JP2022119219A - Fuel electrode-solid electrolyte layer composite, fuel electrode-solid electrolyte layer composite member, fuel cell, and fuel cell manufacturing method - Google Patents

Fuel electrode-solid electrolyte layer composite, fuel electrode-solid electrolyte layer composite member, fuel cell, and fuel cell manufacturing method Download PDF

Info

Publication number
JP2022119219A
JP2022119219A JP2019122150A JP2019122150A JP2022119219A JP 2022119219 A JP2022119219 A JP 2022119219A JP 2019122150 A JP2019122150 A JP 2019122150A JP 2019122150 A JP2019122150 A JP 2019122150A JP 2022119219 A JP2022119219 A JP 2022119219A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte layer
fuel electrode
fuel
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019122150A
Other languages
Japanese (ja)
Inventor
良子 神田
Ryoko Kanda
正利 真嶋
Masatoshi Mashima
博匡 俵山
Hiromasa Tawarayama
光靖 小川
Mitsuyasu Ogawa
奈保 水原
Naho Mizuhara
孝浩 東野
Takahiro Higashino
陽平 野田
Yohei Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2019122150A priority Critical patent/JP2022119219A/en
Priority to PCT/JP2020/022292 priority patent/WO2020261935A1/en
Publication of JP2022119219A publication Critical patent/JP2022119219A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

To easily provide a large-sized fuel cell having a large facing area between a fuel electrode and a solid electrolyte layer.SOLUTION: A fuel electrode-solid electrolyte layer composite 5 includes a porous fuel electrode 3, a first solid electrolyte layer 4a formed on the fuel electrode, and a second solid electrolyte layer 4b having a porosity smaller than that of the fuel electrode, which is laminated on the opposite side of the first solid electrolyte layer to the fuel electrode. The first solid electrolyte layer 4a includes a first solid electrolyte material, and a composite oxide containing nickel and a metal element constituting the first solid electrolyte material. The second solid electrolyte layer 4b contains a second solid electrolyte material and does not substantially contain nickel element. The fuel electrode 3a contains a third solid electrolyte material and metallic nickel.SELECTED DRAWING: Figure 1

Description

本発明は、燃料極-固体電解質層複合体、燃料極-固体電解質層複合部材、燃料電池、および、燃料電池の製造方法に関する。 The present invention relates to a fuel electrode-solid electrolyte layer composite, a fuel electrode-solid electrolyte layer composite member, a fuel cell, and a method for manufacturing a fuel cell.

燃料電池は、水素などの燃料ガスと空気(酸素)との電気化学反応によって発電する装置であり、化学エネルギーを電気に直接変換できるため、発電効率が高い。なかでも、作動温度が700℃以上、特には800℃~1000℃程度である固体酸化物型燃料電池(以下、SOFCと称する)は、反応速度が速く、セル構造体の構成要素がすべて固体であるため、取り扱いが容易である。一方、動作温度が非常に高温であるため、用途としては定置型の大型発電設備もしくは家庭用発電が主である。省エネルギーが求められる現在、発電効率が高く、低騒音で、環境負荷物質の排出が少なく、セル構造が簡単なSOFCの用途拡大が求められている。 A fuel cell is a device that generates electricity through an electrochemical reaction between a fuel gas such as hydrogen and air (oxygen), and can directly convert chemical energy into electricity, resulting in high power generation efficiency. Among them, a solid oxide fuel cell (hereinafter referred to as SOFC), which has an operating temperature of 700° C. or more, particularly about 800° C. to 1000° C., has a high reaction rate and the constituent elements of the cell structure are all solid. Therefore, it is easy to handle. On the other hand, since the operating temperature is very high, it is mainly used for stationary large-scale power generation equipment or household power generation. In today's demand for energy saving, there is a demand for expanded applications of SOFCs, which have high power generation efficiency, low noise, low emissions of environmentally hazardous substances, and simple cell structures.

固体電解質として、酸素イオン伝導性を有する金属酸化物、例えばイットリウム安定化ジルコニア(YSZ:Yttria-Stabilized Zirconia)が使用されている。酸素イオン伝導性のYSZを電解質として使用するSOFCの作動温度は、750℃~1000℃の高温である。加熱に必要なエネルギー消費の低減や、耐高温性を有する材料の選択性の観点から、安価な汎用ステンレス鋼を利用できる400℃~600℃の中温域で作動するSOFCの開発が進められている。 Metal oxides having oxygen ion conductivity, such as yttria-stabilized zirconia (YSZ), are used as solid electrolytes. The operating temperature of SOFCs using oxygen-ion-conducting YSZ as the electrolyte is as high as 750°C to 1000°C. From the viewpoint of reducing the energy consumption required for heating and selecting materials with high temperature resistance, development of SOFCs that can operate in the medium temperature range of 400 ° C to 600 ° C that can use inexpensive general-purpose stainless steel is progressing. .

SOFCの動作温度が高温であるのは、酸化物イオンをセラミックス材料からなる固体電解質の中で移動させるためである。そこで、電荷のキャリアとして、酸化物イオンではなく、中温域(例えば、400℃~600℃)でも移動可能な水素イオン(プロトン)を用いるPCFC(Protonic Ceramic Fuel Cells、プロトン伝導性酸化物型燃料電池)が研究されている。 The SOFC has a high operating temperature because it moves oxide ions in a solid electrolyte made of a ceramic material. Therefore, PCFCs (Protonic Ceramic Fuel Cells, proton conductive oxide fuel cells) that use hydrogen ions (protons) that can move even in a medium temperature range (for example, 400° C. to 600° C.) instead of oxide ions as charge carriers. ) are being studied.

PCFCに適用できる固体電解質材料として、特許文献1および特許文献2は、ABOのペロブスカイト型構造を有する金属酸化物であって、AサイトにBaを含み、BサイトにZrと3価の置換元素とを含む金属酸化物を開示している。 As solid electrolyte materials that can be applied to PCFCs, Patent Documents 1 and 2 disclose a metal oxide having a perovskite structure of ABO3 , which contains Ba at the A site and Zr and a trivalent substitution element at the B site. Disclosed are metal oxides comprising:

例えば、BaCe0.80.22.9(BCY)、BaZr0.80.22.9(BZY)などのペロブスカイト酸化物は、中温域で高いプロトン伝導性を示すため、中温型燃料電池の固体電解質として期待されている。 For example, perovskite oxides such as BaCe 0.8 Y 0.2 O 2.9 (BCY) and BaZr 0.8 Y 0.2 O 2.9 (BZY) exhibit high proton conductivity in the medium temperature range. , is expected as a solid electrolyte for medium-temperature fuel cells.

SOFCの発電特性を向上させるためには、固体電解質層はできるだけ薄い方が好ましい。そこで、機械的強度を高めた空気極(カソード)あるいは燃料極(アノード)上に固体電解質を形成した電解質層-電極複合体(接合体)が用いられることがある。このような複合体(接合体)は、カソード支持型固体電解質層やアノード支持型固体電解質層と呼ばれている。 In order to improve the power generation characteristics of the SOFC, it is preferable that the solid electrolyte layer be as thin as possible. Therefore, an electrolyte layer-electrode composite (joint) in which a solid electrolyte is formed on an air electrode (cathode) or a fuel electrode (anode) with increased mechanical strength is sometimes used. Such a composite (bonded body) is called a cathode-supported solid electrolyte layer or an anode-supported solid electrolyte layer.

特開2001-307546号公報Japanese Patent Application Laid-Open No. 2001-307546 特開2007-197315号公報JP 2007-197315 A

イオン伝導性を有する固体電解質を備える燃料電池(SOFC)において、燃料極(アノード)は、水素解離触媒としてのニッケル(Ni)成分および固体電解質(金属酸化物)を含む。このような燃料極は、一般に、固体電解質と酸化ニッケル(NiO)を含む材料を焼結することにより作製される。アノード支持型固体電解質層は、一般に、ニッケル成分(たとえばNiO)と、固体電解質との混合物の成形体の表面に、固体電解質を含む塗膜を形成し、焼成(共焼結)することにより作製される。 In a fuel cell (SOFC) with a solid electrolyte having ionic conductivity, the fuel electrode (anode) contains a nickel (Ni) component as a hydrogen dissociation catalyst and a solid electrolyte (metal oxide). Such fuel electrodes are generally produced by sintering a material containing a solid electrolyte and nickel oxide (NiO). An anode-supported solid electrolyte layer is generally produced by forming a coating film containing a solid electrolyte on the surface of a molded body of a mixture of a nickel component (e.g., NiO) and a solid electrolyte, followed by firing (co-sintering). be done.

