JP2022122138A - Voltage regulator and voltage regulation method - Google Patents

Voltage regulator and voltage regulation method Download PDF

Info

Publication number
JP2022122138A
JP2022122138A JP2021019240A JP2021019240A JP2022122138A JP 2022122138 A JP2022122138 A JP 2022122138A JP 2021019240 A JP2021019240 A JP 2021019240A JP 2021019240 A JP2021019240 A JP 2021019240A JP 2022122138 A JP2022122138 A JP 2022122138A
Authority
JP
Japan
Prior art keywords
line
voltage
booster
series
neutral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021019240A
Other languages
Japanese (ja)
Inventor
謙治 苻川
Kenji Fukawa
新吾 村上
Shingo Murakami
直人 井深
Naoto Ibuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2021019240A priority Critical patent/JP2022122138A/en
Publication of JP2022122138A publication Critical patent/JP2022122138A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

To provide a voltage regulator suitable for compensating voltage drop of a distribution line.SOLUTION: A voltage regulator 10 connected to a single-phase three-wire system low voltage line 2 raises voltage between a first line 3 and a second line 4 of the low voltage line 2 by a booster 20 different from a pressure rise or a step-down by series transformers 11 and 12. Thus, output voltage of the voltage regulator 10 shifts to a pressure rise side by the booster 20. Therefore, since a pressure rise width can be made larger without making a step-down width by the series transformers 11 and 12 larger, and a compensation amount of the voltage drop due to a line impedance can be increased by a large pressure rise width, while eliminating a waste due to an increase of a step-down width of the voltage regulator 10.SELECTED DRAWING: Figure 2

Description

本発明は、単相三線式の配電線路に接続される電圧調整器および電圧調整方法に関し、特に配電線路の電圧降下を補償するのに適した電圧調整器および電圧調整方法に関するものである。 The present invention relates to a voltage regulator and voltage regulation method connected to a single-phase three-wire distribution line, and more particularly to a voltage regulator and voltage regulation method suitable for compensating for voltage drop in the distribution line.

第1線、第2線および中性線からなる単相三線式の配電線路に接続される電圧調整器には、第1線および第2線にそれぞれ直列接続される直列変圧器の極性を切り換えることで、出力電圧を昇圧または降圧するものがある(特許文献1)。この電圧調整器は、太陽光発電による逆潮流や負荷の変動などに起因して電圧調整器の出力電圧が変動したとき、直列変圧器により出力電圧を昇圧または降圧することで、その変動を打ち消して出力電圧を所定範囲に保つことができる。 A voltage regulator connected to a single-phase three-wire distribution line consisting of a first line, a second line and a neutral line should include a series transformer connected in series with the first line and the second line, respectively. Thus, there is a device that steps up or steps down the output voltage (Patent Document 1). When the voltage regulator's output voltage fluctuates due to reverse power flow from solar power generation or load fluctuations, this voltage regulator cancels out the fluctuations by stepping up or down the output voltage with a series transformer. can keep the output voltage within a predetermined range.

ここで山間部などの配電線路には、高圧線に比べて管理が容易な低圧線を用いることが望まれている。しかし、配電線路の電圧が低い程、線路インピーダンスによる電圧降下が大きくなるので、低圧線を長くするには途中で電圧降下を補償(昇圧)する必要がある。 Here, it is desired to use low-voltage wires, which are easier to manage than high-voltage wires, for distribution lines in mountainous areas and the like. However, the lower the voltage of the distribution line, the greater the voltage drop due to the line impedance. Therefore, it is necessary to compensate for the voltage drop (boost) in order to lengthen the low-voltage line.

特開2015-023593号公報JP 2015-023593 A

上記特許文献1の電圧調整器によれば、直列変圧器の極性を切り換えて出力電圧を昇圧または降圧するので、昇圧幅と降圧幅とが同一になる。この場合、線路インピーダンスによる電圧降下の補償量を増やすために、電圧調整器による昇圧幅を大きくすると、降圧幅も大きくなって無駄が生じる。 According to the voltage regulator of Patent Document 1, the output voltage is stepped up or stepped down by switching the polarity of the series transformer. In this case, if the step-up width of the voltage regulator is increased in order to increase the amount of compensation for the voltage drop due to the line impedance, the step-down width is also increased, resulting in waste.

本発明は上述した問題点を解決するためになされたものであり、配電線路の電圧降下を補償するのに適した電圧調整器および電圧調整方法を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a voltage regulator and a voltage regulation method that are suitable for compensating for a voltage drop in a distribution line.

この目的を達成するために本発明の電圧調整器は、第1線、第2線および中性線からなる単相三線式の配電線路に接続され、入力された電圧を前記第1線および前記第2線と前記中性線との間それぞれで調整して出力するものであって、前記第1線および前記第2線それぞれを二次巻線が連結するように、前記第1線および前記第2線にそれぞれ直列接続される一対の直列変圧器と、その一対の前記直列変圧器の一次巻線への印加電圧の極性または大きさを切り換え、前記二次巻線の誘起電圧の極性または大きさを調整する切換器部と、前記直列変圧器よりも出力側の前記第1線および前記第2線と前記中性線とに接続され、その接続位置の前記第1線および前記第2線と前記中性線との間の電圧に応じて前記切換器部による切り換えを制御する制御部と、その制御部の接続位置よりも入力側の前記第1線および前記第2線にそれぞれ接続されて、前記第1線と前記第2線との間の電圧を昇圧する昇圧器と、を備えている。 In order to achieve this object, the voltage regulator of the present invention is connected to a single-phase three-wire distribution line consisting of a first wire, a second wire and a neutral wire, and supplies an input voltage to said first wire and said neutral wire. The output is adjusted between the second line and the neutral line, respectively, and the first line and the second line are connected to each other by secondary windings. A pair of series transformers connected in series to the second line respectively, and switching the polarity or magnitude of the voltage applied to the primary windings of the pair of series transformers, and switching the polarity or magnitude of the voltage induced in the secondary windings A switching unit that adjusts the size, and is connected to the first line and the second line on the output side of the series transformer and the neutral line, and the first line and the second line are connected to the neutral line. A control section for controlling switching by the switch section according to the voltage between the line and the neutral line, and a connection position of the control section to the first line and the second line on the input side, respectively. a booster for boosting the voltage between the first line and the second line.

また、本発明の電圧調整方法は、第1線、第2線および中性線からなる単相三線式の配電線路の入力電圧に対して出力電圧を調整する方法であって、出力電圧に応じて一対の直列変圧器の一次巻線への印加電圧を切り換え、その一対の直列変圧器の二次巻線に生じる誘起電圧の極性または大きさを調整することで、前記第1線および前記第2線それぞれを連結する前記二次巻線の出力側で前記第1線および前記第2線と前記中性線との間の電圧をそれぞれ昇圧または降圧させる調整ステップと、前記第1線と前記第2線との間の電圧を昇圧器が昇圧する昇圧ステップと、を備えている。 Further, the voltage adjustment method of the present invention is a method of adjusting the output voltage with respect to the input voltage of a single-phase three-wire distribution line consisting of a first wire, a second wire and a neutral wire, and by switching the applied voltage to the primary windings of the pair of series transformers and adjusting the polarity or magnitude of the induced voltage generated in the secondary windings of the pair of series transformers. an adjusting step of increasing or decreasing the voltage between the first line and the second line and the neutral line, respectively, on the output side of the secondary windings connecting the two lines, respectively; and a boosting step in which the booster boosts the voltage between the second line.

請求項1記載の電圧調整器によれば、切換器部により一対の直列変圧器の一次巻線への印加電圧の極性または大きさを切り換えることで、一対の直列変圧器の二次巻線に生じる誘起電圧の極性または大きさが調整され、その二次巻線の出力側で第1線と第2線との間の電圧が昇圧または降圧される。この直列変圧器による昇圧または降圧とは別に、第1線と第2線との間の電圧が昇圧器により昇圧される。これにより、電圧調整器の出力電圧が昇圧器により昇圧側へシフトする。そのため、直列変圧器による降圧幅を大きくせずとも、電圧調整器の昇圧幅を大きくできるので、電圧調整器の降圧幅の増大による無駄を省きつつ、大きな昇圧幅によって線路インピーダンスによる電圧降下の補償量を増やすことができる。 According to the voltage regulator of claim 1, by switching the polarity or magnitude of the voltage applied to the primary windings of the pair of series transformers by the switching unit, the secondary windings of the pair of series transformers are The polarity or magnitude of the resulting induced voltage is adjusted to step up or step down the voltage between the first and second lines at the output of the secondary winding. Apart from this step-up or step-down by the series transformer, the voltage between the first line and the second line is stepped up by the booster. As a result, the output voltage of the voltage regulator is shifted to the boost side by the booster. Therefore, it is possible to increase the step-up width of the voltage regulator without increasing the step-down width of the series transformer. You can increase the amount.

また、制御部は、直列変圧器および昇圧器よりも出力側の第1線および第2線と中性線との間の電圧に応じて、切換器部による切り換えを制御する。これにより、直列変圧器および昇圧器による調整後の出力電圧を制御部で監視して、負荷の変動などに起因した出力電圧の変動を打ち消す制御が可能となる。 Further, the control section controls switching by the switch section according to the voltage between the first and second lines on the output side of the series transformer and the booster and the neutral line. As a result, it is possible to monitor the output voltage after adjustment by the series transformer and the booster in the control unit, and to perform control to cancel out fluctuations in the output voltage caused by fluctuations in the load.

