% by mass or more.

チタン系多孔質体は、全体として外形(外側の輪郭)がシート状である。シート状のチタン系多孔質体の厚みは、たとえば0.1mm~5.0mm、典型的には0.2mm~2.0mmの範囲内である。チタン系多孔質体の厚みは、シックネスゲージ、たとえばミツトヨ社製ABSデジマチックシックネスゲージ547-321などを使用して測定できる。 The titanium-based porous body has a sheet-like outer shape (outer contour) as a whole. The thickness of the sheet-like titanium-based porous body is, for example, within the range of 0.1 mm to 5.0 mm, typically 0.2 mm to 2.0 mm. The thickness of the titanium-based porous body can be measured using a thickness gauge such as Mitutoyo's ABS Digimatic Thickness Gauge 547-321.

チタン系多孔質体の空隙率は、60%~95%、さらに70%~90%であることが好ましい。チタン系多孔質体の空隙率εは、チタン系多孔質体の幅、長さ、厚みから求めた体積および質量から算出した見かけ密度ρ’と、チタン系多孔質体を構成する金属の真密度ρ(例えば、純チタンの場合は4.51g/cm3、Ti-6Al-4Vの場合は4.43g/cm3)を用いて、下記式により算出する。
ε=(1-ρ’/ρ)×100
The porosity of the titanium-based porous body is preferably 60% to 95%, more preferably 70% to 90%. The porosity ε of the titanium-based porous body is calculated from the apparent density ρ′ calculated from the volume and mass obtained from the width, length, and thickness of the titanium-based porous body, and the true density of the metal that constitutes the titanium-based porous body. Using ρ (for example, 4.51 g/cm 3 for pure titanium and 4.43 g/cm 3 for Ti-6Al-4V), it is calculated by the following formula.
ε=(1−ρ′/ρ)×100

チタン系多孔質体の少なくとも一方の表面の表面粗さRzは、好ましくは100μm以下、より好ましくは85μm以下である。これにより、より良好な表面平滑性が確保される。なお、チタン系多孔質体の少なくとも一方の表面の表面粗さRzは、たとえば50μm以上、典型的には60μm以上になることがある。表面粗さRzは、JIS B0601(2001)に規定される算術平均粗さを意味し、Mitutoyo製サーフテストSJ-210により測定する。 The surface roughness Rz of at least one surface of the titanium-based porous body is preferably 100 μm or less, more preferably 85 μm or less. This ensures better surface smoothness. The surface roughness Rz of at least one surface of the titanium-based porous body may be, for example, 50 μm or more, typically 60 μm or more. The surface roughness Rz means the arithmetic mean roughness defined in JIS B0601 (2001), and is measured by Mitutoyo Surftest SJ-210.

また、チタン系多孔質体の導電率は、2.0×103S/cm以上3.0×103S/cm以下、さらに2.4×103S/cm以上2.7×103S/cm以下であることが好ましい。この導電率は、JIS K7194に準拠し、三菱化学アナリテック低抵抗率計MCP-T610により測定する。 In addition, the electrical conductivity of the titanium-based porous material is 2.0×10 3 S/cm or more and 3.0×10 3 S/cm or less, and further 2.4×10 3 S/cm or more and 2.7×10 3 It is preferably S/cm or less. This conductivity is measured by a Mitsubishi Chemical Analytech low resistivity meter MCP-T610 in accordance with JIS K7194.

この発明の製造方法によりチタン系多孔質体を試作し、その効果を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、これに限定されることを意図するものではない。 A titanium-based porous body was experimentally manufactured by the manufacturing method of the present invention, and the effect thereof was confirmed. However, the description herein is for illustrative purposes only and is not intended to be limiting.

まず原料堆積時に網状部材上でチタン系繊維を加圧しなかった場合と加圧した場合の、堆積後のチタン系繊維の性状を比較するため、表1に示す参考例1及び参考例2のそれぞれについて、原料堆積試験を行った。 First, reference examples 1 and 2 shown in Table 1 were used to compare the properties of the deposited titanium-based fibers when the titanium-based fibers were not pressurized on the net-like member during deposition of the raw material and when the titanium-based fibers were pressurized. was subjected to a raw material deposition test.