このようにして作製された燃料極は、当初は緻密質である。しかしながら、NiOをNiに還元する処理を経ることによって、Niの触媒としての機能が高まると同時に、燃料極が多孔質化されて、燃料ガスの透過が可能となる。上記還元処理は、多くの場合、燃料電池セルの状態で行われる。SOFCとして用いられることによって、燃料極内のNiOは、燃料として燃料極に供給される水素によってNiに還元され、この還元と同時に起こる体積収縮によって多孔質に変化する。 The fuel electrode thus produced is initially dense. However, by going through the process of reducing NiO to Ni, the function of Ni as a catalyst is enhanced, and at the same time, the fuel electrode is made porous, allowing permeation of fuel gas. The reduction treatment is often performed in the state of the fuel cell. When used as an SOFC, NiO in the fuel electrode is reduced to Ni by hydrogen supplied to the fuel electrode as a fuel, and becomes porous due to volumetric contraction that occurs simultaneously with this reduction.

具体的には、例えば固体電解質としてイットリウムがドープされたセリウム酸バリウム(BCY)を用い、ニッケル成分としてNiOを用いる場合、BCY粉末およびNiO粉末の混合粉末を含む燃料極を形成し、この燃料極に、固体電解質層の材料であるBCY粉末を薄く塗布した後、両者が緻密化する温度で共焼結させる。これにより、BCYを含む層と、BCYおよびNiOを含む層とを備える燃料極-固体電解質層複合部材を得る。次いで、上記燃料極-固体電解質層複合部材は燃料電池セルに組込まれ、水素等の還元性ガス雰囲気下で還元処理され、アノード支持型固体電解質層を得る。 Specifically, for example, when yttrium-doped barium cerate (BCY) is used as the solid electrolyte and NiO is used as the nickel component, a fuel electrode containing a mixed powder of BCY powder and NiO powder is formed, and the fuel electrode is Then, BCY powder, which is the material of the solid electrolyte layer, is applied thinly, and then co-sintered at a temperature at which both are densified. As a result, a fuel electrode-solid electrolyte layer composite member including a layer containing BCY and a layer containing BCY and NiO is obtained. Next, the fuel electrode-solid electrolyte layer composite member is incorporated into a fuel cell and subjected to reduction treatment in a reducing gas atmosphere such as hydrogen to obtain an anode-supported solid electrolyte layer.

しかしながら、共焼結の際に、燃料極内のNiが固体電解質層側に拡散し得る。固体電解質側に拡散したNiは、固体電解質中で導電パスを形成し、リーク電流が増加する場合がある。また、金属酸化物を固体電解質層に用いる場合、燃料極内のNiが金属酸化物中に拡散し、イオン伝導性が低下する場合がある。よって、燃料電池の発電性能(または、水蒸気電解セルにおける電解性能)が低下し易い。特に、上述のBCY、BZYなど、イットリウムなどをドープしたペロブスカイト型構造のプロトン伝導性金属酸化物を固体電解質層に用いる場合、焼結性が低いことを考慮して、通常1400℃以上の高温で共焼結が行われる。このため、Niが固体電解質層に拡散し易く、プロトン伝導性が低下し易い。また、これらの材料にNiが固溶した場合、酸素雰囲気中でホール伝導が生じやすく、リーク電流が増加する。 However, Ni in the fuel electrode may diffuse toward the solid electrolyte layer during co-sintering. Ni that has diffused to the solid electrolyte side may form a conductive path in the solid electrolyte and increase leakage current. Also, when a metal oxide is used for the solid electrolyte layer, Ni in the fuel electrode may diffuse into the metal oxide, resulting in a decrease in ion conductivity. Therefore, the power generation performance of the fuel cell (or the electrolysis performance in the steam electrolysis cell) tends to deteriorate. In particular, when a proton-conducting metal oxide having a perovskite structure doped with yttrium or the like, such as BCY or BZY described above, is used for the solid electrolyte layer, considering its low sinterability, it is usually heated at a high temperature of 1400° C. or higher. Co-sintering takes place. Therefore, Ni easily diffuses into the solid electrolyte layer, and the proton conductivity tends to decrease. In addition, when Ni is dissolved in these materials, hole conduction is likely to occur in an oxygen atmosphere, resulting in an increase in leakage current.

Niの拡散を抑制するために、焼結後の燃料極の上に固体電解質層をペーストの塗布などの低温プロセスで形成することも考えられる。しかしながら、この場合、燃料極と固体電解質層との接合強度が弱くなりがちである。上記還元処理工程において、燃料極の体積変化(収縮)に固体電解質層が追随できず、固体電解質層に割れまたはクラックが発生したり、固体電解質層の一部がアノードから剥がれたりする場合がある。 In order to suppress the diffusion of Ni, it is conceivable to form a solid electrolyte layer on the fuel electrode after sintering by a low-temperature process such as applying paste. However, in this case, the bonding strength between the fuel electrode and the solid electrolyte layer tends to be weak. In the reduction treatment step, the solid electrolyte layer cannot follow the volume change (shrinkage) of the fuel electrode, and cracks may occur in the solid electrolyte layer, or part of the solid electrolyte layer may peel off from the anode. .

固体電解質層と燃料極との接触面積(対向面積)を大きくするほど、燃料極の収縮量が大きくなり、固体電解質層に割れまたは剥がれが存在し易くなる。このため、固体電解質層と燃料極との対向面積を大きくし難く、大型の燃料電池および水蒸気電解セルを得るのが困難であった。すなわち、高出力(高出力電流)の燃料電池または水蒸気電解セルの実現に課題があった。 As the contact area (opposing area) between the solid electrolyte layer and the fuel electrode increases, the amount of contraction of the fuel electrode increases, and the solid electrolyte layer is more likely to crack or peel off. For this reason, it is difficult to increase the facing area between the solid electrolyte layer and the fuel electrode, making it difficult to obtain large fuel cells and steam electrolysis cells. That is, there has been a problem in realizing a high output (high output current) fuel cell or steam electrolysis cell.

本開示の一局面は、多孔質の燃料極と、前記燃料極上に形成された第1固体電解質層と、前記第1固体電解質層の前記燃料極と反対側に積層された、前記燃料極よりも小さな空隙率を有する第2固体電解質層と、を含み、前記第1固体電解質層は、第1固体電解質材料と、ニッケル元素と前記第1固体電解質材料を構成する金属元素とを含む複合酸化物と、を含み、前記第2固体電解質層は、第2固体電解質材料を含み、且つニッケル元素を実質的に含まず、前記燃料極は、第3固体電解質材料と、金属ニッケルとを含む、燃料極-固体電解質層複合体に関する。 One aspect of the present disclosure is a porous fuel electrode, a first solid electrolyte layer formed on the fuel electrode, and a layer of the fuel electrode laminated on the opposite side of the first solid electrolyte layer from the fuel electrode. a second solid electrolyte layer having a small porosity, wherein the first solid electrolyte layer is a composite oxide containing a first solid electrolyte material, a nickel element, and a metal element constituting the first solid electrolyte material; and wherein the second solid electrolyte layer includes a second solid electrolyte material and is substantially free of nickel elements, and the fuel electrode includes a third solid electrolyte material and metallic nickel; It relates to a fuel electrode-solid electrolyte layer composite.

