JP2022119372A - Heat releasing unit, exposure device, and manufacturing method of article - Google Patents

Heat releasing unit, exposure device, and manufacturing method of article Download PDF

Info

Publication number
JP2022119372A
JP2022119372A JP2021016444A JP2021016444A JP2022119372A JP 2022119372 A JP2022119372 A JP 2022119372A JP 2021016444 A JP2021016444 A JP 2021016444A JP 2021016444 A JP2021016444 A JP 2021016444A JP 2022119372 A JP2022119372 A JP 2022119372A
Authority
JP
Japan
Prior art keywords
heat dissipation
heat
light
dissipation unit
transfer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021016444A
Other languages
Japanese (ja)
Other versions
JP2022119372A5 (en
Inventor
陽子 中村
Yoko Nakamura
泰晃 下井
Yasuaki Shimoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2021016444A priority Critical patent/JP2022119372A/en
Priority to TW111101994A priority patent/TW202234478A/en
Priority to KR1020220009726A priority patent/KR20220112684A/en
Priority to CN202210109628.XA priority patent/CN114859664A/en
Publication of JP2022119372A publication Critical patent/JP2022119372A/en
Publication of JP2022119372A5 publication Critical patent/JP2022119372A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70016Production of exposure light, i.e. light sources by discharge lamps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

To improve heat releasing efficiency of heat generated by light from a light source.SOLUTION: A heat releasing unit comprises a heat releasing member that releases heat; and a heat transfer member that transfers heat generated by absorbing light from a light source to the heat releasing member, in which a film containing a material having a higher melting point than the material of the heat transfer member is arranged on a surface on the light source side of the heat transfer member.SELECTED DRAWING: Figure 3

Description

本発明は、放熱ユニット、露光装置、及び物品の製造方法に関する。 The present invention relates to a heat dissipation unit, an exposure apparatus, and an article manufacturing method.

水銀ランプを光源として使用する露光装置には、露光に使用する波長(露光波長)の光をコールドミラーで反射し、露光に不要な波長(非露光波長)の光をコールドミラーで透過させるものがある。非露光波長の光を回収しない場合には、装置全体の温度の上昇を招き、装置を構成する部品の破損や、露光精度の低下を引き起こすおそれがある。そのため、放熱板で非露光波長の光を受光して熱に変換し、その熱をヒートシンクに伝導させて効率的に放熱させることが求められる。 Exposure equipment that uses a mercury lamp as a light source has a cold mirror that reflects the light of the wavelength used for exposure (exposure wavelength) and transmits the light of the wavelength that is unnecessary for exposure (non-exposure wavelength) through the cold mirror. be. If the light of the non-exposure wavelength is not recovered, the temperature of the entire apparatus may rise, which may lead to damage to parts constituting the apparatus and deterioration of exposure accuracy. Therefore, it is required that the radiation plate receives the light of the non-exposure wavelength, converts it into heat, conducts the heat to the heat sink, and efficiently dissipates the light.

また、露光装置では、生産性の向上のために光源の出力を増大させることが要求されるが、光源の出力の増大に伴い、放熱板やヒートシンクが溶融するという問題が発生しうる。特許文献1では、融点の高いセラミックス系の材料で放熱板を構成することで、放熱板やヒートシンクの溶融を防ぐことができる。また、特許文献1では、放熱板内部の温度差が大きくならないように放熱板を分割して配置させることで、放熱板を分割しない場合に比べて放熱板の耐久性を向上させることも開示されている。 Further, in the exposure apparatus, it is required to increase the output of the light source in order to improve productivity. In Patent Literature 1, the heat sink and the heat sink can be prevented from melting by forming the heat sink from a ceramic-based material having a high melting point. In addition, Patent Document 1 also discloses that the durability of the heat sink is improved compared to the case where the heat sink is not divided by dividing the heat sink so that the temperature difference inside the heat sink does not increase. ing.

特開2010-205806号公報Japanese Unexamined Patent Application Publication No. 2010-205806

しかしながら、セラミックス系の材料は、金属等の材料に比べて熱伝導率が低いため、熱を放熱するためのヒートシンクに、効率的に熱を伝導させることが困難である。また、放熱板を分割して配置する場合には隙間が生じるため、放熱板を分割しない場合に比べて、熱伝導性が低下してしまう。熱伝導性が低下してしまうことで、光源からの光により生じる熱を放熱する効率が低下してしまう。 However, since ceramic-based materials have lower thermal conductivity than materials such as metals, it is difficult to efficiently conduct heat to a heat sink for dissipating heat. In addition, when the heat sink is divided and arranged, a gap is generated, so the thermal conductivity is lowered as compared with the case where the heat sink is not divided. As the thermal conductivity decreases, the efficiency of dissipating heat generated by the light from the light source decreases.

そこで、本発明は、光源からの光により発生する熱の放熱効率の向上に有利な放熱ユニットを提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a heat dissipation unit that is advantageous in improving the heat dissipation efficiency of heat generated by light from a light source.

上記目的を達成するために、本発明の一側面としての放熱ユニットは、熱を放熱させる放熱部材と、光源からの光を吸収することによって生じる熱を前記放熱部材に伝熱させる伝熱部材と、を有し、前記伝熱部材の前記光源側の面には、前記伝熱部材の材料よりも融点が高い材料を含む膜が配置されていることを特徴とする。 To achieve the above object, a heat dissipation unit as one aspect of the present invention includes a heat dissipation member that dissipates heat, and a heat transfer member that transfers heat generated by absorbing light from a light source to the heat dissipation member. and a film containing a material having a higher melting point than the material of the heat transfer member is disposed on the light source side surface of the heat transfer member.

本発明によれば、光源からの光により発生する熱の放熱効率の向上に有利な放熱ユニットを提供することができる。 According to the present invention, it is possible to provide a heat dissipation unit that is advantageous in improving the heat dissipation efficiency of heat generated by light from a light source.