請求項2記載の電圧調整器によれば、第1線および第2線と中性線との間にそれぞれ印加される電圧を平衡化する平衡器が、直列変圧器および昇圧器に対する同位置の第1線および第2線と中性線とに接続されている。よって、その平衡器により、直列変圧器または昇圧器の入力電圧または出力電圧が平衡化されるので、請求項1の効果に加え、電圧調整器の出力電圧を平衡に保ち易くできる。 According to the voltage regulator of claim 2, the balancers for balancing the voltages respectively applied between the first and second lines and the neutral line are provided at the same position with respect to the series transformer and the booster. It is connected to the first and second wires and to the neutral wire. Therefore, the balancer balances the input voltage or the output voltage of the series transformer or the booster, so that in addition to the effect of claim 1, the output voltage of the voltage regulator can be easily kept in balance.

なお、平衡器は、第1線、第2線および中性線との接続位置が、直列変圧器の入力側の同位置でも出力側の同位置でも良く、昇圧器による昇圧位置(例えば後述の直列巻線)の入力側の同位置でも出力側の同位置でも良い。 The balancer may be connected to the first line, the second line and the neutral line at the same position on the input side of the series transformer or at the same position on the output side of the series transformer. Series winding) may be at the same position on the input side or at the same position on the output side.

請求項3記載の電圧調整器によれば、昇圧器と平衡器とが一体に構成されているので、請求項2の効果に加え、昇圧器と平衡器とを別々に設ける場合と比べて電圧調整器を軽量化および小型化できる。 According to the voltage regulator of claim 3, since the booster and the balancer are integrated, in addition to the effect of claim 2, the voltage is reduced compared to the case where the booster and the balancer are provided separately. The regulator can be made lighter and smaller.

請求項4記載の電圧調整器によれば、昇圧器は、第1線および第2線それぞれと中性線とを連結して平衡器を構成する一対の分路巻線と、その一対の分路巻線にそれぞれ接続される一対の直列巻線と、を備えている。このように、平衡器に直列巻線を加えることで昇圧器が構成されるため、請求項3の効果に加え、一体に構成される昇圧器および電圧調整器の構造を簡略化できる。 According to the voltage regulator of claim 4, the booster includes a pair of shunt windings connecting the first and second lines and the neutral line to form a balancer, and a pair of shunt windings thereof. a pair of series windings respectively connected to the circuit windings. Since the booster is configured by adding a series winding to the balancer in this manner, the structure of the booster and the voltage regulator that are integrally configured can be simplified in addition to the effect of claim 3.

なお、昇圧器の分路巻線が平衡器を構成することにより、分路巻線には、電圧調整に応じて生じる電流(A1)に加え、電圧を平衡化するための電流(以下「平衡化電流」と称す)が生じる。 The shunt winding of the booster constitutes a balancer, so that in addition to the current (A1) generated according to the voltage regulation, the current for balancing the voltage (hereinafter referred to as "balancing , called the “current of quenching”) is generated.

請求項5記載の電圧調整器によれば、平衡化電流の最大値は、平衡器の定格電流であるので、本電圧調整器の電圧調整に応じて分路巻線に生じる電流の最大値(A1の最大値)と平衡器の定格電流(平衡化電流の最大値)との合計値が、昇圧器と平衡器とが一体化された分路巻線に生じる電流の最大値となる。この分路巻線に生じる電流の最大値(A1の最大値+平衡器の定格電流)を分路巻線の断面積(DX)で除した値、即ち分路巻線に生じる最大の電流密度が3[A/mm]以下である。これにより、電圧調整時の電流に加えて平衡化電流が分路巻線に生じても、電流密度に応じた分路巻線の発熱量を抑制できるので、それらの電流に分路巻線をより耐えさせ易くできる。よって、請求項4の効果に加え、昇圧器の分路巻線の耐久性をより向上できる。 According to the voltage regulator of claim 5, since the maximum value of the balancing current is the rated current of the balancer, the maximum value of the current ( A1 maximum value) and the rated current of the balancer (maximum value of the balancing current) is the maximum value of the current generated in the shunt winding where the booster and the balancer are integrated. The value obtained by dividing the maximum value of the current occurring in this shunt winding (maximum value of A1 + the rated current of the balancer) by the cross-sectional area (DX) of the shunt winding, i.e. the maximum current density occurring in the shunt winding is 3 [A/mm 2 ] or less. As a result, even if a balancing current is generated in the shunt winding in addition to the current during voltage adjustment, the amount of heat generated by the shunt winding according to the current density can be suppressed. It can be made easier to endure. Therefore, in addition to the effects of claim 4, the durability of the shunt winding of the booster can be further improved.

請求項6記載の電圧調整方法によれば、調整ステップによって、一対の直列変圧器の一次巻線への印加電圧を出力電圧に応じて切り換え、その一対の直列変圧器の二次巻線に生じる誘起電圧の極性または大きさを調整する。これにより、第1線および第2線それぞれを連結する二次巻線の出力側で第1線および第2線と中性線との間の電圧がそれぞれ昇圧または降圧される。この調整ステップとは別に、第1線と第2線との間の電圧を昇圧器が昇圧する昇圧ステップが行われる。これにより、電圧調整器による昇圧幅および降圧幅が、昇圧器により昇圧側へシフトする。そのため、直列変圧器による降圧幅を大きくせずとも、電圧調整器の昇圧幅を大きくできるので、電圧調整器の降圧幅の増大による無駄を省きつつ、大きな昇圧幅によって線路インピーダンスによる電圧降下の補償量を増やすことができる。 According to the voltage regulation method of claim 6, the regulation step switches the applied voltage to the primary windings of the pair of series transformers in accordance with the output voltage, resulting in the secondary windings of the pair of series transformers. Adjust the polarity or magnitude of the induced voltage. As a result, the voltage between the first and second lines and the neutral line is increased or decreased on the output side of the secondary windings connecting the first and second lines, respectively. Apart from this adjustment step, a boosting step is performed in which a booster boosts the voltage between the first line and the second line. As a result, the step-up width and step-down width of the voltage regulator are shifted to the step-up side by the booster. Therefore, it is possible to increase the step-up width of the voltage regulator without increasing the step-down width of the series transformer. You can increase the amount.

なお、昇圧ステップの後に調整ステップを行っても良いし、調整ステップの後に昇圧ステップを行っても良い。 The adjusting step may be performed after the boosting step, or the boosting step may be performed after the adjusting step.

一実施形態における電圧調整器を低圧線に接続した状態を示す模式図である。It is a schematic diagram which shows the state which connected the voltage regulator in one Embodiment to the low voltage line. 電圧調整器の回路図である。Fig. 3 is a circuit diagram of a voltage regulator; 電圧調整器における半導体リレーのオンオフパターンと調整電圧との関係を示す表である。4 is a table showing the relationship between on/off patterns of semiconductor relays and adjustment voltages in a voltage regulator. (a)は昇圧器とは別に平衡器を設けた電圧調整器の変形例を示す説明図であり、(b)は昇圧器の分路巻線が平衡器として機能する場合の説明図である。(a) is an explanatory diagram showing a modification of the voltage regulator in which a balancer is provided separately from the booster, and (b) is an explanatory diagram in the case where the shunt winding of the booster functions as the balancer. .

以下、好ましい実施形態について添付図面を参照して説明する。まず、図1を参照して一実施形態における電圧調整器10の概要について説明する。図1に示すように、電圧調整器10は、入力された電圧を調整して出力する機器であり、交流の配電線路のうち単相三線式の低圧線2に接続される。 Preferred embodiments are described below with reference to the accompanying drawings. First, the outline of the voltage regulator 10 in one embodiment will be described with reference to FIG. As shown in FIG. 1, the voltage regulator 10 is a device that adjusts and outputs an input voltage, and is connected to a single-phase three-wire low-voltage line 2 in an AC distribution line.

低圧線2の入力側(発電所や変電所側)は、高圧線6に柱上変圧器7を介して接続される。この柱上変圧器7によって電圧が高圧線6の約6.6[kV]から低圧線2の約210[V]及び約105[V]へ変換される。低圧線2の出力側は、一般家庭や工場などの需要家8に接続される。 The input side (power plant or substation side) of the low-voltage line 2 is connected to the high-voltage line 6 via a pole transformer 7 . The pole transformer 7 converts the voltage from about 6.6 [kV] of the high voltage line 6 to about 210 [V] and about 105 [V] of the low voltage line 2 . The output side of the low-voltage line 2 is connected to consumers 8 such as ordinary homes and factories.

低圧線2は、高圧線6と比べて電圧が低いため、線路インピーダンスによる電圧降下が大きい。この電圧降下を考慮しながら、需要家8等での電圧を101±6[V]の範囲に保つ必要がある。また、柱上変圧器7で210[V]に変換された電圧に対しては、需要家8等での電圧を202±20[V]の範囲に保つ必要がある。 Since the voltage of the low-voltage line 2 is lower than that of the high-voltage line 6, the voltage drop due to the line impedance is large. Considering this voltage drop, it is necessary to keep the voltage at the consumer 8 and the like within the range of 101±6 [V]. Further, with respect to the voltage converted to 210 [V] by the pole-mounted transformer 7, the voltage at the customer 8 or the like must be kept within the range of 202±20 [V].