本開示の別の局面は、上記燃料極-固体電解質層複合体と、空気極とを含み、前記燃料極と前記空気極との間に前記第2固体電解質層が介在するセル構造体、前記空気極に酸化剤を供給するための酸化剤流路、および、前記燃料極に燃料を供給するための燃料流路、を備える燃料電池に関する。 Another aspect of the present disclosure is a cell structure including the fuel electrode-solid electrolyte layer composite and an air electrode, wherein the second solid electrolyte layer is interposed between the fuel electrode and the air electrode; The present invention relates to a fuel cell comprising an oxidant channel for supplying an oxidant to an air electrode and a fuel channel for supplying fuel to the fuel electrode.

本開示のさらに他の局面は、燃料極と、第1固体電解質層と、前記燃料極と前記第1固体電解質層との積層体の前記第1固体電解質層側に積層された第2固体電解質層と、を有し、前記第1固体電解質層は、第1固体電解質材料と、ニッケル元素と前記第1固体電解質材料を構成する金属元素とを含む複合酸化物と、を含み、前記第2固体電解質層は、第2固体電解質材料を含み、且つニッケル元素を実質的に含まず、前記燃料極は、第3固体電解質材料と、酸化ニッケルとを含む、燃料極-固体電解質層複合部材に関する。 Still another aspect of the present disclosure is a fuel electrode, a first solid electrolyte layer, and a second solid electrolyte stacked on the first solid electrolyte layer side of a stack of the fuel electrode and the first solid electrolyte layer. a layer, wherein the first solid electrolyte layer includes a first solid electrolyte material and a composite oxide containing a nickel element and a metal element that constitutes the first solid electrolyte material; The solid electrolyte layer contains a second solid electrolyte material and substantially does not contain nickel element, and the fuel electrode contains a third solid electrolyte material and nickel oxide. .

本開示のさらに他の局面は、酸化ニッケル(NiO)を含む燃料極と、第1固体電解質材料、および、ニッケルと前記第1固体電解質材料を構成する金属元素との複合酸化物を含む第1固体電解質層と、の積層体を得る工程と、前記積層体の前記第1固体電解質層側に、第2固体電解質材料を含み且つニッケル元素を実質的に含まない第2固体電解質層を、850℃以下で形成し、燃料極-固体電解質層複合部材を得る工程と、前記燃料極-固体電解質層複合部材の前記第2固体電解質層側に空気極を形成し、セル構造体を得る工程と、を有する、燃料電池の製造方法に関する。 Still another aspect of the present disclosure is a first solid electrolyte material containing a fuel electrode containing nickel oxide (NiO), a first solid electrolyte material, and a composite oxide of nickel and a metal element constituting the first solid electrolyte material. a solid electrolyte layer, and a second solid electrolyte layer containing a second solid electrolyte material and substantially free of nickel element on the first solid electrolyte layer side of the laminate, 850 ° C. or less to obtain a fuel electrode-solid electrolyte layer composite member, and a step of forming an air electrode on the second solid electrolyte layer side of the fuel electrode-solid electrolyte layer composite member to obtain a cell structure. , and relates to a method for manufacturing a fuel cell.

本開示に係る燃料極-固体電解質層複合体または燃料極-固体電解質層複合部材を用いて、大型の燃料電池または水蒸気電解セルが容易に得られる。 A large-sized fuel cell or steam electrolysis cell can be easily obtained using the fuel electrode-solid electrolyte layer composite or the fuel electrode-solid electrolyte layer composite member according to the present disclosure.

本発明の一実施形態に係る燃料電池の構成を模式的に示す断面図である。1 is a cross-sectional view schematically showing the configuration of a fuel cell according to one embodiment of the present invention; FIG. 図1の燃料電池に含まれる燃料極-固体電解質層複合体を有するセル構造体を模式的に示す断面図である。2 is a cross-sectional view schematically showing a cell structure having a fuel electrode-solid electrolyte layer composite included in the fuel cell of FIG. 1. FIG. 図1の燃料電池の製造に用いられる燃料極-固体電解質層複合部材を有するセル構造体を模式的に示す断面図である。2 is a cross-sectional view schematically showing a cell structure having a fuel electrode-solid electrolyte layer composite member used for manufacturing the fuel cell of FIG. 1. FIG.

[発明の実施形態の説明]
最初に、本開示の実施形態の内容を列記して説明する。
(1)本開示の一実施形態は、多孔質の燃料極と、燃料極上に形成された第1固体電解質層と、第1固体電解質層の燃料極と反対側に積層された、燃料極よりも小さな空隙率を有する第2固体電解質層と、を含む燃料極-固体電解質層複合体に関する。ここで、第1固体電解質層は、第1固体電解質材料と、ニッケル元素と第1固体電解質材料を構成する金属元素とを含む複合酸化物と、を含む。第2固体電解質層は、第2固体電解質材料を含み、且つニッケル元素を実質的に含まない。燃料極は、第3固体電解質材料と、金属ニッケルとを含む。この燃料極-固体電解質層複合体を用いて、大型化が容易で、高出力の燃料電池および水蒸気電解セルを実現できる。
[Description of Embodiments of the Invention]
First, the contents of the embodiments of the present disclosure will be listed and described.
(1) An embodiment of the present disclosure includes a porous fuel electrode, a first solid electrolyte layer formed on the fuel electrode, and the first solid electrolyte layer laminated on the opposite side of the fuel electrode from the fuel electrode. and a second solid electrolyte layer having a small porosity. Here, the first solid electrolyte layer includes a first solid electrolyte material and a composite oxide containing a nickel element and a metal element that constitutes the first solid electrolyte material. The second solid electrolyte layer contains a second solid electrolyte material and does not substantially contain nickel element. The fuel electrode includes a third solid electrolyte material and metallic nickel. By using this fuel electrode-solid electrolyte layer composite, it is possible to easily increase the size and realize a fuel cell and a steam electrolysis cell with high output.

なお、燃料極は、水素極とも呼ばれ、燃料電池におけるアノードに相当する。これに対し、燃料電池におけるカソードは、空気極または酸素極とも呼ばれる。燃料極-固体電解質層複合体は、燃料極-固体電解質層接合体あるいはアノード-固体電解質層接合体あるいはアノード支持型固体電解質層とも呼ばれる。 The fuel electrode is also called a hydrogen electrode and corresponds to an anode in a fuel cell. In contrast, the cathode in a fuel cell is also called an air electrode or an oxygen electrode. The anode-solid electrolyte layer composite is also called an anode-solid electrolyte layer assembly, an anode-solid electrolyte layer assembly, or an anode-supported solid electrolyte layer.

燃料極と第2固体電解質層との間には、第1固体電解質層が介在している。第2固体電解質層は、従来構成のアノード支持型固体電解質層における固体電解質層に相当する。燃料極が多孔質であるのに対し、第2固体電解質層は、通常、空隙を殆ど有しない緻密層である。なお、第1~第2固体電解質層の空隙率は、燃料極-固体電解質層複合体の電子顕微鏡写真による断面画像に基づき求められる。断面画像において、固体電解質層が存在しない領域の面積の固体電解質層の形成領域の全面積に占める割合を、空隙率とする。通常、燃料極の空隙率と第2固体電解質層の空隙率は大きく相違し、断面画像の視認によりその差を明確に確認できる。 A first solid electrolyte layer is interposed between the fuel electrode and the second solid electrolyte layer. The second solid electrolyte layer corresponds to the solid electrolyte layer in the conventional anode-supported solid electrolyte layer. While the fuel electrode is porous, the second solid electrolyte layer is usually a dense layer with almost no voids. The porosities of the first and second solid electrolyte layers can be determined based on cross-sectional images of the anode-solid electrolyte layer composite taken by electron micrographs. In the cross-sectional image, the porosity is defined as the ratio of the area of the region where the solid electrolyte layer does not exist to the total area of the region where the solid electrolyte layer is formed. Usually, the porosity of the fuel electrode and the porosity of the second solid electrolyte layer are significantly different, and the difference can be clearly confirmed by visually checking the cross-sectional image.

第1固体電解質層は、還元処理工程後に燃料極の収縮により固体電解質層に加わる応力(収縮力)を緩和し、第2固体電解質層の割れおよび剥がれを抑制する役割を有する。 The first solid electrolyte layer has the role of relieving the stress (shrinkage force) applied to the solid electrolyte layer due to shrinkage of the fuel electrode after the reduction treatment step, and suppressing cracking and peeling of the second solid electrolyte layer.