参考例1では、チタン系繊維を網状部材としての篩上で加圧せずに、30gのチタン系繊維を10cm~20cmの高さから乾式で落下させ、チタン系繊維を所定の表面(堆積面)上に堆積させた。
参考例2では、篩上に配置したチタン系繊維に対し、その篩のメッシュと同程度の面積の平板を有する押圧器具を回転させつつ押し付ける加圧を行いながら、チタン系繊維を篩から堆積面上に乾式で落下させたことを除いて、参考例1と同様とした。
なお、参考例1及び2では、篩としては、平面視で外輪郭形状が円形状であり、網目形状が正方形状であるものを用いた。
In Reference Example 1, 30 g of titanium-based fiber was dropped from a height of 10 cm to 20 cm in a dry manner without pressurizing the titanium-based fiber on a sieve as a mesh member, and the titanium-based fiber was placed on a predetermined surface (deposition surface ) was deposited on.
In Reference Example 2, the titanium-based fibers placed on the sieve are pressed against the titanium-based fibers by rotating a pressing device having a flat plate having the same area as the mesh of the sieve, and the titanium-based fibers are removed from the sieve onto the deposition surface. It was the same as Reference Example 1, except that it was dropped on top in a dry manner.
In Reference Examples 1 and 2, a sieve having a circular outer contour and a square mesh in plan view was used.

その結果、篩上に配置する前のチタン系繊維中の折れ曲がり繊維の割合は5.6%であったのに対し、参考例2では、表1に示すように、当該割合が42.9%と大幅に増加していた。一方、参考例1では、チタン系繊維中の折れ曲がり繊維の割合は変化せずに5.6%であった。なお、折れ曲がり繊維の割合は、先に述べた方法により算出した。 As a result, the ratio of bent fibers in the titanium-based fibers before being placed on the sieve was 5.6%, whereas in Reference Example 2, as shown in Table 1, the ratio was 42.9%. and increased significantly. On the other hand, in Reference Example 1, the proportion of bent fibers in the titanium-based fibers remained unchanged at 5.6%. The ratio of bent fibers was calculated by the method described above.

Figure 2022122764000002
Figure 2022122764000002

上記の結果より、チタン系繊維を篩から落下させる際に加圧すると、折れ曲がり繊維が増大することが解かった。そして、このような折れ曲がり繊維が含まれるチタン系繊維を加熱して焼結させると、最終的に製造されるチタン系多孔質体で折れ曲がり繊維が表面から突出しやすくなり、表面平滑性が損なわれると考えられる。それ故に、以下に述べる発明例及び比較例はいずれも、原料堆積工程でチタン系繊維を篩上で加圧せずに落下させることとした。 From the above results, it was found that the number of bent fibers increased when pressurization was applied when dropping the titanium-based fibers from the sieve. When titanium-based fibers containing such bent fibers are heated and sintered, the bent fibers tend to protrude from the surface of the finally produced titanium-based porous body, and the surface smoothness is impaired. Conceivable. Therefore, in both the invention examples and the comparative examples described below, the titanium-based fibers were dropped on the sieve without being pressurized in the raw material deposition step.

次に、先述した原料堆積工程及び原料焼結工程を行い、平面形状がほぼ矩形状で厚みが0.3mmのシート状のチタン系多孔質体を作製した。チタン系繊維及び、原料堆積工程で用いた網状部材の条件を表2に示す。 Next, the raw material depositing step and the raw material sintering step described above were performed to produce a sheet-like titanium-based porous body having a substantially rectangular planar shape and a thickness of 0.3 mm. Table 2 shows the conditions of the titanium-based fiber and the mesh member used in the raw material deposition step.

