JP2022119264A - Pressure vessels and methods of manufacturing pressure vessels - Google Patents

Pressure vessels and methods of manufacturing pressure vessels Download PDF

Info

Publication number
JP2022119264A
JP2022119264A JP2021016249A JP2021016249A JP2022119264A JP 2022119264 A JP2022119264 A JP 2022119264A JP 2021016249 A JP2021016249 A JP 2021016249A JP 2021016249 A JP2021016249 A JP 2021016249A JP 2022119264 A JP2022119264 A JP 2022119264A
Authority
JP
Japan
Prior art keywords
liner
pressure vessel
resin
pinch
dome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021016249A
Other languages
Japanese (ja)
Inventor
直也 大内山
Naoya Ouchiyama
大介 永松
Daisuke Nagamatsu
明彦 松井
Akihiko Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2021016249A priority Critical patent/JP2022119264A/en
Publication of JP2022119264A publication Critical patent/JP2022119264A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

To provide a resin liner with excellent strength, rigidity, and heat resistance and a pressure vessel with excellent pressure resistance in a simple and inexpensive manner.SOLUTION: A pressure vessel having a cylindrical straight-body section and a dome section provided at both ends of the straight-body section and having a shape that shrinks as it moves away from the straight-body section, the straight-body section and the dome section being formed of a liner body made of thermoplastic resin and an outer shell in which the outer surface of the liner body is covered with a reinforcement layer made of a hardened reinforced fiber composite material. The pressure vessel is characterized in that the liner body is manufactured by direct blow molding and the pinch-off portion formed in the dome section has a tensile strength of 100 MPa or more, a flexural modulus of 6 GPa or more, and a load deflection temperature (load 0.45 MPa) of 200°C or more.SELECTED DRAWING: Figure 1

Description

本発明は、ダイレクトブロー成形加工可能で、強度、剛性および耐熱性に優れた圧力容器用樹脂ライナーおよび樹脂ライナー外表面を強化繊維複合材の硬化物からなる補強層で覆われた外殻とで形成された、耐圧性に優れる圧力容器に関するものである。 The present invention is a resin liner for pressure vessels that can be directly blow molded and has excellent strength, rigidity and heat resistance, and an outer shell in which the outer surface of the resin liner is covered with a reinforcing layer made of a cured reinforced fiber composite material. The present invention relates to a formed pressure vessel having excellent pressure resistance.

従来、自動車に搭載される燃料タンクや天然ガス、水素ガスの貯蔵や輸送に利用され
る圧力容器(図1)として、軽量性および加圧時の耐久性(高靭性)に優れる観点から、熱可塑樹脂製の容器本体(ライナー)が繊維強化樹脂材料からなる外殻で補強された圧力容器が利用されている。外殻に使用される強化繊維としては、ガラス繊維、炭素繊維などが主に使用されている。なかでも比強度が高い炭素繊維は、圧力容器を軽量化しつつ強度、剛性向上設計が可能であるために、天然ガスや水素の移動用タンクや蓄圧器として公的に使用されている。
Conventionally, from the standpoint of light weight and excellent durability (high toughness) when pressurized, thermal BACKGROUND ART A pressure vessel in which a container body (liner) made of plastic resin is reinforced with an outer shell made of a fiber-reinforced resin material is used. Glass fiber, carbon fiber, etc. are mainly used as the reinforcing fiber used for the outer shell. Among them, carbon fiber, which has a high specific strength, can be designed to improve the strength and rigidity while reducing the weight of the pressure vessel.

圧力容器としては、例えば、円筒状の直胴部、および前記直胴部の両端に設けられた半球状のドーム部とを有する樹脂製ライナー(図2)と、前記ライナー本体の外側に形成された外殻とを備える圧力容器が一般的に使用されている。また、外殻は、長尺の強化繊維束にマトリックス樹脂が含浸された繊維強化樹脂材料がフィラメントワインディング法(以下、FW法と略すこともある)によりライナー本体の外側に巻き回され、加熱硬化させることで圧力容器がつくられる。特に近年では天然ガス自動車、燃料電池自動車の燃料を充填することを想定した圧力容器に圧力容器用途に注目が集まっており、大規模な市場ニーズが今後出てくる可能性があるため、各メーカーで圧力容器のコストダウン方法を探索している。 As a pressure vessel, for example, a resin liner (Fig. 2) having a cylindrical straight body portion and hemispherical dome portions provided at both ends of the straight body portion; A pressure vessel with an outer shell is commonly used. In addition, the outer shell is formed by winding a fiber-reinforced resin material in which a matrix resin is impregnated into a long reinforcing fiber bundle around the outside of the liner body by a filament winding method (hereinafter sometimes abbreviated as FW method), and heat-cured. A pressure vessel is created by Especially in recent years, pressure vessels designed to be filled with fuel for natural gas vehicles and fuel cell vehicles have been attracting attention as pressure vessel applications. We are searching for ways to reduce the cost of pressure vessels.

圧力容器用ライナーは現行、図3に示しているように射出成形(半分割)+溶着加工(レーザーや熱)が主流であるが、ライナー品質管理項目の増加や低生産性によるコストアップなどの課題があり、後工程が不要なダイレクトブロー成形、回転成形などがコストダウン手法として検討されてきた。 Currently, as shown in Fig. 3, injection molding (half-split) + welding (laser or heat) is the mainstream for pressure vessel liners. However, direct blow molding and rotational molding, which do not require post-processing, have been investigated as cost reduction methods.

最近ではダイレクトブロー成形法によってライナー試作を検討しているメーカーが多い。ダイレクトブロー成形法は、一般的に熱顔性樹脂で形成された筒状のホットパリソンの一部を一対の金型で挟み込むことで、ライナーの軸方向に延びる筋状のピンチオフ部(図4)が形成される。ピンチオフ部ではホットパリソンの一部が金型に拘束されるため、他の部分と厚みが異なる部分ができ、軸方向に延びるピンチオフラインの部分が薄くなり、ライナー本体の強度が低下しやすい問題があった。そこで、各メーカーでダイレクトブロー成形時のピンチオフ発生問題に対して、課題解決を図るべく鋭意検討している。 Recently, many manufacturers are considering making prototype liners using the direct blow molding method. In the direct blow molding method, part of a cylindrical hot parison generally made of thermal resin is sandwiched between a pair of molds to create a striped pinch-off portion extending in the axial direction of the liner (Fig. 4). is formed. At the pinch-off part, part of the hot parison is constrained by the mold, creating a part with a thickness different from that of other parts. there were. Therefore, each manufacturer is earnestly studying to solve the problem of pinch-off during direct blow molding.

例えば、耐圧性向上させたピンチオフ形状を有する樹脂ライナーとして、特許文献1(国際公開WO2018/207771号公報)が知られている。特許文献1には、ダイレクトブロー成形時に発生するピンチオフ部の谷形状を緩やかにした樹脂ライナーを用いた圧力容器が開示されている。 For example, Patent Document 1 (International Publication No. WO2018/207771) is known as a resin liner having a pinch-off shape with improved pressure resistance. Patent Literature 1 discloses a pressure vessel using a resin liner that softens the valley shape of the pinch-off portion that occurs during direct blow molding.

また、ピンチオフ密着性に優れる樹脂材料を用いたブロー成形品として、特許文献2(国際公開WO2013/172226号公報)が知られている。特許文献2には、ブロー成形性に優れるEVOH樹脂にオレフィン系樹脂を配合した樹脂組成物を用いた
ブロー成形品が開示されている。
Further, Patent Document 2 (International Publication No. WO2013/172226) is known as a blow-molded product using a resin material having excellent pinch-off adhesion. Patent Document 2 discloses a blow-molded product using a resin composition in which an EVOH resin having excellent blow moldability is blended with an olefin-based resin.

ピンチオフ密着性に優れた液晶ポリアミド樹脂を用いた耐圧容器用ライナーの製造方法として、特許文献3(国際公開WO2006/112252号公報)が知られている。特許文献3には、液晶ポリアミド樹脂を用い、ダイレクトブロー成形加工した耐圧容器用ライナーで、パリソン押出速度は0.3kg/分~5kg/分、パリソン温度は融点+40℃の温度範囲に設定し、ピンチオフ部の引張伸びが1%以上の耐圧容器用ライナーが開示されている。 Patent Document 3 (International Publication No. WO2006/112252) is known as a method for manufacturing a liner for pressure-resistant containers using a liquid crystal polyamide resin with excellent pinch-off adhesion. In Patent Document 3, a liquid crystal polyamide resin is used for a pressure-resistant container liner that is directly blow molded. A pressure vessel liner having a pinch-off portion with a tensile elongation of 1% or more is disclosed.

樹脂材料の酸化劣化を抑制したブロー成形品として、特許文献4(特開平7-32460号公報)が知られている。特許文献4には、パリソンを金型で挟み込んでピンチオフした後、不活性ガスによりパリソンを吹き込んで得られたブロー成形品が開示されている。 Patent Document 4 (Japanese Patent Application Laid-Open No. 7-32460) is known as a blow-molded product in which oxidative deterioration of a resin material is suppressed. Patent Document 4 discloses a blow-molded product obtained by pinching off a parison between molds and then blowing the parison with an inert gas.

国際公開WO2018/207771号公報International publication WO2018/207771 国際公開WO2013/172226号公報International publication WO2013/172226 国際公開WO2006/112252号公報International publication WO2006/112252 特開平7-32460号公報JP-A-7-32460

しかしながら、上記の特許文献1~4に記載された発明は、ダイレクトブロー成形時のピンチオフ密着性は改善されるものの、ピンチオフ部の強度、剛性、耐熱性は実使用上満足できるレベルでなく、本発明の成形品のピンチオフ部の引張強度が100MPa以上、曲げ弾性率6GPa以上、荷重たわみ温度200℃(荷重0.45MPa)以上である熱可塑樹脂製ライナーについては何ら触れられていない。 However, although the inventions described in Patent Documents 1 to 4 above improve the pinch-off adhesion during direct blow molding, the strength, rigidity, and heat resistance of the pinch-off portion are not at a level that is satisfactory for practical use. There is no mention of a thermoplastic resin liner having a pinch-off portion tensile strength of 100 MPa or more, a flexural modulus of 6 GPa or more, and a deflection temperature under load of 200° C. (load 0.45 MPa) or more.

したがって、本発明はダイレクトブロー成形加工が可能で、強度、剛性および耐熱性に優れた熱可塑樹脂製ライナーを提供することにある。 Accordingly, an object of the present invention is to provide a thermoplastic resin liner that can be directly blow molded and has excellent strength, rigidity and heat resistance.

上記課題を解決するため、本発明に係る圧力容器および圧力容器の製造方法は次のいずれかの構成を有する。すなわち、
筒状の直胴部と、前記直胴部の両端に設けられ、前記直胴部から離れるにつれて窄む形状のドーム部とを備え、前記直胴部および前記ドーム部が熱可塑性樹脂製ライナー本体と、前記ライナー本体の外表面を強化繊維複合材の硬化物からなる補強層で覆われた外殻とで形成された圧力容器であって、前記ライナー本体がダイレクトブロー成形で製造され、且つ前記ドーム部に形成されたピンチオフ部の引張強度が100MPa以上、曲げ弾性率6GPa以上、荷重たわみ温度(荷重0.45MPa)200℃以上であることを特徴とする圧力容器である。
In order to solve the above problems, a pressure vessel and a method for manufacturing a pressure vessel according to the present invention have any of the following configurations. i.e.
A liner main body comprising a cylindrical straight body portion and dome portions provided at both ends of the straight body portion and tapering away from the straight body portion, wherein the straight body portion and the dome portion are made of a thermoplastic resin. and an outer shell in which the outer surface of the liner body is covered with a reinforcing layer made of a hardened reinforced fiber composite material, wherein the liner body is manufactured by direct blow molding, and The pressure vessel is characterized in that the pinch-off portion formed in the dome portion has a tensile strength of 100 MPa or more, a bending elastic modulus of 6 GPa or more, and a deflection temperature under load (0.45 MPa load) of 200° C. or more.