低圧線2の途中に電圧調整器10を接続し、この電圧調整器10で低圧線2の電圧を昇圧すること、即ち低圧線2の電圧降下を電圧調整器10で補償することによって、需要家8等での電圧を所定範囲に保ちながら低圧線2を長くできる。これにより、山間部などの配電線路の管理を容易にできる。 By connecting a voltage regulator 10 in the middle of the low-voltage line 2 and boosting the voltage of the low-voltage line 2 with this voltage regulator 10, that is, by compensating for the voltage drop in the low-voltage line 2 with the voltage regulator 10, The low-voltage line 2 can be lengthened while the voltage at 8 or the like is kept within a predetermined range. This facilitates management of distribution lines in mountainous areas and the like.

次に図2及び図3を参照し、電圧調整器10の詳細について説明する。図2に示すように、電圧調整器10は、第1線3、第2線4及び中性線5からなる単相三線式の低圧線2(図1参照)に、入力側の端子3a,4a,5a及び出力側の端子3b,4bを介して接続される。この中性線5は接地されている。電圧調整器10への入力電圧に関し、中性線5と第1線3との間の電圧は、中性線5と第2線4との間の電圧に対して極性が逆で大きさが同じである。 2 and 3, the details of voltage regulator 10 will now be described. As shown in FIG. 2, the voltage regulator 10 connects input terminals 3a, 4a, 5a and terminals 3b, 4b on the output side. This neutral wire 5 is grounded. With respect to the input voltage to the voltage regulator 10, the voltage between the neutral wire 5 and the first wire 3 is opposite in polarity and magnitude to the voltage between the neutral wire 5 and the second wire 4. are the same.

電圧調整器10は、第1線3と第2線4との間の出力側の電圧を昇圧する昇圧器20と、第1線3及び第2線4と中性線5との間にそれぞれ印加される電圧を平衡化する平衡器25と、出力側の電圧を昇圧または降圧する直列変圧器11,12と、その直列変圧器11,12による昇圧または降圧を切り換える切換器部13と、切換器部13による切り換えを制御する制御部14と、を備える。 The voltage regulator 10 comprises a booster 20 for boosting the voltage on the output side between the first line 3 and the second line 4, A balancer 25 for balancing the applied voltage, series transformers 11 and 12 for stepping up or stepping down the voltage on the output side, a switching unit 13 for switching between stepping up or stepping down by the series transformers 11 and 12, and switching and a control unit 14 for controlling switching by the device unit 13 .

電圧調整器10内を通る第1線3は、端子3aと昇圧器20とを繋ぐ第1入力線3cと、昇圧器20と直列変圧器11とを繋ぐ第1昇圧線3dと、直列変圧器11から端子3b側へ延びる第1調整線3eと、第1調整線3eから分岐して切換器部13及び制御部14に接続される第1分岐線3fと、第1調整線3eと第1分岐線3fとの分岐点から端子3bまでを繋ぐ第1出力線3gと、を備えている。 The first line 3 passing through the voltage regulator 10 includes a first input line 3c connecting the terminal 3a and the booster 20, a first boosting line 3d connecting the booster 20 and the series transformer 11, and a series transformer. 11 to the terminal 3b side, a first branch line 3f branched from the first adjustment line 3e and connected to the switching unit 13 and the control unit 14, the first adjustment line 3e and the first and a first output line 3g connecting the branch point with the branch line 3f to the terminal 3b.

電圧調整器10内を通る第2線4は、端子4aと昇圧器20とを繋ぐ第2入力線4cと、昇圧器20と直列変圧器12とを繋ぐ第2昇圧線4dと、直列変圧器12から端子4b側へ延びる第2調整線4eと、第2調整線4eから分岐して切換器部13及び制御部14に接続される第2分岐線4fと、第2調整線4eと第2分岐線4fとの分岐点から端子4bまでを繋ぐ第2出力線4gと、を備えている。 The second line 4 passing through the voltage regulator 10 includes a second input line 4c connecting the terminal 4a and the booster 20, a second boosting line 4d connecting the booster 20 and the series transformer 12, and a series transformer. 12 to the terminal 4b side, a second branch line 4f branched from the second adjustment line 4e and connected to the switching unit 13 and the control unit 14, the second adjustment line 4e and the second and a second output line 4g connecting the branch point with the branch line 4f to the terminal 4b.

中性線5は、端子5aで分岐し、その分岐線が電圧調整器10内に配置され、中性線5の本線が需要家8(図1参照)等に接続される。電圧調整器10内の中性線5は、端子5aと昇圧器20とを繋ぐ中性入力線5bと、中性入力線5bから分岐して切換器部13及び制御部14に接続される中性分岐線5cと、を備えている。 The neutral line 5 is branched at a terminal 5a, the branch line is arranged in the voltage regulator 10, and the main line of the neutral line 5 is connected to the consumer 8 (see FIG. 1) and the like. The neutral line 5 in the voltage regulator 10 includes a neutral input line 5b connecting the terminal 5a and the booster 20, and a neutral input line 5b branched from the neutral input line 5b and connected to the switching unit 13 and the control unit 14. and a sexual branch line 5c.

昇圧器20は、中性入力線5bと第1入力線3cとを連結する第1分路巻線21と、中性入力線5bと第2入力線4cとを連結する第2分路巻線22と、第1入力線3cと第1昇圧線3dとを連結する第1直列巻線23と、第2入力線4cと第2昇圧線4dとを連結する第2直列巻線24と、を備える。昇圧器20は、これらの第1分路巻線21、第2分路巻線22、第1直列巻線23及び第2直列巻線24が同一の鉄心に巻かれた昇圧用の単巻変圧器である。 The booster 20 has a first shunt winding 21 connecting the neutral input line 5b and the first input line 3c, and a second shunt winding connecting the neutral input line 5b and the second input line 4c. 22, a first series winding 23 connecting the first input line 3c and the first boost line 3d, and a second series winding 24 connecting the second input line 4c and the second boost line 4d. Prepare. The booster 20 is a boosting autotransformer in which the first shunt winding 21, the second shunt winding 22, the first series winding 23, and the second series winding 24 are wound on the same core. It is a vessel.

第1分路巻線21と第2分路巻線22とは、中性入力線5bと1点で接続される。また、第1分路巻線21と第1直列巻線23とは、第1入力線3cと1点で接続される。さらに、第2分路巻線22と第2直列巻線24とは、第2入力線4cと1点で接続される。 The first shunt winding 21 and the second shunt winding 22 are connected to the neutral input line 5b at one point. Also, the first shunt winding 21 and the first series winding 23 are connected to the first input line 3c at one point. Further, the second shunt winding 22 and the second series winding 24 are connected to the second input line 4c at one point.

第1分路巻線21及び第2分路巻線22は、互いに巻数N1が同一に設定される。第1直列巻線23及び第2直列巻線24は、互いに巻数N2が同一に設定される。巻数N1よりも巻数N2が少なく設定される。本実施形態では、巻数N1:巻数N2が約40:1に設定される。 The first shunt winding 21 and the second shunt winding 22 are set to have the same number of turns N1. The first series winding 23 and the second series winding 24 are set to have the same number of turns N2. The number of turns N2 is set smaller than the number of turns N1. In this embodiment, the number of turns N1: number of turns N2 is set to about 40:1.

よって、第1入力線3cと中性入力線5bとの間の電圧が第1分路巻線21に印加されると、第1直列巻線23により約2.5%昇圧された電圧が第1昇圧線3dと中性線5との間へ出力される。第2入力線4cと中性入力線5bとの間の電圧が第2分路巻線22に印加されると、第2直列巻線24により約2.5%昇圧された電圧が第2昇圧線4dと中性線5との間へ出力される。 Therefore, when the voltage between the first input line 3c and the neutral input line 5b is applied to the first shunt winding 21, the voltage boosted by about 2.5% by the first series winding 23 is It is output between the 1 booster line 3d and the neutral line 5. When the voltage between the second input line 4c and the neutral input line 5b is applied to the second shunt winding 22, the voltage boosted by about 2.5% by the second series winding 24 is the second boosted voltage. Output is between line 4d and neutral line 5;

昇圧器20は、第1線3側と第2線4側とを合わせた入力電圧に対し出力電圧を約2.5%昇圧する。具体的に、第1入力線3cと第2入力線4cとの間の電圧が約200[V]であれば、昇圧器20は約5[V]昇圧して出力する。 The booster 20 boosts the output voltage by about 2.5% with respect to the combined input voltage of the first line 3 side and the second line 4 side. Specifically, if the voltage between the first input line 3c and the second input line 4c is approximately 200 [V], the booster 20 boosts the voltage by approximately 5 [V] and outputs the voltage.

平衡器25は、第1入力線3c及び第2入力線4cそれぞれと中性入力線5bとを連結する一対の巻線と、その一対の巻線が巻かれる一の鉄心(図示せず)とを備え、本実施形態では定格電流が約10Aに設定される。本実施形態における平衡器25の一対の巻線は、第1分路巻線21及び第2分路巻線22により構成されている。一の鉄心に巻かれる第1分路巻線21及び第2分路巻線22の巻数N1が互いに同一なので、平衡器25は、第1分路巻線21の印加電圧と第2分路巻線22の印加電圧とを平衡化できる。 The balancer 25 includes a pair of windings connecting the first input line 3c, the second input line 4c, and the neutral input line 5b, and an iron core (not shown) around which the pair of windings are wound. and the rated current is set to about 10A in this embodiment. A pair of windings of the balancer 25 in this embodiment is composed of the first shunt winding 21 and the second shunt winding 22 . Since the number of turns N1 of the first shunt winding 21 and the second shunt winding 22 wound on one iron core is the same, the balancer 25 is able to divide the applied voltage of the first shunt winding 21 and the second shunt winding It can be balanced with the applied voltage on line 22 .