第1固体電解質層は、燃料極と同様、ニッケル元素を含むが、第1固体電解質層内において、ニッケルの少なくとも一部は第1固体電解質材料を構成する金属元素とを含む複合酸化物の形で存在する。第1固体電解質層に含まれるニッケル原子の60%以上もしくは85%以上が複合酸化物の状態で存在していてもよい。より好ましくは、第1固体電解質層に含まれるニッケル原子の95%以上が複合酸化物の状態で存在しているとよい。 Like the fuel electrode, the first solid electrolyte layer contains a nickel element, but in the first solid electrolyte layer, at least part of the nickel is in the form of a composite oxide containing a metal element that constitutes the first solid electrolyte material. exists in 60% or more or 85% or more of the nickel atoms contained in the first solid electrolyte layer may exist in the form of a composite oxide. More preferably, 95% or more of the nickel atoms contained in the first solid electrolyte layer are present in the form of a composite oxide.

複合酸化物は、酸化ニッケル(NiO)よりも還元され難い安定な酸化物であり、燃料極に含まれるニッケル成分が還元され、金属ニッケルに変化する場合においても、第1固体電解質層中のニッケルは複合酸化物の状態で維持され易い。よって、複合酸化物を含むことにより、第1固体電解質層の還元処理に伴う体積収縮は抑制される。したがって、還元処理工程において燃料極の収縮により発生する応力は、複合酸化物を含む第1固体電解質層に加わる一方、第2固体電解質層に伝わる応力は低減される。よって、第2固体電解質層の割れおよび剥がれが抑制される。これにより、燃料極と第2固体電解質層との対向面積を大きく取ることができ、出力電流の高い大型の燃料電池を容易に実現できる。 The composite oxide is a stable oxide that is more difficult to reduce than nickel oxide (NiO). is easily maintained in the state of a composite oxide. Therefore, containing the composite oxide suppresses the volume shrinkage associated with the reduction treatment of the first solid electrolyte layer. Therefore, the stress generated by the contraction of the fuel electrode in the reduction treatment process is applied to the first solid electrolyte layer containing the composite oxide, while the stress transmitted to the second solid electrolyte layer is reduced. Therefore, cracking and peeling of the second solid electrolyte layer are suppressed. This makes it possible to secure a large facing area between the fuel electrode and the second solid electrolyte layer, and easily realize a large-sized fuel cell with a high output current.

また、第2固体電解質層がニッケル元素を実質的に含まないことにより、第2固体電解質層におけるリーク電流の増加が抑制される。また、第2固体電解質層に金属酸化物を用いる場合において、イオン伝導性の低下が抑制され得る。特に、後述するペロブスカイト構造のプロトン伝導性酸化物を用いる場合に、プロトン伝導性の低下が顕著に抑制され、高い発電性能が得られる。なお、第2固体電解質層がニッケル元素を実質的に含まないとは、第2固体電解質層に含まれるNi原子の割合Cが、検出限界以下(例えば、原子分率において0.01%以下)であることをいう。Ni原子の割合Cは、電子プローブマイクロアナライザ(Electron Probe Micro Analyzer, EPMA)により求められる。第2固体電解質層内の複数の箇所(例えば、10点以上)でCを求め、複数箇所の平均値を求めてもよい。 Further, since the second solid electrolyte layer does not substantially contain nickel element, an increase in leak current in the second solid electrolyte layer is suppressed. Moreover, when a metal oxide is used for the second solid electrolyte layer, a decrease in ionic conductivity can be suppressed. In particular, when a proton-conducting oxide having a perovskite structure, which will be described later, is used, the decrease in proton conductivity is remarkably suppressed, and high power generation performance is obtained. Note that the fact that the second solid electrolyte layer does not substantially contain the nickel element means that the ratio C2 of Ni atoms contained in the second solid electrolyte layer is below the detection limit (for example, 0.01% or less in terms of atomic fraction). ). The Ni atom proportion C2 is determined by an Electron Probe Micro Analyzer (EPMA). C2 may be obtained at a plurality of locations (for example, 10 points or more) in the second solid electrolyte layer, and the average value of the plurality of locations may be obtained.

従来構成の燃料極-固体電解質層複合体では、燃料極と第2固体電解質層との間に第1固体電解質層を設けず、燃料極の上に第2固体電解質層を直接積層させている。燃料極と第2固体電解質層は、通常、共焼結により形成される。この場合、燃料極に含まれるニッケルが第2固体電解質層に拡散し、リーク電流が増加し易く、燃料電池セルの性能(例えば、OCV)が低下し易い。例えば、ニッケル成分を含む燃料極と、ニッケル元素を意図的に含ませずに成型した第2固体電解質層とを共焼結すると、焼結時の高温下で燃料極のニッケルが拡散し、第2固体電解質層内にニッケルが一様に分布し得る。この場合、第2固体電解質層は、例えば燃料極との境界から5μmの深さ位置において、例えば2%程度のニッケルを含み得る。 In the conventional fuel electrode-solid electrolyte layer composite, the first solid electrolyte layer is not provided between the fuel electrode and the second solid electrolyte layer, and the second solid electrolyte layer is directly laminated on the fuel electrode. . The fuel electrode and the second solid electrolyte layer are usually formed by co-sintering. In this case, nickel contained in the fuel electrode diffuses into the second solid electrolyte layer, easily increasing leakage current, and easily deteriorating the performance (for example, OCV) of the fuel cell. For example, when a fuel electrode containing a nickel component and a second solid electrolyte layer formed without intentionally containing a nickel element are co-sintered, nickel in the fuel electrode diffuses at high temperatures during sintering, Nickel can be uniformly distributed within the two solid electrolyte layers. In this case, the second solid electrolyte layer may contain, for example, about 2% nickel at a depth of 5 μm from the boundary with the fuel electrode.

一方、従来構成において、燃料極の上に第2固体電解質層をペーストの塗布あるいはスパッタリングなどの低温プロセスで形成する場合、ニッケルの拡散は抑制されるものの、燃料極と第2固体電解質層との密着性が低い。このため、還元処理工程において燃料極の収縮に伴う応力が第2固体電解質層に直接伝わると、第2固体電解質層が割れる、またはクラックが発生するか、燃料極から第2固体電解質層が剥がれる場合がある。 On the other hand, in the conventional structure, when the second solid electrolyte layer is formed on the fuel electrode by a low-temperature process such as paste coating or sputtering, although the diffusion of nickel is suppressed, Low adhesion. Therefore, when the stress associated with shrinkage of the fuel electrode is directly transmitted to the second solid electrolyte layer in the reduction treatment step, the second solid electrolyte layer breaks or cracks occur, or the second solid electrolyte layer peels off from the fuel electrode. Sometimes.

これに対し、本開示の燃料極-固体電解質層複合体では、燃料極と第2固体電解質層との間に第1固体電解質層が介在することによって、燃料極の還元収縮に伴う応力を第1固体電解質層が吸収し、収縮力が第2固体電解質層に伝わるのが抑制される。よって、第2固体電解質層の割れおよび剥がれが抑制される。また、第2固体電解質層は、例えばスパッタ法などの低温プロセスによって、第1固体電解質層上に形成することができる。これにより、燃料極または第1固体電解質層内に存在するニッケルの第2固体電解質層への拡散は抑制されるため、高い発電性能または電解性能が得られる。 On the other hand, in the fuel electrode-solid electrolyte layer composite of the present disclosure, the first solid electrolyte layer is interposed between the fuel electrode and the second solid electrolyte layer, so that the stress associated with reduction shrinkage of the fuel electrode is The first solid electrolyte layer absorbs and the contraction force is suppressed from being transmitted to the second solid electrolyte layer. Therefore, cracking and peeling of the second solid electrolyte layer are suppressed. Also, the second solid electrolyte layer can be formed on the first solid electrolyte layer by a low-temperature process such as sputtering. As a result, diffusion of nickel existing in the fuel electrode or the first solid electrolyte layer into the second solid electrolyte layer is suppressed, so that high power generation performance or electrolysis performance can be obtained.

