JP2022120638A - Filler for ground preparation - Google Patents

Filler for ground preparation Download PDF

Info

Publication number
JP2022120638A
JP2022120638A JP2021017664A JP2021017664A JP2022120638A JP 2022120638 A JP2022120638 A JP 2022120638A JP 2021017664 A JP2021017664 A JP 2021017664A JP 2021017664 A JP2021017664 A JP 2021017664A JP 2022120638 A JP2022120638 A JP 2022120638A
Authority
JP
Japan
Prior art keywords
filling material
ground preparation
water
polymer compound
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021017664A
Other languages
Japanese (ja)
Other versions
JP7368405B2 (en
Inventor
英典 高田
Hidenori Takada
久 深田
Hisashi Fukada
竹史 伊藤
Takeshi Ito
雅大 永石
Masahiro Nagaishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2021017664A priority Critical patent/JP7368405B2/en
Publication of JP2022120638A publication Critical patent/JP2022120638A/en
Application granted granted Critical
Publication of JP7368405B2 publication Critical patent/JP7368405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a filler for ground preparation that has sufficient flowability during its pouring with a pressure pump, but does not flow when no pressure is applied; and does not get separated in water and has high stability.SOLUTION: A filler for ground preparation contains at least sand particles, montmorillonite particles, a polymer compound having an anionic functional group in the chain, and water. In a texture test, it shows a deforming level of 0.700 or more and a damping level of 0.700 or more.SELECTED DRAWING: Figure 1

Description

本発明は、地盤中や地盤と構造物隙間、水中の地盤や地盤と構造物の隙間に存在する空洞の充填材料に関する。 The present invention relates to a filling material for cavities existing in the ground, between the ground and a structure, or between the ground in water or between the ground and a structure.

既設構造物と沈下した地盤の間に発生した空洞や、橋台や護岸背面に生じた空洞、樋門や樋管構造物周辺に生じた空洞を充填するために用いられる充填材料には、注入圧力の作用によるせん断力が加わると容易に変形・流動するが、圧力作用がない場合には形状保持する能力により高い施工性と充填性を有することが必要である。さらに、無希釈性能による水際での充填においても、充填後の流下や希釈が存在しないことも必要である。 Filling materials used to fill cavities generated between existing structures and the ground that has subsided, cavities generated behind abutments and revetments, and cavities generated around sluice gates and sluice pipe structures are affected by injection pressure. It deforms and flows easily when shear force is applied by the action of , but it is necessary to have high workability and filling property due to the ability to retain its shape when there is no pressure action. Furthermore, it is also necessary that there is no run-down or dilution after filling, even in filling at the water's edge due to non-dilution performance.

このような充填材料としては、例えば、特許文献1に、水平に置かれたガラス板の上にフローコーンを置き、フローコーンに、主原料となる水とセメントに添加材を加えたグラウト材を連続的に流し込み、フローコーンを垂直に引き上げ、ガラス板上に広がったグラウト材の最大幅とその垂直方向の幅の平均値であるフロー値が100~200mmであり、且つ密閉容器内に格納され、先端の流出口が密閉容器から露出した漏斗内に、前記グラウト材を充填し、密閉容器内に圧縮空気を送り込み、大気圧の状態から0.1MPaの圧力を加えたときの漏斗内のグラウト材が漏斗の流出口から流下しきるまでの流下時間が0.5~3.0秒であるチクソトロピー性を有するグラウト材が開示されている。 As such a filling material, for example, in Patent Document 1, a flow cone is placed on a horizontally placed glass plate, and a grout material obtained by adding additives to the main raw materials of water and cement is added to the flow cone. The flow value, which is the average value of the maximum width of the grout material spread on the glass plate and its vertical width, is 100 to 200 mm, and is stored in a closed container. , The funnel with the outflow port at the tip exposed from the closed container is filled with the grout material, compressed air is sent into the closed container, and the grout in the funnel when a pressure of 0.1 MPa is applied from the atmospheric pressure state. A grouting material having thixotropic properties is disclosed, in which the time it takes for the material to completely flow down from the outlet of the funnel is 0.5 to 3.0 seconds.

特開2004-284930号公報JP 2004-284930 A

ところが、既設構造物と沈下した地盤の間に発生した空洞や、橋台や護岸背面に生じた空洞、樋門や樋管構造物周辺に生じた空洞に充填される地盤造成用の充填材料には、打設時には十分な流動性を有していることが必要であり、圧力が作用しないときは、その場に留まる必要がある。加えて、水中に打設しても水中で分離し難く、水中での安定性が高いことが必要である。 However, filling materials for ground preparation that fill cavities generated between existing structures and the ground that has subsided, cavities generated behind abutments and revetments, and cavities generated around sluice gates and sluice pipe structures It is necessary to have sufficient fluidity during casting, and to remain in place when pressure is not applied. In addition, it is necessary to be difficult to separate in water even if it is cast in water, and to have high stability in water.

しかしながら、特許文献1に用いられている充填材料では、セメントと水を混合したグラウト材がほとんどであり、充填後に高強度となる問題がある。充填域が高強度となる場合、工事の後工程の支障になることがある。高強度となる充填域は、原地盤との間に境界が発生し、新たな水みちを形成し、弱部となる可能性がある。加えて、これらの充填域の強度はコントロールすることが困難であり、構造物としてみなすことが難しい。 However, most of the filling materials used in Patent Document 1 are grout materials in which cement and water are mixed, and there is a problem of high strength after filling. If the filling area has high strength, it may interfere with the post-construction process. A high-strength filled area may create a boundary with the original ground, form a new water path, and become a weak point. Additionally, the strength of these fill zones is difficult to control and difficult to consider as a structure.

従って、本発明の目的は、さまざまな空洞を充填するための充填材料を提供することであり、圧送ポンプ打設時には十分な流動性を有しており、圧力が作用しないときは、流動しない性質を持ち、且つ、水中で分離せず、高い安定性を有している地盤造成用充填材料を提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a filling material for filling various cavities, which has sufficient fluidity when driving a pressure pump and does not flow when pressure is not applied. and does not separate in water and has high stability.

上記本発明の課題は、以下の本発明によって、解決される。
すなわち、本発明(1)は、少なくとも、砂粒子と、モンモリロナイト粒子と、分子鎖中にアニオン性官能基を有する高分子化合物と、水と、を含有し、
テクスチャー試験における変形性が0.700以上であり、
テクスチャー試験における減衰性が0.700以上であること、
を特徴とする地盤造成用充填材料を提供するものである。
The above problems of the present invention are solved by the following present invention.
That is, the present invention (1) contains at least sand particles, montmorillonite particles, a polymer compound having an anionic functional group in its molecular chain, and water,
The deformability in the texture test is 0.700 or more,
The attenuation property in the texture test is 0.700 or more,
To provide a filling material for ground preparation characterized by

また、本発明(2)は、少なくとも、砂粒子と、モンモリロナイト粒子と、分子鎖中にアニオン性官能基を有する高分子化合物と、水と、を含有し、直列弾性率E1が900Pa以上であり、並列弾性率E2が1,000Pa以上であり、並列部粘度η1は、10,000Pa・s以上であり、直列部粘度η2は、200,000Pa・s以上であることであることを特徴とする(1)の地盤造成用充填材料。 Further, the present invention (2) contains at least sand particles, montmorillonite particles, a polymer compound having an anionic functional group in its molecular chain, and water, and has a series elastic modulus E1 of 900 Pa or more. , the parallel modulus E2 is 1,000 Pa or more, the parallel portion viscosity η1 is 10,000 Pa s or more, and the serial portion viscosity η2 is 200,000 Pa s or more. Filling material for ground preparation of (1).

また、本発明(3)は、少なくとも、砂粒子と、モンモリロナイト粒子と、分子鎖中にアニオン性官能基を有する高分子化合物と、水と、を含有し、水中投下試験における上澄濁度が50以下であることを特徴とする(1)又は(2)の地盤造成用充填材料。 In addition, the present invention (3) contains at least sand particles, montmorillonite particles, a polymer compound having an anionic functional group in the molecular chain, and water, and the supernatant turbidity in a water drop test is The filling material for ground preparation according to (1) or (2), which is 50 or less.

また、本発明(4)は、前記分子鎖中にアニオン性官能基を有する高分子化合物が、アクリル酸とアクリルアミドの共重合体である直鎖型のアニオン性高分子化合物であることを特徴とする(1)~(3)いずれかの地盤造成用充填材料を提供するものである。 Further, the present invention (4) is characterized in that the polymer compound having an anionic functional group in the molecular chain is a linear anionic polymer compound that is a copolymer of acrylic acid and acrylamide. (1) to (3) to provide a filling material for ground preparation.

また、本発明(5)は、前記モンモリロナイト粒子に対する前記分子鎖中にアニオン性官能基を有する高分子化合物の質量比(分子鎖中にアニオン性官能基を有する高分子化合物/モンモリロナイト粒子)が、0.020~0.50であることを特徴とする(1)~(4)いずれかの地盤造成用充填材料を提供するものである。 Further, in the present invention (5), the mass ratio of the polymer compound having an anionic functional group in the molecular chain to the montmorillonite particles (polymer compound having an anionic functional group in the molecular chain/montmorillonite particles) is The present invention provides a filling material for ground preparation according to any one of (1) to (4), characterized in that it is 0.020 to 0.50.

