JP2022119624A - Method for visualizing hematoma of subarachnoid hemorrhage model due to intravascular perforation - Google Patents

Method for visualizing hematoma of subarachnoid hemorrhage model due to intravascular perforation Download PDF

Info

Publication number
JP2022119624A
JP2022119624A JP2021016882A JP2021016882A JP2022119624A JP 2022119624 A JP2022119624 A JP 2022119624A JP 2021016882 A JP2021016882 A JP 2021016882A JP 2021016882 A JP2021016882 A JP 2021016882A JP 2022119624 A JP2022119624 A JP 2022119624A
Authority
JP
Japan
Prior art keywords
hematoma
carotid artery
sah
subarachnoid
subarachnoid hemorrhage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021016882A
Other languages
Japanese (ja)
Inventor
亮 宮岡
Ryo Miyaoka
淳考 山本
Atsutaka Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Occupational and Environmental Health Japan
Original Assignee
University of Occupational and Environmental Health Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Occupational and Environmental Health Japan filed Critical University of Occupational and Environmental Health Japan
Priority to JP2021016882A priority Critical patent/JP2022119624A/en
Publication of JP2022119624A publication Critical patent/JP2022119624A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

To provide a SAH model animal and its creation method which are capable of immediately, accurately and instantly evaluating success and seriousness of SAH induction in a subarachnoid hemorrhage (SAH) model animal by an intravascular perforation (EP) method and of visualizing hematoma while alive so that a sample can equalized before intervention experiment, a visualization method of hematoma distribution and an amount of hematoma in a subarachnoid cavity in the SAH model animal, and an evaluation method or the like of seriousness of subarachnoid hemorrhage in the model animal based on the result.SOLUTION: A visualization method for a hematoma distribution and an amount of hematoma in a subarachnoid cavity in a SAH model animal and includes the following: (a) a step which perforates the Willis arterial circle and inducts bleeding to the subarachnoid cavity; (b) a step which continuously administers a contrast medium into the Willis arterial circle at least after the perforation until hemostasis occurs while maintaining antegrade blood flow from the common carotid artery to the internal carotid artery; and (c) a step which captures an image of the head of the subarachnoid hemorrhage model by computerized tomography (CT).SELECTED DRAWING: None

Description

本発明は、くも膜下出血モデル動物の作成方法、及び対象(ヒトを除く)における、くも膜下腔での血腫分布、及び血腫量の可視化方法等に関する。 TECHNICAL FIELD The present invention relates to a method for preparing an animal model of subarachnoid hemorrhage, a method for visualizing hematoma distribution in the subarachnoid space and the amount of hematoma in a subject (excluding humans), and the like.

動脈瘤性くも膜下出血は、世界中で毎年60万人以上の患者に影響を及ぼしている脳卒中症例の約5%を占める。未だ生命予後のみならず機能予後の悪い疾患であり、遅発性脳虚血(delayed cerebral ischemia: DCI)や早期脳損傷(early brain injury: EBI)に対する治療戦略の確立のため、現在も盛んに基礎研究が行われている。上記基礎研究においては、げっ歯類のくも膜下出血(subarachnoid hemorrhage: SAH)モデル等が用いられ、該げっ歯類SAHモデルの作成法として、自己血注入法、脳槽内静脈開放法、ウィリス動脈輪の血管内穿孔(endovascular perforation: EP)法等の方法が報告されている。その中で、EP法は、近年、とくにEBIの病態究明を目指す研究においてげっ歯類SAHモデルで頻用される重要な手法となった。1995年にEP法によるSAHモデルが初めて報告されたが、遅発性脳血管攣縮、神経学的機能障害、脳浮腫形成、及び高い死亡率などの脳動脈瘤破裂後の臨床的な病態をよく模倣しているモデルとして、高く評価されている(非特許文献1)。 Aneurysmal subarachnoid hemorrhage accounts for approximately 5% of stroke cases affecting more than 600,000 patients annually worldwide. It is still a disease with poor functional prognosis as well as life prognosis, and it is still actively used to establish treatment strategies for delayed cerebral ischemia (DCI) and early brain injury (EBI). Basic research is being conducted. In the above basic research, a rodent subarachnoid hemorrhage (SAH) model and the like are used. Methods such as endovascular perforation (EP) of the annulus have been reported. Among them, the EP method has become an important method frequently used in rodent SAH models in recent years, especially in research aimed at investigating the pathogenesis of EBI. Although the SAH model by the EP method was first reported in 1995, the clinical pathology after cerebral aneurysm rupture, such as delayed cerebral vasospasm, neurological dysfunction, cerebral edema formation, and high mortality, was well documented. It is highly evaluated as a model that imitates (Non-Patent Document 1).

一方で、該モデルには、当初よりSAH誘導の成功率や重症度においてばらつきが大きく、施設間での実験手法や結果の違いなどに多くの批判があり、プロトコルの洗練と標準化を目的とした研究も盛んであった。最も問題となるのが重症度のばらつきであり、該モデルを用いて介入実験を行う際には群間の重症度をなるべく均一にする必要があり、現時点では厳格なランダム化と盲検的プロトコルを前提として、摘出脳の肉眼所見に基づいて後方視的に重症度を評価した上でサンプルを分配する手法が用いられている。これは、データ解析時にサンプルサイズの調整を行うため、その除外基準が曖昧であることなどバイアスを回避しがたい側面が指摘されている。さらに、血腫が脳底槽に残存している期間内(概ね3日以内)に動物を屠殺する必要があるために追跡期間の制約があり、長期的な予後の比較検討は不可能である。 On the other hand, in the model, the success rate and severity of SAH induction varied greatly from the beginning, and there were many criticisms such as differences in experimental methods and results between facilities, so we aimed to refine and standardize the protocol. Research was also active. The most serious problem is the variation in severity, and when conducting intervention experiments using this model, it is necessary to make the severity between groups as uniform as possible. On the premise of this, a method is used in which the severity is retrospectively evaluated based on the macroscopic findings of the excised brain, and then the samples are distributed. It has been pointed out that it is difficult to avoid bias because the sample size is adjusted at the time of data analysis, and the exclusion criteria are ambiguous. Furthermore, the animals must be sacrificed within the period when the hematoma remains in the basilar cistern (approximately within 3 days), which limits the follow-up period and makes it impossible to compare long-term prognosis.

臨床と同じようにSAHの誘導時に血腫を可視化し、重症度を評価することができれば、バイアスの軽減に寄与し、長期予後の観察も可能となるはずである。EP法によるSAHモデル動物において、CTおよびMRIで重症度を推測する方法が近年報告されているが(非特許文献2, 3)、即時的かつ血腫量を忠実に反映しうる可視化手段は報告されていない。 If we can visualize the hematoma at the time of SAH induction and evaluate its severity in the same way as clinically, it should contribute to reducing bias and enable observation of long-term prognosis. In recent years, methods for estimating the severity of SAH model animals by the EP method by CT and MRI have been reported (Non-Patent Documents 2, 3), but visualization methods that can accurately reflect the hematoma volume immediately have not been reported. not

Sugawara T, Ayer R, Jadhav V, et al. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods 2008;167:327-334.Sugawara T, Ayer R, Jadhav V, et al. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods 2008;167:327-334. Weyer V, Maros ME, Kronfeld A, et al. Longitudinal imaging and evaluation of SAH-associated cerebral large artery vasospasm in mice using micro-CT and angiography. J Cereb Blood Flow Metab 40: 2265-2277, 2020Weyer V, Maros ME, Kronfeld A, et al. Longitudinal imaging and evaluation of SAH-associated cerebral large artery vasospasm in mice using micro-CT and angiography. J Cereb Blood Flow Metab 40: 2265-2277, 2020 Shishido H, Egashira Y, Okubo S, et al. A magnetic resonance imaging grading system for subarachnoid hemorrhage severity in a rat model. J Neurosci Methods 243: 115-119, 2015Shishido H, Egashira Y, Okubo S, et al. A magnetic resonance imaging grading system for subarachnoid hemorrhage severity in a rat model. J Neurosci Methods 243: 115-119, 2015

本発明の課題は、EP法によるSAHモデル動物において即時的にSAH誘導の成功と重症度を確度よく評価することができ、介入実験前にサンプルの均一化が可能となるように生きたまま血腫を可視化し得るSAHモデル動物及びその作成方法、該SAHモデル動物におけるくも膜下腔での血腫分布、及び血腫量の可視化方法、並びにその結果に基づく該モデル動物におけるくも膜下出血の重症度の評価方法等を提供することである。 The problem of the present invention is to be able to evaluate the success and severity of SAH induction immediately and accurately in an SAH model animal by the EP method, and to make it possible to homogenize samples before intervention experiments. SAH model animal that can visualize the SAH model animal and its preparation method, a method for visualizing hematoma distribution in the subarachnoid space in the SAH model animal, and the amount of hematoma, and a method for evaluating the severity of subarachnoid hemorrhage in the model animal based on the results etc. is to be provided.