上記第1および第2固体電解質層を有する燃料極-固体電解質層複合体は、例えば、燃料極の前駆体(第1前駆体)と第1固体電解質層の前駆体(第2前駆体)とを積層し、積層体を1400℃以上の高温下で共焼結した後、第1固体電解質層上に、ニッケルを実質的に含まない第2固体電解質層を例えば850℃以下の低温プロセスで形成することにより製造され得る。なお、具体的な製造方法については、後述する。 The anode-solid electrolyte layer composite having the first and second solid electrolyte layers is, for example, a precursor of the anode (first precursor) and a precursor of the first solid electrolyte layer (second precursor). and co-sintering the laminate at a high temperature of 1400° C. or higher, and then forming a second solid electrolyte layer substantially free of nickel on the first solid electrolyte layer by a low-temperature process of, for example, 850° C. or lower. can be manufactured by A specific manufacturing method will be described later.

(2)第1固体電解質層におけるニッケル含有割合は、燃料極におけるニッケル含有割合よりも小さくてもよい。燃料極におけるニッケル含有割合とは、燃料極に含まれるNi原子の割合(原子分率)Cを意味する。第1固体電解質層におけるニッケル含有割合とは、第1固体電解質層に含まれるNi原子の割合(原子分率)Cを意味する。CおよびCは、Cと同様、EPMAにより求められる。固体電解質層内の複数箇所(例えば、10点以上)でCおよび/またはCを求め、平均値を求めてもよい。この場合、還元処理工程における第1固体電解質層の収縮率は、燃料極の収縮率よりも小さくなり易い。よって、燃料極の収縮により発生した応力は第1固体電解質層が緩和され易く、第2固体電解質層に伝わり難い。 (2) The nickel content in the first solid electrolyte layer may be lower than the nickel content in the fuel electrode. The nickel content ratio in the fuel electrode means the ratio (atomic fraction) CA of Ni atoms contained in the fuel electrode. The nickel content ratio in the first solid electrolyte layer means the ratio (atomic fraction) C1 of Ni atoms contained in the first solid electrolyte layer. C A and C 1 , like C 2 , are determined by EPMA. C A and/or C 1 may be obtained at a plurality of locations (for example, 10 points or more) in the solid electrolyte layer, and an average value may be obtained. In this case, the shrinkage rate of the first solid electrolyte layer in the reduction treatment process tends to be smaller than the shrinkage rate of the fuel electrode. Therefore, the stress generated by the contraction of the fuel electrode is easily relieved in the first solid electrolyte layer and is less likely to be transmitted to the second solid electrolyte layer.

(3)第1固体電解質層は、金属ニッケルを実質的に含まなくてもよい。還元処理によって、固体電解質層中の酸化ニッケルの少なくとも一部は金属ニッケルに変化し得る。よって、第1固体電解質層が金属ニッケルを実質的に含まないことは、還元前の第1固体電解質層中の酸化ニッケル含有量が極めて少なく、体積変化が小さいことを意味する。
第1固体電解質層中のニッケルは、還元処理により金属ニッケルに変化することがないように、大半が還元され難いニッケル化合物(例えば、上述の複合酸化物)の状態で含まれていてもよい。この場合、第1固体電解質層は還元処理工程においても殆ど体積変化を受けないため、燃料極の収縮に伴う応力は第1固体電解質層で吸収され、第2固体電解質層に応力は殆ど伝わることがない。よって、第2固体電解質層の割れおよび剥がれが効果的に抑制される。
(3) The first solid electrolyte layer may be substantially free of metallic nickel. At least part of the nickel oxide in the solid electrolyte layer can be converted to metallic nickel by the reduction treatment. Therefore, the fact that the first solid electrolyte layer does not substantially contain metallic nickel means that the nickel oxide content in the first solid electrolyte layer before reduction is extremely low and the volume change is small.
Most of the nickel in the first solid electrolyte layer may be contained in the form of a nickel compound (for example, the composite oxide described above) that is difficult to reduce so as not to be converted into metallic nickel by reduction treatment. In this case, since the first solid electrolyte layer undergoes little change in volume even in the reduction treatment step, the stress accompanying contraction of the fuel electrode is absorbed by the first solid electrolyte layer, and most of the stress is transmitted to the second solid electrolyte layer. There is no Therefore, cracking and peeling of the second solid electrolyte layer are effectively suppressed.

ここで、第1固体電解質層が金属ニッケルを実質的に含まないとは、第1固体電解質層内において金属ニッケル状態で存在するNi原子の割合C1Mが、検出限界以下(例えば、原子分率において0.01%以下)であることをいう。割合C1Mは、第1固体電解質層に含まれるNi原子の割合(原子分率)Cに、第1固体電解質層に含まれるNi原子の全数に対する金属ニッケル状態で存在するNi原子数の比率rを乗じることにより算出される。比率rは、例えばX線光電子分光(XPS)により求められる。rは、第1固体電解質層内の複数の箇所(例えば、10点以上)における測定値の平均値であってもよい。
また、EPMAによる分析結果を、SEMの写真画像と照らし合わせることで、割合C1Mを算出することができる。X線回折(XRD)によるスペクトルをRIR(Reference Intensity Ratio)法により分析し、割合C1Mを求めてもよい。
Here, the fact that the first solid electrolyte layer does not substantially contain metallic nickel means that the proportion C1M of Ni atoms present in the metallic nickel state in the first solid electrolyte layer is below the detection limit (for example, the atomic fraction 0.01% or less). The ratio C 1M is the ratio of the number of Ni atoms existing in a metallic nickel state to the total number of Ni atoms contained in the first solid electrolyte layer to the ratio (atomic fraction) C 1 of Ni atoms contained in the first solid electrolyte layer. It is calculated by multiplying by rM . The ratio rM is determined by, for example, X-ray photoelectron spectroscopy (XPS). r M may be an average value of measured values at a plurality of locations (for example, 10 or more points) in the first solid electrolyte layer.
In addition, the ratio C1M can be calculated by comparing the EPMA analysis result with the SEM photo image. The X-ray diffraction (XRD) spectrum may be analyzed by the RIR (Reference Intensity Ratio) method to determine the ratio C 1M .

(4)第1固体電解質層は、酸化ニッケルを実質的に含まなくてもよい。この場合、還元処理工程における第1固体電解質層の体積変化が抑制される。よって、燃料極の収縮に伴う応力は第1固体電解質層で吸収され、第2固体電解質層に伝わる応力が顕著に低減される。結果、第2固体電解質層の割れおよび剥がれが効果的に抑制される。 (4) The first solid electrolyte layer may be substantially free of nickel oxide. In this case, the volume change of the first solid electrolyte layer in the reduction treatment step is suppressed. Therefore, the stress accompanying contraction of the fuel electrode is absorbed by the first solid electrolyte layer, and the stress transmitted to the second solid electrolyte layer is significantly reduced. As a result, cracking and peeling of the second solid electrolyte layer are effectively suppressed.

ここで、第1固体電解質層が酸化ニッケルを実質的に含まないとは、第1固体電解質層内において酸化ニッケル(NiO)の状態で存在するNi原子の割合C1Oが、検出限界以下(例えば、原子分率において0.01%以下)であることをいう。割合C1Oは、第1固体電解質層に含まれるNi原子の割合(原子分率)Cに、第1固体電解質層に含まれるNi原子の全数に対する酸化ニッケル状態で存在するNi原子数の比率rを乗じた値である。割合C1Oは、割合C1Mと同様の方法で求められる。 Here, the fact that the first solid electrolyte layer does not substantially contain nickel oxide means that the ratio C1O of Ni atoms present in the state of nickel oxide (NiO) in the first solid electrolyte layer is below the detection limit (for example, , 0.01% or less in atomic fraction). The ratio C1O is the ratio of the number of Ni atoms present in the nickel oxide state to the total number of Ni atoms contained in the first solid electrolyte layer to the ratio (atomic fraction) C1 of Ni atoms contained in the first solid electrolyte layer. It is a value multiplied by rO . The ratio C1O is determined in the same manner as the ratio C1M .