また、本発明(6)は、前記砂粒子に対する前記モンモリロナイト粒子の質量比(モンモリロナイト粒子/砂粒子)が、0.010~0.20であることを特徴とする(1)~(5)いずれかの地盤造成用充填材料を提供するものである。 Further, the present invention (6) is characterized in that the mass ratio of the montmorillonite particles to the sand particles (montmorillonite particles/sand particles) is 0.010 to 0.20. It is to provide a filling material for ground preparation.

また、本発明(7)は、前記砂粒子に対する前記分子鎖中にアニオン性官能基を有する高分子化合物の質量比(分子鎖中にアニオン性官能基を有する高分子化合物/砂粒子)が、0.0050~0.020であることを特徴とする(1)~(6)いずれかの地盤造成用充填材料を提供するものである。 Further, in the present invention (7), the mass ratio of the polymer compound having an anionic functional group in the molecular chain to the sand particle (polymer compound having an anionic functional group in the molecular chain/sand particle) is The present invention provides a filling material for ground preparation according to any one of (1) to (6), characterized in that it is 0.0050 to 0.020.

また、本発明(8)は、前記地盤造成用充填材料中の水に対する前記モンモリロナイト粒子の質量比(モンモリロナイト粒子/地盤造成用充填材料中の水)が、0.010~0.30であることを特徴とする(1)~(7)いずれかの地盤造成用充填材料を提供するものである。 Further, in the present invention (8), the mass ratio of the montmorillonite particles to the water in the filler material for ground preparation (montmorillonite particles/water in the filler material for ground preparation) is 0.010 to 0.30. It provides a filling material for ground preparation according to any one of (1) to (7) characterized by

また、本発明(9)は、前記地盤造成用充填材料中の水に対する前記分子鎖中にアニオン性官能基を有する高分子化合物の質量比(分子鎖中にアニオン性官能基を有する高分子化合物/地盤造成用充填材料中の水)が、0.0050~0.025であることを特徴とする(1)~(8)いずれかの地盤造成用充填材料を提供するものである。 In addition, the present invention (9) is the mass ratio of the polymer compound having an anionic functional group in the molecular chain to the water in the filling material for ground preparation (the polymer compound having an anionic functional group in the molecular chain /Water in the ground preparation filling material) is 0.0050 to 0.025.

本発明によれば、さまざまな空洞を充填するための充填材料を提供することであり、圧送ポンプ打設時には十分な流動性を有しており、圧力が作用しないときは、流動しない性質を持ち、且つ、水中で分離せず、高い安定性を有している地盤造成用充填材料を提供することができる。また、本充填材料は砂材料を主材としているので高強度を発現するものではない。 According to the present invention, it is to provide a filling material for filling various cavities, which has sufficient fluidity when driving a pressure pump and does not flow when pressure is not applied. Moreover, it is possible to provide a ground construction filling material that does not separate in water and has high stability. In addition, since this filling material is mainly made of sand, it does not exhibit high strength.

実施例1の地盤造成用充填材料の断面のSEM写真(100倍)である。1 is a SEM photograph (100 times) of a cross section of the filling material for ground preparation of Example 1. FIG. 実施例1の地盤造成用充填材料の断面のSEM写真(200倍)である。1 is a SEM photograph (200 times) of a cross section of the filling material for ground preparation of Example 1. FIG.

本発明の地盤造成用充填材料は、少なくとも、砂粒子と、モンモリロナイト粒子と、分子鎖中にアニオン性官能基を有する高分子化合物と、水と、を含有し、
テクスチャー試験における変形性が0.700以上であり、
テクスチャー試験における減衰性が0.700以上であること、
を特徴とする地盤造成用充填材料である。
また、本発明の地盤造成用充填材料は、好ましくは直列弾性率E1が900Pa以上であり、並列弾性率E2が1,000Pa以上であり、並列部粘度η1が10,000Pa・s以上であり、直列部粘度η2が、200,000Pa・s以上である。
また、本発明の地盤造成用充填材料は、好ましくは水中投下試験における上澄濁度が50以下である。
The ground preparation filling material of the present invention contains at least sand particles, montmorillonite particles, a polymer compound having an anionic functional group in its molecular chain, and water,
The deformability in the texture test is 0.700 or more,
The attenuation property in the texture test is 0.700 or more,
It is a filling material for ground preparation characterized by
Further, the filling material for ground preparation of the present invention preferably has a series elastic modulus E1 of 900 Pa or more, a parallel elastic modulus E2 of 1,000 Pa or more, and a parallel section viscosity η1 of 10,000 Pa s or more, A series portion viscosity η2 is 200,000 Pa·s or more.
In addition, the ground preparation filling material of the present invention preferably has a supernatant turbidity of 50 or less in a water drop test.

本発明の地盤造成用充填材料は、少なくとも、砂粒子と、モンモリロナイト粒子と、分子鎖中にアニオン性官能基を有する高分子化合物と、水と、を含有する。 The ground preparation filling material of the present invention contains at least sand particles, montmorillonite particles, a polymer compound having an anionic functional group in its molecular chain, and water.

砂粒子は、特に制限されず、例えば、砂、シルトや礫を含む砂、砕石及びスラグ、現場発生土等であればよい。また、砂粒子の粒径は、特に制限されず、好ましくは、粒径が0.074~2.0mm程度を主体としたものであり、最大粒径は、好ましくは9.5mm以下である。 The sand particles are not particularly limited, and may be, for example, sand, sand containing silt or gravel, crushed stone and slag, soil generated on site, and the like. The particle size of the sand particles is not particularly limited, and preferably the particle size is mainly about 0.074 to 2.0 mm, and the maximum particle size is preferably 9.5 mm or less.

モンモリロナイト粒子は、複数のモンモリロナイト単位結晶が、層状に重なったものである。このモンモリロナイト単位結晶は、ケイ素原子と酸素原子により形成される四面体がシート状に連なった四面体シートと、アルミニウム原子と水酸基の八面体がシート状に連なった八面体シートと、からなっており、1枚の八面体シートが2枚の四面体シートに挟まれたサンドウィッチ構造を有している。 A montmorillonite particle is a layered stack of a plurality of montmorillonite unit crystals. This montmorillonite unit crystal consists of a tetrahedral sheet in which tetrahedrons formed by silicon atoms and oxygen atoms are linked in a sheet form, and an octahedral sheet in which octahedrons of aluminum atoms and hydroxyl groups are linked in a sheet form. , has a sandwich structure in which one octahedral sheet is sandwiched between two tetrahedral sheets.

モンモリロナイト粒子は、平板状の形状であり、水中飽和時の径が5~10μm程度である。 The montmorillonite particles have a tabular shape and a diameter of about 5 to 10 μm when saturated with water.

モンモリロナイト単位結晶は、ベントナイト、酸性白土等の主成分である。ベントナイトは、凝灰岩の一種であり、熱変遷、応力変遷を長時間受けて、化学的に変化したモンモリロナイトを主成分とした岩石である。本発明の地盤造成用充填材料のモンモリロナイト粒子の原料としては、ベントナイトが好ましい。そして、本発明の地盤造成用充填材料の原料としては、ベントナイトを粉砕し、粉末状にされたものが好適に用いられる。 A montmorillonite unit crystal is a main component of bentonite, acid clay, and the like. Bentonite is a kind of tuff, and is a rock composed mainly of montmorillonite that has undergone chemical changes due to long-term thermal and stress changes. Bentonite is preferable as a raw material for the montmorillonite particles of the filling material for ground preparation of the present invention. As a raw material for the filling material for ground preparation of the present invention, bentonite pulverized into powder is preferably used.

分子鎖中にアニオン性官能基を有する高分子化合物は、分子鎖中にアニオン性の官能基を有し、モンモリロナイト粒子の側部と静電気的に結合できるものであれば、特に制限されない。分子鎖中にアニオン性官能基を有する高分子化合物としては、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、アクリルアミド2-メチルプロパンスルフォン酸、ビニルスルフォン酸、スチレンスルフォン酸等の単独重合物、あるいは、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、アクリルアミド2-メチルプロパンスルフォン酸、ビニルスルフォン酸及びスチレンスルフォン酸のうちの1種以上とアクリルアミドとの共重合物等が挙げられる。例えば、分子鎖中にアニオン性官能基を有する高分子化合物としては、アクリル酸とアクリルアミドとの共重合物である直鎖型のアニオン性高分子化合物が挙げられる。 The polymer compound having an anionic functional group in its molecular chain is not particularly limited as long as it has an anionic functional group in its molecular chain and can be electrostatically bonded to the side portions of the montmorillonite particles. Examples of polymer compounds having an anionic functional group in the molecular chain include homopolymers of acrylic acid, methacrylic acid, itaconic acid, maleic acid, acrylamido 2-methylpropanesulfonic acid, vinylsulfonic acid, styrenesulfonic acid, and the like. Alternatively, a copolymer of acrylamide with one or more of acrylic acid, methacrylic acid, itaconic acid, maleic acid, acrylamide 2-methylpropanesulfonic acid, vinylsulfonic acid and styrenesulfonic acid, and the like. For example, polymer compounds having an anionic functional group in the molecular chain include linear anionic polymer compounds that are copolymers of acrylic acid and acrylamide.