第1実施形態における放熱ユニットの構成を示す概略図である。It is a schematic diagram showing the configuration of a heat dissipation unit in the first embodiment. 第2実施形態における放熱ユニットの構成を示す概略図である。It is a schematic diagram showing the configuration of a heat dissipation unit in the second embodiment. 第3実施形態における放熱ユニットの構成を示す概略図である。It is a schematic diagram showing the configuration of a heat dissipation unit in the third embodiment. 露光装置の構成を示す概略図である。1 is a schematic diagram showing the configuration of an exposure apparatus; FIG.

以下に、本発明の好ましい実施形態を添付の図面に基づいて詳細に説明する。尚、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。 Preferred embodiments of the present invention are described in detail below with reference to the accompanying drawings. In addition, in each figure, the same reference numerals are given to the same members, and redundant explanations are omitted.

<第1実施形態>
図1は、本実施形態における放熱ユニット30の断面図である。放熱ユニット30は、放熱部材31と、伝熱部材32から構成される。伝熱部材32は、放熱部材31よりも光源1側に配置されており、放熱部材31と接触して配置される。放熱部材31は、光源1からの光70により発生する熱を放熱する機能を有する。放熱部材31は、空冷式の冷却機構であってもよいし、液冷式の冷却機構であってもよい。空冷式の冷却機構は、簡易な構造で冷却可能な点で優れており、液冷式の冷却機構は、空冷式に比べ冷却効果が高い点で優れている。
<First Embodiment>
FIG. 1 is a cross-sectional view of a heat dissipation unit 30 according to this embodiment. The heat dissipation unit 30 is composed of a heat dissipation member 31 and a heat transfer member 32 . The heat transfer member 32 is arranged closer to the light source 1 than the heat radiating member 31 and is arranged in contact with the heat radiating member 31 . The heat dissipation member 31 has a function of dissipating heat generated by the light 70 from the light source 1 . The heat radiating member 31 may be an air-cooled cooling mechanism or a liquid-cooled cooling mechanism. The air-cooling type cooling mechanism is superior in that it can cool with a simple structure, and the liquid-cooling type cooling mechanism is superior in that it has a higher cooling effect than the air-cooling type.

伝熱部材32は、効率的に放熱部材31に熱を伝導させるために、熱伝導性が高い材質であることが望ましい。本実施形態では、熱伝導性が高い金属により伝熱部材32が構成されており、光70により発生した熱を効率良く放熱部材31に伝達することができる。伝熱部材32の厚み(伝熱部材32と放熱部材31との接触面から、伝熱部材32の光源1側の面までの長さ)は、10mm程度である。伝熱部材32に用いられる具体的な材料としては、例えば、銀、銅、アルミニウム、ニッケル、白金等が挙げられる。また、伝熱部材32は、分割されていない一体構造、或いは最小限に分割された構造にすることで、部品の点数を抑えることができ、製造コストを低減することができる。 The heat transfer member 32 is desirably made of a material with high thermal conductivity in order to efficiently conduct heat to the heat radiating member 31 . In this embodiment, the heat transfer member 32 is made of a metal having high thermal conductivity, and the heat generated by the light 70 can be efficiently transferred to the heat dissipation member 31 . The thickness of the heat transfer member 32 (the length from the contact surface between the heat transfer member 32 and the heat dissipation member 31 to the surface of the heat transfer member 32 on the light source 1 side) is approximately 10 mm. Examples of specific materials used for the heat transfer member 32 include silver, copper, aluminum, nickel, and platinum. In addition, the heat transfer member 32 can have an integral structure that is not divided or a structure that is divided to a minimum, so that the number of parts can be suppressed and the manufacturing cost can be reduced.

しかしながら、伝熱部材32が金属で構成される場合には、光70により伝熱部材32が溶融してしまうおそれがある。また、伝熱部材32が溶融すれば、放熱部材31に伝熱部材32を介さずに光70が当たって放熱部材31も熱変形及び熱損傷するおそれがある。 However, if the heat transfer member 32 is made of metal, the light 70 may melt the heat transfer member 32 . Further, if the heat transfer member 32 melts, the light 70 may hit the heat dissipation member 31 without passing through the heat transfer member 32 and the heat dissipation member 31 may also be thermally deformed and thermally damaged.

また、伝熱部材32が溶融しないように伝熱部材32を金属よりも融点が高い材料(例えば、セラミックス系の材料)に変更した場合には、金属を用いた場合に比べて熱伝導性が低くなってしまう。そのため、光70が直接照射されている箇所とそれ以外の箇所の温度勾配が大きくなってしまい、温度勾配による熱衝撃で伝熱部材32が破損してしまうおそれがある。そのような破損の発生を防ぐために、伝熱部材32を分割して配置する方法も考えられるが、熱伝導性が金属に比べて低い材料を用いていることに加えて、分割した境界の隙間があることで熱伝導効率を更に低下させてしまう要因となってしまう。 Moreover, when the heat transfer member 32 is changed to a material having a higher melting point than metal (for example, a ceramic-based material) so that the heat transfer member 32 does not melt, the thermal conductivity is lower than when metal is used. it gets lower. As a result, the temperature gradient between the portion directly irradiated with the light 70 and the other portion increases, and the heat transfer member 32 may be damaged due to the thermal shock caused by the temperature gradient. In order to prevent the occurrence of such damage, a method of dividing and arranging the heat transfer member 32 is conceivable. It becomes a factor that further reduces the heat conduction efficiency.

そこで、本実施形態では、熱伝導性が高い金属で構成された伝熱部材32の光源側の表面に膜33を配置させることで、光源1からの光70を吸収することにより生じた熱で伝熱部材32が溶融する事を防止することができる。また、本実施形態における膜33は、膜33が溶融しないように伝熱部材32よりも高い融点を有する材料の膜であるため、膜33が溶融して金属で構成される伝熱部材32に光源1からの光が直接照射される可能性を低減することができる。膜33は、伝熱部材32の光源側の面全体に配置されていても良いし、光が直接照射される一部の領域に配置されていても良い。 Therefore, in this embodiment, the heat generated by absorbing the light 70 from the light source 1 is disposed on the surface of the heat transfer member 32 on the light source side of the heat transfer member 32 made of a metal having high thermal conductivity. It is possible to prevent the heat transfer member 32 from melting. In addition, since the film 33 in this embodiment is made of a material having a higher melting point than the heat transfer member 32 so that the film 33 does not melt, the film 33 melts and becomes the heat transfer member 32 made of metal. It is possible to reduce the possibility that the light from the light source 1 is directly irradiated. The film 33 may be arranged on the entire surface of the heat transfer member 32 on the light source side, or may be arranged on a part of the area that is directly irradiated with light.