いずれの発明例1~5及び比較例1~4においても、チタン系繊維は、チタン含有量が99質量%である純チタン製のものとした。また原料堆積工程では、炭素製で平板状の成形型(セッター)の成形面を予め窒化ホウ素(BN)の粉末でコーティングし、そこに離型層を形成した。その後、成形面上の周囲に側壁部材を配置し、その上方側から篩を用いて30gのチタン系繊維を10cm~20cmの高さから乾式で落下させ、チタン系繊維を成形面上で側壁部材の内側の領域に堆積させた。成形面の面積は99225cm2であり、側壁部材の内側におけるチタン系繊維の堆積領域の面積は72900cm2とした。原料焼結工程では、成形面上のチタン系繊維を1000℃の温度に3時間にわたって加熱し、チタン系繊維を焼結させた。その後、圧下率40%でロール圧延を行い、上記の加熱と同様の条件で再度焼結を行った。これにより、チタン系多孔質体を得た。 In any of Invention Examples 1 to 5 and Comparative Examples 1 to 4, the titanium-based fibers were made of pure titanium with a titanium content of 99% by mass. In the raw material depositing step, the molding surface of a flat carbon mold (setter) was previously coated with boron nitride (BN) powder to form a mold release layer. After that, a side wall member is arranged around the molding surface, and 30 g of titanium-based fiber is dry-dropped from a height of 10 cm to 20 cm using a sieve from the upper side thereof, and the titanium-based fiber is placed on the side wall member on the molding surface. was deposited on the inner region of the The area of the molding surface was 99,225 cm 2 , and the area of the deposition region of the titanium-based fibers inside the side wall member was 72,900 cm 2 . In the raw material sintering step, the titanium-based fibers on the molding surface were heated to a temperature of 1000° C. for 3 hours to sinter the titanium-based fibers. After that, roll rolling was performed at a rolling reduction of 40%, and sintering was performed again under the same conditions as the above heating. Thus, a titanium-based porous body was obtained.

なお、比較例2及び3では、チタン系繊維を篩から落下させるのに30分以上の時間を要したことから、チタン系多孔質体の作製を中止し、その後の焼結等を行わなかった。それ故に、比較例2及び3では、チタン系多孔質体が得られなかった。 In Comparative Examples 2 and 3, it took 30 minutes or more to drop the titanium-based fibers from the sieve. . Therefore, in Comparative Examples 2 and 3, titanium-based porous bodies could not be obtained.

(平滑性の評価)
発明例1~5並びに比較例1及び4で得られた各チタン系多孔質体について、先述した方法により表面粗さRzを測定した。シート状のチタン系多孔質体のシート両面の表面粗さRzのうち、無作為に選択した一方の表面の表面粗さRzを表2に示す。表面粗さRzは100μm以下を合格とした。さらに、表面粗さRzは85μm以下をより良好とした。なお、チタン系繊維を用いて製造したシート状のチタン系多孔質体では、成形面側に位置していた表面の表面粗さと、その裏側の表面の表面粗さがほぼ同程度になる傾向がある。そのため、ここでは、無作為に選択した一方の表面の表面粗さRzを確認することとした。
(Evaluation of smoothness)
The surface roughness Rz of each of the titanium-based porous bodies obtained in Invention Examples 1 to 5 and Comparative Examples 1 and 4 was measured by the method described above. Table 2 shows the surface roughness Rz of one randomly selected surface among the surface roughnesses Rz of both surfaces of the sheet-like titanium-based porous material. A surface roughness Rz of 100 μm or less was accepted. Furthermore, a surface roughness Rz of 85 μm or less was considered better. In the sheet-like titanium-based porous body produced using titanium-based fibers, the surface roughness of the surface located on the molding surface side tends to be approximately the same as the surface roughness of the surface on the back side. be. Therefore, here, the surface roughness Rz of one randomly selected surface was checked.