分子鎖中にアニオン性官能基を有する高分子化合物の分子量は、特に制限されないが、好ましくは200万以上、1000万以下である。分子鎖中にアニオン性官能基を有する高分子化合物は、イオン化度が0~100モル%のアクリル系高分子からなる粉末状と分散粒子径が100μm以下の油中水型エマルジョン形態のものである。なお、高分子化合物の分子量は、特公昭34-10644号公報などに記載の公知の方法で製造することができる。 Although the molecular weight of the polymer compound having an anionic functional group in the molecular chain is not particularly limited, it is preferably 2,000,000 or more and 10,000,000 or less. The polymer compound having an anionic functional group in the molecular chain is in the form of a powdery acrylic polymer having an ionization degree of 0 to 100 mol % and a water-in-oil emulsion having a dispersed particle size of 100 μm or less. . Incidentally, the molecular weight of the polymer compound can be produced by a known method described in Japanese Patent Publication No. 34-10644.

本発明の地盤造成用充填材料は、水を含有している。水は、モンモリロナイト粒子の平板状結合体が繋がる間隙中に存在し、間隙の大きさを保持するために添加される。 The ground preparation filling material of the present invention contains water. Water exists in the gaps between the tabular aggregates of montmorillonite grains and is added to maintain the size of the gaps.

本発明の地盤造成用充填材料のテクスチャー試験における変形性は、0.700以上、好ましくは0.700~1.400、より好ましくは0.800~1.350、特に好ましくは1.000~1.350である。地盤造成用充填材料のテクスチャー試験における変形性が、上記範囲にあることにより、荷重を加えられても、大変形若しくは破損せず、元の形状に復元する弾性の性質を有する。本発明の地盤造成用充填材料は、この粘弾性体としての性質が高いことで、打設時には十分な流動性を有し、圧力が作用しない場合は、その場に留まることで高い充填性を有する。一方、地盤造成用充填材料のテクスチャー試験における変形性が、上記範囲未満だと、施工時の圧力の増減などによって、材料が劣化し、充填性が損なわれ、また、上記範囲を超えると、施工時の圧力などに対する反力が異常に大きくなり、施工性が失われる可能性がある。 The deformability in the texture test of the filling material for ground preparation of the present invention is 0.700 or more, preferably 0.700 to 1.400, more preferably 0.800 to 1.350, particularly preferably 1.000 to 1. .350. When the deformability in the texture test of the filling material for ground preparation is within the above range, it has an elastic property of restoring its original shape without undergoing large deformation or breakage even when a load is applied. The ground preparation filling material of the present invention has high viscoelastic properties, so that it has sufficient fluidity at the time of placing, and when pressure does not act, it stays in place and has high filling properties. have. On the other hand, if the deformability in the texture test of the filling material for ground preparation is less than the above range, the material will deteriorate due to changes in pressure during construction, and the filling property will be impaired. There is a possibility that the reaction force against the pressure of time will be abnormally large and the workability will be lost.

本発明の地盤造成用充填材料のテクスチャー試験における減衰性は、0.700以上、好ましくは0.700~1.200、より好ましくは0.800~1.200、特に好ましくは1.000~1.200である。地盤造成用充填材料のテクスチャー試験における減衰性が、上記範囲にあることにより、荷重を加えられても、大変形若しくは破損せず、元の形状に復元する弾性の性質を有する。本発明の地盤造成用充填材料は、この粘弾性体としての性質が高いことで、打設時には十分な流動性を有し、圧力が作用しない場合は、その場に留まることで高い充填性を有する。一方、地盤造成用充填材料のテクスチャー試験における減衰性が、上記範囲未満だと、施工時の圧力の増減などによって、材料が劣化し、充填性が損なわれ、また、上記範囲を超えると、施工時の圧力などに対する反力が異常に大きくなり、施工性が失われる可能性がある。 The attenuation property in the texture test of the filling material for ground preparation of the present invention is 0.700 or more, preferably 0.700 to 1.200, more preferably 0.800 to 1.200, particularly preferably 1.000 to 1. .200. When the attenuation property in the texture test of the filling material for ground preparation is within the above range, it has an elastic property of restoring its original shape without undergoing large deformation or breakage even when a load is applied. The ground preparation filling material of the present invention has high viscoelastic properties, so that it has sufficient fluidity at the time of placing, and when pressure does not act, it stays in place and has high filling properties. have. On the other hand, if the attenuation property in the texture test of the filling material for ground preparation is less than the above range, the material will deteriorate due to changes in pressure during construction, and the filling property will be impaired. There is a possibility that the reaction force against the pressure of time will be abnormally large and the workability will be lost.

テクスチャー試験は、食品の物性検査などで使用される周知の試験である。室温下、所定容器に試料(充填材)を充填し、試験装置にセットした後、「変形性」を確認する場合、先ず、シリンダーを一定速度で上下させて、試料上面から20mmの貫入及び引抜を行い(1回目)、次いで、1回目と同様に、シリンダーを一定速度で上下させ、試料上面から20mmの貫入及び引抜を行い(2回目)、その試験力の変化曲線を求め、また、「減衰性」を確認する場合、先ず、シリンダーを一定速度で上下させて、試料上面から4mmの貫入及び引抜を行い(1回目)、次いで、これを9回繰り返すことで、その試験力の変化を求める。テクスチャー試験における「貫入応力」は、貫入時の最大荷重haを応力に換算して貫入応力(Pa)としたものである。なお、テクスチャー試験においては、試験毎に変化曲線を描かせなくとも、各物性値を自動的に表示することができる。 A texture test is a well-known test used for inspection of physical properties of foods and the like. At room temperature, fill the sample (filler) in a given container, set it in the test device, and then check the "deformability". (1st time), then, as in the first time, the cylinder is moved up and down at a constant speed, and the sample is penetrated and pulled out from the upper surface of the sample by 20 mm (2nd time), and the change curve of the test force is obtained. When confirming "damping property", first, the cylinder is moved up and down at a constant speed to penetrate and withdraw 4 mm from the upper surface of the sample (first time), and then this is repeated 9 times to measure the change in the test force. Ask. The "penetration stress" in the texture test is the penetration stress (Pa) obtained by converting the maximum load ha at the time of penetration into stress. In the texture test, each physical property value can be automatically displayed without drawing a change curve for each test.

一般に試料に負荷(荷重)を加えると、試料は変形若しくは破損したりする。テクスチャー試験における「変形性」であるが、負荷を2回連続で加えて、1回目と2回目の負荷面積(エネルギー)の比を「変形性」とする。従って、「変形性=1」とは、1回目で変形はするものの、元の形状に復元し、2回目も同様の挙動を示す弾性の性質を持ったものである。
また、テクスチャー試験における「減衰性」であるが、負荷を9回連続で加えて、1回目の貫入応力(Pa)に対する、各回の貫入応力(Pa)の比(貫入応力2回目/貫入応力1回目、貫入応力3回目/貫入応力1回目、貫入応力4回目/貫入応力1回目、・・・貫入応力9回目/貫入応力1回目)を求め、それらの平均値を「減衰性」とする。従って、「減衰性=1」とは、1回目で変形はするものの、元の形状に復元し、9回目の貫入時も同様の挙動を示す弾性の性質をもったものである。
In general, when a load (load) is applied to a sample, the sample is deformed or damaged. Regarding the "deformability" in the texture test, a load is applied twice in succession, and the ratio of the load area (energy) between the first time and the second time is defined as "deformability". Therefore, "deformability = 1" means that although the material is deformed the first time, it restores to its original shape and exhibits the same behavior the second time as well.
In addition, the "damping property" in the texture test is the ratio of the penetration stress (Pa) of each time to the penetration stress (Pa) of the first time (penetration stress 2nd / penetration stress 1 1st time, 3rd time penetration stress/1st time penetration stress, 4th time penetration stress/1st time penetration stress, . Therefore, "attenuation = 1" means that although it deforms at the first time, it restores to its original shape, and has an elastic property that exhibits the same behavior at the time of the ninth penetration.