本実施形態における膜33について説明する。膜33は、伝熱部材32よりも高い融点を有する材料で構成されており、例えば、セラミックス系(アルミナ、ジルコニア、チタニア、クロミア、イットリア、マグネシア、酸化クロム、前記セラミックおよび二種類以上の複合酸化物)で構成されている。また、膜33は、高融点金属材料系(タングステン、タンタル、モリブデン、ニオブ、前記金属合金)、金属・耐熱合金系(アルミニウム、ステンレス系、MCrAlX合金、ニッケル、Ni基合金、高炭素鉄クロム系、コバルト合金系、銅)等でも良い。MCrAlX合金のMは、Ni、Co、NiCo等であり、Xは、Y、Hf、Si、Ta等である。膜33は、構成される材質を酸化物にすることで、伝熱部材32の表面酸化による変色、或いは劣化を防ぐこともできる。 The film 33 in this embodiment will be described. The film 33 is made of a material having a melting point higher than that of the heat transfer member 32. For example, ceramics (alumina, zirconia, titania, chromia, yttria, magnesia, chromium oxide, the above ceramics, and two or more kinds of composite oxides). things). In addition, the film 33 is made of high-melting-point metal materials (tungsten, tantalum, molybdenum, niobium, metal alloys described above), metal/heat-resistant alloys (aluminum, stainless steel, MCrAlX alloys, nickel, Ni-based alloys, high-carbon iron-chromium-based materials). , cobalt alloy system, copper), etc. may be used. In the MCrAlX alloy, M is Ni, Co, NiCo, etc., and X is Y, Hf, Si, Ta, etc. The film 33 can also prevent discoloration or deterioration due to surface oxidation of the heat transfer member 32 by using an oxide as a constituent material.

膜33の融点が低いと伝熱部材32が溶融してしまうおそれがあるため、膜33の材料は、融点が1100度以上の材料であることが望ましい。ここで、セラミックス系材料が有する特性について説明する。セラミックス系材料として、例えば、アルミナは、融点が約2050度であり、熱伝導率が約32W/m・Kである。炭化ケイ素セラミックスは、融点が約2600度であり、熱伝導率が約60W/m・Kである。窒化アルミニウムセラミックスは、融点が約2200度であり、熱伝導率が約150W/m・Kである。ジルコニアは、融点約2700度であり、熱伝導率が約3W/m・Kである。上記のセラミックス系材料は、融点が1100度以上である。より高い耐熱効果を膜33に求める場合には、融点が1800度以上の材料であることが好ましい。一方、金属材料であるアルミニウムは、融点が約660度であり、熱伝導率が約237W/m・Kである。このように、セラミックス系材料は、金属材料であるアルミニウムよりも融点が高いが熱伝導率は低いという特性を有する。 If the melting point of the film 33 is low, the heat transfer member 32 may melt, so it is desirable that the material of the film 33 has a melting point of 1100° C. or higher. Here, the characteristics of the ceramic-based material will be described. As a ceramic material, for example, alumina has a melting point of about 2050 degrees and a thermal conductivity of about 32 W/m·K. Silicon carbide ceramics has a melting point of about 2600 degrees and a thermal conductivity of about 60 W/m·K. Aluminum nitride ceramics has a melting point of about 2200 degrees and a thermal conductivity of about 150 W/m·K. Zirconia has a melting point of about 2700 degrees and a thermal conductivity of about 3 W/m·K. The above ceramic material has a melting point of 1100° C. or higher. When the film 33 is required to have a higher heat resistance effect, it is preferable that the material has a melting point of 1800° C. or higher. On the other hand, aluminum, which is a metal material, has a melting point of about 660 degrees and a thermal conductivity of about 237 W/m·K. Thus, ceramic materials have a higher melting point than aluminum, which is a metal material, but have a lower thermal conductivity.

本実施形態において、膜33の厚さは、1mm以下の薄い層であることが望ましい。膜33の厚みを薄くすることで、伝熱部材32への光70の吸収を過度に制限することなく、伝熱部材32から放熱部材31への熱伝導を効率的に行うことができるためである。一方で、膜33の厚さが薄すぎると、伝熱部材32が溶融してしまうおそれがあるため、膜33の厚さは、0.01mm以上であることが好ましい。より高い耐久性を膜33に求める場合には、0.1mm以上の厚さであることが好ましい。また、本実施形態における膜33は、伝熱部材32の光70が入射する表面に伝熱部材32よりも高い融点を有する材料を溶射することで形成されうる。溶射による表面処理は、溶射される全範囲にわたり均一に膜を形成することが難しいことから、膜33にムラが生じてしまうおそれがある。そのため、膜33が最も薄くなる箇所において伝熱部材32が溶融しない程度の膜33の厚さを有することが求められる。膜33に用いられる材料によって適切な膜の厚さは異なるが、例えば、セラミックス系の膜が溶射による表面処理により形成される場合には、0.1mm~0.3mm程度の厚さが一般的である。 In this embodiment, the thickness of the film 33 is desirably a thin layer of 1 mm or less. By reducing the thickness of the film 33, heat can be efficiently conducted from the heat transfer member 32 to the heat dissipation member 31 without excessively restricting the absorption of the light 70 to the heat transfer member 32. be. On the other hand, if the thickness of the film 33 is too thin, the heat transfer member 32 may melt, so the thickness of the film 33 is preferably 0.01 mm or more. When the film 33 is required to have higher durability, the thickness is preferably 0.1 mm or more. Also, the film 33 in this embodiment can be formed by spraying a material having a higher melting point than the heat transfer member 32 onto the surface of the heat transfer member 32 on which the light 70 is incident. In the surface treatment by thermal spraying, it is difficult to form a uniform film over the entire sprayed area, so there is a possibility that the film 33 may be uneven. Therefore, the thickness of the film 33 is required to be such that the heat transfer member 32 does not melt at the portion where the film 33 is the thinnest. Although the appropriate film thickness varies depending on the material used for the film 33, for example, when a ceramic-based film is formed by surface treatment by thermal spraying, the thickness is generally about 0.1 mm to 0.3 mm. is.