本発明のライナー本体に用いる熱可塑性樹脂がポリアミド樹脂100重量部に対して、繊維状フィラーを15~200重量部含むポリアミド樹脂組成物であることが好ましい。 The thermoplastic resin used for the liner body of the present invention is preferably a polyamide resin composition containing 15 to 200 parts by weight of fibrous filler with respect to 100 parts by weight of polyamide resin.

本発明のドーム部に形成されたピンチオフ部の肉厚が、ドーム部肉厚に対して1.15倍以上1.30倍以下であることが好ましい。 The thickness of the pinch-off portion formed in the dome portion of the present invention is preferably 1.15 to 1.30 times the thickness of the dome portion.

本発明のポリアミド樹脂組成物に含まれる繊維状フィラーが異形比1.3以上10以下の異形断面ガラス繊維であることが好ましい。 It is preferable that the fibrous filler contained in the polyamide resin composition of the present invention is a modified cross-section glass fiber having a modified cross-section ratio of 1.3 or more and 10 or less.

本発明のポリアミド樹脂組成物に含まれるポリアミド樹脂がナイロン11またはナイロン12のいずれかであることが好ましい。 The polyamide resin contained in the polyamide resin composition of the present invention is preferably nylon 11 or nylon 12.

本発明のライナー本体の内面を測定波長1700-1~1750cm-1範囲でFT-IR測定したピーク強度比(ダイレクトブロー成形品の当該ピーク強度/ダイレクトブロー成形前の樹脂材料のピーク強度)が0.005以下であることが好ましい。 The peak intensity ratio (the peak intensity of the direct blow molded product/the peak intensity of the resin material before direct blow molding) measured by FT-IR on the inner surface of the liner body of the present invention at a measurement wavelength of 1700 -1 to 1750 cm -1 is 0. It is preferably 0.005 or less.

また、本発明の圧力容器の製造方法は次の構成を有する。すなわち、
筒状の直胴部と、前記直胴部の両端に設けられ、前記直胴部から離れるにつれて窄む形状のドーム部とを備え、前記直胴部および前記ドーム部が、熱可塑性樹脂製ライナー本体と、前記ライナー本体の外表面を強化繊維複合材の硬化物からなる補強層で覆われた外殻とで形成された圧力容器の製造方法であって、前記ライナー本体は、熱可塑性樹脂を押出速度0.10kg/秒~0.50kg/秒で押し出してホットパリソンとし、前記ホットパリソンの上下端を金型で固定し、前記熱可塑性樹脂の融点+10℃以上の成形条件にてダイレクトブロー成形により成形し、前記ライナー本体に強化繊維複合材を巻き付け、硬化させて外殻を形成する圧力容器の製造方法である。
Moreover, the manufacturing method of the pressure vessel of this invention has the following structures. i.e.
A cylindrical straight body portion and dome portions provided at both ends of the straight body portion and having a shape that tapers away from the straight body portion, wherein the straight body portion and the dome portion are formed of a thermoplastic resin liner. A method for manufacturing a pressure vessel comprising a main body and an outer shell in which the outer surface of the liner main body is covered with a reinforcing layer made of a hardened reinforced fiber composite material, wherein the liner main body is made of a thermoplastic resin. Extruded at an extrusion speed of 0.10 kg/sec to 0.50 kg/sec to form a hot parison, the upper and lower ends of the hot parison are fixed with a mold, and direct blow molding is performed under molding conditions of the melting point of the thermoplastic resin + 10 ° C. or higher. and winding a reinforcing fiber composite material around the liner body and curing it to form an outer shell.

本発明の金型が、前記ホットパリソンの上下端を左右から固定する一対の金型であり、上端、下端それぞれの中央部以外を押し付け一体化するピンチオフ部を形成することが好ましい。 The molds of the present invention are a pair of molds for fixing the upper and lower ends of the hot parison from the left and right, and it is preferable to form a pinch-off portion that presses and integrates the upper and lower ends of the parison except for the central portions.

本発明のダイレクトブロー成形において、酸素濃度が1%以上10%以下である不活性ガスを前記ホットパリソンに吹き込むことが好ましい。 In the direct blow molding of the present invention, it is preferable to blow an inert gas having an oxygen concentration of 1% or more and 10% or less into the hot parison.

本発明によれば、ピンチオフ部の強度、剛性および耐熱性を改善したダイレクトブロー成形加工した熱可塑性樹脂製ライナーを用いることで、耐圧性能、コスト競争力が大幅にアップした圧力容器を得ることができる。 According to the present invention, by using a direct blow molded thermoplastic resin liner with improved strength, rigidity and heat resistance of the pinch-off portion, it is possible to obtain a pressure vessel with significantly improved pressure resistance and cost competitiveness. can.

圧力容器の部品構成を示した概略図である。It is the schematic which showed the component structure of a pressure vessel. 樹脂ライナーの形状を示した概略図である。It is the schematic which showed the shape of the resin liner. 射出成形および溶着加工した樹脂ライナーの概略図である。1 is a schematic diagram of an injection molded and welded resin liner; FIG. ダイレクトブロー成形加工した樹脂ライナーのピンチオフ形状を示した成形品である。This is a molded product showing the pinch-off shape of a direct blow molded resin liner. ダイレクトブロー成形装置を示した概略図である。It is the schematic which showed the direct blow molding apparatus. 樹脂ライナー内面のFT-IR分析結果を示したグラフである。4 is a graph showing FT-IR analysis results of the inner surface of a resin liner. ピンチオフ凹み度合を示した成形品である。This is a molded product showing the degree of pinch-off depression. 実施例でダイレクトブロー成形した樹脂ライナー形状に関する概略図である。FIG. 4 is a schematic diagram of a shape of a resin liner that is direct blow molded in an example. 圧力容器の耐圧試験を実施する装置に関する概略図である。1 is a schematic diagram of an apparatus for carrying out a pressure vessel pressure test; FIG.

以下、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

本発明に係る圧力容器は、筒状の直胴部と、前記直胴部の両端に設けられ、前記直胴部から離れるにつれて窄む形状のドーム部とを備え、前記直胴部および前記鏡部が熱可塑性樹脂製ライナー本体と、前記ライナー本体の外表面を強化繊維複合材の硬化物からなる補強層で覆われた外殻とで形成された圧力容器である。 A pressure vessel according to the present invention includes a cylindrical straight body portion and dome portions provided at both ends of the straight body portion and having a shape that narrows as the distance from the straight body portion increases, and the straight body portion and the mirror are provided. A pressure vessel in which a part is formed of a liner body made of a thermoplastic resin and an outer shell in which the outer surface of the liner body is covered with a reinforcing layer made of a cured product of a reinforcing fiber composite material.

<熱可塑性樹脂>
本発明のライナー本体に用いる熱可塑性樹脂は繊維状フィラーを含有してなるポリアミド樹脂組成物である。
<Thermoplastic resin>
The thermoplastic resin used for the liner body of the present invention is a polyamide resin composition containing a fibrous filler.

ポリアミド樹脂組成物に用いるポリアミド樹脂としては、アミノ酸、ラクタムあるいはジアミンとジカルボン酸を主原料として合成されるナイロンなどが挙げられる。 Examples of polyamide resins used in the polyamide resin composition include nylons synthesized using amino acids, lactams, diamines and dicarboxylic acids as main raw materials.

その原料の代表例としては、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、ε-カプロラクタム、ω-ラウロラクタムなどのラクタム、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメレンジアミン、2-メチルペンタメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-/2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1-アミノ-3-アミノメチルー3,5,5-トリメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどの脂肪族、脂環族、芳香族のジアミン、およびアジピン酸、スペリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テレフタル酸、イソフタル酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸などの脂肪族、脂環族、芳香族のジカルボン酸などが挙げられる。 Representative examples of raw materials thereof include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and para-aminomethylbenzoic acid; lactams such as ε-caprolactam and ω-laurolactam; methylenediamine, hexamethylenediamine, 2-methylpentamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4-/2,4,4-trimethylhexamethylenediamine, 5-methylnonamethylenediamine, metaxyl diamine, paraxylylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, bis(4- aminocyclohexyl)methane, bis(3-methyl-4-aminocyclohexyl)methane, 2,2-bis(4-aminocyclohexyl)propane, bis(aminopropyl)piperazine, aminoethylpiperazine and other aliphatic, alicyclic, Aromatic diamines and adipic acid, spelic acid, azelaic acid, sebacic acid, dodecanedioic acid, terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5-sodium sulfo Aliphatic, alicyclic and aromatic dicarboxylic acids such as isophthalic acid, hexahydroterephthalic acid and hexahydroisophthalic acid are included.

ポリアミド樹脂としては、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリテトラメチレンアジパミド(ナイロン46)、ポリペンタメチレンアジパミド(ナイロン56)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6T/6I)、ポリキシリレンアジパミド(ナイロンXD6)およびこれらの混合物ないし共重合体などが好ましく用いられる。とりわけ好ましいものとしては、ナイロン6、ナイロン66、ナイロン610、ナイロン6/66コポリマー、ナイロン6/12コポリマーなどを挙げることができる。 Polyamide resins include polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polytetramethylene adipamide (nylon 46), polypentamethylene adipamide (nylon 56), polyhexamethylene Bacamide (Nylon 610), Polyhexamethylene Dodecamide (Nylon 612), Polyhexamethylene Adipamide/Polyhexamethylene Terephthalamide Copolymer (Nylon 66/6T), Polyhexamethylene Adipamide/Polyhexamethylene Isophthalamide Copolymer (nylon 66/6I), polyhexamethylene adipamide/polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer (nylon 66/6T/6I), polyxylylene adipamide (nylon XD6) and mixtures or mixtures thereof. Copolymers and the like are preferably used. Particularly preferred are nylon 6, nylon 66, nylon 610, nylon 6/66 copolymer, nylon 6/12 copolymer, and the like.

さらに本発明に用いるポリアミド樹脂として、植物性油であるヒマシ油から得られる11-アミノウンデカン酸の縮重合によって得られる脂肪族ポリアミド(ナイロン11、融点185℃)、あるいは合成化学ブタジエンから出発して合成されるモノマーであるラウリルラクタムの縮重合によって得られる脂肪族ポリアミド(ナイロン12、融点175℃)が融点および吸水率が最も低いため、ブロー成形加工性および寸法精度に優れる点でより好ましく用いることができる。 Furthermore, as the polyamide resin used in the present invention, an aliphatic polyamide (nylon 11, melting point 185 ° C.) obtained by condensation polymerization of 11-aminoundecanoic acid obtained from castor oil, which is a vegetable oil, or starting from synthetic chemical butadiene Aliphatic polyamide (nylon 12, melting point 175°C) obtained by polycondensation of lauryl lactam, which is a monomer to be synthesized, has the lowest melting point and water absorption, so it is preferably used in terms of excellent blow molding processability and dimensional accuracy. can be done.