この平衡器25と昇圧器20とは、同一の鉄心を用いて一体に構成されている。これにより、電圧調整器10内に昇圧器20と平衡器25とを別々に設ける場合と比べて鉄心を削減できる。よって、昇圧器20及び平衡器25の両方を有する電圧調整器10を軽量化および小型化できる。 The balancer 25 and the booster 20 are integrally constructed using the same iron core. This makes it possible to reduce the number of iron cores compared to the case where the booster 20 and the balancer 25 are provided separately in the voltage regulator 10 . Therefore, the voltage regulator 10 having both the booster 20 and the balancer 25 can be made lighter and smaller.

また、単巻変圧器の一種である平衡器25に第1直列巻線23及び第2直列巻線24を加えることで、昇圧用の単巻変圧器である昇圧器20を構成できる。その結果、一体に構成される昇圧器20及び平衡器25の構造を簡略化できる。 By adding the first series winding 23 and the second series winding 24 to the balancer 25, which is a type of autotransformer, the booster 20, which is an autotransformer for boosting, can be configured. As a result, the structure of the booster 20 and balancer 25 that are integrated can be simplified.

平衡器25の巻線(第1分路巻線21及び第2分路巻線22)は、直列変圧器11,12及び昇圧器20に対する同位置の第1線3及び第2線4(第1入力線3c及び第2入力線4c)に接続されている。よって、その平衡器25により、直列変圧器11,12及び昇圧器20の出力電圧が平衡化されるので、電圧調整器10の出力電圧を平衡に保ち易くできる。 The windings of the balancer 25 (the first shunt winding 21 and the second shunt winding 22) are connected to the first line 3 and the second line 4 (the second 1 input line 3c and a second input line 4c). Therefore, the output voltages of the series transformers 11 and 12 and the booster 20 are balanced by the balancer 25, so that the output voltage of the voltage regulator 10 can be easily kept in balance.

直列変圧器11は、配線15,16を介して切換器部13に接続される一次巻線11aと、第1昇圧線3dと第1調整線3eとを連結する二次巻線11bと、を備える。これら一次巻線11a及び二次巻線11bが、昇圧器20の鉄心とは異なる鉄心(図示せず)に巻かれる。これにより、直列変圧器11は、一次巻線11aの印加電圧に応じて、二次巻線11bに誘起電圧を生じさせ、その誘起電圧により第1昇圧線3dと中性線5との間の電圧に対し第1調整線3eと中性線5との間の電圧を昇圧または降圧する。 The series transformer 11 includes a primary winding 11a connected to the switching unit 13 via wirings 15 and 16, and a secondary winding 11b connecting the first booster line 3d and the first adjustment line 3e. Prepare. These primary winding 11 a and secondary winding 11 b are wound around an iron core (not shown) different from the iron core of booster 20 . As a result, the series transformer 11 generates an induced voltage in the secondary winding 11b according to the voltage applied to the primary winding 11a, and the induced voltage causes the voltage between the first booster line 3d and the neutral line 5 to The voltage between the first adjustment line 3e and the neutral line 5 is increased or decreased with respect to the voltage.

直列変圧器12は、配線15,16を介して切換器部13に接続される一次巻線12aと、第2昇圧線4dと第2調整線4eとを連結する二次巻線12bと、を備える。これら一次巻線12a及び二次巻線12bが、直列変圧器11の鉄心と同一の鉄心に巻かれる。これにより、直列変圧器12は、一次巻線12aの印加電圧に応じて、二次巻線12bに誘起電圧を生じさせ、その誘起電圧により第2昇圧線4dと中性線5との間の電圧に対し第2調整線4eと中性線5との間の電圧を昇圧または降圧する。 The series transformer 12 includes a primary winding 12a connected to the switching unit 13 via wirings 15 and 16, and a secondary winding 12b connecting the second booster line 4d and the second adjustment line 4e. Prepare. These primary winding 12 a and secondary winding 12 b are wound on the same iron core as the series transformer 11 . As a result, the series transformer 12 generates an induced voltage in the secondary winding 12b according to the voltage applied to the primary winding 12a, and the induced voltage causes the voltage between the second booster line 4d and the neutral line 5 to The voltage between the second adjustment line 4e and the neutral line 5 is raised or lowered with respect to the voltage.

直列変圧器11の一次巻線11aの両端と、直列変圧器12の一次巻線12aの両端とは、一次巻線11a,12aそれぞれの印加電圧の極性が互いに逆になるよう、配線15,16で繋がれている。さらに、一次巻線11aに対する二次巻線11bの巻数比と、一次巻線12aに対する二次巻線12bの巻数比とが同じであり、直列変圧器11,12は同一の鉄心を使用しているので、一次巻線11a,12aへの印加電圧に応じて、二次巻線11b,12bそれぞれに生じる誘起電圧の大きさが同じで極性が逆になる。 Wires 15 and 16 are connected between both ends of the primary winding 11a of the series transformer 11 and both ends of the primary winding 12a of the series transformer 12 so that the polarities of the voltages applied to the primary windings 11a and 12a are opposite to each other. are connected by Furthermore, the turns ratio of the secondary winding 11b to the primary winding 11a and the turns ratio of the secondary winding 12b to the primary winding 12a are the same, and the series transformers 11 and 12 use the same core. Therefore, depending on the voltage applied to the primary windings 11a and 12a, the induced voltages generated in the secondary windings 11b and 12b have the same magnitude and opposite polarities.

切換器部13は、一次巻線11a,12aへの印加電圧の極性または大きさを切り換える機器である。切換器部13は、5つの半導体リレー(以下「リレー」と称す)A~Eを備える。リレーA~Cは配線15に接続され、リレーD,Eは配線16に接続される。リレーA,Dは、第2分岐線4fに接続される。リレーB,Eは、第1分岐線3fに接続される。リレーCは、中性分岐線5cに接続される。 The switch unit 13 is a device that switches the polarity or magnitude of the voltage applied to the primary windings 11a and 12a. The switching unit 13 includes five semiconductor relays (hereinafter referred to as "relays") A to E. Relays A to C are connected to wiring 15 and relays D and E are connected to wiring 16 . Relays A and D are connected to the second branch line 4f. Relays B and E are connected to the first branch line 3f. Relay C is connected to neutral branch line 5c.

図2に加え、リレーA~Eのオンオフパターンと電圧調整器10の調整電圧との関係を示した図3を用いて説明する。なお、図3や以下の説明では、昇圧をプラス(+)で示し、降圧をマイナス(-)で示す。また、図3の説明では、第1入力線3cと第2入力線4cとの間の入力電圧を200[V]とし、中性入力線5bと第1入力線3c又は第2入力線4cとの間の入力電圧を100[V]とする。 In addition to FIG. 2, FIG. 3 showing the relationship between the ON/OFF patterns of the relays A to E and the regulated voltage of the voltage regulator 10 will be used. In addition, in FIG. 3 and the following description, a plus (+) indicates a step-up, and a minus (-) indicates a step-down. Further, in the description of FIG. 3, the input voltage between the first input line 3c and the second input line 4c is 200 [V], and the neutral input line 5b and the first input line 3c or the second input line 4c The input voltage between is assumed to be 100 [V].

まず、リレーA,Eのオン時には、一次巻線11a,12aに第1分岐線3fと第2分岐線4fとの間の電圧が印加される。リレーA,Eのオン直後に二次巻線11b,12bに誘起電圧が生じていないものとすると、一次巻線11a,12aの印加電圧は、第1入力線3cと第2入力線4cとの間の入力電圧を昇圧器20で+約5[V]した約205[V]となる。 First, when the relays A and E are turned on, the voltage between the first branch line 3f and the second branch line 4f is applied to the primary windings 11a and 12a. Assuming that no induced voltage is generated in the secondary windings 11b and 12b immediately after the relays A and E are turned on, the voltage applied to the primary windings 11a and 12a is the voltage between the first input line 3c and the second input line 4c. The input voltage in between is increased by about 5 [V] in the booster 20 to about 205 [V].

この印加電圧に応じ、二次巻線11b,12bに誘起電圧が生じて出力電圧が昇圧される。この出力電圧の昇圧に伴って一次巻線11a,12aの印加電圧が昇圧され、その昇圧に伴って誘起電圧も昇圧される。印加電圧の昇圧と誘起電圧の昇圧とがループするが、この昇圧値は収束する。 In response to this applied voltage, an induced voltage is generated in the secondary windings 11b and 12b to boost the output voltage. As the output voltage rises, the voltage applied to the primary windings 11a and 12a rises, and the induced voltage rises accordingly. The boosting of the applied voltage and the boosting of the induced voltage loop, but this boosted value converges.

一次巻線11a,12aと二次巻線11b,12bとの巻数比は、片側の二次巻線11b,12bにおける誘起電圧が電圧調整器10の入力電圧に対して約5[V]となるように設定されている。よって、リレーA,Eのオン時に電圧調整器10は、入力電圧に対して出力電圧を、昇圧器20で+約5[V]、両側の二次巻線11b,12bで+約10[V]し、それらを合わせた出力側全体で+約15[V]、即ち約7.5%昇圧する。 The turns ratio between the primary windings 11a, 12a and the secondary windings 11b, 12b is such that the induced voltage in the secondary windings 11b, 12b on one side is about 5 [V] with respect to the input voltage of the voltage regulator 10. is set to Therefore, when the relays A and E are turned on, the voltage regulator 10 increases the output voltage with respect to the input voltage by about +5 [V] at the booster 20 and +about +10 [V] at the secondary windings 11b and 12b on both sides. ], and the total output side is increased by about +15 [V], that is, about 7.5%.