また、伝熱部材32と膜33の線膨張係数の差があることによって、膜33が伝熱部材32の表面から剥がれてしまうことが想定される。それを防止するために、伝熱部材32と膜33との間に、不図示の中間層(下地)を配置しても良い。中間層として用いられる材料は、例えば、Ni、Ni-Cr、Ni-Al、MCrAlY(MはNi、Co、NiCo等が挙げられる。 Moreover, it is assumed that the film 33 is peeled off from the surface of the heat transfer member 32 due to the difference in linear expansion coefficient between the heat transfer member 32 and the film 33 . In order to prevent this, an intermediate layer (underlayer) (not shown) may be arranged between the heat transfer member 32 and the film 33 . Examples of materials used for the intermediate layer include Ni, Ni--Cr, Ni--Al, MCrAlY (M is Ni, Co, NiCo, etc.).

以上より、本実施形態では、伝熱部材32の光源1側の表面に伝熱部材32よりも高い融点を有する材料で構成されている膜33を配置させることで、光源1からの光70を吸収することにより生じる熱で伝熱部材32が溶融する事を防止することができる。これにより、光源からの光により発生する熱の放熱効率を向上させることができる。 As described above, in the present embodiment, the film 33 made of a material having a higher melting point than the heat transfer member 32 is arranged on the surface of the heat transfer member 32 on the light source 1 side, so that the light 70 from the light source 1 is It is possible to prevent the heat transfer member 32 from melting due to the heat generated by the absorption. As a result, it is possible to improve the heat radiation efficiency of the heat generated by the light from the light source.

<第2実施形態>
本実施形態の放熱ユニット30について説明する。本実施形態で言及しない事項については、第1実施形態に従う。図2は、本実施形態における放熱ユニット30の断面図である。本実施形態における放熱ユニット30は、第1実施形態で説明した放熱ユニットに対して、中間部材34を有する点で異なる。
<Second embodiment>
The heat dissipation unit 30 of this embodiment will be described. Matters not mentioned in this embodiment follow the first embodiment. FIG. 2 is a cross-sectional view of the heat dissipation unit 30 in this embodiment. The heat dissipation unit 30 in this embodiment differs from the heat dissipation unit described in the first embodiment in that it has an intermediate member 34 .

第1実施形態における放熱ユニットは、放熱部材31と伝熱部材32とが接触している形態として説明したが、放熱部材31と伝熱部材32との接触面にある微小な凹凸、反り、うねり等により、隙間が生じてしまうおそれがある。 Although the heat dissipation unit in the first embodiment has been described as a form in which the heat dissipation member 31 and the heat transfer member 32 are in contact with each other, the contact surface between the heat dissipation member 31 and the heat transfer member 32 may have minute unevenness, warpage, or undulation. For example, there is a risk that a gap may occur.

そこで本実施形態における放熱ユニット30は、放熱部材31と伝熱部材32との間の隙間を、中間部材34で埋めることで、放熱部材31と伝熱部材32とを密着させることができる。図2は、放熱部材31と伝熱部材32との間に中間部材34を配置した放熱ユニット30の断面図である。図2に示す放熱ユニットの構成により、膜33が光70を受光することにより生じる熱を、伝熱部材32を介して放熱部材31に伝熱する効率が向上し、放熱ユニット30の放熱効率を向上させることができる。 Therefore, in the heat dissipation unit 30 of the present embodiment, the gap between the heat dissipation member 31 and the heat transfer member 32 is filled with the intermediate member 34, so that the heat dissipation member 31 and the heat transfer member 32 can be brought into close contact with each other. FIG. 2 is a cross-sectional view of the heat dissipation unit 30 in which the intermediate member 34 is arranged between the heat dissipation member 31 and the heat transfer member 32. As shown in FIG. With the configuration of the heat dissipation unit shown in FIG. can be improved.

中間部材34の材質は、熱伝導率が高く、柔らかく密着性が高いものが望ましい。伝熱部材36の材質として、例えば、黒鉛シート、シリコングリス、金属粉末入りペースト等が挙げられる。 The material of the intermediate member 34 is desirably high in thermal conductivity, soft and highly adhesive. Examples of the material of the heat transfer member 36 include a graphite sheet, silicon grease, paste containing metal powder, and the like.

以上より、本実施形態では、中間部材34を放熱部材31と伝熱部材32と間の隙間に配置することにより、光源からの光により発生する熱の放熱効率を向上させることができる。 As described above, in the present embodiment, by arranging the intermediate member 34 in the gap between the heat radiating member 31 and the heat transfer member 32, it is possible to improve the heat radiating efficiency of the heat generated by the light from the light source.

<第3実施形態>
本実施形態の放熱ユニット30について説明する。本実施形態で言及しない事項については、第1実施形態に従う。図3は、本実施形態における放熱ユニット30の断面図である。本実施形態における放熱ユニット30では、第1実施形態で説明した放熱部材として、空冷式の冷却機構のヒートシンク35を適用する。
<Third Embodiment>
The heat dissipation unit 30 of this embodiment will be described. Matters not mentioned in this embodiment follow the first embodiment. FIG. 3 is a cross-sectional view of the heat dissipation unit 30 in this embodiment. In the heat dissipation unit 30 of the present embodiment, the heat sink 35 of the air-cooled cooling mechanism is applied as the heat dissipation member described in the first embodiment.