本発明者らは、血腫を可視化する手段として、動物実験において近年急速に普及しているコンピュータ断層撮影(マイクロCT)に着目した。しかし、軟部組織の異なる組織タイプ間では密度とX線吸収にほとんど差がないため、頭蓋内構造物の描出にはX線吸収造影剤の使用が必要である。血腫はくも膜下腔に漏出した造影剤を画像化したものであるので、出血の重症度とくも膜下腔に漏出した造影剤の量との間に高い相関を持たせるためには、血中の造影剤濃度と穿刺部の脳潅流圧を一定に保つために、内頸動脈の順行性の血流を妨げないようにすることが重要であるが、従来のEP法では、外頸動脈から穿刺用の器具を挿入しているため、造影剤の投与に必要なカテーテルを挿入するための別ルートが確保できなかった。そこで、本発明者らは鋭意検討を重ねた結果、内頸動脈の分枝である翼突口蓋動脈(Pterygopalatine artery: PPA)から穿刺用の器具を挿入することにより、外頸動脈を造影剤投与のためのカテーテルを挿入ルートとして確保し、SAH誘導前から自然止血に至るまでの間造影剤を持続注入することで、総頸動脈から内頸動脈への血流を遮断することなく、造影剤の血管外漏出を可能とした。上記の手法により作成したSAHモデル動物について、マイクロCTを用いてSAH誘導直後に血腫を可視化し、重症度を評価したところ、摘出脳のSAHグレード評価と高い相関を認めた。本発明者らは、これらの知見に基づいて、EP法によるSAHモデル動物において、造影剤の持続注入とマイクロCTを組み合わせることにより、即時的にSAH誘導の成功と重症度を確度よく評価することに成功し、本発明を完成するに至った。 The present inventors have focused on computed tomography (micro-CT), which has rapidly spread in recent years in animal experiments, as a means of visualizing hematoma. However, because there is little difference in density and X-ray absorption between different soft tissue tissue types, visualization of intracranial structures requires the use of X-ray absorbing contrast agents. Since the hematoma is an image of the contrast medium that has leaked into the subarachnoid space, the amount of In order to keep the contrast medium concentration and the cerebral perfusion pressure at the puncture site constant, it is important not to block the antegrade blood flow in the internal carotid artery. Because a puncture device was inserted, another route for inserting the catheter required for administration of the contrast medium could not be secured. Therefore, as a result of extensive studies, the present inventors have found that by inserting an instrument for puncture from the pterygopalatine artery (PPA), which is a branch of the internal carotid artery, contrast agent is administered to the external carotid artery. Securing a catheter for hemorrhage as an insertion route and continuously injecting the contrast agent from before SAH induction to spontaneous hemostasis, the contrast agent can be injected without blocking the blood flow from the common carotid artery to the internal carotid artery. extravasation of the blood vessels. In SAH model animals prepared by the above method, hematoma was visualized immediately after induction of SAH using micro-CT, and the severity was evaluated. Based on these findings, the present inventors have found that in SAH model animals by the EP method, by combining continuous injection of a contrast agent and microCT, the success and severity of immediate SAH induction can be evaluated with high accuracy. and completed the present invention.

即ち、本発明は以下に関する。
[項1]
くも膜下出血モデル動物の作成方法であって、以下:
(A)ウィリス動脈輪に穿刺し、くも膜下腔に出血を誘導する工程、及び
(B)総頸動脈から内頸動脈への順行性の血流を維持しつつ、少なくとも前記穿刺から止血までの間、ウィリス動脈輪内に造影剤を持続投与する工程
を含み、それにより前記出血の誘導直後からコンピュータ断層撮影により血腫の可視化が可能となる、該モデル動物の作成方法。
[項2]
前記穿刺のための器具が翼突口蓋動脈から挿入され、前記造影剤が外頸動脈から内頸動脈内に投与される、項1に記載の方法。
[項3]
前記ウィリス動脈輪の穿刺部位が、内頸動脈から前大脳動脈である、項1又は2に記載の作成方法。
[項4]
前記造影剤の持続投与が前記穿刺前から穿刺後3分までの間行われる、項1~3のいずれか一項に記載の作成方法。
[項5]
くも膜下出血モデル動物における、くも膜下腔での血腫分布、及び血腫量の可視化方法であって、以下:
(a)ウィリス動脈輪に穿刺し、くも膜下腔に出血を誘導する工程、
(b)総頸動脈から内頸動脈への順行性の血流を維持しつつ、少なくとも前記穿刺から止血までの間、ウィリス動脈輪内に造影剤を持続投与する工程、及び
(c)前記くも膜下出血モデル動物の頭部をコンピュータ断層撮影(CT)により撮像する工程
を含む、可視化方法。
[項6]
前記穿刺のための器具が翼突口蓋動脈から挿入され、前記造影剤が外頸動脈から内頸動脈内に投与される、項5に記載の可視化方法。
[項7]
前記CTが、マイクロCTである、項5又は6に記載の可視化方法。
[項8]
くも膜下出血モデル動物における、くも膜下出血の重症度の評価方法であって、以下:
(a)ウィリス動脈輪に穿刺し、くも膜下腔に出血を誘導する工程、
(b)総頸動脈から内頸動脈への順行性の血流を維持しつつ、少なくとも前記穿刺から止血までの間、ウィリス動脈輪内に造影剤を持続投与する工程、
(c)前記くも膜下出血モデル動物の頭部をコンピュータ断層撮影(CT)により撮像する工程、及び
(d)前記撮像に基づいて、前記くも膜下出血モデル動物のくも膜下出血の重症度を評価する工程
を含む、評価方法。
[項9]
前記穿刺のための器具が翼突口蓋動脈から挿入され、前記造影剤が外頸動脈から内頸動脈内に投与される、項8に記載の評価方法。
[項10]
前記CTが、マイクロCTである、項8又は9に記載の評価方法。
That is, the present invention relates to the following.
[Section 1]
A method for creating an animal model of subarachnoid hemorrhage, comprising:
(A) puncturing the circle of Willis to induce bleeding into the subarachnoid space; and (B) maintaining antegrade blood flow from the common carotid artery to the internal carotid artery, at least from said puncture to hemostasis. a step of continuously administering a contrast medium into the circle of Willis for a period of time, thereby enabling visualization of the hematoma by computed tomography immediately after the bleeding is induced.
[Section 2]
Item 2. The method according to Item 1, wherein the instrument for puncturing is inserted from the pterygopalatine artery, and the contrast medium is administered from the external carotid artery into the internal carotid artery.
[Section 3]
Item 3. The preparation method according to item 1 or 2, wherein the puncture site of the circle of Willis is from the internal carotid artery to the anterior cerebral artery.
[Section 4]
4. The preparation method according to any one of Items 1 to 3, wherein the continuous administration of the contrast agent is performed from before the puncture to 3 minutes after the puncture.
[Section 5]
A method for visualizing hematoma distribution and hematoma volume in the subarachnoid space in an animal model of subarachnoid hemorrhage, comprising the following:
(a) puncturing the circle of Willis to induce bleeding into the subarachnoid space;
(b) maintaining antegrade blood flow from the common carotid artery to the internal carotid artery, continuously administering a contrast agent into the circle of Willis for at least the period from the puncture to hemostasis; and (c) the above A visualization method comprising the step of imaging the head of a subarachnoid hemorrhage model animal by computed tomography (CT).
[Section 6]
Item 6. The visualization method according to Item 5, wherein the instrument for puncturing is inserted from the pterygopalatine artery, and the contrast medium is administered from the external carotid artery into the internal carotid artery.
[Section 7]
Item 7. The visualization method according to item 5 or 6, wherein the CT is micro-CT.
[Item 8]
A method for evaluating the severity of subarachnoid hemorrhage in an animal model of subarachnoid hemorrhage, comprising:
(a) puncturing the circle of Willis to induce bleeding into the subarachnoid space;
(b) maintaining antegrade blood flow from the common carotid artery to the internal carotid artery, continuously administering a contrast agent into the circle of Willis at least from the puncture to hemostasis;
(c) imaging the head of the subarachnoid hemorrhage model animal by computed tomography (CT); and (d) evaluating the severity of subarachnoid hemorrhage in the subarachnoid hemorrhage model animal based on the imaging. Evaluation method, including process.
[Item 9]
Item 9. The evaluation method according to Item 8, wherein the instrument for puncturing is inserted from the pterygopalatine artery, and the contrast medium is administered from the external carotid artery into the internal carotid artery.
[Item 10]
Item 10. The evaluation method according to Item 8 or 9, wherein the CT is microCT.

本発明によれば、くも膜下出血モデル動物の作成方法を提供することができる。また、本発明によれば、くも膜下出血モデル動物における、くも膜下腔での血腫分布、及び血腫量の可視化方法、及びくも膜下出血モデル動物における、くも膜下出血の重症度の評価方法等を提供することができる。本発明の作成方法は、SAHの分布(くも膜下腔で血腫分布や血腫量)の可視化や、SAHの重症度の評価に適した、くも膜下出血モデル動物を作成することができる。本発明の可視化方法及び重症度の評価方法は、即時的にSAHの血腫分布や血腫量を詳細に可視化することができ、該可視化方法により得られる結果は、肉眼的なSAHのグレーディング(grading)と相関があり、可視化に際して動物を屠殺する必要がないため、SAHの可視化・重症度評価の方法として特に優れている。本発明の評価方法を用いることで、くも膜下出血動物モデルを用いて介入実験を行う前に群間の重症度を均一にすることが可能となる。さらに、可視化に際して動物を屠殺する必要がないため、長期予後の観察も可能となる。
また、くも膜下腔の出血の診断をある程度行い得ると考えられるMRI等であっても、血腫分布や血腫量などの即時的かつ定量的な評価は極めて困難である点や、本発明の方法で使用するマイクロCTと比して非常に高価であり、維持費も遥かに高額である点等を考慮すれば、既存の方法と比して本発明の方法は、極めて優れたくも膜下出血の可視化・評価方法であると言える。
INDUSTRIAL APPLICABILITY According to the present invention, a method for preparing an animal model of subarachnoid hemorrhage can be provided. Further, according to the present invention, a method for visualizing the distribution of hematoma in the subarachnoid space and the amount of hematoma in an animal model of subarachnoid hemorrhage, a method for evaluating the severity of subarachnoid hemorrhage in an animal model for subarachnoid hemorrhage, etc. are provided. can do. The production method of the present invention can produce a subarachnoid hemorrhage model animal suitable for visualizing SAH distribution (hematoma distribution and hematoma volume in the subarachnoid space) and evaluating the severity of SAH. The visualization method and severity evaluation method of the present invention can immediately visualize the hematoma distribution and hematoma volume of SAH in detail, and the results obtained by the visualization method can be used for macroscopic grading of SAH. It is a particularly good method for visualizing and assessing the severity of SAH because it does not require animal sacrifice for visualization. By using the evaluation method of the present invention, it is possible to homogenize the severity between groups before conducting an intervention experiment using an animal model of subarachnoid hemorrhage. Furthermore, long-term prognosis can be observed because animals do not need to be sacrificed for visualization.
In addition, even with MRI and the like, which are considered to be able to diagnose bleeding in the subarachnoid space to some extent, immediate and quantitative evaluation of hematoma distribution and hematoma volume is extremely difficult, and the method of the present invention Considering the fact that it is very expensive compared to the microCT used and the maintenance cost is also much higher, the method of the present invention is extremely superior to existing methods for visualization of subarachnoid hemorrhage.・It can be said that it is an evaluation method.