(空隙率の均一性の評価)
図5に破線で示すように、平面視でチタン系多孔質体31を取り囲む仮想の四角形を設定し、その四角形を縦横にそれぞれ5等分して25個の区画領域Apを設定した。そして、それぞれの区画領域Apにおけるチタン系多孔質体31の各部分について、先述した方法により空隙率を求めて、そのばらつきを標準偏差σで算出した。その結果を表2に示す。空隙率のばらつきは2.0%以下を合格とした。
なお、全例について、各区画領域Apの空隙率は60~95%の範囲内であった。また、全例について空隙率の平均値は60~95%の範囲内であったので、作製したチタン系多孔質体の空隙率は60~95%の範囲内であった。
(Evaluation of porosity uniformity)
As indicated by broken lines in FIG. 5, a virtual quadrangle surrounding the titanium-based porous body 31 in a plan view was set, and the quadrangle was vertically and horizontally divided into 5 equal parts to set 25 divided regions Ap. Then, for each portion of the titanium-based porous body 31 in each partitioned region Ap, the porosity was obtained by the method described above, and the variation was calculated as the standard deviation σ. Table 2 shows the results. Porosity variation of 2.0% or less was considered acceptable.
In all cases, the porosity of each partitioned region Ap was within the range of 60 to 95%. In addition, since the average porosity of all the examples was within the range of 60 to 95%, the porosity of the titanium-based porous bodies produced was within the range of 60 to 95%.

(導電率の評価)
発明例1~5の各チタン系多孔質体について、先述した方法により導電率を測定した。その結果を表2に示す。いずれの発明例も良好な導電率を示した。
(Evaluation of electrical conductivity)
The electrical conductivity of each of the titanium-based porous bodies of Invention Examples 1 to 5 was measured by the method described above. Table 2 shows the results. All invention examples showed good electrical conductivity.

Figure 2022122764000003
Figure 2022122764000003

(表面酸化)
上記の焼結で得られたチタン系焼結体に対して、各種条件を変更した陽極酸化により酸化処理を施したところ、赤色や黄色、青色、緑色、紫色のチタン系多孔質体が得られた。このように様々な色彩のチタン系多孔質体を作製することができ、それぞれ所定の美観を呈していた。
(Surface oxidation)
When the titanium-based sintered body obtained by the above sintering was subjected to oxidation treatment by anodic oxidation under various conditions, red, yellow, blue, green, and purple titanium-based porous bodies were obtained. rice field. In this way, titanium-based porous bodies of various colors could be produced, and each exhibited a predetermined aesthetic appearance.

(考察)
発明例1~5のチタン系多孔質体は、高い表面平滑性を有するとともに、空隙率のばらつきが小さかった。
一方、比較例1のチタン系多孔質体は、空隙率のばらつきが大きくなった。また、比較例4のチタン系多孔質体は空隙率のばらつきが大きいだけでなく、表面粗さRzが大きく、表面平滑性に劣るものであった。これは、比較例1及び4では、篩の網目の最長寸法Lmと繊維長さLfの比(Lm/Lf)が大きすぎたことによるものと考えられる。なお、先述したように、チタン系繊維のアスペクト比が大きすぎた比較例2及び、篩の網目の最長寸法Lmと繊維長さLfの比(Lm/Lf)が小さかった比較例3では、篩からチタン系繊維が極端に落下しにくく、チタン系多孔質体を作製できなかった。
(Discussion)
The titanium-based porous bodies of Invention Examples 1 to 5 had high surface smoothness and small variation in porosity.
On the other hand, the titanium-based porous body of Comparative Example 1 exhibited a large variation in porosity. Further, the titanium-based porous body of Comparative Example 4 not only had a large variation in porosity, but also had a large surface roughness Rz and was inferior in surface smoothness. This is probably because in Comparative Examples 1 and 4, the ratio (Lm/Lf) of the longest dimension Lm of the sieve mesh to the fiber length Lf was too large. As described above, in Comparative Example 2 in which the aspect ratio of the titanium-based fibers was too large, and in Comparative Example 3 in which the ratio (Lm/Lf) of the longest dimension Lm of the mesh of the sieve and the fiber length Lf was small, the sieve It was extremely difficult for the titanium-based fibers to fall out of the mold, and a titanium-based porous body could not be produced.