図3は、放熱部材としてヒートシンク35を採用した放熱ユニット30の断面図である。ヒートシンク35は、熱伝導率が高い材料、例えば、アルミニウム、金、銀、銅などから構成される。アルミニウムの融点は約660度、熱伝導率は約237W/m・Kである。金の融点は約1064度、熱伝導率は約315W/m・Kである。銀の融点は約962度、熱伝導率は約427W/m・Kである。銅の融点は約1083度、熱伝導率は約398W/m・Kである。ヒートシンク35に熱伝導率が高い材料を用いることで、光70により発生する熱の冷却効率が向上する。 FIG. 3 is a cross-sectional view of a heat dissipation unit 30 employing a heat sink 35 as a heat dissipation member. The heat sink 35 is made of a material with high thermal conductivity, such as aluminum, gold, silver, or copper. Aluminum has a melting point of about 660 degrees and a thermal conductivity of about 237 W/m·K. Gold has a melting point of about 1064 degrees and a thermal conductivity of about 315 W/m·K. Silver has a melting point of about 962 degrees and a thermal conductivity of about 427 W/m·K. Copper has a melting point of about 1083 degrees and a thermal conductivity of about 398 W/m·K. By using a material with high thermal conductivity for the heat sink 35, the efficiency of cooling the heat generated by the light 70 is improved.

本実施形態におけるヒートシンク35は、空冷式の冷却機構を有している。ヒートシンク35は、空気との接触面積を増やすために、空気との接触面(光源1とは反対側の面)が凹凸の形状となっている。ヒートシンク35を効率的に冷却するために、気体を放出するファン36が設けられており、ファン36は、ヒートシンク35に気体を吹き付ける。ファン36が吹き付ける気体は、雰囲気内の気体であっても良いし、雰囲気内の気体とは別の気体であっても良い。気体の温度は、雰囲気内の温度と同じであっても良いし、冷却されていても良い。 The heat sink 35 in this embodiment has an air-cooled cooling mechanism. In order to increase the contact area with the air, the heat sink 35 has an uneven shape on the contact surface with the air (the surface on the side opposite to the light source 1). In order to cool the heat sink 35 efficiently, a fan 36 for releasing gas is provided, and the fan 36 blows the gas onto the heat sink 35 . The gas blown by the fan 36 may be the gas in the atmosphere, or may be a gas different from the gas in the atmosphere. The temperature of the gas may be the same as the temperature in the atmosphere, or it may be cooled.

ヒートシンク35は、ファン36から放出された気体が、ヒートシンク35の全体を冷却できるように、凹凸形状が形成されていることが望ましい。具体的には、ファン36から放出された気体が流れる方向に沿ってヒートシンク35の凹部(或いは、凸部)が形成されていると良い。また、ヒートシンク35の温度が高くなりやすい領域(例えば、中央部)に多く気体が吹き付けられるようにファン35を配置しても良い。ファン35は、複数設けられていても良い。 It is desirable that the heat sink 35 has an uneven shape so that the gas emitted from the fan 36 can cool the entire heat sink 35 . Specifically, it is preferable that the concave portion (or convex portion) of the heat sink 35 is formed along the direction in which the gas discharged from the fan 36 flows. Further, the fan 35 may be arranged so that a large amount of gas is blown to a region (for example, central portion) of the heat sink 35 where the temperature tends to be high. A plurality of fans 35 may be provided.

尚、本実施形態では、ヒートシンク35を空冷式の冷却機構として説明したが、液冷式の冷却機構であっても良い。液冷式の冷却機構を採用する場合、ヒートシンク35の内部、或いはヒートシンク35に接触させる構成で冷却用の冷媒を流入させることで、空冷式よりも高い冷却効率でヒートシンク35を冷却することができる。 In this embodiment, the heat sink 35 is described as an air-cooled cooling mechanism, but it may be a liquid-cooled cooling mechanism. When a liquid-cooling type cooling mechanism is adopted, the heat sink 35 can be cooled with a higher cooling efficiency than the air-cooling type by inflowing a cooling coolant inside the heat sink 35 or in contact with the heat sink 35. .

以上より、本実施形態では、放熱部材として、空冷式の冷却機構のヒートシンク35を用いることにより冷却効率を向上させ、光源からの光により発生する熱の放熱効率を向上させることができる。 As described above, in this embodiment, by using the heat sink 35 of the air-cooled cooling mechanism as the heat dissipation member, the cooling efficiency can be improved, and the heat dissipation efficiency of the heat generated by the light from the light source can be improved.

<露光装置の実施形態>
本実施形態では、第1~第3実施形態で説明した放熱ユニット30を露光装置に適用する例について説明する。図4は、放熱ユニット30を有する露光装置100の概略図である。露光装置100は、光源1(例えば、水銀ランプやレーザー)と、光源1からの光で原版12(例えば、マスクやレチクル)を照明する照明光学系、原版12のパターンを基板15(例えば、ウエハやガラスプレート)に投影する投影光学系14を有する。
<Embodiment of exposure apparatus>
In this embodiment, an example in which the heat dissipation unit 30 described in the first to third embodiments is applied to an exposure apparatus will be described. FIG. 4 is a schematic diagram of an exposure apparatus 100 having a heat dissipation unit 30. As shown in FIG. The exposure apparatus 100 includes a light source 1 (for example, a mercury lamp or laser), an illumination optical system that illuminates an original 12 (for example, a mask or a reticle) with light from the light source 1, and a pattern of the original 12 onto a substrate 15 (for example, a wafer). and a glass plate).