本発明のポリアミド樹脂組成物に含まれる繊維状フィラーとして、ガラス繊維、ガラスミルドファイバー、炭素繊維、セラミック繊維、および鉱物繊維などが挙げられる。この中で、鉱物繊維としては、例えば、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、炭酸カルシウムウィスカ、ワラストナイトウィスカ、アスベスト繊維、及び石こう繊維などが挙げられる。セラミック繊維としては、例えばアルミナ繊維および炭化珪素繊維などが挙げられる。本発明の実施形態において好ましい繊維状フィラーは、一般に短繊維と称される、配合前の繊維長1~150μm、繊維直径1~25μmのものである。このような短繊維フィラーを用いることで、フィラー異方性が緩和され、等方的な反り低減効果を付与できる。繊維状フィラーの含有量はポリアミド樹脂100重量部に対して15~200重量部であり、より好ましくは25~200重量部である。繊維状フィラー含有量が15重量部未満であるとフィラーによる補強効果が得られにくいため好ましくなく、200重量部を超えると溶融粘度が顕著に増加し、ダイレクトブロー成形加工性が損なわれるため好ましくない。 Examples of fibrous fillers contained in the polyamide resin composition of the present invention include glass fibers, milled glass fibers, carbon fibers, ceramic fibers, and mineral fibers. Among these, examples of mineral fibers include potassium titanate whiskers, zinc oxide whiskers, calcium carbonate whiskers, wollastonite whiskers, asbestos fibers, and gypsum fibers. Ceramic fibers include, for example, alumina fibers and silicon carbide fibers. Preferred fibrous fillers in embodiments of the present invention are those with a fiber length of 1-150 μm and a fiber diameter of 1-25 μm before compounding, commonly referred to as staple fibers. By using such a short fiber filler, the anisotropy of the filler can be relaxed, and an isotropic warpage reduction effect can be imparted. The content of the fibrous filler is 15-200 parts by weight, preferably 25-200 parts by weight, per 100 parts by weight of the polyamide resin. If the content of the fibrous filler is less than 15 parts by weight, it is difficult to obtain the reinforcing effect of the filler. .

さらに本発明に用いる繊維状フィラーとして、異形断面ガラス繊維を用いることで、成形品流れ方向と直角方向の反り低減と高強度を両立させることができるので好ましい。ここで、異形断面ガラス繊維の断面形状は、扁平形、まゆ形、長円形、楕円形、半円若しくは円弧形、矩形又はこれらの類似形状の断面形状が好ましく、特に扁平形の断面形状であることがより好ましい。断面形状が扁平形状を有するガラス繊維の、長さ方向に直角の断面に於いて、長径(断面の最長の直線距離)と短径(長径と直角方向の最長の直線距離)の比(異形比)は、1.3~10が好ましく、さらに好ましくは1.5~5である。繊維状フィラーの異形比が1.3未満では強度向上効果に乏しく、生産性の点より異形比の上限値は10である。 Furthermore, it is preferable to use modified cross-section glass fiber as the fibrous filler used in the present invention, because it is possible to achieve both reduction in warpage in the direction perpendicular to the flow direction of the molded article and high strength. Here, the cross-sectional shape of the modified cross-section glass fiber is preferably flat, cocoon-shaped, oval, elliptical, semi-circular or arc-shaped, rectangular or similar cross-sectional shape, and particularly flat cross-sectional shape. It is more preferable to have The ratio of the major diameter (longest linear distance in the cross section) to the minor diameter (longest linear distance in the direction perpendicular to the major diameter) in the cross section perpendicular to the length direction of a glass fiber with a flat cross section (heteromorphic ratio) ) is preferably 1.3 to 10, more preferably 1.5 to 5. If the deformation ratio of the fibrous filler is less than 1.3, the effect of improving the strength is poor, and the upper limit of the deformation ratio is 10 from the viewpoint of productivity.

本発明に用いるポリアミド樹脂組成物は改質を目的として、以下のような化合物の添加が可能である。ポリアルキレンオキサイドオリゴマ系化合物、チオエーテル系化合物、エステル系化合物、有機リン系化合物などの可塑剤、有機リン化合物、ポリエーテルエーテルケトンなどの結晶核剤、モンタン酸ワックス類、ステアリン酸リチウム、ステアリン酸アルミ等の金属石鹸、エチレンジアミン・ステアリン酸・セバシン酸重縮合物、シリコーン系化合物などの離型剤、次亜リン酸塩などの着色防止剤、(3,9-ビス[2-(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン)などのようなフェノール系酸化防止剤、(ビス(2,4-ジ-クミルフェニル)ペンタエリスリトール-ジ-ホスファイト)などのようなリン系酸化防止剤、その他、水、滑剤、紫外線防止剤、着色剤、発泡剤などの通常の添加剤をPPS樹脂組成物に配合することができる。上記化合物は何れも組成物全体の20重量%を越えると(A)PPS樹脂本来の特性が損なわれるため好ましくなく、10重量%以下、更に好ましくは1重量%以下の添加がよい。 The following compounds can be added to the polyamide resin composition used in the present invention for the purpose of modification. Polyalkylene oxide oligomer compounds, thioether compounds, ester compounds, plasticizers such as organic phosphorus compounds, crystal nucleating agents such as organic phosphorus compounds, polyether ether ketones, montanic acid waxes, lithium stearate, aluminum stearate Metal soaps such as ethylenediamine/stearic acid/sebacic acid polycondensates, release agents such as silicone compounds, coloring inhibitors such as hypophosphite, (3,9-bis[2-(3-(3 - phenolic such as t-butyl-4-hydroxy-5-methylphenyl)propionyloxy)-1,1-dimethylethyl]-2,4,8,10-tetraoxaspiro[5,5]undecane) Antioxidants, phosphorus-based antioxidants such as (bis(2,4-di-cumylphenyl)pentaerythritol-di-phosphite), water, lubricants, UV inhibitors, colorants, foaming agents, etc. Usual additives can be blended into the PPS resin composition. If any of the above compounds exceeds 20% by weight of the entire composition, the inherent properties of the (A) PPS resin are impaired, so it is preferable to add 10% by weight or less, more preferably 1% by weight or less.

さらに繊維状フィラーとポリアミド樹脂との密着性を向上させ、樹脂ライナーの吸水時の反り変形を抑える目的で、繊維状フィラーをエポキシ基、アミノ基、イソシアネート基、水酸基、およびメルカプト基から選ばれる少なくとも1種の官能基を有するアルコキシシラン化合物で表面処理することが可能である。かかる化合物の具体例としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有アルコキシシラン化合物;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシランなどのメルカプト基含有アルコキシシラン化合物;γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシシラン、γ-(2-ウレイドエチル)アミノプロピルトリメトキシシランなどのウレイド基含有アルコキシシラン化合物;γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、γ-イソシアナトプロピルトリクロロシランなどのイソシアネート基含有アルコキシシラン化合物;γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシランなどのアミノ基含有アルコキシシラン化合物;およびγ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルトリエトキシシランなどの水酸基含有アルコキシシラン化合物などが挙げられる。 Furthermore, for the purpose of improving the adhesion between the fibrous filler and the polyamide resin and suppressing the warp deformation of the resin liner when absorbing water, the fibrous filler contains at least one selected from epoxy group, amino group, isocyanate group, hydroxyl group, and mercapto group. It is possible to treat the surface with an alkoxysilane compound having one functional group. Specific examples of such compounds include epoxy group-containing alkoxysilanes such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane. Compound; Mercapto group-containing alkoxysilane compounds such as γ-mercaptopropyltrimethoxysilane and γ-mercaptopropyltriethoxysilane; γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, γ-(2-ureidoethyl ) Ureido group-containing alkoxysilane compounds such as aminopropyltrimethoxysilane; γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatopropylmethyldiethoxy silane, isocyanato group-containing alkoxysilane compounds such as γ-isocyanatopropylethyldimethoxysilane, γ-isocyanatopropylethyldiethoxysilane, γ-isocyanatopropyltrichlorosilane; γ-(2-aminoethyl)aminopropylmethyldimethoxysilane , γ-(2-aminoethyl)aminopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, and other amino group-containing alkoxysilane compounds; and γ-hydroxypropyltrimethoxysilane, γ-hydroxypropyltriethoxysilane, and other hydroxyl groups. Containing alkoxysilane compound etc. are mentioned.

<ポリアミド樹脂組成物の製造方法>
本発明に用いるポリアミド樹脂組成物は通常溶融混練によって得られる。溶融混練機は、単軸、2軸の押出機、バンバリーミキサー、ニーダー、及びミキシングロールなど通常公知の溶融混練機に供給してポリアミド樹脂の融解ピーク温度+5~100℃の加工温度の温度で混練する方法などを代表例として挙げることができる。この際、原料の混合順序には特に制限はなく、全ての原材料を配合後上記の方法により溶融混練する方法、一部の原材料を配合後上記の方法により溶融混練し更に残りの原材料を配合し溶融混練する方法、あるいは一部の原材料を配合後単軸あるいは2軸の押出機により溶融混練中にサイドフィーダーを用いて残りの原材料を混合する方法など、いずれの方法を用いてもよい。また、少量添加剤成分については、他の成分を上記の方法などで混練しペレット化した後、成形前に添加して成形に供することも勿論可能である。
<Method for producing polyamide resin composition>
The polyamide resin composition used in the present invention is usually obtained by melt-kneading. The melt-kneader is supplied to a commonly known melt-kneader such as a single-screw or twin-screw extruder, a Banbury mixer, a kneader, and a mixing roll, and kneaded at a processing temperature of +5 to 100°C of the melting peak temperature of the polyamide resin. A typical example is a method of In this case, there are no particular restrictions on the order in which the raw materials are mixed, and all the raw materials are mixed and then melt-kneaded by the above method. Either a method of melt-kneading, or a method of blending a part of the raw materials and then mixing the rest of the raw materials using a side feeder during melt-kneading with a single-screw or twin-screw extruder may be used. As for the small amount of the additive component, it is of course possible to knead the other components by the above-described method, pelletize the pelletized product, and then add the pelletized product before molding.

<強化繊維複合材>
本発明のライナー本体の外表面を覆う補強層の強化繊維複合材は、強化繊維束に熱硬化性樹脂を含浸させ加熱硬化した硬化物である。
<Reinforcing fiber composite material>
The reinforcing fiber composite material of the reinforcing layer covering the outer surface of the liner body of the present invention is a hardened product obtained by impregnating a reinforcing fiber bundle with a thermosetting resin and curing it by heating.

本発明で用いられる熱硬化性樹脂として、液状であれば特に使用制限はないが、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ユリア樹脂、およびメラミン樹脂などが挙げられる。特に、接着強度が高い点より、フェノール類、アミン類、カルボン酸類、分子内不飽和炭素などの化合物を前駆体とするエポキシ樹脂であることが好ましい。 The thermosetting resin used in the present invention is not particularly limited as long as it is liquid, and examples thereof include epoxy resins, unsaturated polyester resins, phenol resins, urea resins, and melamine resins. In particular, epoxy resins having compounds such as phenols, amines, carboxylic acids, and intramolecular unsaturated carbons as precursors are preferable because of their high adhesive strength.