以上より、この発明のチタン系多孔質体の製造方法によれば、比較的均一な空隙率を有し、比較的高い表面平滑性を備えたチタン系多孔質体が得られることが解かった。 As described above, according to the method for producing a titanium-based porous body of the present invention, it was found that a titanium-based porous body having relatively uniform porosity and relatively high surface smoothness can be obtained. .

1、1a チタン系繊維
11 成形面
12 成形型
21 網状部材
22、22a、22b、22c、22d 網目
23 線材
24 周壁部分
31 チタン系多孔質体
Cmin 最小包含円
Pe1、Pe2 端点
LS1 端点間の線分
LS2 垂線の線分
L1 端点間の線分の長さ
L2 垂線の線分の長さ
Cm 網目の図心
Vm 網目の頂点
Smax 網目の図心を通る最も長い線分
Lm 目開きの最長寸法
Ap 区画領域
Reference Signs List 1, 1a titanium-based fiber 11 molding surface 12 molding die 21 mesh member 22, 22a, 22b, 22c, 22d mesh 23 wire rod 24 peripheral wall portion 31 titanium-based porous body Cmin minimum containing circle Pe1, Pe2 end point LS1 line segment between end points LS2 Perpendicular line segment L1 Length of line segment between end points L2 Length of perpendicular line segment Cm Centroid of mesh Vm Vertex of mesh Smax Longest line segment passing through centroid of mesh Lm Longest dimension of opening Ap Section region

Claims (6)

チタン系多孔質体を製造する方法であって、
チタン系繊維を網状部材上に供給し、該網状部材の振動のみにより、前記網状部材上の当該チタン系繊維を前記網状部材から成形面上に落下させて堆積させる原料堆積工程と、
原料堆積工程で堆積させた前記チタン系繊維を焼結させ、チタン系焼結体を得る原料焼結工程とを含み、
原料堆積工程で前記網状部材上に供給する前記チタン系繊維の繊維太さに対する繊維長さの比であるアスペクト比が、10~70であり、
原料堆積工程で前記網状部材として、前記繊維長さに対する網目の目開きの最長寸法の長さの比が0.9~2.4である網状部材を用いる、チタン系多孔質体の製造方法。
A method for producing a titanium-based porous body, comprising:
a raw material depositing step of supplying titanium-based fibers onto a net-like member and causing the titanium-based fibers on the net-like member to fall from the net-like member onto a molding surface only by vibration of the net-like member;
a raw material sintering step of sintering the titanium-based fibers deposited in the raw material deposition step to obtain a titanium-based sintered body,
The aspect ratio, which is the ratio of the fiber length to the fiber thickness of the titanium-based fibers supplied onto the net-like member in the raw material deposition step, is 10 to 70,
A method for producing a titanium-based porous body, wherein in the raw material depositing step, a mesh member having a length ratio of the longest dimension of mesh openings to the fiber length of 0.9 to 2.4 is used as the mesh member.
原料堆積工程で前記網状部材上に供給する前記チタン系繊維の前記繊維長さが、1.0mm~6.0mmの範囲内である、請求項1に記載のチタン系多孔質体の製造方法。 2. The method for producing a titanium-based porous body according to claim 1, wherein the fiber length of the titanium-based fibers supplied onto the net-like member in the raw material depositing step is in the range of 1.0 mm to 6.0 mm. 前記チタン系多孔質体の空隙率が60%~95%である、請求項1又は2に記載のチタン系多孔質体の製造方法。 3. The method for producing a titanium-based porous body according to claim 1, wherein said titanium-based porous body has a porosity of 60% to 95%. 原料焼結工程の後、前記チタン系焼結体の表面を酸化させる表面酸化工程をさらに含む、請求項1~3のいずれか一項に記載のチタン系多孔質体の製造方法。 The method for producing a titanium-based porous body according to any one of claims 1 to 3, further comprising a surface oxidation step of oxidizing the surface of the titanium-based sintered body after the raw material sintering step. 前記チタン系多孔質体の厚みが0.1mm~5.0mmの範囲内である、請求項1~4のいずれか一項に記載のチタン系多孔質体の製造方法。 The method for producing a titanium-based porous body according to any one of claims 1 to 4, wherein the titanium-based porous body has a thickness in the range of 0.1 mm to 5.0 mm. 少なくとも一方の表面の表面粗さRzが100μm以下であるチタン系多孔質体を製造する、請求項1~5のいずれか一項に記載のチタン系多孔質体の製造方法。 The method for producing a titanium-based porous body according to any one of claims 1 to 5, wherein a surface roughness Rz of at least one surface of the titanium-based porous body is 100 µm or less.
JP2021020222A 2021-02-10 2021-02-10 Method for producing titanium-based porous body Active JP7524098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021020222A JP7524098B2 (en) 2021-02-10 2021-02-10 Method for producing titanium-based porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021020222A JP7524098B2 (en) 2021-02-10 2021-02-10 Method for producing titanium-based porous body