光源1から出射された光は、集光ミラー2で集光され、コールドミラー3(光学素子)へと入射される。コールドミラー3は、露光に使用されない非露光波長の光70(一方の光)を透過させ、露光に使用される露光波長の光60(他方の光)を反射させる。尚、コールドミラー3は、露光波長の光60と非露光波長の光70とを分離させることができる機能さえ備えられていれば良いため、露光波長の光60を透過させて、非露光波長の光を反射させる構成であっても良い。非露光波長の光70とは、例えば、水銀ランプのg線の波長である436nm以上の波長の光であり、露光波長の光60とは、例えば、436nmより短い波長の光である。 Light emitted from a light source 1 is condensed by a condensing mirror 2 and enters a cold mirror 3 (optical element). The cold mirror 3 transmits the non-exposure wavelength light 70 (one light) that is not used for exposure, and reflects the exposure wavelength light 60 (the other light) that is used for exposure. The cold mirror 3 only needs to have a function of separating the light 60 of the exposure wavelength from the light 70 of the non-exposure wavelength. It may be configured to reflect light. The non-exposure wavelength light 70 is, for example, light with a wavelength of 436 nm or longer, which is the g-line wavelength of a mercury lamp, and the exposure wavelength light 60 is, for example, light with a wavelength shorter than 436 nm.

非露光波長の光70は、放熱ユニット30に入射され、熱に変換される。ここで生じた熱は、放熱部材31によって放熱される。放熱ユニット30の受光面には、高い融点の材料である膜33が配置されているため、光源1が高出力の水銀ランプである場合でも放熱ユニット30は溶融しない。尚、放熱ユニット30は、露光装置100内に設けられても良いし、露光装置100の外部に設けられても良い。後者の場合には、光70は、不図示の窓を介して露光装置100の外部に導光される。 The non-exposure wavelength light 70 enters the heat dissipation unit 30 and is converted into heat. The heat generated here is radiated by the heat radiating member 31 . Since the film 33 made of a material with a high melting point is arranged on the light receiving surface of the heat dissipation unit 30, the heat dissipation unit 30 does not melt even when the light source 1 is a high output mercury lamp. Note that the heat dissipation unit 30 may be provided inside the exposure apparatus 100 or may be provided outside the exposure apparatus 100 . In the latter case, the light 70 is guided outside the exposure apparatus 100 through a window (not shown).

コールドミラー3で反射された露光波長の光60は、コンデンサレンズ5によって集光され、オプティカルインテグレータ6によって均一化され、絞り7で原版を照明する光の形状を調節する。その後、露光波長の光60は、コンデンサレンズ8、折り曲げミラー9、マスキングブレード10、結像レンズ11を経て原版12に照射される。投影光学系14によって原版12と基板15との光学的な位置関係が共役に維持される。原版12は原版ステージ13によって駆動され、基板15は基板ステージ16によって駆動される。 The exposure wavelength light 60 reflected by the cold mirror 3 is condensed by the condenser lens 5, homogenized by the optical integrator 6, and the aperture 7 adjusts the shape of the light that illuminates the original. After that, the exposure wavelength light 60 passes through the condenser lens 8 , the folding mirror 9 , the masking blade 10 and the imaging lens 11 and is irradiated onto the original 12 . The projection optical system 14 maintains the optical positional relationship between the original 12 and the substrate 15 to be conjugate. The original 12 is driven by the original stage 13 and the substrate 15 is driven by the substrate stage 16 .

以下では、露光装置100に適用される好適な放熱ユニット30の具体的な構成について説明する。尚、光源1として出力が12kWの水銀ランプを使用するものとし、436nm以上の波長の光を非露光波長とする。 A specific configuration of the preferred heat dissipation unit 30 applied to the exposure apparatus 100 will be described below. A mercury lamp with an output of 12 kW is used as the light source 1, and light with a wavelength of 436 nm or more is defined as a non-exposure wavelength.

放熱ユニットのそれぞれの部材に用いられる公好適な材料について説明する。伝熱部材32には、無酸素銅(C1020)の一体物であることが好ましい。無酸素銅の熱伝導率は391[W/(m・k)]であり、熱伝導性と加工性に優れた材質であるためである。伝熱部材32に対して、MCrAlY(MはNi、Co、NiCo)で50~100μmの中間層(ボンディングコート)を形成させた後に、ジルコニアを200~300μmの厚さで溶射することで、膜33を形成することが好ましい。 Preferred materials used for each member of the heat dissipation unit will be described. It is preferable that the heat transfer member 32 be an integral body of oxygen-free copper (C1020). This is because oxygen-free copper has a thermal conductivity of 391 [W/(m·k)] and is a material excellent in thermal conductivity and workability. After forming an intermediate layer (bonding coat) of 50 to 100 μm with MCrAlY (M is Ni, Co, or NiCo) on the heat transfer member 32, zirconia is thermally sprayed to a thickness of 200 to 300 μm. 33 is preferably formed.

伝熱部材32と放熱部材31との間には、中間部材34として、密着性に富み、高温に耐える黒鉛シートを配置することが好ましい。使用する黒鉛シートは、例えば、密度1[g/cm]程度、厚さ方向の熱伝導率5[W/(m・K)]以上、厚さ方向の線膨張率0.0002[/K]程度のものを使用すると良い。 It is preferable to arrange a graphite sheet as an intermediate member 34 between the heat transfer member 32 and the heat radiating member 31, which has excellent adhesion and can withstand high temperatures. The graphite sheet to be used has, for example, a density of about 1 [g/cm 3 ], a thermal conductivity in the thickness direction of 5 [W/(m·K)] or more, and a linear expansion coefficient in the thickness direction of 0.0002 [/K]. ] should be used.

放熱部材31には、空冷式のヒートシンクを使用し、熱伝導性が高いアルミニウムを用いることが好ましい。ヒートシンクの凸部と平行に空気が流れるように、ファン36により排気風量4[m/min]で熱排気を行うことが好ましい。 An air-cooled heat sink is preferably used for the heat radiating member 31, and aluminum, which has high thermal conductivity, is preferably used. Heat is preferably exhausted by the fan 36 at an exhaust air volume of 4 [m 3 /min] so that the air flows parallel to the convex portions of the heat sink.