同様に、リレーC,Eのオン時には、第1分岐線3fと中性分岐線5cとの間の電圧が一次巻線11a,12aの印加電圧となり、二次巻線11b,12bがそれぞれ出力電圧を+約2.5[V]する。よって、リレーC,Eのオン時に電圧調整器10は、入力電圧に対して出力電圧を、昇圧器20で+約5[V]、両側の二次巻線11b,12bで+約5[V]し、それらを合わせた出力側全体で+約10[V]、即ち約5%昇圧する。 Similarly, when the relays C and E are on, the voltage between the first branch line 3f and the neutral branch line 5c becomes the voltage applied to the primary windings 11a and 12a, and the secondary windings 11b and 12b output voltages. + about 2.5 [V]. Therefore, when the relays C and E are turned on, the voltage regulator 10 increases the output voltage with respect to the input voltage by about +5 [V] at the booster 20 and +about +5 [V] at the secondary windings 11b and 12b on both sides. ], and the entirety of the combined output side is boosted by about +10 [V], that is, about 5%.

また、リレーA,D(又はリレーB,E)のオン時には、一次巻線11a,12aの両端の電圧が同じ(印加電圧が0[V])になり、二次巻線11b,12bの誘起電圧が0[V]となる。この場合、電圧調整器10は、入力電圧に対して出力電圧を昇圧器20で+約5[V]するだけであり、出力側全体で約2.5%昇圧する。 When the relays A and D (or the relays B and E) are on, the voltages across the primary windings 11a and 12a become the same (applied voltage is 0 [V]), and the secondary windings 11b and 12b are induced. The voltage becomes 0 [V]. In this case, the voltage regulator 10 increases the output voltage by about +5 [V] with respect to the input voltage by the booster 20, and boosts the entire output side by about 2.5%.

リレーC,Dのオン時には、リレーC,Eのオン時とは極性が反対で大きさが同じ電圧が一次巻線11a,12aに印加される。この場合の電圧調整器10は、入力電圧に対して出力電圧を、昇圧器20で+約5[V]、両側の二次巻線11b,12bで-約5[V]し、出力側全体で調整電圧が約0[V]となる。 When the relays C and D are on, voltages of the opposite polarity and the same magnitude as when the relays C and E are on are applied to the primary windings 11a and 12a. The voltage regulator 10 in this case increases the output voltage with respect to the input voltage by about +5 [V] at the booster 20, about -5 [V] at the secondary windings 11b and 12b on both sides, and the entire output side , the adjustment voltage becomes about 0 [V].

リレーB,Dのオン時には、リレーA,Eのオン時とは極性が反対で大きさが同じ電圧が一次巻線11a,12aに印加される。この場合の電圧調整器10は、入力電圧に対して出力電圧を、昇圧器20で+約5[V]、両側の二次巻線11b,12bで-約10[V]し、それらを合わせた出力側全体で-約5[V]、即ち約2.5%降圧する。 When the relays B and D are turned on, voltages of the opposite polarity and the same magnitude as when the relays A and E are turned on are applied to the primary windings 11a and 12a. The voltage regulator 10 in this case makes the output voltage with respect to the input voltage about +5 [V] at the booster 20 and about -10 [V] at the secondary windings 11b and 12b on both sides, and combines them. The voltage drops by about -5 [V], that is, about 2.5% on the entire output side.

制御部14は、上述したパターンでリレーA~Eの切り換え制御を行う機器である。制御部14は、第1分岐線3f、第2分岐線4f及び中性分岐線5cに接続され、その接続位置の電圧を検出する。なお、昇圧器20及び直列変圧器11,12によって電圧が調整された位置であれば、リレーA,Dに繋がる第1分岐線3fに代えて第1調整線3eや第1出力線3gから分岐した別の分岐線に制御部14を接続しても良く、リレーB,Eに繋がる第2分岐線4fに代えて第2調整線4eや第2出力線4gから分岐した別の分岐線に制御部14を接続しても良い。 The control unit 14 is a device that controls switching of the relays A to E in the pattern described above. The control unit 14 is connected to the first branch line 3f, the second branch line 4f, and the neutral branch line 5c, and detects voltages at the connection positions. If the voltage is adjusted by the booster 20 and the series transformers 11 and 12, the first adjustment line 3e and the first output line 3g are branched instead of the first branch line 3f connected to the relays A and D. The control unit 14 may be connected to another branch line that is connected to the relays B and E, and instead of the second branch line 4f connected to the relays B and E, another branch line branched from the second adjustment line 4e or the second output line 4g is used for control. 14 may be connected.

これにより、制御部14は、昇圧器20及び直列変圧器11,12によって調整された出力電圧の監視が可能となる。制御部14は、需要家8等での電圧が所定の範囲に収まるように、出力電圧に応じてリレーA~Eのオンオフを切り換え、出力側全体の調整電圧を調整する。例えば、制御部14は、太陽光発電による逆潮流や負荷の変動などに起因して出力電圧が変動する場合、出力側全体の調整電圧の調整によって、その変動を打ち消すようにリレーA~Eのオンオフを切り換える制御を実行する。 This allows the controller 14 to monitor the output voltage regulated by the booster 20 and series transformers 11 and 12 . The control unit 14 switches on/off the relays A to E according to the output voltage so that the voltage at the consumer 8 or the like falls within a predetermined range, and adjusts the adjustment voltage of the entire output side. For example, when the output voltage fluctuates due to reverse power flow due to photovoltaic power generation, load fluctuations, or the like, the control unit 14 adjusts the regulated voltage on the entire output side to cancel out the fluctuations. Execute control to switch on/off.

以上説明した電圧調整器10によれば、直列変圧器11,12による昇圧または降圧とは別に、昇圧器20による昇圧が行われるため、電圧調整器10の出力電圧が昇圧器20により昇圧側へシフトする。具体的に、直列変圧器11,12の出力電圧の昇圧幅が約5%(+約10[V])、降圧幅も約5%(-約10[V])であったところ、昇圧器20による約2.5%の昇圧(+約5[V])により、電圧調整器10の昇圧幅を約7.5%(+約15[V])、降圧幅を約2.5%(-約5[V])にできる。 According to the voltage regulator 10 described above, the voltage is boosted by the booster 20 separately from the boosting or stepping down by the series transformers 11 and 12. Therefore, the output voltage of the voltage regulator 10 is boosted by the booster 20. shift. Specifically, when the step-up width of the output voltage of the series transformers 11 and 12 was about 5% (+ about 10 [V]) and the step-down width was about 5% (-about 10 [V]), the booster 20 increases the voltage by about 2.5% (+about 5 [V]), the voltage regulator 10 increases the voltage increase width by about 7.5% (+about 15 [V]) and reduces the voltage reduction width by about 2.5% ( −about 5 [V]).

このように、電圧調整器10は、直列変圧器11,12による降圧幅を大きくせずとも、昇圧幅を大きくできる。よって、電圧調整器10の降圧幅の増大による無駄を省きつつ、大きな昇圧幅によって低圧線2の線路インピーダンスによる電圧降下の補償量を増やすことができる。 Thus, the voltage regulator 10 can increase the step-up range without increasing the step-down range by the series transformers 11 and 12 . Therefore, it is possible to increase the amount of compensation for the voltage drop due to the line impedance of the low-voltage line 2 due to the large step-up width, while eliminating waste due to the increase in the step-down width of the voltage regulator 10 .

また、直列変圧器11,12による降圧幅(-約5%)よりも、昇圧器20による昇圧値(+約2.5%)が小さいので、電圧調整器10の入力電圧に対して出力電圧を降圧する調整が可能となる。これにより、電圧降下が問題になり難い長さの低圧線2に電圧調整器10を設け、出力電圧が昇圧する変動が生じた場合でも、その変動を電圧調整器10で打ち消し(降圧)できる。 In addition, since the step-up value (approximately +2.5%) by the booster 20 is smaller than the step-down width (approximately -5%) by the series transformers 11 and 12, the output voltage with respect to the input voltage of the voltage regulator 10 can be adjusted to lower the voltage. Thus, even when the voltage regulator 10 is provided in the low-voltage line 2 with a length that causes no voltage drop, and the fluctuation of the output voltage is increased, the voltage regulator 10 can cancel out (step down) the fluctuation.

さらに、リレーA~Eの切り換えによって直列変圧器11,12の誘起電圧が約2.5%刻みで変化し、その刻み値と昇圧器20による昇圧値との大きさが略同一なので、上述した通りリレーC,Dのオン時には電圧調整器10の出力側全体の調整電圧を約0Vにできる。これにより、電圧調整器10で出力電圧を昇圧も降圧もしない調整が可能となり、電圧調整器10の平衡器25の機能のみを発揮させることができる。 Furthermore, the switching of the relays A to E causes the induced voltages of the series transformers 11 and 12 to change in increments of about 2.5%, and the increment value and the boosted value by the booster 20 are substantially the same. When the relays C and D are ON, the regulated voltage of the entire output side of the voltage regulator 10 can be set to about 0V. As a result, the voltage regulator 10 can adjust the output voltage without increasing or decreasing the voltage, and only the function of the balancer 25 of the voltage regulator 10 can be exhibited.