フェノール類を前駆体とするグリシジルエーテル型エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、トリスフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジフェニルフルオレン型エポキシ樹脂やそれぞれの各種異性体やアルキル、ハロゲン置換体などが挙げられる。また、フェノール類からなるエポキシ樹脂をウレタンやイソシアネートで変性した化合物なども、このタイプに含まれる。 Glycidyl ether-type epoxy resins having phenols as precursors include bisphenol A-type epoxy resin, bisphenol F-type epoxy resin, bisphenol S-type epoxy resin, epoxy resin having a biphenyl skeleton, phenol novolac-type epoxy resin, cresol novolac-type epoxy resin. Resins, resorcinol-type epoxy resins, epoxy resins having a naphthalene skeleton, trisphenylmethane-type epoxy resins, phenol aralkyl-type epoxy resins, dicyclopentadiene-type epoxy resins, diphenylfluorene-type epoxy resins, and their various isomers, alkyl, and halogen substitutions body, etc. Compounds obtained by modifying epoxy resins made of phenols with urethane or isocyanate are also included in this type.

アミン類を前駆体とするグリシジルアミン型エポキシ樹脂としては、テトラグリシジルジアミノジフェニルメタン、キシレンジアミンのグリシジル化合物、トリグリシジルアミノフェノールや、グリシジルアニリンのそれぞれの位置異性体やアルキル基やハロゲンでの置換体が挙げられる。 Glycidylamine-type epoxy resins using amines as precursors include positional isomers of tetraglycidyldiaminodiphenylmethane, glycidyl compounds of xylenediamine, triglycidylaminophenol, and glycidylaniline, and alkyl- and halogen-substituted products. mentioned.

カルボン酸を前駆体とするエポキシ樹脂としては、フタル酸のグリシジル化合物や、ヘキサヒドロフタル酸、ダイマー酸のグリシジル化合物の各種異性体が挙げられる。 Examples of epoxy resins having a carboxylic acid as a precursor include various isomers of glycidyl compounds of phthalic acid, hexahydrophthalic acid, and glycidyl compounds of dimer acid.

分子内不飽和炭素を前駆体とするエポキシ樹脂としては、例えば脂環式エポキシ樹脂が挙げられる。 Examples of epoxy resins having intramolecular unsaturated carbon as a precursor include alicyclic epoxy resins.

本発明の熱硬化性樹脂を加熱硬化させるために用いる硬化剤としては、熱硬化性樹脂を硬化させるものであれば特に限定はない。アミン、無水酸等の付加反応する硬化剤であってもよいし、カチオン重合、アニオン重合等の付加重合を引き起こす硬化触媒であってもよく、2種類以上の硬化剤を併用してもよい。硬化剤としては、好ましくは、アミノ基、酸無水物基、アジド基を有する化合物が適している。例えば、ジシアンジアミド、脂環式アミン、脂肪族アミン、芳香族アミン、アミノ安息香酸エステル類、各種酸無水物、フェノールノボラック樹脂、クレゾールノボラック樹脂、イミダゾール誘導体、t-ブチルカテコールなどのフェノール系化合物をはじめ、三フッ化ホウ素錯体や三塩化ホウ素錯体のようなルイス酸錯体などが挙げられる。 The curing agent used for curing the thermosetting resin of the present invention by heating is not particularly limited as long as it cures the thermosetting resin. It may be a curing agent that undergoes an addition reaction such as amine or anhydride, or a curing catalyst that causes addition polymerization such as cationic polymerization or anionic polymerization, or two or more curing agents may be used in combination. A compound having an amino group, an acid anhydride group, or an azide group is preferably suitable as the curing agent. For example, dicyandiamide, alicyclic amines, aliphatic amines, aromatic amines, aminobenzoic acid esters, various acid anhydrides, phenolic novolac resins, cresol novolak resins, imidazole derivatives, phenolic compounds such as t-butylcatechol, etc. and Lewis acid complexes such as boron trifluoride complexes and boron trichloride complexes.

本発明の強化繊維複合材に用いる強化繊維束を構成する繊維としては、強化繊維の種類としては特に限定されず、炭素繊維、金属繊維、有機繊維、無機繊維が例示される。これらを2種以上用いてもよい。 As for the fibers that constitute the reinforcing fiber bundle used in the reinforcing fiber composite material of the present invention, the types of reinforcing fibers are not particularly limited, and carbon fibers, metal fibers, organic fibers, and inorganic fibers are exemplified. You may use 2 or more types of these.

炭素繊維としては、例えば、ポリアクリロニトリル(PAN)繊維を原料とするPAN系炭素繊維、石油タールや石油ピッチを原料とするピッチ系炭素繊維、ビスコースレーヨンや酢酸セルロースなどを原料とするセルロース系炭素繊維、炭化水素などを原料とする気相成長系炭素繊維、これらの黒鉛化繊維などが挙げられる。これら炭素繊維のうち、強度と弾性率のバランスに優れる点で、PAN系炭素繊維が好ましく用いられる。 Examples of carbon fibers include PAN-based carbon fibers made from polyacrylonitrile (PAN) fibers, pitch-based carbon fibers made from petroleum tar or petroleum pitch, and cellulose-based carbon made from viscose rayon, cellulose acetate, or the like. fibers, vapor-grown carbon fibers made from hydrocarbons, and graphitized fibers thereof; Among these carbon fibers, PAN-based carbon fibers are preferably used because they have an excellent balance between strength and elastic modulus.

金属繊維としては、例えば、鉄、金、銀、銅、アルミニウム、黄銅、ステンレスなどの金属からなる繊維が挙げられる。 Examples of metal fibers include fibers made of metals such as iron, gold, silver, copper, aluminum, brass, and stainless steel.

有機繊維としては、例えば、アラミド、ポリベンゾオキサゾール(PBO)、ポリフェニレンスルフィド、ポリエステル、ポリアミド、ポリエチレンなどの有機材料からなる繊維が挙げられる。アラミド繊維としては、例えば、強度や弾性率に優れるパラ系アラミド繊維と、難燃性、長期耐熱性に優れるメタ系アラミド繊維が挙げられる。パラ系アラミド繊維としては、例えば、ポリパラフェニレンテレフタルアミド繊維、コポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド繊維などが挙げられ、メタ系アラミド繊維としては、ポリメタフェニレンイソフタルアミド繊維などが挙げられる。アラミド繊維としては、メタ系アラミド繊維に比べて弾性率の高いパラ系アラミド繊維が好ましく用いられる。 Examples of organic fibers include fibers made of organic materials such as aramid, polybenzoxazole (PBO), polyphenylene sulfide, polyester, polyamide, and polyethylene. Examples of aramid fibers include para-aramid fibers that are excellent in strength and elastic modulus, and meta-aramid fibers that are excellent in flame retardancy and long-term heat resistance. Examples of para-aramid fibers include polyparaphenylene terephthalamide fibers and copolyparaphenylene-3,4′-oxydiphenylene terephthalamide fibers, and meta-aramid fibers include polymetaphenylene isophthalamide fibers and the like. is mentioned. As the aramid fibers, para-aramid fibers having a higher elastic modulus than meta-aramid fibers are preferably used.

無機繊維としては、例えば、ガラス、バサルト、シリコンカーバイト、シリコンナイトライドなどの無機材料からなる繊維が挙げられる。ガラス繊維としては、例えば、Eガラス繊維(電気用)、Cガラス繊維(耐食用)、Sガラス繊維、Tガラス繊維(高強度、高弾性率)などが挙げられる。バサルト繊維は、鉱物である玄武岩を繊維化した物で、耐熱性の非常に高い繊維である。玄武岩は、一般的に、鉄の化合物であるFeOまたはFeO2を9~25重量%、チタンの化合物であるTiOまたはTiO2を1~6重量%含有するが、溶融状態でこれらの成分を増量して繊維化することも可能である。 Examples of inorganic fibers include fibers made of inorganic materials such as glass, basalt, silicon carbide, and silicon nitride. Glass fibers include, for example, E glass fiber (for electrical use), C glass fiber (for corrosion resistance), S glass fiber, and T glass fiber (high strength and high modulus of elasticity). Basalt fiber is a fibrous material made from mineral basalt, and is a fiber with extremely high heat resistance. Basalt generally contains 9 to 25% by weight of iron compounds FeO or FeO2 and 1 to 6% by weight of titanium compounds TiO or TiO2. Fiberization is also possible.

本発明の第一および第二の形態における繊維強化樹脂基材は、補強材としての役目を期待されることが多いため、高い機械特性を発現することが望ましく、高い機械特性を発現するためには、強化繊維が炭素繊維を含むことが好ましい。 Since the fiber-reinforced resin base material in the first and second forms of the present invention is often expected to serve as a reinforcing material, it is desirable to exhibit high mechanical properties. Preferably, the reinforcing fibers contain carbon fibers.

本発明の第一および第二の形態における繊維強化樹脂基材において、強化繊維は、通常、多数本の単繊維を束ねた強化繊維束を1本または複数本並べて構成される。1本または複数本の強化繊維束を並べたときの強化繊維の総フィラメント数(単繊維の本数)は、1,000~2,000,000本が好ましい。 In the fiber-reinforced resin substrates according to the first and second embodiments of the present invention, the reinforcing fibers are usually configured by arranging one or more reinforcing fiber bundles in which a large number of single fibers are bundled. The total number of reinforcing fiber filaments (number of single fibers) when one or more reinforcing fiber bundles are arranged is preferably 1,000 to 2,000,000.

生産性の観点からは、強化繊維の総フィラメント数は、1,000~1,000,000本がより好ましく、1,000~600,000本がさらに好ましく、1,000~300,000本が特に好ましい。強化繊維の総フィラメント数の上限は、分散性や取り扱い性とのバランスも考慮して、生産性と分散性、取り扱い性を良好に保てるようであれば良い。 From the viewpoint of productivity, the total number of filaments of the reinforcing fibers is more preferably 1,000 to 1,000,000, still more preferably 1,000 to 600,000, and 1,000 to 300,000. Especially preferred. The upper limit of the total number of filaments of the reinforcing fibers should be such that good productivity, dispersibility, and handleability can be maintained in consideration of the balance between dispersibility and handleability.

本発明のライナー本体の前記ドーム部に形成されたピンチオフ部について以下に説明する。 The pinch-off portion formed in the dome portion of the liner body of the present invention will be described below.

ダイレクトブロー成形時に、熱可塑性樹脂で形成された筒状のホットパリソンの一部が一対の金型で挟み込まれることで、ライナーの軸方向に延びる筋状のピンチオフ部(図4)がドーム部に形成される。ピンチオフ部ではパリソン樹脂の一部が金型に拘束されるため、他の部分と厚みが異なる部分ができ、軸方向に延びるピンチオフラインの部分が薄くなりピンチオフ部の強度低下が発生しやすいため、ピンチオフ部の厚みをドーム部厚みに対して1.15倍上にする必要があり、金型で挟みこめるホットパリソン厚みに限界があり上限値として1.30倍である。 At the time of direct blow molding, part of a cylindrical hot parison made of thermoplastic resin is sandwiched between a pair of molds, forming a streaky pinch-off portion (Fig. 4) extending in the axial direction of the liner into the dome portion. It is formed. Since part of the parison resin is constrained by the mold at the pinch-off part, a part with a different thickness from other parts is created, and the pinch-off part extending in the axial direction becomes thin, which tends to reduce the strength of the pinch-off part. The thickness of the pinch-off portion must be 1.15 times greater than the thickness of the dome portion.