(5)第2固体電解質層の厚みは、0.2μm~20μmであってもよい。これにより、固体電解質層のイオン伝導の抵抗を低く維持できる。 (5) The thickness of the second solid electrolyte layer may be 0.2 μm to 20 μm. Thereby, the resistance of the ion conduction of the solid electrolyte layer can be kept low.

第1固体電解質層を介さず、燃料極上に第2固体電解質層を形成した従来の燃料極-固体電解質層複合体を使用する場合、還元処理時において、燃料極の体積収縮により第2固体電解質層に割れおよび剥がれが生じないように、第2固体電解質層の厚みを一定以上に厚くせざるをえない。しかしながら、この結果としてイオン伝導の抵抗が増加し、発電効率が低下し易い。 When using a conventional fuel electrode-solid electrolyte layer composite in which the second solid electrolyte layer is formed on the fuel electrode without interposing the first solid electrolyte layer, the second solid electrolyte is The thickness of the second solid electrolyte layer must be thicker than a certain value so that cracks and peeling of the layer do not occur. However, as a result, the resistance of ion conduction increases, and the power generation efficiency tends to decrease.

これに対し、本開示の実施形態に係る燃料極-固体電解質層複合体では、第1固体電解質層の介在により第2固体電解質層の割れおよび剥がれは抑制されるため、第2固体電解質層の厚みを厚くする必要はない。第2固体電解質層の厚みは、10μm以下、あるいは、5μm以下に薄くすることも可能である。よって、高い発電効率の燃料電池を容易に実現できる。 In contrast, in the fuel electrode-solid electrolyte layer composite according to the embodiment of the present disclosure, cracking and peeling of the second solid electrolyte layer are suppressed due to the interposition of the first solid electrolyte layer. Thickness does not need to be increased. The thickness of the second solid electrolyte layer can be reduced to 10 μm or less, or 5 μm or less. Therefore, a fuel cell with high power generation efficiency can be easily realized.

(6)第1固体電解質材料、第2固体電解質材料、および、第3固体電解質材料の少なくとも1つは、ペロブスカイト型構造を有し、かつ下記式(1):Ax1-yy3-δで表される金属酸化物を含んでもよい。ここで、元素Aは、Ba、CaおよびSrよりなる群から選択される少なくとも一種である。元素Bは、CeおよびZrよりなる群から選択される少なくとも一種である。元素Mは、Y、Yb、Er、Ho、Tm、Gd、InおよびScよりなる群から選択される少なくとも一種である。δは酸素欠損量であり、0.95≦x≦1、0<y≦0.5を満たす。 (6) At least one of the first solid electrolyte material, the second solid electrolyte material, and the third solid electrolyte material has a perovskite structure, and satisfies the following formula (1): A x B 1- y My A metal oxide represented by O 3-δ may also be included. Here, element A is at least one selected from the group consisting of Ba, Ca and Sr. Element B is at least one selected from the group consisting of Ce and Zr. Element M is at least one selected from the group consisting of Y, Yb, Er, Ho, Tm, Gd, In and Sc. δ is the amount of oxygen deficiency and satisfies 0.95≦x≦1 and 0<y≦0.5.

上記の条件を満たす金属酸化物は、400℃~600℃の温度領域においても高いプロトン伝導性を有している。よって、この金属酸化物を固体電解質層に用いて燃料電池セルを構成することで、高い発電性能を発揮することができる。また、この金属酸化物を第2固体電解質層に用いて水蒸気電解セルを構成することで、高い水蒸気電解性能を発揮することができる。第1~第3固体電解質材料のうち、少なくとも第2固体電解質材料が上記式(1)で表される金属酸化物を含むことが好ましい。 Metal oxides satisfying the above conditions have high proton conductivity even in the temperature range of 400°C to 600°C. Therefore, by configuring a fuel cell using this metal oxide for the solid electrolyte layer, high power generation performance can be exhibited. Further, by using this metal oxide for the second solid electrolyte layer to configure a steam electrolysis cell, high steam electrolysis performance can be exhibited. At least the second solid electrolyte material among the first to third solid electrolyte materials preferably contains the metal oxide represented by the above formula (1).

元素AはBaを含み、元素BはZrを含み、元素MはYを含んでもよい。これにより、燃料極-固体電解質層複合体の耐久性を向上させることができる。 Element A may contain Ba, element B may contain Zr, and element M may contain Y. This can improve the durability of the fuel electrode-solid electrolyte layer composite.

(7)本開示の他の実施形態は、上記燃料極-固体電解質層複合体と、空気極とを含み、燃料極と空気極との間に第2固体電解質層が介在するセル構造体、空気極に酸化剤を供給するための酸化剤流路、および、燃料極に燃料を供給するための燃料流路、を備える燃料電池に関する。この燃料電池は発電性能に優れ、且つ大型化が容易である。 (7) Another embodiment of the present disclosure is a cell structure including the above fuel electrode-solid electrolyte layer composite and an air electrode, wherein a second solid electrolyte layer is interposed between the fuel electrode and the air electrode, The present invention relates to a fuel cell comprising an oxidant channel for supplying an oxidant to an air electrode and a fuel channel for supplying fuel to a fuel electrode. This fuel cell has excellent power generation performance and can be easily increased in size.

(8)本開示のさらに他の実施形態は、燃料極と、第1固体電解質層と、燃料極と第1固体電解質層との積層体の第1固体電解質層側に積層された第2固体電解質層と、を有する燃料極-固体電解質層複合部材に関する。ここで、第1固体電解質層は、第1固体電解質材料と、ニッケル元素と第1固体電解質材料を構成する金属元素とを含む複合酸化物と、を含む。第2固体電解質層は、第2固体電解質材料を含み、且つニッケル元素を実質的に含まない。燃料極は、第3固体電解質材料と、酸化ニッケルとを含む。このような燃料極-固体電解質層複合部材に還元処理を施すことにより、上記の燃料極-固体電解質層複合体が得られる。 (8) Still another embodiment of the present disclosure is a fuel electrode, a first solid electrolyte layer, and a second solid layer stacked on the first solid electrolyte layer side of a stack of the fuel electrode and the first solid electrolyte layer. and an anode-solid electrolyte layer composite member having an electrolyte layer. Here, the first solid electrolyte layer includes a first solid electrolyte material and a composite oxide containing a nickel element and a metal element that constitutes the first solid electrolyte material. The second solid electrolyte layer contains a second solid electrolyte material and does not substantially contain nickel element. The fuel electrode includes a third solid electrolyte material and nickel oxide. By subjecting such a fuel electrode-solid electrolyte layer composite member to a reduction treatment, the above fuel electrode-solid electrolyte layer composite can be obtained.

(9)上記(8)の燃料極-固体電解質層複合部材において、第1固体電解質層は酸化ニッケルを実質的に含まないか、または第1固体電解質層における酸化ニッケルの含有割合は、燃料極における酸化ニッケルの含有割合よりも小さくてよい。第1固体電解質層が酸化ニッケルを含む場合、還元処理工程において、燃料極および第1固体電解質層に含まれる酸化ニッケルが還元され金属ニッケルに変化し、これに伴い燃料極および第1固体電解質層は収縮する。しかしながら、第1固体電解質層における酸化ニッケルの含有割合が燃料極よりも小さい場合、第1固体電解質層の収縮率は、燃料極の収縮率よりも小さくなり易い。よって、第1固体電解質層の介在により、燃料極に生じる収縮力が第2固体電解質層に伝わるのを抑制し易い。 (9) In the fuel electrode-solid electrolyte layer composite member of (8) above, the first solid electrolyte layer does not substantially contain nickel oxide, or the content of nickel oxide in the first solid electrolyte layer is may be smaller than the content of nickel oxide in When the first solid electrolyte layer contains nickel oxide, the nickel oxide contained in the fuel electrode and the first solid electrolyte layer is reduced and changed to metallic nickel in the reduction treatment step, and accordingly the fuel electrode and the first solid electrolyte layer. shrinks. However, when the content of nickel oxide in the first solid electrolyte layer is smaller than that in the fuel electrode, the contraction rate of the first solid electrolyte layer tends to be smaller than that of the fuel electrode. Therefore, the interposition of the first solid electrolyte layer facilitates suppressing the contraction force generated in the fuel electrode from being transmitted to the second solid electrolyte layer.