本発明の地盤造成用充填材料の直列弾性率E1は、900Pa以上、好ましくは1,500Pa以上、特に好ましくは2,000Pa以上であり、並列弾性率E2は、1,000Pa以上、好ましくは1,300Pa以上であり、特に好ましくは1,500Pa以上である。本発明の地盤造成用充填材料の並列部粘度η1は、10,000Pa・s以上、好ましくは50,000Pa・s以上、特に好ましくは60,000Pa・s以上であり、直列部粘度η2は、200,000Pa・s以上、好ましくは500,000Pa・s以上、特に好ましくは600,000Pa・s以上である。
地盤造成用充填材料の直列弾性率E1、並列弾性率E2、並列部粘度η1及び直列部粘度η2が、上記範囲にあることにより、荷重を加えられても、大変形若しくは破損せず、元の形状に復元する弾性の性質を有する。本発明の地盤造成用充填材料は、この粘弾性体としての性質が高いことで、打設時には十分な流動性を有し、圧力が作用しない場合は、その場に留まることで高い充填性を有する。一方、地盤造成用充填材料の直列弾性率E1、並列弾性率E2、並列部粘度η1又は直列部粘度η2が、上記範囲未満だと、施工時の圧力の増減によって、材料が劣化し、充填性が損なわれる可能性がある。
The ground preparation filling material of the present invention has a series elastic modulus E1 of 900 Pa or more, preferably 1,500 Pa or more, and particularly preferably 2,000 Pa or more, and a parallel elastic modulus E2 of 1,000 Pa or more, preferably 1,000 Pa or more. It is 300 Pa or more, and particularly preferably 1,500 Pa or more. The parallel portion viscosity η1 of the ground preparation filling material of the present invention is 10,000 Pa s or more, preferably 50,000 Pa s or more, and particularly preferably 60,000 Pa s or more, and the series portion viscosity η2 is 200. ,000 Pa·s or more, preferably 500,000 Pa·s or more, and particularly preferably 600,000 Pa·s or more.
Since the series elastic modulus E1, the parallel elastic modulus E2, the parallel section viscosity η1, and the series section viscosity η2 of the filling material for ground preparation are within the above ranges, even if a load is applied, the material will not be greatly deformed or damaged, and will not be damaged. It has the property of elasticity to restore its shape. The ground preparation filling material of the present invention has high viscoelastic properties, so that it has sufficient fluidity at the time of placing, and when pressure does not act, it stays in place and has high filling properties. have. On the other hand, if the series elastic modulus E1, the parallel elastic modulus E2, the parallel section viscosity η1, or the series section viscosity η2 of the filling material for ground preparation are less than the above ranges, the material deteriorates due to the increase or decrease in pressure during construction, and the filling property may be damaged.

本発明において、地盤造成用充填材料の弾性率E(Pa)及び粘度η(Pa・s)は、TA Instruments社製 粘弾性測定装置 ARES-G2(JISK7132:1999「硬質発泡プラスチック 規定荷重および温度条件下における圧縮クリープの測定方法」4.3荷重装置に準拠)による圧縮クリープ試験における圧縮クリープコンプライアンス J(t)をBurgersモデル近似から測定される。 In the present invention, the elastic modulus E (Pa) and viscosity η (Pa s) of the filling material for ground preparation are measured using a viscoelasticity measuring device ARES-G2 manufactured by TA Instruments (JISK7132: 1999 “Rigid foam plastic specified load and temperature conditions The compression creep compliance J(t) in the compression creep test according to "Method for Measuring Compression Creep" in Section 4.3 Loading Apparatus) is determined from the Burgers model approximation.

本発明の地盤造成用充填材料の水中投下試験における上澄濁度は、50以下、好ましくは20以下である。地盤造成用充填材料の水中投下試験における上澄濁度が、上記範囲にあることにより、水に対する安定性が高く、水中に直接落下させても水中で分離し難い。一方、地盤造成用充填材料の水中投下試験における上澄濁度が、上記範囲を超えると、水に対する安定性が低く、水中に直接落下させると分離してしまったり、充填後の水の流れによって、希釈されたり、消失してしまう。 The supernatant turbidity in the water drop test of the filling material for ground preparation of the present invention is 50 or less, preferably 20 or less. When the filler material for ground preparation has a supernatant turbidity in the water drop test, it is highly stable in water and does not easily separate in water even if dropped directly into water. On the other hand, if the supernatant turbidity in the water drop test of the filling material for ground preparation exceeds the above range, the stability against water is low, and if it is dropped directly into water, it will separate, or it will be separated due to the flow of water after filling. , diluted or lost.

本発明において、地盤造成用充填材料の水中投下試験における上澄濁度は、室温下、1000mlのメスシリンダーに、水道水を700ml入れ、開口部に最小径が40mmの漏斗をセットし、402.12ml(X)の充填材A1の塊状物を漏斗を通して、水道水中に重力投下する。投下後、塊状物は水中を落下し、底に沈降、充填される。充填材静置後、塊状物の体積(Y)を読み取り、充填性((Y)/(X))を測定する。その後、上澄み300mlを採取し、濁水の色調を目視観察すると共に、濁度計(共立理化学研究所 製;型番DPM2-TB500)により、濁度を測定し、確認される。 In the present invention, the supernatant turbidity in the water drop test of the filling material for ground preparation is measured by putting 700 ml of tap water into a 1000 ml graduated cylinder at room temperature and setting a funnel with a minimum diameter of 40 mm at the opening. A mass of 12 ml (X) of Filler A1 is gravity-fed through a funnel into tap water. After dropping, the lump falls through the water, settles to the bottom and fills. After the filler is allowed to stand still, the volume (Y) of the lump is read to measure the fillability ((Y)/(X)). After that, 300 ml of the supernatant is collected, and the color tone of the turbid water is visually observed, and the turbidity is measured and confirmed by a turbidity meter (manufactured by Kyoritsu Rikagaku Kenkyusho; Model No. DPM2-TB500).

本発明の地盤造成用充填材料の充填性((Y)/(X))は、1.00~1.20、好ましくは1.00~1.10、特に好ましくは1.00~1.05である。地盤造成用充填材料の充填性((Y)/(X))が、上記範囲にあることにより、充填中に充填材料同士が結合し、自重によって充填材料の間の隙間を充填することができ、高い充填性を得る。一方、地盤造成用充填材料の充填性((Y)/(X))が、上記範囲未満だと、空洞充填時に充填した体積に対して、充填後の体積が小さくなるため、確実な充填ができず、また、上記範囲を超えると、充填時にできた間隙を充填することができない。 The filling property ((Y)/(X)) of the ground preparation filling material of the present invention is 1.00 to 1.20, preferably 1.00 to 1.10, and particularly preferably 1.00 to 1.05. is. When the filling property ((Y)/(X)) of the ground preparation filling material is within the above range, the filling materials are bonded to each other during filling, and the gaps between the filling materials can be filled by their own weight. , to obtain high fillability. On the other hand, if the filling property ((Y)/(X)) of the filling material for ground preparation is less than the above range, the volume after filling becomes smaller than the volume filled at the time of filling the cavity, so reliable filling is possible. Moreover, when the above range is exceeded, the gap formed during filling cannot be filled.

本発明の地盤造成用充填材料中、モンモリロナイト粒子に対する分子鎖中にアニオン性官能基を有する高分子化合物の質量比(分子鎖中にアニオン性官能基を有する高分子化合物/モンモリロナイト粒子)は、好ましくは0.020~0.50、特に好ましくは0.17~0.19である。モンモリロナイト粒子に対する分子鎖中にアニオン性官能基を有する高分子化合物の質量比(分子鎖中にアニオン性官能基を有する高分子化合物/モンモリロナイト粒子)が上記範囲にあることにより、モンモリロナイト粒子の平板状結合物が作成でき、高い弾性の性質と水中での安定性を得ることができる。 In the ground preparation filling material of the present invention, the mass ratio of the polymer compound having an anionic functional group in the molecular chain to the montmorillonite particles (polymer compound having an anionic functional group in the molecular chain/montmorillonite particles) is preferably is 0.020 to 0.50, particularly preferably 0.17 to 0.19. When the mass ratio of the polymer compound having an anionic functional group in the molecular chain to the montmorillonite particles (the polymer compound having an anionic functional group in the molecular chain/montmorillonite particles) is within the above range, the tabular shape of the montmorillonite particles is obtained. Bonds can be made and high elastic properties and stability in water can be obtained.

本発明の地盤造成用充填材料中、砂粒子に対するモンモリロナイト粒子の質量比(モンモリロナイト粒子/砂粒子)は、好ましくは0.010~0.20、特に好ましくは0.060~0.080である。砂粒子に対するモンモリロナイトの質量比(モンモリロナイト粒子/砂粒子)が、上記範囲にあることにより、モンモリロナイト粒子の平板状結合物からなる積層構造の中に砂粒子を内包することができ、一体な充填材料となる。 In the ground preparation filling material of the present invention, the mass ratio of montmorillonite particles to sand particles (montmorillonite particles/sand particles) is preferably 0.010 to 0.20, particularly preferably 0.060 to 0.080. When the mass ratio of montmorillonite to sand particles (montmorillonite particles/sand particles) is within the above range, the sand particles can be included in the layered structure composed of the tabular combination of montmorillonite particles, and the integral filler material can be obtained. becomes.

本発明の地盤造成用充填材料中、砂粒子に対する分子鎖中にアニオン性官能基を有する高分子化合物の質量比(分子鎖中にアニオン性官能基を有する高分子化合物/砂粒子)は、好ましくは0.0050~0.020、特に好ましくは0.010~0.015である。砂粒子に対する分子鎖中にアニオン性官能基を有する高分子化合物の質量比(分子鎖中にアニオン性官能基を有する高分子化合物子/砂粒子)が、上記範囲にあることにより、モンモリロナイト粒子の平板状結合物からなる積層構造の中に砂粒子を内包することができ、一体な充填材料となる。 In the ground preparation filling material of the present invention, the mass ratio of the polymer compound having an anionic functional group in the molecular chain to the sand particles (polymer compound having an anionic functional group in the molecular chain/sand particles) is preferably is 0.0050 to 0.020, particularly preferably 0.010 to 0.015. When the mass ratio of the polymer compound having an anionic functional group in the molecular chain to the sand particles (polymer compound having an anionic functional group in the molecular chain/sand particle) is within the above range, the montmorillonite particles Sand grains can be included in the laminated structure of the flat plate-shaped composites, forming an integrated filler material.