図1は、従来のEP法(A)と本発明の作成方法(B)とのSAHモデル動物の作成手技の比較を示す図である。図中、ICAは内頸動脈、ECAは外頸動脈、PPAは翼突口蓋動脈、CCAは総頸動脈を示す。FIG. 1 is a diagram showing a comparison of techniques for preparing SAH model animals between the conventional EP method (A) and the preparation method of the present invention (B). In the figure, ICA is the internal carotid artery, ECA is the external carotid artery, PPA is the pterygopalatine artery, and CCA is the common carotid artery. 図2は、マイクロCTを用い、造影剤でSAHを可視化するためのEP法によるSAH誘導の手法を示す図である。(A)造影剤の動脈内への持続的注入によるSAH誘導のスキームである。(B)24ゲージカテーテル(矢印)でECAにカニューレを挿入し、PPAを介してワイヤー付きチューブ(矢じり)を導入した後の手術像である。一時的に閉塞するための全ての血管用clipが取り外され、順行性の血流が再開されたことを条件として、チューブを、ICAを通って進めた。(c)マイクロCTによるイメージングの実験的な設定である。ベンチレーター(矢印)及び吸入麻酔薬(矢じり)を用いて全身麻酔を継続し、体動アーチファクトを低減した。FIG. 2 is a diagram showing a method of SAH induction by the EP method for visualizing SAH with a contrast medium using microCT. (A) Scheme of SAH induction by continuous intra-arterial injection of contrast agent. (B) Surgical view after cannulation of the ECA with a 24-gauge catheter (arrow) and introduction of a wired tube (arrowhead) through the PPA. A tube was advanced through the ICA, provided that all temporary occluding vascular clips were removed and antegrade blood flow was resumed. (c) Experimental setup for microCT imaging. General anesthesia was maintained using a ventilator (arrow) and inhaled anesthetic (arrowhead) to reduce motion artifacts. 図3は、CTの結果とSAHの重症度との相関を示す図である。上部パネルは、写真におけるSAHのグレード:偽手術(Sham (A))、軽度(Mild (B))、中度(Moderate (C))及び重度(Severe (D))を示す。左下部パネルは、正中線における矢状断(sagittal)CTの画像を示し、右下部パネルは、基底部における軸位断(axial)CTの画像を示す。CTの画像は、造影剤でのマイクロCTによって、誘導後、速やかにSAHの程度を描出し得たことを示す。偽手術のCT画像(Aの下部パネル)は、造影剤の注入は、頭蓋内の構造自体の描出に何ら影響を及ぼさないことを示す。FIG. 3 is a diagram showing the correlation between CT results and severity of SAH. The upper panel shows the grade of SAH in the photographs: Sham (A), Mild (B), Moderate (C) and Severe (D). The lower left panel shows a sagittal CT image at the midline and the lower right panel shows an axial CT image at the fundus. The CT images show that microCT with contrast could visualize the extent of SAH immediately after induction. A sham-operated CT image (bottom panel of A) shows that injection of the contrast medium has no effect on the visualization of the intracranial structures themselves. 図4は、SAHの重症度を描出するCT画像を示す。(A)写真及びCT画像における、大脳基底槽(basal cistern)の6つのセグメントへの分割を示す。左がSAHの写真であり、右がSAHのCT画像である。SAHをこれらのセグメントそれぞれについて評価して、後述する0~3のスコアを割り当てた。SAHグレーディングは、写真において、大脳基底槽を6つのセグメントに分割することで評価し、そしてcSAHスコアは、軸位断及び矢状断CTにおける同じセグメントにより評価した。(B)各セグメントにおけるcSAHスコアとSAHグレードとの間の相関を示す。6つのセグメントのうち、4つのセグメントにおいて、cSAHスコアとSAHグレードとの間に顕著な相関があった。(c)全体における、cSAHスコアとSAHグレードとの間の相関を示す。SAHグレードとcSAHスコアとの間の顕著な線形相関があった。FIG. 4 shows CT images depicting the severity of SAH. (A) Shows the division of the basal cistern into six segments in photographs and CT images. The left is a photograph of SAH, and the right is a CT image of SAH. SAH was assessed for each of these segments and assigned a score of 0-3 as described below. SAH grading was assessed by dividing the basal cistern into 6 segments in the photographs, and cSAH scores were assessed by the same segments in axial and sagittal CT. (B) Shows the correlation between cSAH score and SAH grade in each segment. There was a significant correlation between cSAH score and SAH grade in 4 out of 6 segments. (c) Overall correlation between cSAH score and SAH grade. There was a significant linear correlation between SAH grade and cSAH score. 図5は、CT画像と病理学的知見の比較を示す図である。(A)SAHの分布をCTの画像において描出し得たことを示す。画像を、EPモデルにおける脳の同じスライスの写真(左)、マイクロCT(中央)、H&E(ヘマトキシリン・エオジン)染色(右)としてそれぞれ得た。(B)脳内出血(intracerebral hemorrhage: ICH)を、CT画像において描出し得たことを示す。矢印は、CT画像でICHが疑われた所見を示す。病変に相当する部分において、ICHの形成がH&E染色標本にて観察された。スケールバーは2 mm(白色バー)、及び500μm(黒色バー)をそれぞれ示す。FIG. 5 is a diagram showing a comparison between CT images and pathological findings. (A) shows that the distribution of SAH could be visualized in CT images. Images were obtained as a photograph (left), micro-CT (middle), and H&E (hematoxylin and eosin) staining (right) of the same slice of brain in the EP model, respectively. (B) shows that intracerebral hemorrhage (ICH) could be visualized in CT images. Arrows indicate findings suggestive of ICH on CT images. Formation of ICH was observed in the H&E-stained specimen in the part corresponding to the lesion. Scale bars indicate 2 mm (white bars) and 500 μm (black bars), respectively.

1.本発明のくも膜下出血モデル動物の作成方法
本発明は、以下:
くも膜下出血モデル動物の作成方法であって、以下:
(A)ウィリス動脈輪に穿刺し、くも膜下腔に出血を誘導する工程、及び
(B)総頸動脈から内頸動脈への順行性の血流を維持しつつ、少なくとも前記穿刺から止血までの間、ウィリス動脈輪内に造影剤を持続投与する工程
を含み、それにより前記出血の誘導直後からコンピュータ断層撮影により血腫の可視化が可能となる、該モデル動物の作成方法
を提供する。
1. Method for preparing an animal model of subarachnoid hemorrhage of the present invention The present invention provides the following:
A method for creating an animal model of subarachnoid hemorrhage, comprising:
(A) puncturing the circle of Willis to induce bleeding into the subarachnoid space; and (B) maintaining antegrade blood flow from the common carotid artery to the internal carotid artery, at least from said puncture to hemostasis. Provided is a method for preparing an animal model, comprising a step of continuously administering a contrast agent into the circle of Willis during the induction of bleeding, thereby enabling visualization of the hematoma by computed tomography immediately after the bleeding is induced.

本発明の作成方法に供される動物としては、例えば、哺乳類が挙げられる。哺乳動物としては、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類やウサギ等の実験動物、ブタ、ウシ、ヤギ、ウマ、ヒツジ、ミンク等の家畜、イヌ、ネコ等のペット、ヒト、サル、カニクイザル、アカゲザル、マーモセット、オランウータン、チンパンジーなどの霊長類等を挙げることができるが、これらに限定されない。 Animals to be subjected to the production method of the present invention include, for example, mammals. Mammals include, for example, rodents such as mice, rats, hamsters and guinea pigs, laboratory animals such as rabbits, domestic animals such as pigs, cows, goats, horses, sheep and minks, pets such as dogs and cats, humans, Primates such as monkeys, cynomolgus monkeys, rhesus monkeys, marmosets, orangutans, chimpanzees, and the like can include, but are not limited to, these.