電圧調整器10は、直列変圧器11,12により第1線3側と第2線4側とで電圧を同じだけ変動させ、昇圧器20により第1線3側と第2線4側とで電圧を同じだけ昇圧させる。第1線3及び第2線4と中性線5との間の電圧がそれぞれ同じであれば、電圧の差に起因した電流が平衡器25に流れなくなるので、平衡器25の巻線(第1分路巻線21及び第2分路巻線22)の断面積を小さくできる。 The voltage regulator 10 fluctuates the voltages of the first line 3 side and the second line 4 side by the same amount by the series transformers 11 and 12, and changes the voltages on the first line 3 side and the second line 4 side by the booster 20. Increase the voltage by the same amount. If the voltages between the first wire 3 and the second wire 4 and the neutral wire 5 are the same, the current caused by the voltage difference will not flow through the balancer 25, so the winding of the balancer 25 (the second The cross-sectional areas of the first shunt winding 21 and the second shunt winding 22) can be reduced.

次に、図4(a)及び図4(b)を参照し、電圧調整器10の入力側に繋げた負荷が不平衡となる場合、本発明の変形例である電圧調整器30の入力側に繋げた負荷が不平衡となる場合についてそれぞれ説明する。なお、電圧調整器10,30の入力側の第2線4と中性線5との間に負荷R1を繋げて、入力側の第1線3と中性線5との間に負荷を繋げず、電圧調整器10,30の出力側の第1線3及び第2線4と中性線5との間にそれぞれ同一の負荷R2を繋げた場合を例示して説明する。 Next, referring to FIGS. 4(a) and 4(b), when the load connected to the input side of the voltage regulator 10 becomes unbalanced, the input side of the voltage regulator 30, which is a modification of the present invention, A case in which the load connected to is unbalanced will be described. A load R1 is connected between the second line 4 and the neutral line 5 on the input side of the voltage regulators 10 and 30, and a load is connected between the first line 3 and the neutral line 5 on the input side. First, the case where the same load R2 is connected between the neutral wire 5 and the first and second wires 3 and 4 on the output side of the voltage regulators 10 and 30 will be described as an example.

このとき、負荷R1には、電圧調整器10,30の入力側の負荷の不平衡による電流2・A3(A3の2倍)が中性線5から第2線4へ流れるものとする。また、負荷R1は、電圧調整器10,30の入力側の低圧線2に接続された需要家(図示せず)内の負荷を示す。負荷R2は、電圧調整器10,30の出力側の低圧線2に接続された需要家8内の負荷を示す。 At this time, it is assumed that a current 2·A3 (twice A3) flows through the load R1 from the neutral wire 5 to the second wire 4 due to the load imbalance on the input side of the voltage regulators 10 and 30 . A load R1 indicates a load in a consumer (not shown) connected to the low-voltage line 2 on the input side of the voltage regulators 10,30. A load R2 indicates a load in the customer 8 connected to the low voltage line 2 on the output side of the voltage regulators 10,30.

図4(a)は、本発明の変形例であって、昇圧器20とは別に平衡器31を設けた電圧調整器30の説明図である。図4(b)は、電圧調整器10の昇圧器20が平衡器25として機能する場合の説明図である。なお、中性線5に対し第1線3側と第2線4側とで電圧調整器10,30の構成が略同一なので、以下、第1線3側について主に説明し第2線4側の説明の一部を省略する。 FIG. 4(a) is an explanatory diagram of a voltage regulator 30, which is a modification of the present invention, in which a balancer 31 is provided separately from the booster 20. FIG. FIG. 4(b) is an explanatory diagram when the booster 20 of the voltage regulator 10 functions as the balancer 25. FIG. Since the configuration of the voltage regulators 10 and 30 is substantially the same on the first line 3 side and the second line 4 side with respect to the neutral line 5, the first line 3 side will be mainly described below, and the second line 4 side will be described. A part of the description of the side is omitted.

また、図4(a)及び図4(b)では、説明を簡略化するために、直列変圧器11,12の誘起電圧を0[V]とし、直列変圧器11,12及び切換器部13の図示を省略している。さらに図4(a)及び図4(b)には、第1線3の端子3aから第1直列巻線23、負荷R2、第2直列巻線24、端子4aへと電気が主に流れるように電流の矢印を記載している。なお、交流の極性が逆転すると、これらの電流の矢印が逆になる。 4(a) and 4(b), to simplify the explanation, the induced voltage of the series transformers 11 and 12 is assumed to be 0 [V], and the series transformers 11 and 12 and the switching unit 13 is omitted. Further, in FIGS. 4(a) and 4(b), it is shown that electricity mainly flows from the terminal 3a of the first wire 3 to the first series winding 23, the load R2, the second series winding 24, and the terminal 4a. shows the current arrows. Note that when the polarity of the alternating current is reversed, these current arrows are reversed.

図4(a)に示す電圧調整器30は、昇圧器20の入力側(端子3a,4a側)に平衡器31を設けたことと、第1分路巻線21及び第2分路巻線22の断面積D1の大きさ以外は、電圧調整器10と同一に構成される。平衡器31は、一の鉄心に巻かれた巻線の両端がそれぞれ第1線3と第2線4とに接続され、その巻線の中央が中性線5に接続される。これにより、中性線5の両側で巻線の巻数が同じになるので、平衡器31は、巻線が接続された位置で、第1線3と中性線5との間の電圧、及び、第2線4と中性線5との間の電圧を平衡化できる。 The voltage regulator 30 shown in FIG. 4A has a balancer 31 provided on the input side (terminals 3a, 4a side) of the booster 20, and a first shunt winding 21 and a second shunt winding. 22 has the same configuration as the voltage regulator 10 except for the size of the cross-sectional area D1. The balancer 31 has a winding wound around one iron core, and both ends of the winding are connected to the first wire 3 and the second wire 4 respectively, and the center of the winding is connected to the neutral wire 5 . This results in the same number of turns of winding on both sides of the neutral wire 5, so that the balancer 31, at the position where the windings are connected, adjusts the voltage between the first wire 3 and the neutral wire 5, and , the voltage between the second wire 4 and the neutral wire 5 can be balanced.

負荷の不平衡による電流2・A3が中性線5から負荷R1に流れる場合、その負荷R1の出力側にある平衡器31の両側の巻線それぞれに、中性線5へ向かって平衡化電流A3が生じる。平衡器31から負荷R1までの中性線5に電流2・A3が生じるが、平衡器31によって負荷R1よりも入力側の中性線5に電流2・A3が生じなくなる。これにより、平衡器31の入力側において第1線3側の電圧と第2線4側の電圧とを平衡化できる。 If a current 2·A3 due to load imbalance flows from the neutral wire 5 to the load R1, each of the two windings of the balancer 31 on the output side of the load R1 will have a balancing current towards the neutral wire 5. A3 is produced. A current 2·A3 is generated in the neutral line 5 from the balancer 31 to the load R1, but the balancer 31 prevents the current 2·A3 from being generated in the neutral line 5 on the input side of the load R1. As a result, the voltage on the first line 3 side and the voltage on the second line 4 side can be balanced on the input side of the balancer 31 .

なお、平衡化電流A3の最大値は、平衡器31の定格電流であり、本実施形態では約10Aに設定される。また、平衡化電流A3は、第1分路巻線21や第2分路巻線22に生じない。これは、第1分路巻線21及び第2分路巻線22の断面積D1に対し、平衡器31の断面積を十分に大きくすることで、第1分路巻線21及び第2分路巻線22よりも平衡器31の巻線に電気が流れ易くなるためである。 The maximum value of the balancing current A3 is the rated current of the balancer 31, which is set to about 10A in this embodiment. Also, no balancing current A3 is generated in the first shunt winding 21 or the second shunt winding 22 . By sufficiently increasing the cross-sectional area of the balancer 31 with respect to the cross-sectional area D1 of the first shunt winding 21 and the second shunt winding 22, the first shunt winding 21 and the second shunt winding 22 This is because electricity flows more easily in the windings of the balancer 31 than in the circuit windings 22 .

また、昇圧器20による昇圧時には、第1直列巻線23の電流A2に対する第1分路巻線21の電流A1の比である電流比A1/A2が、第1分路巻線21の巻数N1に対する第1直列巻線23の巻数N2の比である巻数比N2/N1と同一になるように、第1分路巻線21及び第1直列巻線23に電流が生じる。 Further, when the voltage is boosted by the booster 20, the current ratio A1/A2, which is the ratio of the current A1 of the first shunt winding 21 to the current A2 of the first series winding 23, is the number of turns N1 of the first shunt winding 21. A current is developed in the first shunt winding 21 and the first series winding 23 to equal the turns ratio N2/N1, which is the ratio of the number of turns N2 of the first series winding 23 to .

なお、直列変圧器11,12の誘起電圧が0Vの場合には、電流A2が、電圧調整器30の定格二次電流と同じになる。誘起電圧の変化に伴って第1直列巻線23の電流A2も変化するが、その電流A2の最大値を算出することができる。 When the induced voltage of series transformers 11 and 12 is 0 V, current A2 is the same as the rated secondary current of voltage regulator 30 . Although the current A2 of the first series winding 23 also changes as the induced voltage changes, the maximum value of the current A2 can be calculated.