<物品の製造方法の実施形態>
本発明の実施形態にかかる物品の製造方法は、例えば、フラットパネルディスプレイ(FPD)を製造するのに好適である。本実施形態の物品の製造方法は、基板上に塗布された感光剤に上記の露光装置を用いて潜像パターンを形成する工程(基板を露光する工程)と、かかる工程で潜像パターンが形成された基板を現像する工程とを含む。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品の製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
<Embodiment of method for manufacturing article>
A method for manufacturing an article according to an embodiment of the present invention is suitable for manufacturing a flat panel display (FPD), for example. The method for manufacturing an article according to the present embodiment comprises a step of forming a latent image pattern on a photosensitive agent coated on a substrate using the above exposure apparatus (a step of exposing the substrate), and forming a latent image pattern in this step. and developing the coated substrate. In addition, such manufacturing methods include other well-known steps (oxidation, deposition, deposition, doping, planarization, etching, resist stripping, dicing, bonding, packaging, etc.). The article manufacturing method of the present embodiment is advantageous in at least one of article performance, quality, productivity, and production cost compared to conventional methods.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。 Although the preferred embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to these embodiments, and various modifications and changes are possible within the scope of the gist.

1 光源
30 放熱ユニット
31 放熱部材
32 伝熱部材
33 膜
70 光
Reference Signs List 1 light source 30 heat dissipation unit 31 heat dissipation member 32 heat transfer member 33 film 70 light

Claims (17)

熱を放熱させる放熱部材と、
光源からの光を吸収することによって生じる熱を前記放熱部材に伝熱させる伝熱部材と、を有し、
前記伝熱部材の前記光源側の面には、前記伝熱部材の材料よりも融点が高い材料を含む膜が配置されていることを特徴とする放熱ユニット。
a heat dissipation member that dissipates heat;
a heat transfer member that transfers heat generated by absorbing light from a light source to the heat dissipation member;
A heat dissipation unit, wherein a film containing a material having a higher melting point than a material of the heat transfer member is arranged on a surface of the heat transfer member facing the light source.
前記膜の厚さは、1mm以下であることを特徴とする請求項1に記載の放熱ユニット。 2. The heat dissipation unit according to claim 1, wherein the film has a thickness of 1 mm or less. 前記膜の厚さは、0.01mm以上であることを特徴とする請求項2に記載の放熱ユニット。 3. The heat dissipation unit according to claim 2, wherein the film has a thickness of 0.01 mm or more. 前記膜は、前記伝熱部材の前記光源側の面に溶射されていることを特徴とする請求項1乃至3のいずれか1項に記載の放熱ユニット。 4. The heat dissipation unit according to claim 1, wherein the film is thermally sprayed on the surface of the heat transfer member on the light source side. 前記膜の材料は、セラミックス系の材料であることを特徴とする請求項1乃至4のいずれか1項に記載の放熱ユニット。 5. The heat dissipation unit according to any one of claims 1 to 4, wherein the material of the film is a ceramic material. 前記膜の材料は、融点が1100度以上の材料であることを特徴とする請求項1乃至5のいずれか1項に記載の放熱ユニット。 6. The heat dissipation unit according to claim 1, wherein the film is made of a material having a melting point of 1100 degrees or higher. 前記膜の材料は、アルミナ、ジルコニア、チタニア、クロミア、イットリア、マグネシア、酸化クロムのうち、少なくとも1つを含むことを特徴とする請求項1乃至6のいずれか1項に記載の放熱ユニット。 The heat dissipation unit according to any one of claims 1 to 6, wherein the material of the film includes at least one of alumina, zirconia, titania, chromia, yttria, magnesia, and chromium oxide. 前記膜の材料は、タングステン、タンタル、モリブデン、ニオブ、アルミニウム、ステンレス系、MCrAlX合金、ニッケル、Ni基合金、高炭素鉄クロム系、コバルト合金系、銅のうち、少なくとも1つを含むことを特徴とする請求項1乃至6のいずれか1項に記載の放熱ユニット。 The material of the film includes at least one of tungsten, tantalum, molybdenum, niobium, aluminum, stainless steel, MCrAlX alloy, nickel, Ni-based alloy, high carbon iron chromium, cobalt alloy, and copper. The heat dissipation unit according to any one of claims 1 to 6. 前記伝熱部材は、分割されていない一体構造であることを特徴とする請求項1乃至8のいずれか1項に記載の放熱ユニット。 The heat dissipation unit according to any one of claims 1 to 8, wherein the heat transfer member has an integral structure that is not divided. 前記伝熱部材の材料は、銀、銅、アルミニウム、ニッケル、白金のうち、少なくとも1つを含むことを特徴とする請求項1乃至9のいずれか1項に記載の放熱ユニット。 10. The heat dissipation unit according to any one of claims 1 to 9, wherein the material of the heat transfer member contains at least one of silver, copper, aluminum, nickel, and platinum. 前記光は、436nm以上の波長の光であることを特徴とする請求項1乃至10のいずれか1項に記載の放熱ユニット。 The heat dissipation unit according to any one of claims 1 to 10, wherein the light has a wavelength of 436 nm or longer. 前記放熱部材と前記伝熱部材との間の隙間を埋める中間部材を更に有し、
前記中間部材は、黒鉛シート、シリコングリス、金属粉末入りペーストのいずれかであることを特徴とする請求項1乃至11のいずれか1項に記載の放熱ユニット。
further comprising an intermediate member that fills a gap between the heat radiating member and the heat transfer member;
12. The heat dissipation unit according to any one of claims 1 to 11, wherein the intermediate member is any one of a graphite sheet, silicon grease, and paste containing metal powder.
前記伝熱部材と前記膜との間に、前記膜が前記伝熱部材の表面から剥がれることを防止する中間層を更に有し、
前記中間層の材料は、Ni、Ni-Cr、Ni-Al、MCrAlYのうち、少なくとも1つを含むことを特徴とする請求項1乃至12のいずれか1項に記載の放熱ユニット。
further comprising an intermediate layer between the heat transfer member and the film for preventing the film from peeling off from the surface of the heat transfer member;
The heat dissipation unit according to any one of claims 1 to 12, wherein the material of the intermediate layer includes at least one of Ni, Ni--Cr, Ni--Al and MCrAlY.
請求項1乃至13のいずれか1項に記載の放熱ユニットと、
光源と、
前記光源から出射される光を分離する光学素子と、を有し、
前記放熱ユニットは、前記光学素子によって分離された一方の光を吸収することによって生じる熱を放熱させ、
前記光学素子によって分離された他方の光で照明することを特徴とする照明光学系。
A heat dissipation unit according to any one of claims 1 to 13;
a light source;
and an optical element that separates light emitted from the light source,
The heat dissipation unit dissipates heat generated by absorbing one of the lights separated by the optical element,
An illumination optical system characterized by illuminating with the other light separated by the optical element.
請求項14に記載の照明光学系と、
原版のパターンを基板に露光する投影光学系と、を有し、
前記光学素子は、前記光源から出射される光を、露光波長の光と非露光波長の光とに分離し、
前記放熱ユニットは、前記非露光波長の光を吸収することによって生じる熱を放熱させ、
前記照明光学系は、前記露光波長の光で前記原版を照明することを特徴とする露光装置。
an illumination optical system according to claim 14;
a projection optical system for exposing the pattern of the original onto the substrate,
The optical element separates the light emitted from the light source into light with an exposure wavelength and light with a non-exposure wavelength,
The heat dissipation unit dissipates heat generated by absorbing the light of the non-exposure wavelength,
An exposure apparatus, wherein the illumination optical system illuminates the original with light of the exposure wavelength.
前記露光波長の光は、436nmより短い波長の光であり、
前記非露光波長の光は、436nm以上の波長の光であることを特徴とする請求項15に記載の露光装置。
The light of the exposure wavelength is light of a wavelength shorter than 436 nm,
16. An exposure apparatus according to claim 15, wherein said non-exposure wavelength light is light with a wavelength of 436 nm or more.
請求項15又は16に記載の露光装置を用いて基板を露光する露光工程と、
前記露光工程で露光された基板を現像する現像工程と、
前記現像工程で現像された基板から物品を製造することを特徴とする物品の製造方法。
an exposure step of exposing a substrate using the exposure apparatus according to claim 15 or 16;
a developing step of developing the substrate exposed in the exposing step;
A method for producing an article, comprising producing an article from the substrate developed in the developing step.
JP2021016444A 2021-02-04 2021-02-04 Heat releasing unit, exposure device, and manufacturing method of article Pending JP2022119372A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021016444A JP2022119372A (en) 2021-02-04 2021-02-04 Heat releasing unit, exposure device, and manufacturing method of article
TW111101994A TW202234478A (en) 2021-02-04 2022-01-18 Heat dissipation unit, exposure device, and manufacturing method of object heat dissipation comprises a heat dissipation member, a heat transfer member, and a film with a higher melting point
KR1020220009726A KR20220112684A (en) 2021-02-04 2022-01-24 Heat radiation unit, exposure apparatus, and manufacturing method of article
CN202210109628.XA CN114859664A (en) 2021-02-04 2022-01-29 Heat radiation unit, exposure device, and method for manufacturing article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021016444A JP2022119372A (en) 2021-02-04 2021-02-04 Heat releasing unit, exposure device, and manufacturing method of article