本発明の作成方法の工程(A)では、本発明の作成方法に供される動物のくも膜下腔に動脈穿孔による出血を誘導でき、且つウィリス動脈輪(特に、内頸動脈)の順行性の血流を保持し得る限り、ウィリス動脈輪への穿刺(あるいは穿孔)方法は特に限定されない。具体的には、例えばナイロン糸を用いたフィラメント法やwire/tubing テクニックが挙げられる。該穿刺(あるいは穿孔)は、麻酔(例:イソフルラン、セボフルラン、塩酸ケタミン、プロポフォール等)下で行ってもよく、麻酔は、自体公知の方法により、例えば、吸入、注射等で行い得る。麻酔は、本発明の作成方法の全工程に亘って継続的に行ってもよく、適宜、中止、あるいは中断してもよい。 In the step (A) of the preparation method of the present invention, bleeding due to arterial perforation can be induced in the subarachnoid space of an animal subjected to the preparation method of the present invention, and the circle of Willis (in particular, the internal carotid artery) can be anterograded. The method of puncturing (or perforating) the circle of Willis is not particularly limited as long as the blood flow can be maintained. Specific examples include the filament method using nylon threads and the wire/tubing technique. The puncture (or perforation) may be performed under anesthesia (eg, isoflurane, sevoflurane, ketamine hydrochloride, propofol, etc.), and anesthesia may be performed by a method known per se, such as inhalation or injection. Anesthesia may be continuously applied throughout the entire process of the production method of the present invention, or may be stopped or interrupted as appropriate.

前記いずれかの穿刺用器具をウィリス動脈輪内へ送達させるための該器具の挿入ルートとしては、総頸動脈から内頸動脈への順行性の血流が維持され、かつ造影剤の持続投与のための別のカテーテル挿入ルート(例、外頸動脈)が確保されている限り特に制限はなく、例えば内頸動脈のいずれかの分枝が挙げられるが、好ましくは、翼突口蓋動脈(PPA)である。 As for the insertion route of any of the puncture devices described above for delivering the device into the circle of Willis, antegrade blood flow from the common carotid artery to the internal carotid artery is maintained, and a contrast agent is continuously administered. There is no particular limitation as long as another catheter insertion route (e.g., the external carotid artery) is secured for the pterygopalatine artery (PPA). ).

本発明の作成方法の工程(A)において穿刺(あるいは穿孔)する部位は、ウィリス動脈輪、好ましくは、ウィリス動脈輪内の内頸動脈から前大脳動脈にかけて、具体的には、内頸動脈先端部から前大脳動脈起始部にかけて、より好ましくは、前大脳動脈起始部周囲である。穿刺用の器具は、内頸動脈の血流を妨げないように、穿刺後速やかにウィリス動脈輪から前記挿入ルート(好ましくは、PPA)の起始部まで引き戻すことが望ましい。 The site to be punctured (or perforated) in the step (A) of the preparation method of the present invention is the circle of Willis, preferably from the internal carotid artery to the anterior cerebral artery in the circle of Willis, specifically the tip of the internal carotid artery. from the cerebral artery to the anterior cerebral artery origin, more preferably around the anterior cerebral artery origin. It is desirable that the puncture instrument is quickly pulled back from the circle of Willis to the origin of the insertion route (preferably PPA) after puncture so as not to block blood flow in the internal carotid artery.

本発明の作成方法の工程(B)では、少なくとも前記工程(A)における穿刺による出血開始から自然止血に至るまでの間、ウィリス動脈輪内に所望する量の造影剤を持続投与でき、且つ上記工程(A)における穿刺部位を流れる血液中に含まれる造影剤の濃度を当該期間中一定にできる限り、造影剤の持続投与方法は、特に限定されないが、例えば、シリンジポンプ等を用いて、該持続投与を行い得る。 In step (B) of the preparation method of the present invention, a desired amount of contrast agent can be continuously administered into the circle of Willis at least from the start of bleeding by puncture in step (A) to spontaneous hemostasis, and The method of continuous administration of the contrast agent is not particularly limited as long as the concentration of the contrast agent contained in the blood flowing through the puncture site in step (A) can be kept constant during the period. Continuous dosing can be used.

本発明の作成方法の工程(B)において造影剤を投与する方法としては、例えば、外頸動脈に挿入したカテーテルを用いた内頸動脈内投与が挙げられる。この場合、カテーテル先端は、内頸動脈の血流を妨げないように、外頸動脈分岐部よりも内頸動脈側に突出しない程度に挿入・固定することが望ましい。 Examples of the method of administering the contrast agent in the step (B) of the preparation method of the present invention include administration into the internal carotid artery using a catheter inserted into the external carotid artery. In this case, it is desirable to insert and fix the tip of the catheter to such an extent that it does not protrude from the bifurcation of the external carotid artery to the internal carotid artery side so as not to impede blood flow in the internal carotid artery.

造影剤としては、後述するコンピュータ断層撮影(CT)により、くも膜下腔での血腫分布、及び血腫量を撮像し得る限り、特に限定されないが、例えば、ヨウ素化合物(例:ヨードカルボン酸などの有機ヨウ素酸、ヨードホルム、トリヨードフェノール、テトラヨードエチレン、イオヘキソールなど)等が挙げられる。好ましい造影剤としては、神経障害を発生しないことが証明され、人体の髄腔内投与が可能なイオヘキソール(300mg/ml)等が挙げられる。造影剤の濃度は、くも膜下腔での血腫分布、及び血腫量を可視化し得る限り特に限定されず、頭部CTの画像診断に通常使用される濃度範囲内で適宜選択することができる。例えば、100mg/ml~300mg/ml、好ましくは200mg/ml~300mg/mlを挙げることができる。 The contrast agent is not particularly limited as long as the hematoma distribution in the subarachnoid space and the amount of hematoma can be imaged by computed tomography (CT), which will be described later. iodic acid, iodoform, triiodophenol, tetraiodoethylene, iohexol, etc.). Preferred contrast agents include iohexol (300 mg/ml), which has been proven not to cause neuropathy and can be intrathecally administered to the human body. The concentration of the contrast agent is not particularly limited as long as the hematoma distribution in the subarachnoid space and the amount of hematoma can be visualized, and can be appropriately selected within the concentration range usually used for head CT image diagnosis. Examples include 100 mg/ml to 300 mg/ml, preferably 200 mg/ml to 300 mg/ml.

造影剤は、少なくとも工程(A)における穿刺による出血開始から自然止血に至るまでの間、穿刺部を流れる血液中に含まれる該造影剤の濃度を一定に維持することができ、且つ後述するCTにより、くも膜下腔での血腫分布、及び血腫量を撮像できるよう、穿刺前から自然止血が完了するまで一定量を一定速度で持続投与する必要がある。例えば、造影剤の投与は、工程(A)におけるウィリス動脈輪への穿刺の際に既に血中造影剤濃度が一定に保持されているように、穿刺の前、具体的には、穿刺の1~5分前より投与を開始する必要がある。また、造影剤の投与は、ウィリス動脈輪への穿刺後、自然止血が完了するまでの期間を考慮すると、例えば、穿刺後1~10分間、好ましくは、穿刺後3分間程度まで継続する。 The contrast agent is capable of maintaining a constant concentration of the contrast agent contained in the blood flowing through the puncture site at least from the start of bleeding due to puncture in step (A) to spontaneous hemostasis, and is capable of maintaining a constant concentration of the contrast agent contained in the blood flowing through the puncture site. Therefore, in order to image the hematoma distribution and hematoma volume in the subarachnoid space, it is necessary to continuously administer a constant amount at a constant rate from before puncture until spontaneous hemostasis is completed. For example, the administration of the contrast agent is performed before the puncture, specifically during the first puncture, so that the blood contrast agent concentration is already kept constant during the puncture of the circle of Willis in step (A). Dosing should start ~5 minutes before. Considering the period from puncture to the circle of Willis until spontaneous hemostasis is completed, administration of the contrast medium is continued, for example, for 1 to 10 minutes after puncture, preferably for about 3 minutes after puncture.

本発明の作成方法の工程(b)では、上述したような期間、造影剤が内頸動脈内に持続的に投与(即ち、持続投与)される。造影剤の投与量、投与速度は特に限定されないが、例えば、造影剤溶液として、0.5ml~0.8ml、好ましくは0.6ml~0.7mlの量を、6ml/h~10ml/h、好ましくは7ml/h~9ml/hの速度で投与することができる。 In step (b) of the production method of the present invention, the contrast agent is continuously administered (that is, continuously administered) into the internal carotid artery for the period described above. The dosage and administration rate of the contrast agent are not particularly limited, but for example, the amount of the contrast agent solution is 0.5 ml to 0.8 ml, preferably 0.6 ml to 0.7 ml, and the amount is 6 ml/h to 10 ml/h, preferably 7 ml/h. It can be administered at a rate of h-9 ml/h.

本発明はまた、上記の方法により作成される、SAHの誘導直後から即時的かつ生きた状態で血腫(例、血腫分布、血腫慮)をCTにより可視化し得る、EP法によるSAHモデル動物を提供する。該SAHモデル動物は、内頸動脈の順行性の血流が遮断されることなく、穿刺用器具とは別ルートで造影剤が持続投与されているので、穿刺の瞬間から自然止血に至るまでの間、内頚動脈内の血中造影剤濃度と脳灌流圧が一定に維持されているので、出血の重症度とクモ膜下腔に漏出する造影剤の量とが高い相関を示し、事後的に摘出脳におけるSAHグレード評価を行うことなく、モデル動物の重症度を評価することができる。 The present invention also provides an SAH model animal by the EP method, which can visualize hematoma (e.g., hematoma distribution, hematoma) by CT immediately after induction of SAH and in a live state immediately after induction of SAH. do. In the SAH model animal, the anterograde blood flow in the internal carotid artery is not blocked, and the contrast medium is continuously administered through a route other than the puncture device, so from the moment of puncture to spontaneous hemostasis Since the blood contrast medium concentration in the internal carotid artery and the cerebral perfusion pressure were maintained constant during the period, a high correlation was shown between the severity of hemorrhage and the amount of contrast medium leaking into the subarachnoid space. It is possible to evaluate the severity of model animals without performing SAH grading in isolated brains.