本発明の前記ドーム部に形成されたピンチオフ部は強固に接着していないと圧力容器の耐圧性能が著しく低下するため、ピンチオフ部における引張強度は100MPa、曲げ弾性率は6GPa、荷重たわみ温度(荷重0.45MPa)は200℃である必要がある。ポリアミド樹脂100重量部に対して繊維状フィラーが200重量部含有した時のピンチオフ部における引張強度300MPa、曲げ弾性率25GPa、荷重たわみ温度260℃が上限である。 If the pinch-off portion formed in the dome portion of the present invention is not firmly adhered, the pressure resistance performance of the pressure vessel is significantly reduced. 0.45 MPa) should be 200°C. The upper limits are a tensile strength of 300 MPa, a bending elastic modulus of 25 GPa, and a deflection temperature under load of 260° C. at the pinch-off portion when 200 parts by weight of the fibrous filler is contained in 100 parts by weight of the polyamide resin.

<圧力容器の製造方法>
本発明の圧力容器の製造方法は、筒状の直胴部と、前記直胴部の両端に設けられ、前記直胴部から離れるにつれて窄む形状のドーム部とを備え、前記直胴部および前記ドーム部が、熱可塑性樹脂製ライナー本体と、前記ライナー本体の外表面を強化繊維複合材の硬化物からなる補強層で覆われた外殻とで形成された圧力容器の製造方法であって、 前記ライナー本体は、熱可塑性樹脂を押出速度0.10kg/秒~0.50kg/秒で押し出してホットパリソンとし、前記ホットパリソンの上下端を金型で固定し、前記熱可塑性樹脂の融点+10℃以上の成形条件にてダイレクトブロー成形により成形し、前記ライナー本体に強化繊維複合材を巻き付け、硬化させて外殻を形成することを特徴とする圧力容器の製造方法である。
<Method for manufacturing pressure vessel>
A method for manufacturing a pressure vessel according to the present invention includes a cylindrical straight body portion and dome portions provided at both ends of the straight body portion and having a shape that narrows as the distance from the straight body portion increases, the straight body portion and A method for manufacturing a pressure vessel, wherein the dome portion is formed of a liner body made of a thermoplastic resin and an outer shell in which the outer surface of the liner body is covered with a reinforcing layer made of a hardened reinforced fiber composite material. , The liner body is formed by extruding a thermoplastic resin at an extrusion speed of 0.10 kg / sec to 0.50 kg / sec to make a hot parison, fixing the upper and lower ends of the hot parison with a mold, and increasing the melting point of the thermoplastic resin + 10 A method of manufacturing a pressure vessel, characterized by molding by direct blow molding under molding conditions of ℃ or higher, winding a reinforcing fiber composite material around the liner body, and curing the liner body to form an outer shell.

<圧力容器用樹脂ライナーの製造方法>
このうち、本発明の圧力容器を構成するライナー本体の製造方法としては、ダイレクトブロー成形法(図5)で行うことが重要である。ダイレクトブロー成形とは、溶融押出したホットパリソンが冷却しないうちに直接空気を吹き込むホットパリソン式であり、押出ブロー成形ともいう。押出機で加熱溶融された樹脂をダイヘッドからチューブ形状(ホットパリソン)に押し出し、溶融状態のパリソンを金型で挟んで、内部に空気を吹き込み冷却後、金型を開いて成形品を取り出す。本発明は通常、金型上側方向から空気を吹き込むが、金型下側方向および横方向から吹き込む方法でも構わない。ダイレクトブロー成形法はホットパリソンを金型で挟みこむ過程で、ピンチオフ(図4)と呼ばれる凹みが発生するため、成形品内部から圧力をかけると、ピンチオフを起点に亀裂進展し破壊しやすい。そこで、本発明ではピンチオフ部の凹み改善をするために、ホットパリソン押出速度を0.10kg/秒~0.5kg/秒の範囲にコントロールする必要がある。ホットパリソン押出速度が下限値0.10kg/秒を下回ると押出機内の溶融滞留時間が長くなり、樹脂の熱劣化がし強度低下するために好ましくない。ホットパリソン押出速度が上限値0.50kg/秒を上回ると、ホットパリソン吐出速度が速すぎてせん断力により樹脂焼けが発生する可能性あるために好ましくない。また、本発明ではピンチオフ部の密着性を強固にするために、ホットパリソン形成温度を熱可塑性樹脂の融点+10℃以上にする必要がある。但し、ホットパリソン形成温度を融点+100℃より大きくすると、樹脂の熱分解進行により樹脂粘度が低下し、ホットパリソンがドローダウンし成形不可になるため好ましくない。また、本発明では樹脂ライナーの酸化劣化改善による強度向上のために、ダイレクトブロー成形時のホットパリソン吹き込み工程で酸素濃度10%以下の不活性ガス(窒素、ヘリウム、アルゴンなど)を用いることが好ましい。ホットパリソン吹き込み工程で空気を用いると、樹脂ライナーが酸化劣化し脆くなる場合があるため好ましくない。
<Method for manufacturing pressure vessel resin liner>
Of these methods, it is important to use the direct blow molding method (FIG. 5) as the method for manufacturing the liner body constituting the pressure vessel of the present invention. Direct blow molding is a hot parison type in which air is directly blown into the molten extruded hot parison before it cools, and is also called extrusion blow molding. The resin heated and melted by the extruder is extruded into a tubular shape (hot parison) from the die head, and the molten parison is sandwiched between the molds. In the present invention, the air is usually blown from the upper side of the mold, but a method of blowing from the lower side and lateral direction of the mold may also be used. In the direct blow molding method, dents called pinch-offs (Fig. 4) occur in the process of sandwiching the hot parison between the molds. When pressure is applied from the inside of the molded product, cracks develop from the pinch-offs and break easily. Therefore, in the present invention, it is necessary to control the hot parison extruding speed within the range of 0.10 kg/sec to 0.5 kg/sec in order to improve the depression of the pinch-off portion. If the hot parison extrusion speed is less than the lower limit of 0.10 kg/sec, the melt residence time in the extruder becomes long, and the resin is thermally deteriorated, resulting in a decrease in strength, which is not preferable. If the hot parison extrusion speed exceeds the upper limit of 0.50 kg/sec, the hot parison discharge speed is too high and resin burning may occur due to shear force, which is not preferable. Further, in the present invention, the temperature for forming the hot parison should be the melting point of the thermoplastic resin plus 10° C. or higher in order to strengthen the adhesion of the pinch-off portion. However, if the hot parison forming temperature is higher than the melting point +100° C., the thermal decomposition of the resin progresses and the viscosity of the resin decreases, and the hot parison draws down, making molding impossible. Further, in the present invention, it is preferable to use an inert gas (nitrogen, helium, argon, etc.) with an oxygen concentration of 10% or less in the hot parison blowing process during direct blow molding in order to improve strength by improving oxidation deterioration of the resin liner. . If air is used in the hot parison blowing process, the resin liner may deteriorate due to oxidation and become brittle, which is not preferable.

<外殻の製造方法>
本発明の筒状の直胴部と、前記直胴部の両端に設けられ、前記直胴部から離れるにつれて窄む形状のドーム部とを備え、前記直胴部および前記ドーム部が、熱可塑性樹脂製ライナー本体と、前記ライナー本体の外表面を強化繊維複合材の硬化物からなる補強層で覆われた外殻とで形成された圧力容器の製造方法であって、ライナー本体の外表面を強化繊維複合材の硬化物からなる補強層で覆われた外殻を形成する方法(フィラメントワインディン法と呼ぶ)を以下に説明する。
<Manufacturing method of outer shell>
It comprises a cylindrical straight body part of the present invention and dome parts provided at both ends of the straight body part and having a shape that narrows as it separates from the straight body part, and the straight body part and the dome part are thermoplastic. A method for manufacturing a pressure vessel formed of a resin liner body and an outer shell in which the outer surface of the liner body is covered with a reinforcing layer made of a hardened reinforced fiber composite material, wherein the outer surface of the liner body is A method of forming an outer shell covered with a reinforcing layer made of a hardened reinforcing fiber composite material (referred to as a filament winding method) will be described below.

この製造方法は、液状の熱硬化性樹脂組成物を含浸させた強化繊維複合材をライナーに巻き付けることにより、複数の強化繊維複合材からなる補強層で形成された成形品中間体を準備する工程(a)と、成形品中間体を常温で保持し、強化繊維複合材に含浸させた熱硬化性樹脂組成物を流動させる工程(b)と、工程(b)の後、成形品中間体を加熱して、熱硬化樹脂を含浸させた強化繊維複合材の硬化物を得る工程(c)によって構成される。本発明において、常温とは、5℃~35℃の範囲の温度のことをいうものとする。 This manufacturing method is a step of preparing a molded product intermediate formed of a reinforcing layer composed of a plurality of reinforcing fiber composite materials by winding a reinforcing fiber composite material impregnated with a liquid thermosetting resin composition around a liner. (a), a step (b) in which the molded product intermediate is held at room temperature and the thermosetting resin composition impregnated in the reinforcing fiber composite material is flowed, and after step (b), the molded product intermediate is It is constituted by the step (c) of heating to obtain a cured product of the reinforcing fiber composite impregnated with the thermosetting resin. In the present invention, normal temperature means a temperature in the range of 5°C to 35°C.

成形品中間体を準備する工程(a)では、強化繊維複合材を引き出し、熱硬化性樹脂組成物に浸含させ、その後ライナーに巻き取る。ライナーは、フィラメントワインディング成形品の用途に応じて自由に選択することができる。例えば、中空パイプ部材の製造においては、成形品を硬化させた後に脱芯が可能な円筒状のライナーや、加熱等によって溶融させることにより、脱芯が可能な各種形状のライナー等が使用可能である。圧力容器の製造においては、所定の収容物に対するシール性が確保された金属製あるいは樹脂製のライナー等が使用可能である。熱硬化性樹脂組成物を含浸させた強化繊維複合材をライナーに巻き取る方法としては、成形性や成形品の機械特性等の観点から、ライナーに対して相対的に自由に動かすことが可能なヘッド部より前記強化繊維複合材を供給し、フィラメントワインディング成形品の要求性能を満たすように強化繊維複合材を配置することが好ましい。 In step (a) of preparing an intermediate molded product, the reinforcing fiber composite material is pulled out, impregnated with a thermosetting resin composition, and then wound around a liner. The liner can be freely selected depending on the application of the filament winding molded product. For example, in the manufacture of hollow pipe members, it is possible to use cylindrical liners that can be de-cored after the molded product has been cured, and liners of various shapes that can be de-cored by being melted by heating. be. In the production of the pressure vessel, it is possible to use a liner or the like made of metal or resin that ensures a sealing performance with respect to a predetermined content. As a method of winding the reinforcing fiber composite material impregnated with the thermosetting resin composition around the liner, it is possible to move freely relative to the liner from the viewpoint of moldability and mechanical properties of the molded product. It is preferable to supply the reinforcing fiber composite material from the head portion and arrange the reinforcing fiber composite material so as to satisfy the required performance of the filament winding molded product.