Publications (2)

Publication Number Publication Date
JP2022119372A true JP2022119372A (en) 2022-08-17
JP2022119372A5 JP2022119372A5 (en) 2023-10-19

Family

ID=82627105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021016444A Pending JP2022119372A (en) 2021-02-04 2021-02-04 Heat releasing unit, exposure device, and manufacturing method of article

Country Status (4)

Country Link
JP (1) JP2022119372A (en)
KR (1) KR20220112684A (en)
CN (1) CN114859664A (en)
TW (1) TW202234478A (en)

Also Published As

Publication number Publication date
KR20220112684A (en) 2022-08-11
TW202234478A (en) 2022-09-01
CN114859664A (en) 2022-08-05

Similar Documents

Publication Publication Date Title
US7428037B2 (en) Optical component that includes a material having a thermal longitudinal expansion with a zero crossing
JP4333090B2 (en) Mirror cooling device and exposure device
US8425060B2 (en) Self-correcting optical elements for high-thermal-load optical systems
US8810775B2 (en) EUV mirror module with a nickel electroformed curved mirror
US20080266651A1 (en) Optical apparatus, multilayer-film reflective mirror, exposure apparatus, and device
US20070248127A1 (en) Optical-element-cooling devices and exposure apparatus comprising optical elements including same
JP2004029314A (en) Device for cooling optical element, method of cooling optical element and exposure device
JPWO2009051199A1 (en) Optical member cooling apparatus, lens barrel, exposure apparatus, and device manufacturing method
JP2004247438A (en) Cooling apparatus
JP2003172858A (en) Optical component holding unit and aligner
JP2022119372A (en) Heat releasing unit, exposure device, and manufacturing method of article
JP4305003B2 (en) EUV optical system and EUV exposure apparatus
JP2006177740A (en) Multilayer film mirror and euv exposure apparatus
JP2004080025A (en) Cooling device and method therefor, and aligner therewith
JP2003218023A (en) X-ray reflecting mirror, x-ray exposure transfer apparatus, and method of manufacturing semiconductor device
CN114137798A (en) Light source device, exposure device, and method for manufacturing article
JP2002075827A (en) X-ray projection exposure system, method therefor and semiconductor device
US10691013B2 (en) Extreme ultraviolet lithography system having chuck assembly and method of manufacturing thereof
JP4893249B2 (en) Exposure apparatus and method for manufacturing semiconductor device or liquid crystal device using the same
JPH11329918A (en) Soft x-ray projection aligner
JP5305987B2 (en) Radiation unit and exposure apparatus
JP2005259949A (en) Mirror and illumination optical device
JP2001023890A (en) Aligner and manufacture of device using the same
JP2022119372A5 (en)
JP2014138123A (en) Exposure method for reflection type photomask

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231011

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20231213