(10)上記(8)の燃料極-固体電解質層複合部材において、第1固体電解質層は、酸化ニッケルを実質的に含まなくてもよい。この場合、第1固体電解質層は還元処理工程においても殆ど収縮しないため、燃料極の収縮に伴う応力は第1固体電解質層で吸収され、第2固体電解質層に応力は殆ど伝わることがない。よって、第2固体電解質層の割れおよび剥がれが効果的に抑制される。 (10) In the fuel electrode-solid electrolyte layer composite member of (8) above, the first solid electrolyte layer may be substantially free of nickel oxide. In this case, since the first solid electrolyte layer hardly shrinks even in the reduction treatment step, the first solid electrolyte layer absorbs the stress accompanying the contraction of the fuel electrode, and the stress is hardly transmitted to the second solid electrolyte layer. Therefore, cracking and peeling of the second solid electrolyte layer are effectively suppressed.

(11)上記(8)の燃料極-固体電解質層複合部材において、第1固体電解質材料、第2固体電解質材料、および、第3固体電解質材料の少なくとも1つは、ペロブスカイト型構造を有し、かつ下記式(2):Ax1-yy3-δで表される金属酸化物を含んでもよい。ここで、元素Aは、Ba、CaおよびSrよりなる群から選択される少なくとも一種である。元素Bは、CeおよびZrよりなる群から選択される少なくとも一種である。元素Mは、Y、Yb、Er、Ho、Tm、Gd、InおよびScよりなる群から選択される少なくとも一種である。δは酸素欠損量であり、0.95≦x≦1、0<y≦0.5を満たす。これにより、400℃~600℃の温度領域において、高い発電性能の燃料電池セルもしくは高い電解性能の水蒸気電解セルを実現できる。第1~第3固体電解質材料のうち、少なくとも第2固体電解質材料が上記式(2)で表される金属酸化物を含むことが好ましい。 (11) In the fuel electrode-solid electrolyte layer composite member of (8) above, at least one of the first solid electrolyte material, the second solid electrolyte material, and the third solid electrolyte material has a perovskite structure, It may also contain a metal oxide represented by the following formula (2): A x B 1- y My O 3-δ . Here, element A is at least one selected from the group consisting of Ba, Ca and Sr. Element B is at least one selected from the group consisting of Ce and Zr. Element M is at least one selected from the group consisting of Y, Yb, Er, Ho, Tm, Gd, In and Sc. δ is the amount of oxygen deficiency and satisfies 0.95≦x≦1 and 0<y≦0.5. As a result, in the temperature range of 400° C. to 600° C., a fuel cell with high power generation performance or a steam electrolysis cell with high electrolysis performance can be realized. At least the second solid electrolyte material among the first to third solid electrolyte materials preferably contains the metal oxide represented by the above formula (2).

(12)本開示のさらに他の実施形態は、酸化ニッケルを含む燃料極と、第1固体電解質材料、および、ニッケルと第1固体電解質材料を構成する金属元素との複合酸化物を含む第1固体電解質層と、の積層体を得る工程と、積層体の前記第1固体電解質層側に、第2固体電解質材料を含み且つニッケル元素を実質的に含まない第2固体電解質層を、850℃以下で形成し、燃料極-固体電解質層複合部材を得る工程と、燃料極-固体電解質層複合部材の第2固体電解質層側に空気極を形成し、セル構造体を得る工程と、を有する、燃料電池の製造方法に関する。この製造方法により、大型の燃料電池が容易に得られる。 (12) Still another embodiment of the present disclosure is a first solid electrolyte material containing a fuel electrode containing nickel oxide, a first solid electrolyte material, and a composite oxide of nickel and a metal element constituting the first solid electrolyte material. a step of obtaining a laminate of a solid electrolyte layer; and a second solid electrolyte layer containing a second solid electrolyte material and substantially free of nickel element on the first solid electrolyte layer side of the laminate at 850°C. a step of forming an anode-solid electrolyte layer composite member by forming below, and a step of forming an air electrode on the second solid electrolyte layer side of the anode-solid electrolyte layer composite member to obtain a cell structure. , to a method for manufacturing a fuel cell. A large-sized fuel cell can be easily obtained by this manufacturing method.

第2固体電解質層は、ニッケル元素を意図的に含まない第2固体電解質材料を用いて形成され得る。第2固体電解質層の形成は850℃以下の低温で行われるため、燃料極または第1固体電解質層に含まれるニッケルが、第2固体電解質層へ拡散することは抑制されている。よって、第2固体電解質層は、ニッケルを実質的に含まない状態が維持される。これにより、製造後の燃料電池において、第2固体電解質層内に存在するニッケルに起因したリーク電流が抑制される。また、第2固体電解質層のイオン伝導性を高く維持できる。 The second solid electrolyte layer can be formed using a second solid electrolyte material that does not intentionally contain nickel element. Since the second solid electrolyte layer is formed at a low temperature of 850° C. or lower, nickel contained in the fuel electrode or the first solid electrolyte layer is suppressed from diffusing into the second solid electrolyte layer. Therefore, the second solid electrolyte layer is maintained substantially free of nickel. As a result, in the manufactured fuel cell, leakage current due to nickel present in the second solid electrolyte layer is suppressed. Also, the ion conductivity of the second solid electrolyte layer can be kept high.

(13)燃料電池の製造方法は、燃料極に含まれる酸化ニッケルを金属ニッケルに還元する還元処理工程をさらに有してもよい。これにより、燃料極が多孔質化し、固体電解質複合部材は、燃料極-固体電解質層複合体に変化する。還元処理工程は、セル構造体を得た後(空気極形成後)に行ってもよいし、空気極形成の前に、燃料極-固体電解質層複合部材を例えば水素雰囲気で熱処理を施すことにより行ってもよい。 (13) The fuel cell manufacturing method may further include a reduction treatment step of reducing nickel oxide contained in the fuel electrode to metal nickel. As a result, the fuel electrode becomes porous, and the solid electrolyte composite member changes into a fuel electrode-solid electrolyte layer composite. The reduction treatment step may be performed after obtaining the cell structure (after forming the air electrode), or by subjecting the fuel electrode-solid electrolyte layer composite member to heat treatment in a hydrogen atmosphere, for example, before forming the air electrode. you can go

このとき、第1固体電解質層に酸化ニッケルが含まれている場合、第1固体電解質層に含まれる酸化ニッケルが還元され、金属ニッケルに変化し得る。一方で、第1固体電解質層に含まれる複合酸化物は還元され難く、還元処理工程後においても複合酸化物の状態で存在する。この場合、還元処理における第1固体電解質層の収縮率は、燃料極の収縮率よりも小さくなり得る。 At this time, if the first solid electrolyte layer contains nickel oxide, the nickel oxide contained in the first solid electrolyte layer may be reduced and changed to metallic nickel. On the other hand, the composite oxide contained in the first solid electrolyte layer is difficult to be reduced and remains in the state of composite oxide even after the reduction treatment step. In this case, the shrinkage rate of the first solid electrolyte layer in the reduction treatment can be smaller than the shrinkage rate of the fuel electrode.

よって、第1固体電解質層が複合酸化物を含んでいることで、酸化ニッケルの還元に伴う燃料極の収縮により発生する応力は第1固体電解質層により緩和され、第2固体電解質層の割れおよび剥がれが抑制される。 Therefore, since the first solid electrolyte layer contains the composite oxide, the stress generated by the shrinkage of the fuel electrode due to the reduction of nickel oxide is relieved by the first solid electrolyte layer, and the second solid electrolyte layer cracks and Peeling is suppressed.