2.本発明のくも膜下腔での血腫分布、及び血腫量の可視化方法
本発明は、以下:
くも膜下出血モデル動物における、くも膜下腔での血腫分布、及び血腫量の可視化方法であって、以下:
(a)ウィリス動脈輪に穿刺し、くも膜下腔に出血を誘導する工程、
(b)総頸動脈から内頸動脈への順行性の血流を維持しつつ、少なくとも前記穿刺から止血までの間、ウィリス動脈輪内に造影剤を持続投与する工程、及び
(c)前記くも膜下出血モデル動物の頭部をコンピュータ断層撮影(CT)により撮像する工程
を含む、可視化方法
を提供する。
2. Hematoma distribution in the subarachnoid space of the present invention and method for visualizing the amount of hematoma The present invention provides the following:
A method for visualizing hematoma distribution and hematoma volume in the subarachnoid space in an animal model of subarachnoid hemorrhage, comprising the following:
(a) puncturing the circle of Willis to induce bleeding into the subarachnoid space;
(b) maintaining antegrade blood flow from the common carotid artery to the internal carotid artery, continuously administering a contrast agent into the circle of Willis for at least the period from the puncture to hemostasis; and (c) the above Provided is a visualization method comprising the step of imaging the head of a subarachnoid hemorrhage model animal by computed tomography (CT).

本発明のくも膜下腔での血腫分布、及び血腫量の可視化方法に関して、該可視化方法の工程(a)及び(b)は、上述の「1.本発明のくも膜下出血モデル動物の作成方法」の内容を全て援用するものとする。 Regarding the method for visualizing the distribution of hematoma in the subarachnoid space and the amount of hematoma of the present invention, the steps (a) and (b) of the visualization method are the same as in the above-mentioned “1. shall refer to the entire contents of

本発明の可視化方法の工程(c)では、くも膜下出血モデル動物の頭部のくも膜下腔での血腫分布、及び血腫量を、少なくとも従来の6分割法を用いた肉眼的なくも膜下出血の重症度評価(SAH grading)と同程度の評価が可能な程度に描出できれば、特にコンピュータ断層撮影(CT)の設定等に関しては限定されず、自体公知の方法により設定してもよい。また、コンピュータ断層撮影(CT)については、分解能の観点から、マイクロCTを用いることが好ましい。工程(c)において撮像した頭部CT画像に基づいて、自体公知の方法により、上記血腫分布、及び血腫量を決定し得る。 In the step (c) of the visualization method of the present invention, the hematoma distribution and hematoma volume in the subarachnoid space of the head of the subarachnoid hemorrhage model animal are evaluated at least visually using the conventional six-fold method. There are no particular restrictions on the setting of computed tomography (CT), etc., and a method known per se may be used as long as it can be visualized to the extent that evaluation equivalent to severity evaluation (SAH grading) can be performed. As for computed tomography (CT), it is preferable to use microCT from the viewpoint of resolution. Based on the head CT image taken in step (c), the hematoma distribution and hematoma volume can be determined by a method known per se.

3.本発明のくも膜下出血モデル動物におけるくも膜下出血の重症度の評価方法
本発明は、以下:
くも膜下出血モデル動物における、くも膜下出血の重症度の評価方法であって、以下:
(a)ウィリス動脈輪に穿刺し、くも膜下腔に出血を誘導する工程、
(b)総頸動脈から内頸動脈への順行性の血流を維持しつつ、少なくとも前記穿刺から止血までの間、ウィリス動脈輪内に造影剤を持続投与する工程、
(c)前記くも膜下出血モデル動物の頭部をコンピュータ断層撮影(CT)により撮像する工程、及び
(d)前記撮像に基づいて、前記くも膜下出血モデル動物のくも膜下出血の重症度を評価する工程
を含む、評価方法
を提供する。
3. A method for evaluating the severity of subarachnoid hemorrhage in an animal model of subarachnoid hemorrhage of the present invention The present invention provides the following:
A method for evaluating the severity of subarachnoid hemorrhage in an animal model of subarachnoid hemorrhage, comprising:
(a) puncturing the circle of Willis to induce bleeding into the subarachnoid space;
(b) maintaining antegrade blood flow from the common carotid artery to the internal carotid artery, continuously administering a contrast agent into the circle of Willis at least from the puncture to hemostasis;
(c) imaging the head of the subarachnoid hemorrhage model animal by computed tomography (CT); and (d) evaluating the severity of subarachnoid hemorrhage in the subarachnoid hemorrhage model animal based on the imaging. An evaluation method is provided, including steps.

本発明のくも膜下出血モデル動物におけるくも膜下出血の重症度の評価方法に関して、該評価方法の工程(a)~(c)は、上述の「1.本発明のくも膜下出血モデル動物の作成方法」及び「2.本発明のくも膜下腔での血腫分布、及び血腫量の可視化方法」の内容を全て援用するものとする。 Regarding the method for evaluating the severity of subarachnoid hemorrhage in an animal model of subarachnoid hemorrhage of the present invention, the steps (a) to (c) of the evaluation method are the same as in the above-mentioned “1. and "2. Method for visualizing hematoma distribution in subarachnoid space and hematoma volume of the present invention".

本発明の評価方法の工程(d)では、工程(c)において撮像した頭部CT画像に基づいて、前記くも膜下出血モデル動物のくも膜下出血の重症度を適切に評価することができれば、評価方法については特に限定されない。評価方法としては、例えば、自体公知のSAH grading system (Sugawara et al. 2008)分類等に基づいてCT画像の重症度評価を行ってもよく、あるいは、例えば、血腫分布、血腫量等についてSAHの評価基準を独自に設定した上で、該評価を行ってもよい。例えば、本発明者らが提案するcSAH scoring system 分類であれば、工程(c)において撮像した頭部CT画像に基づいて、表1のようにSAHを分類し得る。 In step (d) of the evaluation method of the present invention, if the severity of subarachnoid hemorrhage in the subarachnoid hemorrhage model animal can be appropriately evaluated based on the head CT image taken in step (c), evaluation The method is not particularly limited. As an evaluation method, for example, the severity of CT images may be evaluated based on the known SAH grading system (Sugawara et al. 2008) classification, etc., or, for example, SAH for hematoma distribution, hematoma amount, etc. The evaluation may be performed after independently setting the evaluation criteria. For example, according to the cSAH scoring system classification proposed by the present inventors, SAH can be classified as shown in Table 1 based on the head CT image taken in step (c).

Figure 2022119624000001
Figure 2022119624000001

本発明の評価方法を行う際、時相の異なる出血(たとえば、遅発性の再破裂)の可能性を考慮する場合、例えば、SAHの発症から24時間時点での神経行動試験等を実験前スクリーニング検査として用いて、可視化した血腫量から予想される神経症状と著しく乖離している症例は、サンプルから除外する等のスクリーニングをさらに行ってもよい。 When performing the evaluation method of the present invention, when considering the possibility of bleeding with different phases (e.g., delayed rerupture), for example, neurobehavioral tests at 24 hours after the onset of SAH before the experiment When used as a screening test, cases in which neurological symptoms significantly deviate from expected neurological symptoms based on the visualized amount of hematoma may be further screened, such as excluding them from the sample.

本発明の評価方法は、くも膜下出血モデル動物のSAHの重症度を即時的に評価し得るため、例えば、介入実験のためのモデル動物のサンプル分けにおいて、サンプル間で重症度を均一にするために該評価方法の結果を用いることができる。したがって、本発明はまた、当該評価方法を用いて、重症度が均一化されたくも膜下出血モデル動物の集団を提供する。当該集団は、介入実験のためのSAHモデル動物の母集団として有用である。 Since the evaluation method of the present invention can immediately evaluate the severity of SAH in subarachnoid hemorrhage model animals, for example, in sample division of model animals for intervention experiments, in order to make the severity uniform among samples The results of the evaluation method can be used for Therefore, the present invention also provides a subarachnoid hemorrhage model animal population homogenized in severity using the evaluation method. The population is useful as a population of SAH model animals for intervention experiments.

マイクロCTシステム
実施例中の全ての撮像を、Cosmo Scan GX(リガク社)を用いて行った。スキャニングを、SAHの誘導後、速やかに行った。マイクロCTのデータを、X線管電圧50kVp及び160μA(CT取得用)で取得した。高分解能CT取得のために、公称分解能を90μm、曝露時間を4分で行った。
Micro CT System All imaging in the examples was performed using Cosmo Scan GX (Rigaku). Scanning was performed immediately after induction of SAH. MicroCT data were acquired at an X-ray tube voltage of 50 kVp and 160 μA (for CT acquisition). For high-resolution CT acquisition, a nominal resolution of 90 μm and an exposure time of 4 minutes were performed.

実験動物
実験動物として、16週齢のオスのSprague-Dawley(SD)ラット(日本SLC株式会社)(体重295~340g)を用いた。実験動物は、CTによる撮像の間、常に麻酔し、該動物の行動と脱出を制御した。上記動物実験の全ては、産業医科大学の施設内動物管理使用委員会(IACUC)によって承認されている。本実験において、麻酔は通常、挿管されたチューブを通して、イソフルランを吸入する動物で適用される。造影剤(イオヘキソール 300 mg/ml)の持続注入は、24ゲージのカテーテルを同側の外頸動脈から挿入し、機械式シリンジポンプに接続する事で適用される。
Experimental Animals As experimental animals, 16-week-old male Sprague-Dawley (SD) rats (Japan SLC Co., Ltd.) (weighing 295-340 g) were used. Experimental animals were always anesthetized during CT imaging to control their behavior and escape. All of the above animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Occupational and Environmental Health. In this experiment, anesthesia is usually applied with animals inhaling isoflurane through an intubated tube. Continuous infusion of contrast agent (iohexol 300 mg/ml) is applied by inserting a 24-gauge catheter through the ipsilateral external carotid artery and connecting it to a mechanical syringe pump.