成形品中間体を常温で保持する工程(b)では、成形品中間体が常温で保持されることによって、少なくとも工程の一部において、強化繊維複合材に含浸させた熱硬化性樹脂組成物が流動性を有した状態が保たれる。熱硬化性樹脂組成物の流動が可能な状態において、工程(a)で得られる強化繊維複合材の補強層に入り込んだ気泡は、気泡に働く浮力や、繊維を巻芯に巻きまわした際に繊維に残留した張力に起因する巻き締まり等によって、強化繊維複合材の補強層の表層に表出する。したがって、成形品中間体を常温で保持することにより、強化繊維複合材の補強層の気泡の少なくとも一部を除去し、フィラメントワインディング成形品に残留する空隙を低減することができる。成形品中間体の保持は、成形品中間体のライナーを回転中心として、回転させながら行うことができる。これにより、流動性を有する熱硬化性樹脂組成物が重力によって滴り、脱落することを防止できる。熱硬化性樹脂組成物の脱落は、フィラメントワインディング成形品の繊維体積含有率(Vf:%)を上昇させ、製品性能を悪化させるおそれがある。また、脱落した熱硬化性樹脂組成物は多くの場合廃棄され、製品歩留まりが悪化する。保持中に成形品中間体を回転させることによって、熱硬化性樹脂組成物の脱落による影響を排除することができる。 In the step (b) of holding the molded product intermediate at room temperature, the thermosetting resin composition impregnated in the reinforcing fiber composite material is at least part of the process by holding the molded product intermediate at room temperature. A state of fluidity is maintained. In a state where the thermosetting resin composition can flow, the air bubbles that have entered the reinforcing layer of the reinforcing fiber composite material obtained in step (a) are affected by the buoyancy acting on the air bubbles and when the fibers are wound around the core. It is exposed on the surface layer of the reinforcing layer of the reinforcing fiber composite material due to tightening of the winding or the like caused by the tension remaining in the fibers. Therefore, by keeping the molded product intermediate at room temperature, at least some of the air bubbles in the reinforcing layer of the reinforcing fiber composite material can be removed, and the voids remaining in the filament winding molded product can be reduced. The intermediate molded product can be held while rotating about the liner of the intermediate molded product. As a result, the fluid thermosetting resin composition can be prevented from dripping and falling off due to gravity. Detachment of the thermosetting resin composition may increase the fiber volume content (Vf: %) of the filament-wound molded product, degrading product performance. In addition, the dropped thermosetting resin composition is often discarded, resulting in poor product yield. By rotating the molded product intermediate while holding it, it is possible to eliminate the influence of falling off of the thermosetting resin composition.

成形品中間体の保持において、保持温度は常温であるが、好ましくは常温の範囲内であって、熱硬化性樹脂組成物の種類および使用条件に応じて定まる任意の温度±5℃とすることができる。この任意の温度±5℃の範囲が常温の範囲を超過するとき、超過分は切り捨てるものとする。熱硬化性樹脂組成物は、種類および使用条件によっては、温度が高い場合、熱硬化性樹脂組成物のゲル化が速やかに進行し、十分な樹脂流動時間を確保できない恐れがある。また、温度が低い場合、熱硬化性樹脂組成物の粘度が低下し、温度が高い場合に比べて、同程度の空隙低減効果を得るために、多くの時間を要する恐れがある。したがって、保持温度は常温であれば特に制限されるものではないが、使用する熱硬化性樹脂組成物の種類や使用条件に応じて決定される範囲であることが好ましい。 In holding the molded product intermediate, the holding temperature is room temperature, preferably within the range of room temperature, and an arbitrary temperature ± 5 ° C. determined according to the type of thermosetting resin composition and the conditions of use. can be done. When this arbitrary temperature range of ±5°C exceeds the normal temperature range, the excess shall be rounded down. Depending on the type and conditions of use of the thermosetting resin composition, when the temperature is high, gelation of the thermosetting resin composition proceeds rapidly, and there is a risk that sufficient resin flow time cannot be secured. In addition, when the temperature is low, the viscosity of the thermosetting resin composition decreases, and it may take a longer time to obtain the same degree of void reduction effect as compared to when the temperature is high. Therefore, the holding temperature is not particularly limited as long as it is normal temperature, but it is preferably within a range determined according to the type of the thermosetting resin composition to be used and the conditions of use.

熱硬化性樹脂を含浸させた強化繊維複合材の硬化物を得る工程(c)では、常温保持後の成形品中間体を加熱し熱硬化性樹脂組成物を熱硬化させるが、その方法は限定されず、ヒーターや誘導加熱コイル等任意の方法を用いて加熱することができる。加熱中は、成形品中間体を回転させつつ保持することができる。成形品中間体を回転保持することにより、熱硬化性樹脂組成物の脱落を防止することができる。 In the step (c) of obtaining a cured product of the reinforcing fiber composite material impregnated with the thermosetting resin, the thermosetting resin composition is thermally cured by heating the molded product intermediate after being kept at room temperature, but the method is limited. It can be heated using any method such as a heater or an induction heating coil. During heating, the molded product intermediate can be held while rotating. By rotating and holding the molded product intermediate, the thermosetting resin composition can be prevented from coming off.

成形品中間体を準備する工程(a)、成形品中間体を常温で保持する工程(b)、および熱硬化性樹脂を含浸させた強化繊維複合材の硬化物を得る工程(c)は、実施する場所を限定されない。すなわち、工程(a)と工程(b)の間で成形品中間体を移動させてもよく、移動させずに連続して工程を実施することもできる。また、工程(b)と工程(c)の間で成形品中間体を移動させてもよく、移動させず連続して工程を実施することができる。さらに、工程(b)と工程(c)の間で成形品中間体を移動させる場合、移動させる場所は、工程(a)が行われた場所で行うこともできる。 The step (a) of preparing a molded product intermediate, the step (b) of maintaining the molded product intermediate at room temperature, and the step (c) of obtaining a cured product of a reinforcing fiber composite material impregnated with a thermosetting resin, There are no restrictions on where it can be implemented. In other words, the intermediate molded product may be moved between step (a) and step (b), or the steps may be performed continuously without moving. Moreover, the molded product intermediate may be moved between the step (b) and the step (c), or the steps can be performed continuously without moving. Furthermore, when the intermediate molded product is moved between the step (b) and the step (c), it can be moved to the place where the step (a) was performed.

本発明で得られるフィラメントワインディング成形品は、圧力容器、ロール、プロペラシャフト、フライホイール、釣竿およびゴルフクラブシャフトをはじめ、航空宇宙用途、レジャー用途および一般産業用途に広く用いることができる。特に、強度が求められる圧力容器等の用途に好適に用いることができる。本発明で製造される圧力容器は、水素ガス自動車や天然ガス自動車に限らず、船舶と航空機等、および、地上に固定されて使用される据え置き型や病院や消防士が使用する空気呼吸器等に好適に用いられる。また、この圧力容器で保管される物質としては、窒素、酸素、アルゴン、液化石油ガスおよび水素等の気体であってもよいし、前記物質を液化したもの等が挙げられる。 The filament winding molded article obtained by the present invention can be widely used for aerospace applications, leisure applications and general industrial applications, including pressure vessels, rolls, propeller shafts, flywheels, fishing rods and golf club shafts. In particular, it can be suitably used for applications such as pressure vessels that require strength. The pressure vessel manufactured by the present invention is not limited to hydrogen gas vehicles and natural gas vehicles, but also ships, aircraft, etc. It is preferably used for Substances stored in this pressure vessel may be gases such as nitrogen, oxygen, argon, liquefied petroleum gas and hydrogen, and liquefied substances of the above substances.

<樹脂ライナーの酸化劣化分析方法>
本発明の樹脂ライナーは、ピンチオフ密着時の強度、靭性を改善するために、FT-IR測定時の1700cm-1~1750cm-1範囲の材料酸化劣化起因のピーク強度比(ダイレクトブロー成形品の当該ピーク強度/ダイレクトブロー成形前の樹脂材料のピーク強度)が0.005以下にする必要があり、より好ましくは0.002以下である。尚、本発明のFT-IR測定方法として、具体的には成形品表面を約1g程度、3箇所削り出しを行い、FT-IR装置(Bruker社製:TENSOR II)を使用しATR法(減衰全反射法:検出器DLaTGS、入射角45°、Geプリズム、分解能4cm-1)にて測定した。そして、酸化劣化によって樹脂が熱分解することで観測されやすい1700cm-1~1750cm-1の波長範囲の吸収ピーク強度の大小で酸化劣化の度合いを定量評価した。尚、図6に酸化劣化したブロー成形条件および酸化劣化抑制したブロー成形条件の樹脂ライナーのFT-IR分析結果を示すが、このグラフからみてわかるように1700cm-1~1750cm-1範囲の波長の吸収ピーク強度に差異があり、酸化劣化抑制したブロー成形条件では当該吸収ピークが殆ど観測されないことがわかる。
<Method for analyzing oxidation deterioration of resin liner>
In order to improve the strength and toughness at the time of pinch-off adhesion, the resin liner of the present invention has a peak strength ratio due to material oxidation deterioration in the range of 1700 cm -1 to 1750 cm -1 in FT-IR measurement. The peak strength/the peak strength of the resin material before direct blow molding) should be 0.005 or less, more preferably 0.002 or less. As the FT-IR measurement method of the present invention, specifically, about 1 g of the surface of the molded product is cut out at three locations, and an ATR method (attenuation Total reflection method: Detector DLaTGS, incident angle 45°, Ge prism, resolution 4 cm −1 ). Then, the degree of oxidative deterioration was quantitatively evaluated based on the magnitude of the absorption peak intensity in the wavelength range of 1700 cm −1 to 1750 cm −1 , which is likely to be observed when the resin thermally decomposes due to oxidative deterioration. FIG. 6 shows the FT - IR analysis results of the resin liner under oxidatively deteriorated blow molding conditions and under oxidative deterioration suppressed blow molding conditions. It can be seen that there is a difference in the absorption peak intensity, and that the absorption peak is hardly observed under the blow molding conditions in which oxidative degradation is suppressed.

<樹脂ライナーのピンチオフ部における引張試験>
ダイレクトブロー成形加工した樹脂ライナー(肉厚3mmの場合)のドーム部におけるピンチオフ部分を、幅15mm×長さ125mmの短冊状に切削加工して、ASTM D3039に準拠して引張試験(各n=5)を実施し、引張強度を測定した。
<Tensile test at pinch-off portion of resin liner>
The pinch-off portion of the dome portion of the direct blow molded resin liner (thickness 3 mm) was cut into strips of width 15 mm x length 125 mm, and subjected to a tensile test (n = 5 each) in accordance with ASTM D3039. ) was performed and the tensile strength was measured.

<樹脂ライナーのピンチオフ部における曲げ試験>
ダイレクトブロー成形加工した樹脂ライナー(肉厚3mmの場合)のドーム部におけるピンチオフ部分を、幅15mm×長さ125mmの短冊状に切削加工して、ASTM D790に準拠して曲げ試験(各n=3)を実施し、曲げ弾性率を測定した。
<樹脂ライナーのピンチオフ部における荷重たわみ温度測定>
ダイレクトブロー成形加工した樹脂ライナー(肉厚3mmの場合)のドーム部におけるピンチオフ部分を、幅15mm×長さ125mmの短冊状に切削加工して、ASTM D648に準拠して荷重たわみ温度(荷重0.45MPa、各n=3)を実施し、荷重たわみ温度を測定した。
<Bending test at pinch-off portion of resin liner>
The pinch-off portion of the dome portion of the direct blow molded resin liner (thickness 3 mm) was cut into strips of width 15 mm x length 125 mm, and a bending test was performed in accordance with ASTM D790 (each n = 3 ) was performed and the flexural modulus was measured.
<Measurement of deflection temperature under load at pinch-off portion of resin liner>
The pinch-off portion of the dome portion of the direct blow molded resin liner (thickness 3 mm) was cut into strips of width 15 mm x length 125 mm, and the deflection temperature under load (load 0.00) was measured according to ASTM D648. 45 MPa, each n=3) was performed, and the deflection temperature under load was measured.

以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。各実施例および比較例における物性評価は下記の方法に従って実施した。 EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the description of these examples. Evaluation of physical properties in each example and comparative example was carried out according to the following methods.