また、電圧調整器10でも同様に、昇圧器20による昇圧時には、電流A1が第1分路巻線21及び第2分路巻線22それぞれに生じ、電流A2が第1直列巻線23及び第2直列巻線24それぞれに生じる。しかし、電圧調整器10は、電圧調整器30とは異なり、昇圧器20と平衡器25とが一体に構成されているので、平衡器25の巻線を構成する第1分路巻線21及び第2分路巻線22それぞれに平衡化電流A3が生じる。 Similarly, in the voltage regulator 10, when the voltage is boosted by the booster 20, the current A1 is generated in the first shunt winding 21 and the second shunt winding 22, respectively, and the current A2 is generated in the first series winding 23 and the second shunt winding 22. occurs in each of the two series windings 24 . However, unlike the voltage regulator 30, the voltage regulator 10 has the booster 20 and the balancer 25 integrated. A balancing current A3 is produced in each of the second shunt windings 22 .

なお、第1分路巻線21に生じる電流A1と平衡化電流A3との向きは同じであり、第2分路巻線22に生じる電流A1と平衡化電流A3との向きは逆である。そのため、電圧調整器10の第1分路巻線21には電流A1+A3が生じ、第2分路巻線22には電流|A1-A3|(A1とA3との差の絶対値)が生じる。以下、第2分路巻線22と比べて大きな電流が生じる第1分路巻線21について説明する。 The directions of the current A1 and the balancing current A3 generated in the first shunt winding 21 are the same, and the directions of the current A1 and the balancing current A3 generated in the second shunt winding 22 are opposite. Therefore, a current A1+A3 is generated in the first shunt winding 21 of the voltage regulator 10, and a current |A1-A3| (the absolute value of the difference between A1 and A3) is generated in the second shunt winding 22. The first shunt winding 21 that generates a larger current than the second shunt winding 22 will be described below.

このように、電圧調整器10の第1分路巻線21に生じる電流A1+A3は、電圧調整器30の第1分路巻線21に生じる電流A1よりも大きい。第1分路巻線21及び第1直列巻線23等の各巻線の断面積は、その巻線に流れることが想定される電流(許容電流)に応じて設定する必要があり、即ち断面積と許容電流とが略比例関係になるよう設定する必要がある。 Thus, the current A1+A3 appearing in the first shunt winding 21 of the voltage regulator 10 is greater than the current A1 appearing in the first shunt winding 21 of the voltage regulator 30. FIG. The cross-sectional area of each winding such as the first shunt winding 21 and the first series winding 23 must be set according to the current (allowable current) expected to flow through the winding. and the permissible current must be set so that they have a substantially proportional relationship.

そのため、電圧調整器10の第1分路巻線21の断面積DXを、電圧調整器30の第1分路巻線21の断面積D1よりも大きくすることで、平衡化電流A3に第1分路巻線21を耐えさせ易くできる。これにより、電圧調整器10は、昇圧時の電流A1に加えて平衡化電流A3が第1分路巻線21に生じる場合であっても、第1分路巻線21の耐久性を確保できる。 Therefore, by making the cross-sectional area DX of the first shunt winding 21 of the voltage regulator 10 larger than the cross-sectional area D1 of the first shunt winding 21 of the voltage regulator 30, the balancing current A3 becomes the first The shunt winding 21 can be easily endured. As a result, the voltage regulator 10 can ensure the durability of the first shunt winding 21 even when the balancing current A3 is generated in the first shunt winding 21 in addition to the current A1 during boosting. .

本実施形態では、平衡化電流A3の最大値が平衡器25の定格電流であり、電圧調整器10の調整電圧に応じて電流A1,A2がそれぞれ最大値をとる。ここから、第1分路巻線21に生じる電流の最大値(A1の最大値+A3の最大値)を、第1直列巻線23に生じる電流A2の最大値で除した最大電流比(A1の最大値+A3の最大値)/(A2の最大値)が算出される。よって、電圧調整器10は、断面積比DX/D2と最大電流比(A1の最大値+A3の最大値)/(A2の最大値)とが同程度になるよう設定することで、電圧調整時の電流A1に加えて平衡化電流A3が第1分路巻線21に生じても、それらの電流に第1分路巻線21をより耐えさせ易くでき、第1分路巻線21の耐久性を向上できる。 In this embodiment, the maximum value of the balancing current A3 is the rated current of the balancer 25, and the currents A1 and A2 take maximum values according to the regulated voltage of the voltage regulator . From this, the maximum current ratio (A1 Maximum value+maximum value of A3)/(maximum value of A2) is calculated. Therefore, the voltage regulator 10 sets the cross-sectional area ratio DX/D2 and the maximum current ratio (maximum value of A1+maximum value of A3)/(maximum value of A2) to be approximately the same. Even if the balancing current A3 is generated in the first shunt winding 21 in addition to the current A1 of the first shunt winding 21, the first shunt winding 21 can more easily withstand these currents. can improve sexuality.

第1分路巻線21に生じる電流の最大値(A1の最大値+A3の最大値)を、第1分路巻線21の断面積DXで除した値、即ち第1分路巻線21に生じる最大の電流密度が3[A/mm]以下であることが好ましい。これにより、電圧調整時の電流A1に加えて平衡化電流A3が第1分路巻線21に生じても、電流密度に応じた第1分路巻線21の発熱量を抑制できるので、それらの電流に第1分路巻線21をより耐えさせ易くでき、第1分路巻線21の耐久性を向上できる。 A value obtained by dividing the maximum value of the current generated in the first shunt winding 21 (maximum value of A1 + maximum value of A3) by the cross-sectional area DX of the first shunt winding 21, that is, the first shunt winding 21 The generated maximum current density is preferably 3 [A/mm 2 ] or less. As a result, even if the balancing current A3 is generated in the first shunt winding 21 in addition to the current A1 during voltage adjustment, the amount of heat generated by the first shunt winding 21 according to the current density can be suppressed. , and the durability of the first shunt winding 21 can be improved.

以上、実施形態に基づき本発明を説明したが、本発明は上記形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記形態の説明で例示した各部の電圧や電流、変化率、巻数比などの数値を適宜変更しても良い。 Although the present invention has been described above based on the embodiments, the present invention is by no means limited to the above embodiments, and it is easily conjectured that various improvements and modifications are possible without departing from the gist of the present invention. It is possible. For example, numerical values such as voltage, current, rate of change, and turn ratio of each part illustrated in the description of the above embodiments may be changed as appropriate.

昇圧器20の出力側に直列変圧器11,12を設ける場合に限らず、昇圧器20の入力側に直列変圧器11,12を設けても良い。また、昇圧器20とは別の平衡器31を、その昇圧器20の入力側に設ける場合に限らず、昇圧器20の出力側に設けても良い。例えば、平衡器31の巻線で、第1昇圧線3dと第2昇圧線4dとを連結しても良く、同様に、第1調整線3eと第2調整線4eとを、第1出力線3gと第2出力線4gとを連結しても良い。さらに、電圧調整器10,30の外部であって電圧調整器10,30よりも負荷R1に近い位置に平衡器31を設けても良い。 The series transformers 11 and 12 may be provided on the input side of the booster 20 instead of providing the series transformers 11 and 12 on the output side of the booster 20 . Further, the balancer 31 different from the booster 20 may be provided not only on the input side of the booster 20 but also on the output side of the booster 20 . For example, the winding of the balancer 31 may connect the first boost line 3d and the second boost line 4d. 3g and the second output line 4g may be connected. Furthermore, the balancer 31 may be provided outside the voltage regulators 10 and 30 and at a position closer to the load R1 than the voltage regulators 10 and 30 are.

上記形態では、直列変圧器11,12の二次巻線11b,12bの出力側の第1調整線3e及び第2調整線4eそれぞれから、リレーA~C,Eに接続される第1分岐線3f及び第2分岐線4fが分岐する場合について説明したが、必ずしもこれに限られるものではない。例えば、第1入力線3c及び第2入力線4cそれぞれから第1分岐線3f及び第2分岐線4fを分岐させても良く、第1昇圧線3d及び第2昇圧線4dそれぞれから第1分岐線3f及び第2分岐線4fを分岐させても良い。いずれの場合でも、昇圧器20及び直列変圧器11,12両方の出力側に制御部14を接続する。 In the above embodiment, the first branch lines connected to the relays A to C and E from the first adjustment line 3e and the second adjustment line 4e on the output side of the secondary windings 11b and 12b of the series transformers 11 and 12, respectively. Although the case where 3f and the second branch line 4f branch has been described, it is not necessarily limited to this. For example, the first branch line 3f and the second branch line 4f may be branched from the first input line 3c and the second input line 4c, respectively, and the first branch line may be branched from the first booster line 3d and the second booster line 4d, respectively. 3f and the second branch line 4f may be branched. In either case, the controller 14 is connected to the output sides of both the booster 20 and series transformers 11 and 12 .

上記形態では、切換器部13の半導体リレーA~Eによって、第1線3、第2線4及び中性線5のうち2線と、直列変圧器11,12の一次巻線11a,12aとの接続を切り換える場合について説明したが、必ずしもこれに限られるものではない。これらの接続の切り換えをメカニカルリレーで行っても良い。なお、半導体リレーA~Eを用いることで、切換器部13の小型化や長寿命化、切り換え時の無音化を図ることができる。 In the above embodiment, the semiconductor relays A to E of the switching unit 13 connect two wires out of the first wire 3, the second wire 4 and the neutral wire 5 and the primary windings 11a and 12a of the series transformers 11 and 12. Although the case of switching the connection of is described, the present invention is not necessarily limited to this. A mechanical relay may be used to switch these connections. By using the semiconductor relays A to E, it is possible to reduce the size of the switching unit 13, extend its life, and silence the switching.