EP法SAHモデルの作成と内頚動脈内造影剤投与
Endovascular perforation(EP)法SAHラットモデルを、マイクロチューブとタングステンワイヤーを用いて、自体公知の方法をベースに、アレンジを加えて作成した。具体的には、該ラットに穿刺する際に必要となるマイクロチューブとタングステンワイヤーを従来の方法のような外頸動脈からではなく、Pterygopalatine artery(PPA)から挿入することで、造影剤の投与に必要となるカテーテルを外頸動脈から挿入することが可能となり(図1)、動脈穿刺と内頸動脈内持続注入を併用することで、造影剤の血管外漏出を生じさせ、SAHの分布を間接的に描出した。
Creation of EP method SAH model and administration of contrast agent in internal carotid artery
An endovascular perforation (EP) SAH rat model was created using a microtube and a tungsten wire based on a known method with some modifications. Specifically, by inserting the microtube and tungsten wire required for puncturing the rat through the pterygopalatine artery (PPA) instead of the external carotid artery as in the conventional method, administration of the contrast agent The necessary catheter can be inserted from the external carotid artery (Fig. 1), and the combined use of arterial puncture and continuous infusion into the internal carotid artery causes extravasation of the contrast agent and indirectly affects the distribution of SAH. vividly depicted.

簡潔に説明すると、以下のように作成した(図2も参照)。
(1)3%イソフルランにて全身麻酔を導入し、16Gカテーテルを挿管し、1~3%でイソフルラン吸入麻酔を維持、継続した。ベンチレーターを用いて強制換気を開始した。
(2)頸部正中切開にて頸動脈三角より左総頸動脈(CCA)及び内頸(ICA)、外頸動脈(ECA)を露出し、周囲組織から剥離しECAを確保した。
(3)左ICAの遠位部でPterygopalatine artery(PPA)を確保し、8-0 絹糸をICAとの分岐部に置き、CCAおよびICAのPPA分岐部以遠を血管用clipで一時遮断した後にPPAの遠位側を結紮切離した。
(4)PPAの断端よりポリテトラフルオロエチレン(PTFE)チューブ(Braintree Scientific, SUBL-120, I.D.:0.006 inch; O.D.: 0.012 inch)及びタングステンワイヤー(Scientific Instruments Services, Inc., catalog number W91, Diameter: 0.076mm; length: 47mm)を挿入後、分岐部を8-0 絹糸で結紮し、チューブを挿入部に固定した。
(5)左ICAとCCAの遮断を解除し、順行性の血流を再開した(遮断時間は概ね、1~2分以内)。引き続いて、ECA分岐部を血管用clipで一時遮断した。
(6)左ECAより24Gカテーテルを挿入、8-0 絹糸2本で結紮固定した後に遮断を開放し、イオヘキソール(300 mg/ml)を、シリンジポンプを用いて8 ml/hで持続注入を開始した。
(7)マイクロチューブを先行してICA遠位側に進め、PPA分岐部から18 mm挿入し、続いてタングステンを進めた。
(8)タングステンワイヤーを、チューブ先端から1.5 mm逸脱するように進めて穿刺し、その後直ちにマイクロチューブの先端がPPAの分岐部近傍まで引き戻し順行性の血流を妨げないようにした。
(9)穿刺から3分後に、造影剤の持続投与を終了した。出血を予防するために、再びICAを血管用clipで一時遮断し、マイクロチューブと24GカテーテルをPPAとECAからそれぞれ抜去し、断端を結紮した後、遮断を解除した。
(10)イソフルランによる吸入麻酔と強制換気を継続し、30分以内に人工呼吸器装着下にマイクロCTを撮影した。
(11)麻酔を段階的に終了し、自発呼吸が安定した後、人工呼吸器を終了した。抜管し、創部を縫合閉鎖して手術を終了した。
Briefly, it was prepared as follows (see also Figure 2).
(1) General anesthesia was induced with 3% isoflurane, a 16G catheter was intubated, and inhalation anesthesia with 1-3% isoflurane was maintained and continued. Forced ventilation was started using a ventilator.
(2) The left common carotid artery (CCA), the internal carotid artery (ICA), and the external carotid artery (ECA) were exposed from the carotid trigone through a median neck incision, separated from the surrounding tissue, and the ECA secured.
(3) Secure the pterygopalatine artery (PPA) at the distal part of the left ICA, place an 8-0 silk thread at the bifurcation with the ICA, temporarily block the CCA and ICA beyond the PPA bifurcation with a vascular clip, and then PPA was ligated off distally.
(4) Polytetrafluoroethylene (PTFE) tubing (Braintree Scientific, SUBL-120, ID: 0.006 inch; OD: 0.012 inch) and tungsten wire (Scientific Instruments Services, Inc., catalog number W91, Diameter length: 0.076 mm; length: 47 mm), the bifurcation was ligated with 8-0 silk thread to secure the tube to the insertion site.
(5) The left ICA and CCA were unblocked and anterograde blood flow was resumed (blockage time is generally within 1 to 2 minutes). Subsequently, the ECA bifurcation was temporarily blocked with a vascular clip.
(6) A 24G catheter was inserted through the left ECA, ligated with two 8-0 silk threads, the blockage was released, and continuous infusion of iohexol (300 mg/ml) was started at 8 ml/h using a syringe pump. did.
(7) The microtube was advanced distally to the ICA first, inserted 18 mm from the PPA bifurcation, and then tungsten was advanced.
(8) The tungsten wire was advanced so as to deviate 1.5 mm from the tip of the tube and was punctured, and then the tip of the microtube was immediately pulled back to the vicinity of the bifurcation of the PPA so as not to interfere with antegrade blood flow.
(9) 3 minutes after puncture, continuous administration of the contrast agent was terminated. To prevent bleeding, the ICA was temporarily blocked again with a vascular clip, the microtube and 24G catheter were removed from the PPA and ECA, respectively, and the stumps were ligated and then blocked.
(10) Inhalation anesthesia with isoflurane and mandatory ventilation were continued, and micro-CT was taken within 30 minutes while wearing a ventilator.
(11) The anesthesia was terminated in stages, and after spontaneous respiration had stabilized, the ventilator was terminated. The patient was extubated and the wound was sutured closed to complete the operation.

CTイメージングの画像解析
CTイメージングの描出能を、撮影後に速やかに摘出した脳の肉眼所見と比較し、評価を行った。SAHグレーディングで評価される6セグメント(bil. ICA terminal、bil. IC-Pcom分岐部、BA pons、BA medullary portion周囲)の血腫厚について、CT画像所見とSAHグレーディングとの相関性を評価した。
各セグメントには、以下の表1のように、セグメント内のくも膜下血栓の量に応じて、0~3のCTグレードを割り当てた。
Image analysis of CT imaging
The imaging ability of CT imaging was evaluated by comparing it with the macroscopic findings of the brain removed immediately after imaging. We evaluated the correlation between CT image findings and SAH grading for hematoma thickness in 6 segments evaluated by SAH grading (bil. ICA terminal, bil. IC-Pcom bifurcation, BA pons, BA medullary portion periphery).
Each segment was assigned a CT grade of 0-3, depending on the amount of subarachnoid thrombus within the segment, as shown in Table 1 below.

Figure 2022119624000002
Figure 2022119624000002

病理学的評価
SAHグレーディングを肉眼的に評価した後に、10%中性緩衝ホルマリン液で固定した脳を用いて病理学的に評価を行った。パラフィンに包埋し、切片にしてH&Eにて評価を行った。脳底部からの肉眼的観察では評価が困難な部位、特に脳室内やinterhemispheric fissure内を含めたくも膜下腔の血腫の分布と脳内出血の形成の有無についてCT所見との相関性を評価した。
Pathological evaluation
After gross assessment of SAH grading, pathological assessment was performed using brains fixed in 10% neutral buffered formalin. It was embedded in paraffin, sectioned, and evaluated by H&E. We evaluated the correlation between the distribution of hematoma in the subarachnoid space and the presence or absence of intracerebral hemorrhage in areas that are difficult to evaluate by gross observation from the base of the brain, especially in the intraventricular and interhemispheric fissures, and the correlation with CT findings.

データ解析
単純な回帰分析とランクテストによるスピアマンの相関係数を実行して、SAHグレードとCTグレードの間、及び各研究者のCTグレードの間の相関を評価した。データを、平均±標準誤差(SEM)で示す。様々な群間の統計的差異を、Holm-Sidak事後分析を使用した一元配置分散分析で評価した。2群間の比較には、対応のないt検定(unpaired t test)を使用した。P <0.05の値は、統計的に有意であると見なされる。r> 0.4の値は有意な相関と見なされ、r> 0.7は強い相関と見なされる。統計分析は、StatViewバージョン5.0 for Windowsを用いて行った。
Data analysis A simple regression analysis and Spearman's correlation coefficient with rank test were performed to assess the correlation between SAH grade and CT grade and between each investigator's CT grade. Data are presented as mean±standard error (SEM). Statistical differences between various groups were assessed with one-way ANOVA using Holm-Sidak post hoc analysis. An unpaired t test was used for comparisons between two groups. A value of P < 0.05 is considered statistically significant. A value of r > 0.4 is considered a significant correlation and r > 0.7 a strong correlation. Statistical analysis was performed using StatView version 5.0 for Windows.