本発明の地盤造成用充填材料中、水(地盤造成用充填材料中の水分)に対するモンモリロナイト粒子の質量比(モンモリロナイト粒子/水)は、好ましくは0.010~0.30、特に好ましくは0.070~0.10である。水に対するモンモリロナイト粒子の質量比(モンモリロナイト粒子/水)が、上記範囲にあることにより、充填材料が施工可能な硬さとなる。 In the filling material for ground preparation of the present invention, the mass ratio of montmorillonite particles to water (moisture in the filling material for ground preparation) (montmorillonite particles/water) is preferably 0.010 to 0.30, particularly preferably 0.30. 070 to 0.10. When the mass ratio of montmorillonite particles to water (montmorillonite particles/water) is within the above range, the filling material has a hardness that allows it to be applied.

本発明の地盤造成用充填材料中、水(地盤造成用充填材料中の水分)に対する分子鎖中にアニオン性官能基を有する高分子化合物の質量比(分子鎖中にアニオン性官能基を有する高分子化合物/水)は好ましくは0.0050~0.025、特に好ましくは0.013~0.019である。水に対する分子鎖中にアニオン性官能基を有する高分子化合物の質量比(分子鎖中にアニオン性官能基を有する高分子化合物/水)が、上記範囲にあることにより、充填材料が施工可能な硬さとなる。 In the filling material for ground preparation of the present invention, the mass ratio of the polymer compound having an anionic functional group in the molecular chain to the water (moisture content in the filling material for ground preparation) (high (molecular compound/water) is preferably 0.0050 to 0.025, particularly preferably 0.013 to 0.019. When the mass ratio of the polymer compound having an anionic functional group in the molecular chain to water (the polymer compound having an anionic functional group in the molecular chain/water) is within the above range, the filling material can be applied. becomes hardness.

本発明の地盤造成用充填材料は、上記以外に、適宜、地盤造成用充填材料に用いられる他の成分を含有することができる。本発明の地盤造成用充填材料に適宜含有される他の成分としては、例えば、ポリカルボン酸塩アニオン系界面活性剤等の分散剤が挙げられる。 In addition to the above, the ground preparation filling material of the present invention can appropriately contain other components used in the ground preparation filling material. Other components appropriately contained in the ground preparation filler material of the present invention include, for example, dispersants such as polycarboxylate anionic surfactants.

本発明の地盤造成用充填材料は、モンモリロナイト粒子が結合することにより形成されているモンモリロナイト粒子の平板状結合物を有する。モンモリロナイト粒子の平板状結合物は、形状が平板状であり、且つ、三次元方向に繋がっている。なお、三次元方向に繋がるとは、二次元方向に広がった平板状のものが層状に重なった構造ではなく、二次元方向に広がる平板状の結合物の側部が、他の二次元方向に広がる平板状の結合物の平坦部に繋がっている構造を指す。 The ground preparation filling material of the present invention has a tabular bond of montmorillonite grains formed by bonding montmorillonite grains. The tabular combination of montmorillonite grains has a tabular shape and is connected in a three-dimensional direction. It should be noted that connecting in a three-dimensional direction does not mean a structure in which flat plates spreading in two-dimensional directions are stacked in layers, but the sides of the flat-plate-shaped bonds spreading in two-dimensional directions are connected in other two-dimensional directions. It refers to a structure connected to the flat part of an expanding flat plate-like bond.

また、本発明の地盤造成用充填材料では、モンモリロナイト粒子の平板状結合物が、砂粒子を覆っている。そして、本発明の地盤造成用充填材料では、三次元方向に広がっているモンモリロナイト粒子の平板状結合物に、砂粒子が覆われることにより、砂粒子が、本発明の地盤造成用充填材料に保持されている。 Further, in the ground preparation filling material of the present invention, the flat plate-shaped composite of montmorillonite grains covers the sand grains. In the ground preparation filling material of the present invention, the sand particles are covered with the flat plate-like combination of the montmorillonite particles that spread in the three-dimensional direction, so that the sand particles are held in the ground preparation filling material of the present invention. It is

本発明の地盤造成用充填材料において、モンモリロナイト粒子の平板状結合物は、モンモリロナイト粒子と、分子鎖中にアニオン性官能基を有する高分子化合物と、からなる。そして、モンモリロナイト粒子の側部に存在するプラスの電荷と、分子鎖中にアニオン性官能基を有する高分子化合物の分子鎖に点在するマイナスの電荷とにより、モンモリロナイト粒子の側部が、分子鎖中にアニオン性官能基を有する高分子化合物の分子鎖と、静電気的に結合する。このことにより、複数のモンモリロナイト粒子が、分子鎖中にアニオン性官能基を有する高分子化合物を介して結合し、モンモリロナイト粒子の平板状結合物を形成している。 In the ground preparation filling material of the present invention, the tabular combination of montmorillonite particles consists of montmorillonite particles and a polymer compound having an anionic functional group in the molecular chain. The side portions of the montmorillonite particles are reinforced by the positive charges existing on the side portions of the montmorillonite particles and the negative charges scattered on the molecular chains of the polymer compound having an anionic functional group in the molecular chains. Electrostatically binds to molecular chains of polymer compounds having anionic functional groups therein. As a result, a plurality of montmorillonite particles are bound via a polymer compound having an anionic functional group in the molecular chain to form a tabular combination of montmorillonite particles.

本発明の地盤造成用充填材料は、チクソトロピー性が高く、空洞への打設性に優れている。また、本発明の地盤造成用充填材料は、水に対する安定性が高く遮水性に優れている。また、本充填材料は砂材料を主材としているので高強度を発現するものではない。 The ground preparation filling material of the present invention has high thixotropy and is excellent in placement into cavities. In addition, the ground preparation filling material of the present invention has high stability against water and excellent water impermeability. In addition, since this filling material is mainly made of sand, it does not exhibit high strength.

本発明の地盤造成用充填材料を製造する方法は、特に制限されず、如何なる製造方法で製造されたものであってもよい。以下に、本発明の地盤造成用充填材料を製造する方法の一例を示すが、本発明は当該方法により製造されたものに限定されない。 The method for producing the ground preparation filling material of the present invention is not particularly limited, and any production method may be used. An example of the method for producing the ground preparation filling material of the present invention is shown below, but the present invention is not limited to those produced by this method.

本発明の地盤造成用充填材料を製造する方法としては、例えば、砂粒子と、ベントナイト粉末(モンモリロナイト粒子)と、必要に応じて水と、を混合し、撹拌する第一工程と、第一工程を行い得られる混合物(1)に、分散剤を溶解させた調整水を混合し、撹拌する第二工程と、第二工程を行い得られる混合物(2)に、分子鎖中にアニオン性官能基を有する高分子化合物を溶解させた高分子化合物溶液を混合し、撹拌する第三工程と、を有する地盤造成用充填材料の製造方法が挙げられる。 The method for producing the ground preparation filling material of the present invention includes, for example, a first step of mixing and stirring sand particles, bentonite powder (montmorillonite particles), and optionally water, and a first step. In the mixture (1) obtained by performing the second step of mixing and stirring adjusted water in which a dispersant is dissolved, and in the mixture (2) obtained by performing the second step, an anionic functional group in the molecular chain and a third step of mixing and stirring a polymer compound solution in which a polymer compound having is dissolved is mentioned.

通常、砂粒子は、湿潤状態であることが多く、第一工程では、そのような湿潤状態のものを、砂粒子として用いることができる。また、第一工程では、乾燥状態の砂粒子や湿潤状態の砂粒子を、予め水と混合することにより、適度に湿潤させたものを、砂粒子として用いることもできる。そして、第一工程では、水で湿潤させた砂粒子と、ベントナイト粉末と、必要に応じ水と、を混合し、例えば、60~120秒間撹拌することにより、砂粒子中にベントナイト粉末を拡散させる。砂粒子とベントナイト粉末の混合比は、砂粒子(水を除く。)に対するベントナイト粉末の質量比(ベントナイト粉末/砂粒子)が、好ましくは0.010~0.20、より好ましくは0.050~0.090、特に好ましくは0.060~0.080となる混合比である。 Generally, sand particles are often wet, and such wet sand particles can be used as the sand particles in the first step. Further, in the first step, sand particles in a dry state or wet sand particles may be mixed with water in advance to be appropriately moistened, and used as the sand particles. Then, in the first step, sand particles moistened with water, bentonite powder, and optionally water are mixed and stirred for, for example, 60 to 120 seconds to diffuse the bentonite powder in the sand particles. . As for the mixing ratio of sand particles and bentonite powder, the mass ratio of bentonite powder to sand particles (excluding water) (bentonite powder/sand particles) is preferably 0.010 to 0.20, more preferably 0.050 to The mixing ratio is 0.090, particularly preferably 0.060 to 0.080.