上記形態では、切換器部13のリレーA~Eを介して第1線3、第2線4及び中性線5のうち2線間の電圧を直列変圧器11,12の一次巻線11a,12aに印加する場合について説明したが、必ずしもこれに限られるものではない。例えば、その直列変圧器とは異なる変圧器を第1線3、第2線4及び中性線5のうち2線間に並列接続し、この変圧器のタップの切り換えによって一次巻線11a,12aの印加電圧を変化させても良い。 In the above embodiment, the voltage between two lines of the first line 3, the second line 4 and the neutral line 5 is applied to the primary windings 11a and 11a of the series transformers 11 and 12 via the relays A to E of the switching unit 13. 12a has been described, the present invention is not necessarily limited to this. For example, a transformer different from the series transformer is connected in parallel between two of the first line 3, the second line 4 and the neutral line 5, and the primary windings 11a, 12a are switched by switching the taps of this transformer. may be changed.

上記形態では、昇圧器20が単巻変圧器である場合について説明したが、必ずしもこれに限られるものではなく、昇圧器20を複巻変圧器としても良い。また、昇圧器20による昇圧値を固定値とする場合に限らず、タップの切り換え等によって昇圧値が変動するようにしても良い。 Although the case where the booster 20 is an autotransformer has been described in the above embodiment, the present invention is not necessarily limited to this, and the booster 20 may be a compound transformer. Also, the boosted value by the booster 20 is not limited to a fixed value, and the boosted value may be changed by switching taps or the like.

2 低圧線(配電線路)
3 第1線
4 第2線
5 中性線
6 高圧線
7 柱上変圧器
8 需要家
10,30 電圧調整器
11,12 直列変圧器
11a,12a 一次巻線
11b,12b 二次巻線
13 切換器部
14 制御部
20 昇圧器
21 第1分路巻線(分路巻線)
22 第2分路巻線(分路巻線)
23 第1直列巻線(直列巻線)
24 第2直列巻線(直列巻線)
25,31 平衡器
2 Low voltage line (distribution line)
3 First line 4 Second line 5 Neutral line 6 High voltage line 7 Pole transformer 8 Customer 10, 30 Voltage regulator 11, 12 Series transformer 11a, 12a Primary winding 11b, 12b Secondary winding 13 Switching Device section 14 Control section 20 Booster 21 First shunt winding (shunt winding)
22 second shunt winding (shunt winding)
23 first series winding (series winding)
24 second series winding (series winding)
25, 31 Balancer

Claims (6)

第1線、第2線および中性線からなる単相三線式の配電線路に接続され、入力された電圧を前記第1線および前記第2線と前記中性線との間それぞれで調整して出力する電圧調整器であって、
前記第1線および前記第2線それぞれを二次巻線が連結するように、前記第1線および前記第2線にそれぞれ直列接続される一対の直列変圧器と、
その一対の前記直列変圧器の一次巻線への印加電圧の極性または大きさを切り換え、前記二次巻線の誘起電圧の極性または大きさを調整する切換器部と、
前記直列変圧器よりも出力側の前記第1線および前記第2線と前記中性線とに接続され、その接続位置の前記第1線および前記第2線と前記中性線との間の電圧に応じて前記切換器部による切り換えを制御する制御部と、
その制御部の接続位置よりも入力側の前記第1線および前記第2線にそれぞれ接続されて、前記第1線と前記第2線との間の電圧を昇圧する昇圧器と、を備えていることを特徴とする電圧調整器。
It is connected to a single-phase three-wire distribution line consisting of a first line, a second line, and a neutral line, and adjusts an input voltage between the first line, the second line, and the neutral line, respectively. A voltage regulator that outputs a
a pair of series transformers respectively connected in series to the first line and the second line such that a secondary winding couples the first line and the second line, respectively;
a switching unit that switches the polarity or magnitude of the voltage applied to the primary windings of the pair of series transformers and adjusts the polarity or magnitude of the induced voltage in the secondary windings;
connected to the first and second wires on the output side of the series transformer and the neutral wire, and between the first and second wires and the neutral wire at the connection position a control unit that controls switching by the switch unit according to the voltage;
a booster that is connected to the first line and the second line on the input side of the connecting position of the control unit, and that boosts the voltage between the first line and the second line; A voltage regulator characterized by:
前記第1線および前記第2線と前記中性線との間にそれぞれ印加される電圧を平衡化する平衡器を備え、
その平衡器は、前記直列変圧器および前記昇圧器に対する同位置の前記第1線および前記第2線と前記中性線とに接続されていることを特徴とする請求項1記載の電圧調整器。
a balancer for balancing the voltages respectively applied between the first and second wires and the neutral wire;
2. The voltage regulator of claim 1, wherein the balancer is connected to the neutral conductor and the first and second conductors at the same position relative to the series transformer and the booster. .
前記昇圧器と前記平衡器とは、一体に構成されていることを特徴とする請求項2記載の電圧調整器。 3. The voltage regulator according to claim 2, wherein said booster and said balancer are integrated. 前記昇圧器は、
前記第1線および前記第2線それぞれと前記中性線とを連結して前記平衡器を構成する一対の分路巻線と、
その一対の分路巻線にそれぞれ接続される一対の直列巻線と、を備えていることを特徴とする請求項3記載の電圧調整器。
The booster is
a pair of shunt windings connecting each of the first line and the second line and the neutral line to form the balancer;
and a pair of series windings respectively connected to the pair of shunt windings.
前記電圧調整器の電圧調整に応じて前記分路巻線に生じる電流の最大値と前記平衡器の定格電流との合計値を、前記分路巻線の断面積で除した値が3[A/mm]以下であることを特徴とする請求項4記載の電圧調整器。 The sum of the maximum value of the current generated in the shunt winding according to the voltage adjustment of the voltage regulator and the rated current of the balancer divided by the cross-sectional area of the shunt winding is 3 [A] /mm 2 ] or less. 第1線、第2線および中性線からなる単相三線式の配電線路の入力電圧に対して出力電圧を調整する電圧調整方法であって、
出力電圧に応じて一対の直列変圧器の一次巻線への印加電圧を切り換え、その一対の直列変圧器の二次巻線に生じる誘起電圧の極性または大きさを調整することで、前記第1線および前記第2線それぞれを連結する前記二次巻線の出力側で前記第1線および前記第2線と前記中性線との間の電圧をそれぞれ昇圧または降圧させる調整ステップと、
前記第1線と前記第2線との間の電圧を昇圧器が昇圧する昇圧ステップと、を備えていることを特徴とする電圧調整方法。
A voltage adjustment method for adjusting an output voltage with respect to an input voltage of a single-phase three-wire distribution line consisting of a first line, a second line and a neutral line,
By switching the applied voltage to the primary windings of the pair of series transformers according to the output voltage and adjusting the polarity or magnitude of the induced voltage generated in the secondary windings of the pair of series transformers, the first an adjustment step of stepping up or down the voltage between the first line and the second line and the neutral line, respectively, at the output side of the secondary winding connecting the line and the second line, respectively;
and a boosting step in which a booster boosts the voltage between the first line and the second line.
JP2021019240A 2021-02-09 2021-02-09 Voltage regulator and voltage regulation method Pending JP2022122138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021019240A JP2022122138A (en) 2021-02-09 2021-02-09 Voltage regulator and voltage regulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021019240A JP2022122138A (en) 2021-02-09 2021-02-09 Voltage regulator and voltage regulation method

Publications (1)

Publication Number Publication Date
JP2022122138A true JP2022122138A (en) 2022-08-22

Family

ID=82933006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021019240A Pending JP2022122138A (en) 2021-02-09 2021-02-09 Voltage regulator and voltage regulation method

Country Status (1)

Country Link
JP (1) JP2022122138A (en)

Similar Documents

Publication Publication Date Title
RU2393608C2 (en) Device and method of power flow control in transmission line
RU2487391C2 (en) Automatic voltage regulator and toroidal transformer
US10014791B2 (en) Distribution transformer
JPH11501748A (en) METHOD AND APPARATUS FOR CONTINUOUS ADJUSTMENT AND ADJUSTMENT OF TRANSFORMER TURN RATIO AND TRANSFORMER WITH THE APPARATUS
CZ283921B6 (en) Controlled power supply unit
KR20210150852A (en) Hybrid semiconductor transformer
JP5986857B2 (en) Voltage regulator
JP2015208058A (en) Voltage adjusting device
KR100797054B1 (en) Transformation circuit for auto controlling voltage
JP2022122138A (en) Voltage regulator and voltage regulation method
CN111338412A (en) Alternating current voltage stabilizer and alternating current voltage stabilizing equipment
JP5354730B2 (en) Three-phase voltage regulator
EA007309B1 (en) System for voltage stabilization of power supply lines
EP3459164B1 (en) Stackable isolated voltage optimization module
JP2003299361A (en) Low-voltage automatic voltage regulator
JP2014057481A (en) Voltage adjustment device
JP2002218652A (en) Automatic voltage regulator
TWI813191B (en) Power management device and power management method
JP3028213B2 (en) Voltage regulator
RU2531389C1 (en) Line voltage control unit
CN109245126B (en) Three-phase alternating current automatic voltage regulating device and regulating method
JP2019187034A (en) Voltage drop suppressing method and voltage drop suppressing system
JP2017195671A (en) Voltage adjustment method
KR200416148Y1 (en) Voltage Regulator of Using Reactor Tap Change
KR200393024Y1 (en) Reactor Tap Change Voltage Regulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231204