結果1(マイクロCTによる誘導直後のSAHの可視化(即時性))
SAHの誘導直後に撮像した頭部CT画像と摘出脳の写真の比較を示す(図3)。経動脈的な造影剤の持続投与により、EP法によるSAHの血腫分布を誘導直後に可視化することに成功した。SAH誘導の成功を直後に確認できるとともに、血腫分布から、血腫量及び穿刺部位も推察し得た(図4)。
Result 1 (Visualization of SAH immediately after induction by microCT (immediacy))
A comparison of a head CT image taken immediately after induction of SAH and a photograph of an excised brain is shown (Fig. 3). We succeeded in visualizing the hematoma distribution of SAH immediately after induction by the EP method by continuously administering a contrast agent transarterially. Successful induction of SAH could be confirmed immediately, and the hematoma volume and puncture site could be inferred from the distribution of the hematoma (Fig. 4).

結果2(マイクロCTを用いた出血スケールの評価:SAHグレーディングとの比較(描出能))
CTイメージング軸位断および矢状断での血腫分布の可視化(前述の表1)により、従来の6分割法を用いたSAHグレーディング(表2)と同程度の重症度分類が可能であった。マイクロCTによるグレーディングと摘出脳のSAHグレーディングの比較を示す(図3及び4)。該結果から理解されるように、相関性が示された(P= 0.0109, r= 0.657)。
Result 2 (Evaluation of bleeding scale using microCT: comparison with SAH grading (imaging ability))
Visualization of the hematoma distribution in axial and sagittal CT imaging (Table 1 above) enabled classification of severity similar to SAH grading using the conventional sextuple method (Table 2). A comparison of microCT grading and SAH grading of isolated brains is shown (Figs. 3 and 4). As can be seen from the results, correlation was demonstrated (P=0.0109, r=0.657).

結果3(SAHの分布と脳内出血の合併(診断能))
マイクロCTにて、造影剤の分布は脳底槽に留まらず、半球間裂、脳室内、後頭蓋窩に広く分布していることが観察された。摘出脳の組織切片にて、くも膜下腔の血腫分布を診断したところ、画像所見との一致が確認できた(図5A)。また、脳実質内に造影剤の貯留が観察され、脳内出血と診断できる症例を複数に認めた(n=3)。CT画像にて脳内血腫と診断された症例では、病理診断でも脳内血腫であることが確認された(図5B)。脳内血腫の合併のみならず従来のSAHグレーディングでは評価されていなかった脳室内、半球間裂内、後頭蓋窩にSAHが広範囲に分布する症例があり、また症例により血腫量に大きなばらつきがあることが示唆された。
Result 3 (SAH distribution and complication of intracerebral hemorrhage (diagnostic ability))
Micro-CT showed that the contrast agent was distributed not only in the basilar cistern but also in the interhemispheric fissure, the ventricle, and the posterior fossa. When the hematoma distribution in the subarachnoid space was diagnosed in the histological section of the excised brain, it was confirmed that the hematoma distribution was consistent with the imaging findings (Fig. 5A). In addition, accumulation of the contrast medium was observed in the brain parenchyma, and there were multiple cases that could be diagnosed as intracerebral hemorrhage (n=3). In a case diagnosed as intracerebral hematoma by CT image, it was also confirmed to be intracerebral hematoma by pathological diagnosis (Fig. 5B). In addition to intracerebral hematoma, there are cases in which SAH is widely distributed in the ventricles, interhemispheric fissures, and posterior cranial fossa, which were not evaluated by conventional SAH grading. It has been suggested.

留意点
上記実施例において重要な点は、血中に含まれる造影剤濃度と穿刺部の脳潅流圧を一定に保つために、ICAの順行性の血流を妨げないようにすることであり、ECAに挿入したカテーテル先端は、ECA分岐部よりICA側には突出しない程度に挿入し固定する必要がある。また、穿刺の際は、マイクロチューブとタングステンワイヤーを速やかに挿入し、穿刺した直後に先端がPPA起始部に来るまで引き戻しておく必要がある。
Points to Note In the above example, it is important not to disturb the anterograde blood flow of the ICA in order to keep the contrast agent concentration in the blood and the cerebral perfusion pressure at the puncture site constant. , The tip of the catheter inserted into the ECA should be inserted and fixed so that it does not protrude from the ECA bifurcation to the ICA side. In addition, when puncturing, it is necessary to quickly insert the microtube and tungsten wire and pull them back until the tip reaches the PPA origin immediately after puncturing.

従来のSAHグレーディングとマイクロCTによる新たな重症度の評価
上記実施例にて行った手法による描出能を、SAHグレーディングと比較することにより検証したところ、画像所見と肉眼的所見の相関性を確認することができた。そのため、SAHの重症度を忠実に再現することができる本法を用いて、SAHモデル作成時に即時的に誘導の成功と重症度を評価することにより、介入実験前にサンプル間の均一化が図れるようになる。現在、広く用いられている肉眼的なSAHグレーディングをCTイメージングによって代替することで、後方視的な重症度評価は不要となり、長期予後の観察も可能となることは画期的であり、今後のSAH研究の発展に貢献できると考えられる。
A new evaluation of severity by conventional SAH grading and micro-CT When the imaging ability of the method used in the above example was verified by comparing it with SAH grading, the correlation between image findings and macroscopic findings was confirmed. I was able to Therefore, by using this method, which can faithfully reproduce the severity of SAH, the success and severity of induction can be evaluated immediately when the SAH model is created, and homogenization between samples can be achieved before intervention experiments. become. By replacing the widely used macroscopic SAH grading with CT imaging, retrospective assessment of severity becomes unnecessary and long-term prognosis can be observed. It is thought that it can contribute to the development of SAH research.

CTイメージングの定量的、定性的な診断能力(病理学的所見との比較)
上記実施例において、実際にSAHモデルを作成し可視化すると、重症度のみならず、くも膜下腔内の血腫分布にも症例毎のばらつきがあり、また一部にはこれまで評価が難しかった小さい脳内血腫の合併が生じうることも分かった。
脳内血腫形成例では、当然ながら麻痺などの局所巣症状が出現してしまい、機能予後は必然的に不良となるため、実験サンプルから除外することが望ましい。これまでは、脳血流をレーザードップラーで確認し、頭蓋内圧をモニタリングしながら、間接的にSAHの誘導に成功したかどうかを判断し、2回目の穿刺をするかどうかを検討する場合もあったが、該手法では脳実質方向に穿刺しICHのみを生じた場合と、脳血管未穿孔の場合の鑑別が困難であり、従来法では問題がある例があることが明らかとなった。
本実施例での病理学的所見との比較では、本法は非常に小さい脳内出血の診断や少量のくも膜下出血の描出も可能であり、これまで脳底部の観察のみでは評価できなかった脳室内や半球間裂に分布する血腫の描出にも有用であった。出血状況の全貌を詳細に、かつ即時的に確認できるようになり、出血パターンと治療効果との関連について今後のSAH研究が飛躍的に進むと考えられ、また、脳内血腫を生じにくく、均一な重症度のSAHを誘導しやすい穿刺方法の確立への一助にもなりうる。
Quantitative and qualitative diagnostic capabilities of CT imaging (comparison with pathological findings)
In the above example, when the SAH model was actually created and visualized, not only the severity but also the distribution of the hematoma in the subarachnoid space varied from case to case. It was also found that complication of internal hematoma may occur.
In cases of intracerebral hematoma formation, as a matter of course, local focal symptoms such as paralysis appear, and the functional prognosis is inevitably poor, so it is desirable to exclude them from experimental samples. In the past, cerebral blood flow was confirmed by laser Doppler, and intracranial pressure was monitored to indirectly determine whether SAH was successfully induced, and in some cases to consider whether to perform a second puncture. However, with this method, it was difficult to distinguish between cases where only ICH was produced by puncturing in the direction of the brain parenchyma and cases where the cerebral vessels were not perforated, and there were cases in which the conventional method had problems.
In comparison with the pathological findings in this example, this method is capable of diagnosing very small intracerebral hemorrhages and visualizing small amounts of subarachnoid hemorrhages. It was also useful for delineating hematomas distributed in the room and interhemispheric fissures. It will be possible to confirm the entire bleeding situation in detail and immediately, and it is thought that future SAH research on the relationship between bleeding patterns and treatment effects will progress dramatically. It may also help to establish a puncture method that easily induces SAH with moderate severity.

造影剤の影響に関する検討
本実施例に用いたイオヘキソール(300 mg/ml)は、臨床において脳脊髄造影検査でも使用されるため、神経機能に影響する可能性はないはずである。しかしながら、万が一を考え、髄腔内への造影剤の漏出が脳損傷、神経症状に与える影響について造影剤の脳槽内注入にて検討を行ったところ、神経等に対する影響は全く認められなかった(図5)。
Examination of Effects of Contrast Agent Since iohexol (300 mg/ml) used in this example is also clinically used in encephalomyelography, it should not affect nerve function. However, just in case, we investigated the effects of leakage of the contrast medium into the spinal cord on brain damage and neurological symptoms by injecting the contrast medium into the cerebral cisterna, and found no effects on nerves. (Fig. 5).