第二工程に係る分散剤は、本発明の地盤造成用充填材料に係る分散剤と同様である。第二工程では、予め、分散剤を調整水に溶解させて、分散剤を溶解させた調整水を調製し、第一工程を行い得られる混合物(1)に、分散剤を溶解させた調整水を混合し、例えば、60~240秒間撹拌する。分散剤を溶解させた調整水中の分散剤の含有量は、適宜選択されるが、分散剤の含有率は好ましくは0.1~1.5質量%である。第二工程において、混合物(1)と分散剤を溶解させた調整水の混合量は、調整水(分散剤を除く。)に対するベントナイト粉末の質量比(ベントナイト粉末/地盤造成用充填材料中の水)が、好ましくは0.010~0.30、より好ましくは0.030~0.12、特に好ましくは0.070~0.10となる混合量である。 The dispersant used in the second step is the same as the dispersant used in the ground construction filling material of the present invention. In the second step, a dispersant is dissolved in conditioned water in advance to prepare conditioned water in which the dispersant is dissolved, and the conditioned water in which the dispersant is dissolved in the mixture (1) obtained by performing the first step and agitated, for example, for 60-240 seconds. The content of the dispersant in the conditioned water in which the dispersant is dissolved is appropriately selected, but the content of the dispersant is preferably 0.1 to 1.5% by mass. In the second step, the mixed amount of the mixture (1) and the adjustment water in which the dispersant is dissolved is the mass ratio of the bentonite powder to the adjustment water (excluding the dispersant) (bentonite powder/water in the filler material for ground preparation ) is preferably 0.010 to 0.30, more preferably 0.030 to 0.12, and particularly preferably 0.070 to 0.10.

第三工程に係る分子鎖中にアニオン性官能基を有する高分子化合物は、本発明の地盤造成用充填材料に係る分子鎖中にアニオン性官能基を有する高分子化合物と同様である。第三工程に係る高分子化合物溶液中、分子鎖中にアニオン性官能基を有する高分子化合物の含有率は、適宜選択されるが、好ましくは0.5~15.0質量%である。第三工程では、第二工程を行い得られる混合物(2)に、高分子化合物溶液を混合し、例えば、60~360秒間撹拌する。第三工程において、高分子化合物の混合量は、第一工程で混合した水分量(混合前の砂粒子が含水している水分も含む。)と、第二工程で混合した分散剤を溶解させた調整水中の水分量と、高分子化合物溶液中の水分量の合計に対する高分子化合物の質量比(高分子化合物/第一工程、第二工程及び第三工程で用いられた水分量の合計)が、好ましくは0.0050~0.025、より好ましくは0.011~0.021、特に好ましくは0.013~0.019となる混合量である。また、高分子化合物の混合量は、ベントナイト粉末に対する分子鎖中にアニオン性官能基を有する高分子化合物の質量比(高分子化合物/モンモリロナイト粒子)が、好ましくは0.020~0.50、より好ましくは0.13~0.24、特に好ましくは0.17~0.19となる混合量である。また、高分子化合物の混合量は、砂粒子に対する分子鎖中にアニオン性官能基を有する高分子化合物の質量比(高分子化合物/砂粒子)が、好ましくは0.0050~0.020、より好ましくは0.0070~0.018、特に好ましくは0.010~0.015となる混合量である。 The polymer compound having an anionic functional group in the molecular chain for the third step is the same as the polymer compound having an anionic functional group in the molecular chain for the filling material for ground construction of the present invention. The content of the polymer compound having an anionic functional group in the molecular chain in the polymer compound solution relating to the third step is appropriately selected, but is preferably 0.5 to 15.0% by mass. In the third step, the polymer compound solution is mixed with the mixture (2) obtained by performing the second step, and stirred for 60 to 360 seconds, for example. In the third step, the mixing amount of the polymer compound is determined by dissolving the amount of water mixed in the first step (including the water contained in the sand particles before mixing) and the dispersant mixed in the second step. The mass ratio of the polymer compound to the sum of the water content in the adjusted water and the water content in the polymer compound solution (polymer compound / total water content used in the first step, second step and third step) However, the mixing amount is preferably 0.0050 to 0.025, more preferably 0.011 to 0.021, and particularly preferably 0.013 to 0.019. In addition, the amount of the polymer compound mixed is such that the mass ratio of the polymer compound having an anionic functional group in the molecular chain to the bentonite powder (polymer compound/montmorillonite particles) is preferably 0.020 to 0.50, or more. The mixing amount is preferably 0.13 to 0.24, particularly preferably 0.17 to 0.19. In addition, regarding the amount of the polymer compound mixed, the mass ratio of the polymer compound having an anionic functional group in the molecular chain to the sand particles (polymer compound/sand particle) is preferably 0.0050 to 0.020, or more. The mixing amount is preferably 0.0070 to 0.018, particularly preferably 0.010 to 0.015.

そして、上記本発明の地盤造成用充填材料を製造する方法を行うことにより、本発明の地盤造成用充填材料が得られる。 Then, the filling material for ground preparation of the present invention is obtained by performing the method for producing the filling material for ground preparation of the present invention.

本発明の地盤造成用充填材料は、適宜の方法により調製された後、そのまま、地盤造成対象の地中に打設されてもよいし、あるいは、セメント溶液が混合及び撹拌された後、得られる混合物が、地盤造成対象の地中に打設されてもよい。 The ground preparation filling material of the present invention may be prepared by an appropriate method and then placed directly into the ground to be ground preparation, or it may be obtained after mixing and stirring a cement solution. The mixture may be poured into the ground to be prepared.

セメント溶液とは、粉体のセメント固化材を水に溶解させたものである。本発明において、セメント固化材と地盤造成用充填材料中の砂粒子との混合比は、特に制限されず、適宜選択されるが、通常、50:1000~150:1000である。 The cement solution is obtained by dissolving a powdery cement solidifying material in water. In the present invention, the mixing ratio of the cement solidification material and the sand particles in the ground preparation filling material is not particularly limited and may be appropriately selected, but is usually 50:1000 to 150:1000.

以下に実施例を挙げて、本発明を更に具体的に説明するが、本発明にそれに限定されるものではない。 EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited thereto.

(実施例1)
(第一工程)
麻生砂(含水比:10.8質量%、茨城県産 山砂、土粒子の密度ρs 2.692g/cm、細粒分含有率4.0%)1000gに、ベントナイト粉末(ホージュン社製、乾式フルイ残分 10.0%/53μm以下)70gを混合し、60秒間撹拌し、混合物(1)を得た。
(第二工程)
次いで、水492gに、分散剤(ポリカルボン酸塩アニオン系界面活性剤)5.0gを溶解させて、分散剤を溶解させた調整水を調製した。次いで、上記で得た混合物(1)に分散剤を溶解させた調整水の全量を混合し、120秒間撹拌し、混合物(2)を得た。
(第三工程)
次いで、水200gに、アクリル酸とアクリルアミドの共重合物(ハイモ株式会社製、商品名SAVE-SP工法用添加剤 L1号)12.8gを溶解させて、高分子化合物溶液を調製した。次いで、上記で得た混合物(2)に高分子化合物溶液の全量を混合し、300秒間撹拌し、地盤造成用充填材料を得た。
次いで、得られた地盤造成用充填材料のSEM観察を行い、SEM写真を得た。その結果を図1(100倍)及び図2(200倍)に示す。また、粘弾性率の測定、テクスチャー試験、水中投下試験を行った。その結果を表1に示す。
次いで、得られた地盤造成用充填材料の以下の性能評価を行った。その結果を表1に示す。
(Example 1)
(First step)
Aso sand (water content: 10.8% by mass, mountain sand from Ibaraki Prefecture, soil particle density ρs: 2.692 g/cm 3 , fine particle content: 4.0%) was added to 1000 g of bentonite powder (manufactured by Hojun Co., Ltd., 70 g of dry sieve residue (10.0%/53 μm or less) were mixed and stirred for 60 seconds to obtain a mixture (1).
(Second step)
Next, 5.0 g of a dispersant (polycarboxylate anionic surfactant) was dissolved in 492 g of water to prepare adjusted water in which the dispersant was dissolved. Next, the mixture (1) obtained above was mixed with the adjusted water in which the dispersant was dissolved, and the mixture was stirred for 120 seconds to obtain a mixture (2).
(Third step)
Next, 12.8 g of a copolymer of acrylic acid and acrylamide (manufactured by Hymo Co., Ltd., product name SAVE-SP construction method additive L1) was dissolved in 200 g of water to prepare a polymer compound solution. Next, the mixture (2) obtained above was mixed with the total amount of the polymer compound solution and stirred for 300 seconds to obtain a filling material for ground preparation.
Next, SEM observation of the obtained filling material for ground preparation was performed, and SEM photographs were obtained. The results are shown in FIG. 1 (100 times) and FIG. 2 (200 times). In addition, viscoelastic modulus measurement, texture test, and water drop test were conducted. Table 1 shows the results.
Next, the following performance evaluations of the obtained filling materials for ground preparation were performed. Table 1 shows the results.