[樹脂ライナーの製造方法]
タハラ製アキュームレーター式押出ブロー成形装置を用いて、各実施例および比較例のブロー成形条件にて、図8に示した樹脂ライナー形状(肉厚:3mm±0.5mm、ネジ部分:内径φ13mm、外径φ24mm)を得た。
<押出ブロー成形装置/機器仕様>
・押出機スクリュー径 :φ80mm
・押出機スクリューアレンジ :深溝フルフライト仕様
・アキュームポンプ容量 :4000cc
・押出機スクリュー回転数 :35rpm
・ダイス形状 :ダイパージ
<成形条件>
・ホットパリソン長さ :70mm
・ホットパリソン重さ :2000g
・ホットパリソン吹き込みガス :エアー又は不活性ガス(窒素ガス使用)
[Method for manufacturing resin liner]
Using an accumulator-type extrusion blow molding device manufactured by Tahara, under the blow molding conditions of each example and comparative example, the resin liner shape shown in FIG. outer diameter φ24 mm) was obtained.
<Extrusion blow molding equipment/equipment specifications>
・Extruder screw diameter: φ80mm
・Extruder screw arrangement: Deep groove full flight specification ・Accumulation pump capacity: 4000cc
・Extruder screw speed: 35 rpm
・Die shape: Die purge <Molding conditions>
・Hot parison length: 70mm
・Hot Parison Weight: 2000g
・Hot parison blowing gas: Air or inert gas (using nitrogen gas)

[ホットパリソン押出速度測定方法]
各実施例および比較例のブロー成形条件にてホットパリソンを長さ70mm(パリソン重さ2000g)まで押出完了時の時間をストップウォッチで計測(N=3)し、押出速度(kg/秒)を算出した。
[Hot parison extrusion speed measurement method]
Under the blow molding conditions of each example and comparative example, the time when the hot parison was extruded to a length of 70 mm (parison weight of 2000 g) was measured with a stopwatch (N = 3), and the extrusion speed (kg / sec) was measured. Calculated.

[ホットパリソン形成温度測定方法]
各実施例および比較例のブロー成形条件にて押出したパリソン形成時(長さ70mm)のパリソン表面温度を赤外線サーモグラフィー(非接触式)で測定した。尚、測定箇所はパリソン押出側とパリソン押出方向と反対側(以下、反押出側とする)の2箇所とした。
[Method for measuring hot parison formation temperature]
The surface temperature of the parison (70 mm in length) extruded under the blow molding conditions of each example and comparative example was measured by infrared thermography (non-contact type). The measurement was made at two points on the parison extruding side and the side opposite to the parison extruding direction (hereinafter referred to as the anti-extrusion side).

[樹脂ライナーのFT-IR測定(樹脂材料の酸化劣化度合)]
前記で得られた樹脂ライナーの内面を約1g程度、3箇所削り出しを行い、FT-IR装置(Bruker社製:TENSOR II)を使用しATR法にて測定した。そして、酸化劣化によって樹脂が熱分解することで観測されやすい1700cm-1~1750cm-1の波長範囲の吸収ピーク強度比(樹脂ライナー成形品の当該ピーク強度/ブロー成形前の樹脂原料のピーク強度)の大小で酸化劣化の度合いを定量評価した。尚、この数値が小さいほど酸化劣化していない樹脂ライナーといえる。
<測定条件>
・光源:グローバー(SiC)
・検出器:DLaTGS
・分解能:4cm-1
・積算回数:128回
・付属装置:サンダードーム、1回反射ATR、入射角45°、Geプリズム使用
[FT-IR measurement of resin liner (degree of oxidation deterioration of resin material)]
About 1 g of the inner surface of the resin liner obtained above was cut out at three points, and measured by the ATR method using an FT-IR device (Bruker: TENSOR II). Then, the absorption peak intensity ratio in the wavelength range of 1700 cm -1 to 1750 cm -1 (the peak intensity of the resin liner molded product / the peak intensity of the resin raw material before blow molding), which is likely to be observed due to the thermal decomposition of the resin due to oxidative deterioration. The degree of oxidative deterioration was quantitatively evaluated by the size of . In addition, it can be said that the resin liner that is less oxidatively deteriorated as the numerical value is smaller.
<Measurement conditions>
・Light source: Glover (SiC)
・Detector: DLaTGS
・Resolution: 4 cm -1
・Accumulated times: 128 times ・Attached equipment: Thunder dome, single-reflection ATR, incident angle 45°, Ge prism used

[樹脂ライナー/ピンチオフ部の引張試験(ピンチオフ密着性)]
前記で得られた樹脂ライナーのドーム部におけるピンチオフ部分を、パリソン押出方向側およびパリソン反押出方向側の2箇所から幅15mm×長さ125mmの短冊状に切削加工して、ASTM D3039に準拠して引張試験(各n=5)を実施し、引張強度を測定した。尚、この数値が大きいほどピンチオフ密着性に優れた樹脂ライナーといえる。
[Tensile test of resin liner/pinch-off part (pinch-off adhesion)]
The pinch-off portion of the dome portion of the resin liner obtained above was cut into strips of width 15 mm x length 125 mm from two locations on the parison extrusion direction side and the parison counter extrusion direction side, and cut in accordance with ASTM D3039. Tensile tests (n=5 each) were performed to measure the tensile strength. Incidentally, it can be said that the resin liner with a higher pinch-off adhesion has a higher numerical value.

[樹脂ライナー/ピンチオフ部の曲げ試験(ピンチオフ部の剛性)]
ダイレクトブロー成形加工した樹脂ライナー(肉厚3mmの場合)のドーム部におけるピンチオフ部分を、幅15mm×長さ125mmの短冊状に切削加工して、ASTM D790に準拠して曲げ試験(各n=3)を実施し、曲げ弾性率を測定した。なお、この数値が大きいほどピンチオフ部の剛性に優れた樹脂ライナーといえる。
[Bending test of resin liner/pinch-off part (rigidity of pinch-off part)]
The pinch-off portion of the dome portion of the direct blow molded resin liner (thickness 3 mm) was cut into strips of width 15 mm x length 125 mm, and a bending test was performed in accordance with ASTM D790 (each n = 3 ) was performed and the flexural modulus was measured. Incidentally, it can be said that the resin liner having a higher pinch-off portion rigidity has a higher numerical value.

[樹脂ライナー/ピンチオフ部の荷重たわみ温度測定(ピンチオフ部の耐熱性)]
ダイレクトブロー成形加工した樹脂ライナー(肉厚3mmの場合)のドーム部におけるピンチオフ部分を、幅15mm×長さ125mmの短冊状に切削加工して、ASTM D648に準拠して荷重たわみ温度(荷重0.45MPa、各n=3)を実施し、荷重たわみ温度を測定した。なお、この数値が大きいほどピンチオフ部が熱変形しにくい樹脂ライナーといえる。
[Measurement of load deflection temperature of resin liner/pinch-off part (heat resistance of pinch-off part)]
The pinch-off portion of the dome portion of the direct blow molded resin liner (thickness 3 mm) was cut into strips of width 15 mm x length 125 mm, and the deflection temperature under load (load 0.00) was measured according to ASTM D648. 45 MPa, each n=3) was performed, and the deflection temperature under load was measured. In addition, it can be said that the larger this value is, the less likely the pinch-off portion is to be thermally deformed in the resin liner.

[フィラメントワインディング法による圧力容器製造方法および耐圧試験(耐圧性)]
フィラメントワインディング成形装置に、前記で得られたライナーを設置し当該巻芯に対し、液状の熱硬化性樹脂組成物(エポキシ主剤:硬化剤=100:32質量比で25℃常温で均一混合したもの)の入った樹脂を東レ(株)製炭素繊維“トレカ”(登録商標)T700SC-24Kの糸束1本に含浸させながら給糸した。巻芯の軸方向に対して、±83°の巻き角度で幅60mmの範囲に巻きつけ、厚さ1mm積層し、成形品中間体を用意した。繊維巻き付け後、前記中間体を速度7rpmで回転させつつ20℃環境下で15分間保持した。保持開始時、樹脂の粘度は、1100mPa・sであった。
[Pressure vessel manufacturing method by filament winding method and pressure resistance test (pressure resistance)]
The liner obtained above is installed in a filament winding forming apparatus, and a liquid thermosetting resin composition (epoxy main agent: curing agent = 100:32 mass ratio) is uniformly mixed at 25 ° C. and normal temperature to the winding core. ) was supplied to one yarn bundle of carbon fiber “Torayca” (registered trademark) T700SC-24K manufactured by Toray Industries, Inc. while being impregnated with the resin. It was wound in a range of width 60 mm at a winding angle of ±83° with respect to the axial direction of the winding core, and laminated to a thickness of 1 mm to prepare an intermediate molded article. After the fiber winding, the intermediate was held at 20° C. for 15 minutes while rotating at a speed of 7 rpm. At the start of holding, the viscosity of the resin was 1100 mPa·s.

前記保持後、前記の成形品中間体を80℃の温度で2時間、110℃の温度で4時間加熱し、前記の樹脂を硬化させ、耐圧試験用圧力容器を得た。次いで、図9に示す圧力容器水圧破裂試験装置に、前記で得られた圧力容器を設置して、水圧ポンプにより送水・加圧して、容器破裂した時の破裂圧力を測定(N=3)し、下記の判定基準を設けて耐圧性能を評価した。
<耐圧性能/判定基準>
〇 :破裂圧力100MPa以上
△ :破裂圧力80MPa以下
× :破裂圧力50MPa以下
After the holding, the molded product intermediate was heated at a temperature of 80° C. for 2 hours and at a temperature of 110° C. for 4 hours to cure the resin and obtain a pressure vessel for pressure testing. Next, the pressure vessel obtained above was installed in the pressure vessel hydraulic burst test apparatus shown in FIG. , the pressure resistance performance was evaluated according to the following criteria.
<Pressure resistance/judgment criteria>
○: Bursting pressure 100 MPa or more △: Bursting pressure 80 MPa or less ×: Bursting pressure 50 MPa or less

〔原料〕
実施例および比較例において、原料は以下に示すものを用いた。
〔material〕
In the examples and comparative examples, the following raw materials were used.

<参考例1>ダイレクトブロー成形に用いる熱可塑性樹脂
ガラス繊維強化ナイロン6樹脂-1:CM1046K4(東レ(株)製、ガラス繊維20%含有ブロー成形用グレード、ガラス繊維の異形比1.0、(登録商標)アミラン)
ガラス繊維強化ナイロン6樹脂-2:CM1046K4含有のガラス繊維のみを異形断面ガラス繊維(日東紡(株)製CSG-3PA-830、異形比4.0)に変更
ナイロン6樹脂 :CM1056(東レ(株)製、高粘度・高衝撃ブロー成形用グレード、繊維状フィラーは未含有、(登録商標)アミラン)
<Reference Example 1> Thermoplastic resin used for direct blow molding Glass fiber reinforced nylon 6 resin-1: CM1046K4 (manufactured by Toray Industries, Inc., grade for blow molding containing 20% glass fiber, glass fiber deformation ratio 1.0, ( Registered Trademark) Amilan)
Glass fiber reinforced nylon 6 resin-2: Only the glass fiber containing CM1046K4 is changed to modified cross-section glass fiber (manufactured by Nittobo Co., Ltd. CSG-3PA-830, deformation ratio 4.0) Nylon 6 resin: CM1056 (Toray Industries, Inc. ), grade for high-viscosity, high-impact blow molding, does not contain fibrous filler, (registered trademark) Amilan)

<参考例2>液状の熱硬化性樹脂組成物
エポキシ主剤:ビスフェノールA型液状エポキシ樹脂(“jER”(登録商標)828 (三菱化学(株)製))
硬化剤:ポリ(プロピレングリコール)ジアミン、イソホロンジアミン、シクロヘキシルアミン、ポリプレピレングリコールの混合物(“ARADUR”(登録商標)3486 (ハンツマンジャパン(株)製))
<Reference Example 2> Liquid thermosetting resin composition Epoxy main agent: Bisphenol A type liquid epoxy resin (“jER” (registered trademark) 828 (manufactured by Mitsubishi Chemical Corporation))
Curing agent: mixture of poly(propylene glycol) diamine, isophorone diamine, cyclohexylamine, polypropylene glycol (“ARADUR” (registered trademark) 3486 (manufactured by Huntsman Japan Co., Ltd.))