本発明の作成方法は、SAHの分布(くも膜下腔で血腫分布や血腫量)の可視化や、SAHの重症度の評価に適した、くも膜下出血モデル動物を作成することができるため有用である。また、本発明の可視化方法は、即時的にSAHの血腫分布や血腫量を詳細に可視化することができ、該可視化方法により得られる結果は、肉眼的なSAHのグレーディング(grading)と相関があり描出能に優れ、可視化に際して動物を屠殺する必要がないため有用である。さらに、本発明の評価方法を用いることで、介入実験前にSAH重症度を評価することが可能となり、バイアスを回避することができるようになるため有用である。 The preparation method of the present invention is useful because it enables visualization of SAH distribution (hematoma distribution and hematoma volume in the subarachnoid space) and preparation of an animal model of subarachnoid hemorrhage suitable for evaluating the severity of SAH. . In addition, the visualization method of the present invention can immediately visualize the SAH hematoma distribution and hematoma volume in detail, and the results obtained by the visualization method are correlated with the macroscopic SAH grading. It is useful because it has excellent visualization ability and does not require animal slaughter for visualization. Furthermore, by using the evaluation method of the present invention, it is possible to evaluate the severity of SAH before an intervention experiment, which is useful because bias can be avoided.

Claims (10)

くも膜下出血モデル動物の作成方法であって、以下:
(A)ウィリス動脈輪に穿刺し、くも膜下腔に出血を誘導する工程、及び
(B)総頸動脈から内頸動脈への順行性の血流を維持しつつ、少なくとも前記穿刺から止血までの間、ウィリス動脈輪内に造影剤を持続投与する工程
を含み、それにより前記出血の誘導直後からコンピュータ断層撮影により血腫の可視化が可能となる、該モデル動物の作成方法。
A method for creating an animal model of subarachnoid hemorrhage, comprising:
(A) puncturing the circle of Willis to induce bleeding into the subarachnoid space; and (B) maintaining antegrade blood flow from the common carotid artery to the internal carotid artery, at least from said puncture to hemostasis. a step of continuously administering a contrast medium into the circle of Willis for a period of time, thereby enabling visualization of the hematoma by computed tomography immediately after the bleeding is induced.
前記穿刺のための器具が翼突口蓋動脈から挿入され、前記造影剤が外頸動脈から内頸動脈内に投与される、請求項1に記載の方法。 2. The method of claim 1, wherein the instrument for puncture is inserted through the pterygopalatine artery and the contrast medium is administered through the external carotid artery into the internal carotid artery. 前記ウィリス動脈輪の穿刺部位が、内頸動脈から前大脳動脈である、請求項1又は2に記載の作成方法。 3. The preparation method according to claim 1, wherein the puncture site of the circle of Willis is from the internal carotid artery to the anterior cerebral artery. 前記造影剤の持続投与が前記穿刺前から穿刺後3分までの間行われる、請求項1~3のいずれか一項に記載の作成方法。 4. The preparation method according to any one of claims 1 to 3, wherein the continuous administration of the contrast agent is performed from before the puncture to 3 minutes after the puncture. くも膜下出血モデル動物における、くも膜下腔での血腫分布、及び血腫量の可視化方法であって、以下:
(a)ウィリス動脈輪に穿刺し、くも膜下腔に出血を誘導する工程、
(b)総頸動脈から内頸動脈への順行性の血流を維持しつつ、少なくとも前記穿刺から止血までの間、ウィリス動脈輪内に造影剤を持続投与する工程、及び
(c)前記くも膜下出血モデル動物の頭部をコンピュータ断層撮影(CT)により撮像する工程
を含む、可視化方法。
A method for visualizing hematoma distribution and hematoma volume in the subarachnoid space in an animal model of subarachnoid hemorrhage, comprising the following:
(a) puncturing the circle of Willis to induce bleeding into the subarachnoid space;
(b) maintaining antegrade blood flow from the common carotid artery to the internal carotid artery, continuously administering a contrast agent into the circle of Willis for at least the period from the puncture to hemostasis; and (c) the above A visualization method comprising the step of imaging the head of a subarachnoid hemorrhage model animal by computed tomography (CT).
前記穿刺のための器具が翼突口蓋動脈から挿入され、前記造影剤が外頸動脈から内頸動脈内に投与される、請求項5に記載の可視化方法。 6. The visualization method according to claim 5, wherein the instrument for puncturing is inserted from the pterygopalatine artery, and the contrast medium is administered from the external carotid artery into the internal carotid artery. 前記CTが、マイクロCTである、請求項5又は6に記載の可視化方法。 7. The visualization method according to claim 5 or 6, wherein the CT is microCT. くも膜下出血モデル動物における、くも膜下出血の重症度の評価方法であって、以下:
(a)ウィリス動脈輪に穿刺し、くも膜下腔に出血を誘導する工程、
(b)総頸動脈から内頸動脈への順行性の血流を維持しつつ、少なくとも前記穿刺から止血までの間、ウィリス動脈輪内に造影剤を持続投与する工程、
(c)前記くも膜下出血モデル動物の頭部をコンピュータ断層撮影(CT)により撮像する工程、及び
(d)前記撮像に基づいて、前記くも膜下出血モデル動物のくも膜下出血の重症度を評価する工程
を含む、評価方法。
A method for evaluating the severity of subarachnoid hemorrhage in an animal model of subarachnoid hemorrhage, comprising:
(a) puncturing the circle of Willis to induce bleeding into the subarachnoid space;
(b) maintaining antegrade blood flow from the common carotid artery to the internal carotid artery, continuously administering a contrast agent into the circle of Willis at least from the puncture to hemostasis;
(c) imaging the head of the subarachnoid hemorrhage model animal by computed tomography (CT); and (d) evaluating the severity of subarachnoid hemorrhage in the subarachnoid hemorrhage model animal based on the imaging. Evaluation method, including process.
前記穿刺のための器具が翼突口蓋動脈から挿入され、前記造影剤が外頸動脈から内頸動脈内に投与される、請求項8に記載の評価方法。 9. The evaluation method according to claim 8, wherein the instrument for puncturing is inserted from the pterygopalatine artery, and the contrast medium is administered from the external carotid artery into the internal carotid artery. 前記CTが、マイクロCTである、請求項8又は9に記載の評価方法。 10. The evaluation method according to claim 8 or 9, wherein the CT is microCT.
JP2021016882A 2021-02-04 2021-02-04 Method for visualizing hematoma of subarachnoid hemorrhage model due to intravascular perforation Pending JP2022119624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021016882A JP2022119624A (en) 2021-02-04 2021-02-04 Method for visualizing hematoma of subarachnoid hemorrhage model due to intravascular perforation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021016882A JP2022119624A (en) 2021-02-04 2021-02-04 Method for visualizing hematoma of subarachnoid hemorrhage model due to intravascular perforation

Publications (1)

Publication Number Publication Date
JP2022119624A true JP2022119624A (en) 2022-08-17

Family

ID=82848291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021016882A Pending JP2022119624A (en) 2021-02-04 2021-02-04 Method for visualizing hematoma of subarachnoid hemorrhage model due to intravascular perforation

Country Status (1)

Country Link
JP (1) JP2022119624A (en)

Similar Documents

Publication Publication Date Title
Steffensen et al. Chloride cotransporters as a molecular mechanism underlying spreading depolarization-induced dendritic beading
Lonser et al. Successful and safe perfusion of the primate brainstem: in vivo magnetic resonance imaging of macromolecular distribution during infusion
Huang et al. A modified transorbital baboon model of reperfused stroke
DE60036781T2 (en) DEVICE FOR IMPLEMENTING INTRA-OPERATIVE ANGIOGRAPHY
Folaron et al. Elucidating the kinetics of sodium fluorescein for fluorescence-guided surgery of glioma
Wilding et al. Benefits of 21% oxygen compared with 100% oxygen for delivery of isoflurane to mice (Mus musculus) and rats (Rattus norvegicus)
Sorby-Adams et al. Determining the temporal profile of intracranial pressure changes following transient stroke in an ovine model
Viscasillas et al. Ultrasound-guided posterior extraconal block in the dog: anatomical study in cadavers
US20160296647A1 (en) Methods to diagnose degenerative disc disease
Matsumoto et al. Can 3D-CT angiography (3D-CTA) replace conventional catheter angiography in ruptured aneurysm surgery? Our experience with 162 cases
Rafols et al. Alterations in cerebral cortex microvessels and the microcirculation in a rat model of traumatic brain injury: a correlative EM and laser Doppler flowmetry study
US20100021389A1 (en) Radiographic contrast agent for postmortem, experimental and diagnostic angiography
US11730831B2 (en) Imaging agents and methods of using the same
JP2022119624A (en) Method for visualizing hematoma of subarachnoid hemorrhage model due to intravascular perforation
Carmalt et al. Intraarterial injection of iodinated contrast medium for contrast enhanced computed tomography of the equine head
Dimitrov et al. An anatomic and contrast enhanced radiographic investigation of the rabbit kidneys, ureters and urinary bladder
Puchalski et al. Contrast-enhanced computed tomography of the equine distal extremity.
Ohba et al. Computer tomography diagnosis of meningoencephalocele in a calf
Angelborg et al. The microsphere method for studies of inner ear blood flow
Welke et al. Prefrontal and medial temporal interactions in memory functions in the rhesus monkey.
US20120203096A1 (en) Methods to diagnose degenerative disc disease using pain stimuli
Gómez et al. Evaluation of the internal vertebral venous plexus, vertebral canal, dural sac, and vertebral body via nonselective computed tomographic venography in the cervical vertebral column in healthy dogs
Krautwald-Junghanns et al. Diagnostic imaging of the avian urinary tract
Mortensen et al. Perivascular Cerebrospinal Fluid Flow is the Primary Source of Interstitial Fluid in the Anesthetized Rat Brain
KR20110105265A (en) Methods of inducing encephaloma for imaging diagnosis about encephaloma, and animal models thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240109