<評価方法>
(走査型電子顕微鏡観察(SEM))
試料を、1瞬間凍結、2フリーズドライ、3乾燥試料の切片採取の手順で前処理した。
次いで、走査型電子顕微鏡(JSM-IT500HR、日本電子株式会社製)を用いて、信号SED、入射電圧3.0kV、WD50.0mm、倍率:100倍及び200倍の条件で、測定した。
<Evaluation method>
(Scanning electron microscope observation (SEM))
Samples were pretreated with a procedure of 1 flash freezing, 2 freeze-drying, 3 sectioning of dried samples.
Then, using a scanning electron microscope (JSM-IT500HR, manufactured by JEOL Ltd.), measurement was performed under the conditions of signal SED, incident voltage of 3.0 kV, WD of 50.0 mm, and magnifications of 100 and 200 times.

(弾性率E(Pa)と粘度η(Pa・s))
TA Instruments社製粘弾性測定装置 ARES-G2(JISK7132:1999「硬質発泡プラスチック 規定荷重および温度条件下における圧縮クリープの測定方法」4.3荷重装置に準拠)による圧縮クリープ試験における圧縮クリープコンプライアンス J(t)をBurgersモデル近似から、弾性率E(Pa)と粘度η(Pa・s)を求めた。
(Elastic modulus E (Pa) and viscosity η (Pa s))
Compression creep compliance in compression creep test by TA Instruments' viscoelasticity measuring device ARES-G2 (JISK7132: 1999 "Method for measuring compression creep under specified load and temperature conditions" 4.3 load device) J ( The elastic modulus E (Pa) and the viscosity η (Pa·s) were obtained from Burgers model approximation of t).

(テクスチャー試験 「変形性」)
テクスチャー試験装置(山電社製、卓上式物性測定器)を用いて、室温下、所定容器に試料(充填材)を充填し、試験装置にセットした後、先ず、シリンダーを一定速度で上下させて、試料上面から20mmの貫入及び引抜を行い(1回目)、次いで、1回目と同様に、シリンダーを一定速度で上下させ、試料上面から20mmの貫入及び引抜を行い(2回目)、貫入応力(Pa)、貫入エネルギー(J/m)、変形性(A2/A1)を求めた。なお、変形性(A2/A1)とは、1回目と2回目の負荷面積(エネルギー)の比を指す。
(Texture test "deformability")
Using a texture testing device (manufactured by Yamaden Co., Ltd., desktop physical property measuring device), fill the sample (filler) in a predetermined container at room temperature, set it in the testing device, and then first move the cylinder up and down at a constant speed. Then, the cylinder is moved up and down at a constant speed in the same manner as the first time, and the penetration and withdrawal of 20 mm from the top surface of the sample are performed (second time), and the penetration stress (Pa), penetration energy (J/m 3 ), and deformability (A2/A1) were determined. The deformability (A2/A1) refers to the ratio of the load area (energy) between the first time and the second time.

(テクスチャー試験 「減衰性」)
テクスチャー試験装置(山電社製、卓上式物性測定器)を用いて、室温下、所定容器に試料(充填材)を充填し、試験装置にセットした後、先ず、シリンダーを一定速度で上下させて、試料上面から4mmの貫入及び引抜を行い(1回目)、次いで、1回目と同様に、シリンダーを一定速度で上下させ、試料上面から4mmの貫入及び引抜を行い(2回目)、貫入応力(Pa)、貫入エネルギー(J/m)、貫入応力比(貫入応力2回目/貫入応力1回目)を求めた。この動作を9回繰り返した。次いで、1回目の貫入応力(Pa)に対する、各回の貫入応力(Pa)の比(貫入応力2回目/貫入応力1回目、貫入応力3回目/貫入応力1回目、貫入応力4回目/貫入応力1回目、・・・貫入応力9回目/貫入応力1回目)を求め、それらの平均値を「減衰性」とした。
(Texture test "Attenuation")
Using a texture testing device (manufactured by Yamaden Co., Ltd., desktop physical property measuring device), fill the sample (filler) in a predetermined container at room temperature, set it in the testing device, and then first move the cylinder up and down at a constant speed. Then, the cylinder is moved up and down at a constant speed in the same way as the first time, and the penetration and withdrawal of 4 mm from the top surface of the sample are performed (second time), and the penetration stress (Pa), penetration energy (J/m 3 ), and penetration stress ratio (second penetration stress/first penetration stress) were obtained. This operation was repeated 9 times. Next, the ratio of the penetration stress (Pa) for each time to the penetration stress (Pa) for the first time (2nd penetration stress / 1st penetration stress, 3rd penetration stress / 1st penetration stress, 4th penetration stress / 1 penetration stress 9th time, .

(水中投下試験)
室温下、1000mlのメスシリンダーに、水道水を700ml入れ、開口部に最小径が(40mm)の漏斗をセットし、402.12ml(X)の充填材A1の塊状物を漏斗を通して、水道水中に重力投下した。投下後、塊状物は水中を落下し、底に沈降、充填された。充填材静置後、塊状物の体積(Y)を読み取り、充填性((Y)/(X))を測定した。また、上澄み300mlを採取し、濁水の色調を目視観察すると共に、濁度計(共立理化学研究所製、型番DPM2-TB500)により、濁度を測定した。
(Water drop test)
At room temperature, put 700 ml of tap water in a 1000 ml graduated cylinder, set a funnel with a minimum diameter (40 mm) at the opening, and put 402.12 ml (X) of filler A1 lumps through the funnel into the tap water. Gravity dropped. After dropping, the mass fell through the water and settled and filled the bottom. After the filler was allowed to stand still, the volume (Y) of the lump was read to measure the fillability ((Y)/(X)). In addition, 300 ml of the supernatant was sampled, and the color tone of the turbid water was visually observed, and the turbidity was measured with a turbidity meter (model number DPM2-TB500 manufactured by Kyoritsu Rikagaku Kenkyusho Co., Ltd.).

<性能評価>
(空洞への打設性能評価)
テクスチャー試験における変形性が0.700上であり、テクスチャー試験における減衰性が0.700以上であり、直列弾性率E1が900Pa以上であり、並列弾性率E2が1,000以上でPaであり、且つ、並列部粘度η1が、10,000Pa・s以上であり、直列部粘度η2が、200,000Pa・s以上である場合、空洞への打設性能が良好「〇」とし、テクスチャー試験における変形性、テクスチャー試験における減衰性、直列弾性率E1及び並列弾性率E2のうちのいずれか1つでも、上記範囲を満たさない場合、空洞への打設性能が不良「×」とした。
(水中安定性評価)
水中投下試験における上澄濁度が50以下である場合、水中安定性が良好「〇」とし、水中投下試験における上澄濁度が50を超える場合、水中安定性が不良「×」とした。
<Performance evaluation>
(Evaluation of casting performance into cavities)
The deformability in the texture test is 0.700 or more, the damping property in the texture test is 0.700 or more, the series elastic modulus E1 is 900 Pa or more, and the parallel elastic modulus E2 is 1,000 or more and Pa, In addition, when the parallel portion viscosity η1 is 10,000 Pa s or more and the serial portion viscosity η2 is 200,000 Pa s or more, the performance of casting into the cavity is evaluated as "good", and the deformation in the texture test If any one of the properties, damping property in the texture test, series elastic modulus E1, and parallel elastic modulus E2 does not satisfy the above range, the casting performance into the cavity was evaluated as "poor".
(Underwater stability evaluation)
When the supernatant turbidity in the water dropping test was 50 or less, the stability in water was evaluated as "good", and when the supernatant turbidity in the water dropping test exceeded 50, the stability in water was evaluated as "poor".

(実施例2~3、比較例1~2)
各配合材の混合量を、表1に示す通りとすること以外は、実施例1と同様に行い、粘弾性率の測定、テクスチャー試験、水中投下試験、地中への打設性評価、水中安定性評価を行った。その結果を表1に示す。
(Examples 2-3, Comparative Examples 1-2)
The same procedure as in Example 1 was carried out, except that the mixing amount of each compounding material was as shown in Table 1. A stability evaluation was performed. Table 1 shows the results.

Figure 2022120638000002
Figure 2022120638000002

図1に示すように、実施例1の地盤造成用充填材料は、モンモリロナイト粒子が結合することにより形成されているモンモリロナイト粒子の平板状結合物を有する。モンモリロナイト粒子の平板状結合物は、形状が平板状であり、且つ、三次元方向に繋がっている。また、モンモリロナイト粒子の平板状結合物が、砂粒子を覆っている。そして、三次元方向に広がっているモンモリロナイト粒子の平板状結合物に、砂粒子が覆われることにより、砂粒子が、本発明の地盤造成用充填材料に保持されている。


As shown in FIG. 1, the ground preparation filler material of Example 1 has a tabular bond of montmorillonite grains formed by bonding montmorillonite grains. The tabular combination of montmorillonite grains has a tabular shape and is connected in a three-dimensional direction. Also, tabular aggregates of montmorillonite grains cover the sand grains. The sand particles are held in the ground preparation filling material of the present invention by covering the sand particles with the flat plate-like aggregates of the montmorillonite particles that spread in the three-dimensional direction.