Figure 2022119264000002
Figure 2022119264000002

Figure 2022119264000003
Figure 2022119264000003

上記のとおり、実施例と比較例の比較により、本発明の樹脂ライナーおよび圧力容器
は、図7に示すようにピンチオフ凹み改善しピンチオフ部が強固に接着することで、高強度、高剛性且つ高耐熱性を示すピンチオフ部が形成され、耐圧性能の飛躍的な向上を実現していることがわかる。
As described above, by comparing the examples and the comparative examples, the resin liner and the pressure vessel of the present invention improved the pinch-off dent as shown in FIG. It can be seen that a pinch-off portion that exhibits heat resistance is formed, and a dramatic improvement in pressure resistance performance is realized.

101 圧力容器
102 強化繊維複合材
103 ライナー容器
104 口金部分
201 円筒状の直胴部
202 直胴部の両端に設けられた半球状のドーム部
301 射出成形ライナー(半割部品)
302 射出成形ライナー(半割部品を溶着接合したもの)
401 ダイレクトブロー成形ライナー
402 ピンチオフ発生した凹み箇所
501 単軸押出機
502 ダイレクトブロー成形用金型
503 ホットパリソン
701 ピンチオフ凹みが大きいダイレクトブロー成形ライナー
702 ピンチオフ凹みが小さいダイレクトブロー成形ライナー
101 Pressure vessel 102 Reinforcing fiber composite material 103 Liner container 104 Base part 201 Cylindrical straight body part 202 Semispherical dome parts 301 provided at both ends of the straight body part Injection molded liner (half split part)
302 Injection molded liner (welded half parts)
401 Direct blow molding liner 402 Pinch-off dented portion 501 Single screw extruder 502 Direct blow molding die 503 Hot parison 701 Direct blow molding liner with large pinch-off dent 702 Direct blow molding liner with small pinch-off dent

Claims (9)

筒状の直胴部と、前記直胴部の両端に設けられ、前記直胴部から離れるにつれて窄む形状のドーム部とを備え、前記直胴部および前記ドーム部が熱可塑性樹脂製ライナー本体と、前記ライナー本体の外表面を強化繊維複合材の硬化物からなる補強層で覆われた外殻とで形成された圧力容器であって、前記ライナー本体がダイレクトブロー成形で製造され、且つ前記ドーム部に形成されたピンチオフ部の引張強度が100MPa以上、曲げ弾性率6GPa以上、荷重たわみ温度(荷重0.45MPa)200℃以上であることを特徴とする圧力容器。 A liner main body comprising a cylindrical straight body portion and dome portions provided at both ends of the straight body portion and tapering away from the straight body portion, wherein the straight body portion and the dome portion are made of a thermoplastic resin. and an outer shell in which the outer surface of the liner body is covered with a reinforcing layer made of a hardened reinforced fiber composite material, wherein the liner body is manufactured by direct blow molding, and A pressure vessel, wherein a pinch-off portion formed in the dome portion has a tensile strength of 100 MPa or more, a bending elastic modulus of 6 GPa or more, and a deflection temperature under load (0.45 MPa load) of 200° C. or more. 前記ライナー本体に用いる熱可塑性樹脂がポリアミド樹脂100重量部に対して、繊維状フィラーを15~200重量部含むポリアミド樹脂組成物であることを特徴とする請求項1に記載の圧力容器。 2. The pressure vessel according to claim 1, wherein the thermoplastic resin used for the liner body is a polyamide resin composition containing 15 to 200 parts by weight of fibrous filler with respect to 100 parts by weight of polyamide resin. 前記ドーム部に形成されたピンチオフ部の肉厚が、ドーム部肉厚に対して1.15倍以上1.30倍以下であることを特徴とする請求項1または2のいずれかに記載の圧力容器。 3. The pressure according to claim 1, wherein the thickness of the pinch-off portion formed in the dome portion is 1.15 to 1.30 times the thickness of the dome portion. container. 前記ポリアミド樹脂組成物に含まれる前記繊維状フィラーが異形比1.3以上10以下の異形断面ガラス繊維であることを特徴とする請求項2または3に記載の圧力容器。 4. The pressure vessel according to claim 2 or 3, wherein the fibrous filler contained in the polyamide resin composition is a modified cross-section glass fiber having a modified cross-section ratio of 1.3 or more and 10 or less. 前記ポリアミド樹脂組成物に含まれる前記ポリアミド樹脂がナイロン11またはナイロン12のいずれかであることを特徴とする請求項2~4のいずれかに記載の圧力容器。 The pressure vessel according to any one of claims 2 to 4, wherein the polyamide resin contained in the polyamide resin composition is either nylon 11 or nylon 12. ライナー本体の内面を測定波長1700-1~1750cm-1範囲でFT-IR測定したピーク強度比(ダイレクトブロー成形品の当該ピーク強度/ダイレクトブロー成形前の樹脂材料のピーク強度)が0.005以下であることを特徴とする請求項1~5のいずれかに記載の圧力容器。 The peak intensity ratio (the peak intensity of the direct blow molded product/the peak intensity of the resin material before direct blow molding) measured by FT-IR on the inner surface of the liner body at a measurement wavelength of 1700 -1 to 1750 cm -1 is 0.005 or less. The pressure vessel according to any one of claims 1 to 5, characterized in that: 筒状の直胴部と、前記直胴部の両端に設けられ、前記直胴部から離れるにつれて窄む形状のドーム部とを備え、前記直胴部および前記ドーム部が、熱可塑性樹脂製ライナー本体と、前記ライナー本体の外表面を強化繊維複合材の硬化物からなる補強層で覆われた外殻とで形成された圧力容器の製造方法であって、
前記ライナー本体は、熱可塑性樹脂を押出速度0.10kg/秒~0.50kg/秒で押し出してホットパリソンとし、前記ホットパリソンの上下端を金型で固定し、前記熱可塑性樹脂の融点+10℃以上の成形条件にてダイレクトブロー成形により成形し、
前記ライナー本体に強化繊維複合材を巻き付け、硬化させて外殻を形成することを特徴とする圧力容器の製造方法。
A cylindrical straight body portion and dome portions provided at both ends of the straight body portion and having a shape that tapers away from the straight body portion, wherein the straight body portion and the dome portion are formed of a thermoplastic resin liner. A method for manufacturing a pressure vessel formed of a main body and an outer shell in which the outer surface of the liner main body is covered with a reinforcing layer made of a hardened reinforced fiber composite material,
The liner body is formed by extruding a thermoplastic resin at an extrusion speed of 0.10 kg/sec to 0.50 kg/sec to form a hot parison, fixing the upper and lower ends of the hot parison with a mold, and adding the melting point of the thermoplastic resin + 10 ° C. Molded by direct blow molding under the above molding conditions,
A method of manufacturing a pressure vessel, comprising winding a reinforcing fiber composite material around the liner body and curing the material to form an outer shell.
前記金型が、前記ホットパリソンの上下端を左右から固定する一対の金型であり、上端、下端それぞれの中央部以外を押し付け一体化するピンチオフ部を形成することを特徴とする請求項7に記載の圧力容器の製造方法。 8. The method according to claim 7, wherein the molds are a pair of molds for fixing the upper and lower ends of the hot parison from the left and right, and form a pinch-off portion that presses and integrates the upper and lower ends of the parison other than the central portions. A method of manufacturing the described pressure vessel. 前記ダイレクトブロー成形において、酸素濃度が1%以上10%以下である不活性ガスを前記ホットパリソンに吹き込むことを特徴とする請求項7または8に記載の圧力容器の製造方法。 9. The method of manufacturing a pressure vessel according to claim 7, wherein in the direct blow molding, an inert gas having an oxygen concentration of 1% or more and 10% or less is blown into the hot parison.
JP2021016249A 2021-02-04 2021-02-04 Pressure vessels and methods of manufacturing pressure vessels Pending JP2022119264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021016249A JP2022119264A (en) 2021-02-04 2021-02-04 Pressure vessels and methods of manufacturing pressure vessels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021016249A JP2022119264A (en) 2021-02-04 2021-02-04 Pressure vessels and methods of manufacturing pressure vessels

Publications (1)

Publication Number Publication Date
JP2022119264A true JP2022119264A (en) 2022-08-17

Family

ID=82848431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021016249A Pending JP2022119264A (en) 2021-02-04 2021-02-04 Pressure vessels and methods of manufacturing pressure vessels

Country Status (1)

Country Link
JP (1) JP2022119264A (en)

Similar Documents

Publication Publication Date Title
TWI728038B (en) Method for manufacturing three-dimensional structure and filament for 3D printer
EP3795642B1 (en) Glass fiber-reinforced resin molded article
JP6925465B2 (en) Manufacturing method of thermoplastic resin composition, resin molded product, plated resin molded product, and manufacturing method of portable electronic device parts
WO2007097184A1 (en) Glass-fiber-reinforced thermoplastic resin composition and molded article
US20220282086A1 (en) Liquid crystal polyester resin composition and molded object
JP5328079B2 (en) Long glass fiber reinforced polyamide pellets and molded products
WO2019151174A1 (en) Fiber-reinforced molded article and method for producing same
WO2007125784A1 (en) Resin composition, and automotive underhood component produced using the resin composition
JP6518587B2 (en) Crystalline thermoplastic resin composition and molded article
WO2015046290A1 (en) Unidirectional fiber-reinforced tape and method for manufacturing same, molded article using same, and method for manufacturing molded article
JP7234204B2 (en) Thermoplastic resin composition, molded article, method for producing thermoplastic resin composition, and method for producing plated molded article
JP6292457B2 (en) Resin composition for blow hollow molded article, blow hollow molded article and production method
CN109790377B (en) Composite pressure vessel with single layer liner
JP5371683B2 (en) Manufacturing method of polyamide resin composition pellets
JP2011148267A (en) Manufacturing method of polyamide resin molded article
EP3892671B1 (en) Glass fiber-reinforced resin molded article
JP2021507981A (en) Polyamide preparation containing semi-crystalline copolyamide and flat glass fiber
KR20170126928A (en) Long Fiber-Reinforced Polyarylene Sulfide Resin Molded Article and Manufacturing Method Thereof
JP5374228B2 (en) Long fiber reinforced polyamide resin composition and conductive shaft-shaped product formed by molding the same
JP2022119264A (en) Pressure vessels and methods of manufacturing pressure vessels
US20220282033A1 (en) Liquid crystal polyester resin molded article
WO2006030673A1 (en) Exterior formed article made of long fiber-reinforced thermoplastic resin
JP5485836B2 (en) Long fiber reinforced polyamide resin composition and molded body
JP2005324733A (en) Vehicle body front structure made of long fiber reinforced polyamide resin
CN109311197B (en) Polyamide resin composite molded article and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240731