Publications (2)

Publication Number Publication Date
JP2022122764A true JP2022122764A (en) 2022-08-23
JP7524098B2 JP7524098B2 (en) 2024-07-29

Family

ID=82939562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021020222A Active JP7524098B2 (en) 2021-02-10 2021-02-10 Method for producing titanium-based porous body

Country Status (1)

Country Link
JP (1) JP7524098B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10111892C1 (en) 2001-03-13 2002-08-22 Gkn Sinter Metals Gmbh Sintered, highly porous body
JP4859689B2 (en) 2006-03-01 2012-01-25 東邦チタニウム株式会社 Method for producing sheet-like porous body

Also Published As

Publication number Publication date
JP7524098B2 (en) 2024-07-29

Similar Documents

Publication Publication Date Title
WO2002064293A1 (en) Titanium powder sintered compact
EP3718664B1 (en) Method for producing titanium-based porous body
EP4112207A1 (en) Method for manufacturing porous metal body, and porous metal body
TWI486457B (en) Magnesium alloy plate
JP2012172179A (en) Titanium sintered porous body and method for producing the same
JP2022122764A (en) Manufacturing method of titanium-based porous body
CN106498221A (en) Nano-porous gold and preparation method thereof
CN106077617B (en) A kind of manufacture method of ultra-thin high-purity rhenium paper tinsel
JP2019163503A (en) Porous titanium-based sintered body and method for manufacturing same, and electrode
WO2014058901A1 (en) System and method for fabrication of 3-d parts
JP7061735B1 (en) Titanium-based porous body and method for manufacturing titanium-based porous body
CN109047763A (en) A method of Al-Fe-V-Si heat-resisting aluminium alloy part is prepared using electron beam selective melting technology
CN108660488A (en) The preparation method of electrolytic copper foil anode plate
US11554415B2 (en) Porous titanium-based sintered body, method for producing the same, and electrode
WO2020177626A1 (en) Electrode structure body and fabrication method thereof
WO2012144651A2 (en) Edge bending jig for mesh-type electrode substrate, edge bending method for mesh-type electrode substrate, hanging jig for mesh-type electrode substrate and hanging method for mesh-type electrode substrate
JP2022123066A (en) porous metal body
WO2022163110A1 (en) Method for manufacturing porous metal body
CN1621199A (en) High-precision tungsten piece preparation method
CN108817403B (en) Preparation method of porous platinum ventilation sheet for nuclear battery ventilation window
JP3569182B2 (en) Tungsten material for secondary processing
WO2021095643A1 (en) Porous metal body, lighting ornament, lighting device, and method of producing porous metal body
JP2004255517A (en) Consumable electrode member for electrical discharge machining
CN112974795B (en) Composite powder for additive manufacturing and remanufacturing and preparation method thereof, and metal-based composite forming layer and preparation method thereof
Castro et al. Optimizing the Operational Parameters Used in Preparing Anodic Aluminum Oxide (AAO) Templates from Low-purity Aluminum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240717

R150 Certificate of patent or registration of utility model

Ref document number: 7524098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150