Claims (9)

少なくとも、砂粒子と、モンモリロナイト粒子と、分子鎖中にアニオン性官能基を有する高分子化合物と、水と、を含有し、
テクスチャー試験における変形性が0.700以上であり、
テクスチャー試験における減衰性が0.700以上であること、
を特徴とする地盤造成用充填材料。
containing at least sand particles, montmorillonite particles, a polymer compound having an anionic functional group in its molecular chain, and water,
The deformability in the texture test is 0.700 or more,
The attenuation property in the texture test is 0.700 or more,
A filling material for ground preparation, characterized by:
直列弾性率E1が900Pa以上であり、並列弾性率E2が1,000Pa以上であり、並列部粘度η1が10,000Pa・s以上であり、直列部粘度η2が、200,000Pa・s以上であることを特徴とする請求項1記載の地盤造成用充填材料。 The series elastic modulus E1 is 900 Pa or more, the parallel elastic modulus E2 is 1,000 Pa or more, the parallel portion viscosity η1 is 10,000 Pa s or more, and the series portion viscosity η2 is 200,000 Pa s or more. The filling material for ground preparation according to claim 1, characterized in that: 水中投下試験における上澄濁度が50以下であることを特徴とする請求項1又は2記載の地盤造成用充填材料。 3. The filling material for ground preparation according to claim 1 or 2, having a supernatant turbidity of 50 or less in a water dropping test. 前記分子鎖中にアニオン性官能基を有する高分子化合物が、アクリル酸とアクリルアミドの共重合体である直鎖型のアニオン性高分子化合物であることを特徴とする請求項1~3いずれか1項記載の地盤造成用充填材料。 Any one of claims 1 to 3, wherein the polymer compound having an anionic functional group in the molecular chain is a linear anionic polymer compound that is a copolymer of acrylic acid and acrylamide. Filling material for ground preparation according to paragraph. 前記モンモリロナイト粒子に対する前記分子鎖中にアニオン性官能基を有する高分子化合物の質量比(分子鎖中にアニオン性官能基を有する高分子化合物/モンモリロナイト粒子)が、0.020~0.50であることを特徴とする請求項1~4いずれか1項記載の地盤造成用充填材料。 The mass ratio of the polymer compound having an anionic functional group in the molecular chain to the montmorillonite particles (polymer compound having an anionic functional group in the molecular chain/montmorillonite particles) is 0.020 to 0.50. The filling material for ground preparation according to any one of claims 1 to 4, characterized in that: 前記砂粒子に対する前記モンモリロナイト粒子の質量比(モンモリロナイト粒子/砂粒子)が、0.010~0.20であることを特徴とする請求項1~5いずれか1項記載の地盤造成用充填材料。 The filling material for ground preparation according to any one of claims 1 to 5, wherein a mass ratio of the montmorillonite particles to the sand particles (montmorillonite particles/sand particles) is 0.010 to 0.20. 前記砂粒子に対する前記分子鎖中にアニオン性官能基を有する高分子化合物の質量比(分子鎖中にアニオン性官能基を有する高分子化合物/砂粒子)が、0.0050~0.020であることを特徴とする請求項1~6いずれか1項記載の地盤造成用充填材料。 The mass ratio of the polymer compound having an anionic functional group in the molecular chain to the sand particles (polymer compound having an anionic functional group in the molecular chain/sand particle) is 0.0050 to 0.020. The filling material for ground preparation according to any one of claims 1 to 6, characterized in that: 前記地盤造成用充填材料中の水に対する前記モンモリロナイト粒子の質量比(モンモリロナイト粒子/地盤造成用充填材料中の水)が、0.010~0.30であることを特徴とする請求項1~7いずれか1項記載の地盤造成用充填材料。 Claims 1 to 7, characterized in that the mass ratio of the montmorillonite particles to the water in the filling material for ground preparation (montmorillonite particles/water in the filling material for ground preparation) is 0.010 to 0.30. The filling material for ground preparation according to any one of claims 1 to 3. 前記地盤造成用充填材料中の水に対する前記分子鎖中にアニオン性官能基を有する高分子化合物の質量比(分子鎖中にアニオン性官能基を有する高分子化合物/地盤造成用充填材料中の水)が、0.0050~0.025であることを特徴とする請求項1~8いずれか1項記載の地盤造成用充填材料。 Mass ratio of the polymer compound having an anionic functional group in the molecular chain to the water in the filling material for ground preparation (polymer compound having an anionic functional group in the molecular chain/water in the filling material for ground preparation ) is from 0.0050 to 0.025.
JP2021017664A 2021-02-05 2021-02-05 Filling material for ground preparation Active JP7368405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021017664A JP7368405B2 (en) 2021-02-05 2021-02-05 Filling material for ground preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021017664A JP7368405B2 (en) 2021-02-05 2021-02-05 Filling material for ground preparation

Publications (2)

Publication Number Publication Date
JP2022120638A true JP2022120638A (en) 2022-08-18
JP7368405B2 JP7368405B2 (en) 2023-10-24

Family

ID=82849179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021017664A Active JP7368405B2 (en) 2021-02-05 2021-02-05 Filling material for ground preparation

Country Status (1)

Country Link
JP (1) JP7368405B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103689A (en) * 1990-08-22 1992-04-06 Sanyo Chem Ind Ltd Solidification agent for water containing soil
JPH11333209A (en) * 1998-05-28 1999-12-07 Toagosei Co Ltd Dehydrating agent for civil engineering muddy water and dehydration
JP2005162984A (en) * 2003-12-05 2005-06-23 Kyokado Eng Co Ltd Gel-forming composition and method for using the same
JP2011256574A (en) * 2010-06-08 2011-12-22 Fudo Tetra Corp Filling method for underground cavity
JP2014015756A (en) * 2012-07-09 2014-01-30 Kyushu Electric Power Co Inc Underground cavity filling material and filling material manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103689A (en) * 1990-08-22 1992-04-06 Sanyo Chem Ind Ltd Solidification agent for water containing soil
JPH11333209A (en) * 1998-05-28 1999-12-07 Toagosei Co Ltd Dehydrating agent for civil engineering muddy water and dehydration
JP2005162984A (en) * 2003-12-05 2005-06-23 Kyokado Eng Co Ltd Gel-forming composition and method for using the same
JP2011256574A (en) * 2010-06-08 2011-12-22 Fudo Tetra Corp Filling method for underground cavity
JP2014015756A (en) * 2012-07-09 2014-01-30 Kyushu Electric Power Co Inc Underground cavity filling material and filling material manufacturing method

Also Published As

Publication number Publication date
JP7368405B2 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
Chaduvula et al. A study on desiccation cracking behavior of polyester fiber-reinforced expansive clay
Oliveira et al. Incorporation of fine glass aggregates in renderings
Serbah et al. Dredged sediments valorisation in compressed earth blocks: Suction and water content effect on their mechanical properties
Mollamahmutoğlu et al. Effectiveness of microfine Portland cement grouting on the strength and permeability of medium to fine sands
Luis et al. Triaxial behaviour and image analysis of Edmonton clay treated with cement and fly ash
Nasiri et al. Optimum utilization of rice husk ash for stabilization of sub-base materials in construction and repair project of forest roads
Zoriyeh et al. Nano-clay modified high plasticity soil as a building material: Micro-structure linked engineering properties and 3D digital crack analysis
Cabalar Influence of grain shape and gradation on the shear behavior of sand mixtures
Taheri et al. Desiccation cracking of polymer-bentonite mixtures: An experimental investigation
Consoli et al. Effect of wet-dry cycles on the durability, strength and stiffness of granite residual soil stabilised with portland cement
Muhmed et al. The impact of moisture and clay content on the unconfined compressive strength of lime treated highly reactive clays
JP7349462B2 (en) Filling material for ground preparation
JP7368405B2 (en) Filling material for ground preparation
Khan et al. Impact of wet-dry cycles on the shear strength of high plastic clay based on direct shear testing
JP7377232B2 (en) Method for producing filling material for ground preparation
Kumar et al. Stabilization of dune sand mixed with plastic (LDPE) waste strips for design of flexible pavement in construction of roads
Domitrović et al. The relationship between swelling and shear strength properties of bentonites
Al-Soud et al. Sustainable improvement of bentonite clay characteristics by adding pulverized waste glass
Saride et al. Effect of area improvement ratio of geopolymer-based deep mixing columns on swell-shrink behavior of expansive soils
Souza et al. Passing ability testing for self-compacting concrete
Adajar et al. Soil-structure interface behavior of cemented-paste backfill material mixed with mining waste
Mir et al. Influence of nanomaterials on compaction and strength behaviour of clayey soils
Avcl et al. Permeability characteristics of superfine cement-grouted
Mollamahmutoğlu et al. Properties of superplasticizer-amended superfine cement grouted sand
Timani et al. STATISTICAL ASSESSMENT OF COMPACTION CHARACTERISTICS, CALIFORNIA BEARING RATIO VALUE AND SHEAR BEHAVIOR OF CLAY-SAND-GRAVEL MIXTURE FOR PAVEMENTS.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231012

R150 Certificate of patent or registration of utility model

Ref document number: 7368405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150