(14)積層体を得る工程において、第1固体電解質層は酸化ニッケルを実質的に含まないか、または酸化ニッケルの含有割合が燃料極よりも小さくてもよい。燃料極および第1固体電解質層は、酸化ニッケルが還元されることで体積収縮し得る。しかしながら、第1固体電解質層における酸化ニッケルの含有割合が燃料極よりも小さい場合、第1固体電解質層の収縮率は、燃料極の収縮率よりも小さくなり易い。一方、第2固体電解質層は酸化ニッケルを実質的に含まないため、殆ど収縮しない。よって、第1固体電解質層の収縮率が、燃料極の収縮率よりも小さいことで、燃料極の収縮により発生する応力は第1固体電解質層により緩和され、第2固体電解質層に伝わる収縮力は低減される。 (14) In the step of obtaining the laminate, the first solid electrolyte layer may be substantially free of nickel oxide, or may contain less nickel oxide than the fuel electrode. The fuel electrode and the first solid electrolyte layer may shrink in volume due to reduction of nickel oxide. However, when the content of nickel oxide in the first solid electrolyte layer is smaller than that in the fuel electrode, the contraction rate of the first solid electrolyte layer tends to be smaller than that of the fuel electrode. On the other hand, since the second solid electrolyte layer does not substantially contain nickel oxide, it hardly shrinks. Therefore, since the contraction rate of the first solid electrolyte layer is smaller than the contraction rate of the fuel electrode, the stress generated by the contraction of the fuel electrode is relieved by the first solid electrolyte layer, and the contraction force is transmitted to the second solid electrolyte layer. is reduced.

特に、第1固体電解質層が酸化ニッケルを実質的に含まない場合、燃料極の収縮に伴う応力は第1固体電解質層で吸収され、第2固体電解質層には殆ど伝わることがない。よって、第2固体電解質層の割れおよび剥がれを効果的に抑制することができる。 In particular, when the first solid electrolyte layer does not substantially contain nickel oxide, the stress associated with contraction of the fuel electrode is absorbed by the first solid electrolyte layer and is hardly transferred to the second solid electrolyte layer. Therefore, cracking and peeling of the second solid electrolyte layer can be effectively suppressed.

(15)積層体を得る工程は、第3固体電解質材料および酸化ニッケルを含む第1前駆体層上に、第1固体電解質材料を含む第2前駆体層を形成する工程と、第1前駆体層および第2前駆体層を1400℃以上で熱処理し、第1前駆体層に対応する燃料極と、第2前駆体層に対応する第1固体電解質層を得る工程を含んでもよい。 (15) The step of obtaining the laminate includes forming a second precursor layer containing the first solid electrolyte material on the first precursor layer containing the third solid electrolyte material and nickel oxide; A step of heat-treating the layer and the second precursor layer at 1400° C. or higher to obtain a fuel electrode corresponding to the first precursor layer and a first solid electrolyte layer corresponding to the second precursor layer may be included.

第1前駆体層および第2前駆体層を900℃以上で熱処理することで、燃料極と第1固体電解質層との積層体が得られる。熱処理温度が900℃以上であれば、第1前駆体層中のニッケルが第2前駆体層内に拡散し、複合酸化物が形成され得る。より好ましくは、第1前駆体層および第2前駆体層を1400℃以上で熱処理することにより、第1前駆体層と第2前駆体層とが強固に結合した状態で一体化され得る。一方で、900℃以上の熱処理により、第1前駆体層に含まれている酸化ニッケル中のニッケルが拡散し易い。拡散したニッケルは、第2前駆体層内で第1固体電解質材料を構成する元素と結合し、種々の複合化合物を形成し得る。熱処理後の第1固体電解質層内において、拡散したニッケルの少なくとも一部は、第1固体電解質材料を構成する金属元素とニッケルとを含む複合酸化物の状態で存在し得る。 By heat-treating the first precursor layer and the second precursor layer at 900° C. or higher, a laminate of the fuel electrode and the first solid electrolyte layer is obtained. If the heat treatment temperature is 900° C. or higher, nickel in the first precursor layer can diffuse into the second precursor layer to form a composite oxide. More preferably, by heat-treating the first precursor layer and the second precursor layer at 1400° C. or higher, the first precursor layer and the second precursor layer can be integrated while being strongly bonded. On the other hand, heat treatment at 900° C. or higher facilitates diffusion of nickel in nickel oxide contained in the first precursor layer. The diffused nickel can combine with the elements that make up the first solid electrolyte material within the second precursor layer to form various complex compounds. In the first solid electrolyte layer after the heat treatment, at least part of the diffused nickel can exist in the form of a composite oxide containing nickel and the metal element that constitutes the first solid electrolyte material.

(16)上記(15)において、第2前駆体層は、ニッケル元素を実質的に含んでいなくてもよい。すなわち、第2前駆体層を塗布法により形成する場合、第2前駆体層の原料は第1固体電解質材料を含んでいれば足り、ニッケルを含んでいなくてもよい。あるいは、第2前駆体層を気相法(例えば、スパッタ法)で形成する場合、第1固体電解質材料を構成する元素を含むターゲットのみ用いればよく、ニッケルを含むターゲットを用いなくてもよい。熱処理により、第1前駆体層に含まれているニッケルの一部が拡散し、第2前駆体内で複合酸化物を形成し得る。結果、第1固体電解質材料と複合酸化物とを含む第1固体電解質層が形成される。 (16) In (15) above, the second precursor layer may be substantially free of nickel element. That is, when the second precursor layer is formed by a coating method, the raw material of the second precursor layer only needs to contain the first solid electrolyte material, and does not need to contain nickel. Alternatively, when the second precursor layer is formed by a vapor phase method (for example, a sputtering method), only the target containing the elements constituting the first solid electrolyte material may be used, and the target containing nickel may not be used. The heat treatment may cause some of the nickel contained in the first precursor layer to diffuse and form a complex oxide within the second precursor layer. As a result, a first solid electrolyte layer containing the first solid electrolyte material and the composite oxide is formed.

積層体の熱処理温度の上限については、特に限定されないが、1800℃以下であってもよい。 Although the upper limit of the heat treatment temperature of the laminate is not particularly limited, it may be 1800° C. or lower.

例えば、第1固体電解質材料がBZYである場合、熱処理後の第1固体電解質層において、ニッケルは、BZY中のBaまたはZrを置換した状態で存在し得る。また、BaYNiO、BaNiOなどの複合酸化物の形で存在し得る。 For example, when the first solid electrolyte material is BZY, in the first solid electrolyte layer after heat treatment, nickel may exist in a state of replacing Ba or Zr in BZY. It can also exist in the form of complex oxides such as BaY 2 NiO 5 and BaNiO 2 .

上記(12)において、積層体を得る工程は、例えば、第1前駆体層上に第2前駆体層の原料を塗布後、加熱し共焼結することで行ってもよいし、第1前駆体上に第2前駆体層を気相法により成長させてもよい。第1前駆体層は、第3固体電解質材料および酸化ニッケルを必須成分として含む。第2前駆体層の原料は、第1固体電解質材料を必須成分として含む。第2前駆体層の原料は、第1固体電解質材料に複合酸化物の粉末を予め混合した混合物であってもよい。第1前駆体層および/または第2前駆体層に、必要に応じて、バインダ、界面活性剤、および/または解膠剤などの添加剤を含ませてもよい。 In the above (12), the step of obtaining the laminate may be performed, for example, by coating the raw material of the second precursor layer on the first precursor layer and then heating and co-sintering the first precursor layer. A second precursor layer may be grown on the body by a vapor phase method. The first precursor layer contains a third solid electrolyte material and nickel oxide as essential components. The raw material of the second precursor layer contains the first solid electrolyte material as an essential component. The raw material of the second precursor layer may be a mixture of the first solid electrolyte material and the composite oxide powder mixed in advance. The first precursor layer and/or the second precursor layer may optionally contain additives such as binders, surfactants, and/or peptizers.

第2前駆体層を塗布形成により成膜する場合、スクリーン印刷、スプレー塗布、スピンコート、ディップコート等を用いることができる。第2前駆体層の原料を水、有機溶媒などの分散媒に分散させたペーストを塗布してもよい。塗膜を乾燥させ、熱処理を施すことにより分散媒および添加剤は除去され、第1前駆体層は燃料極に変化し、第2前駆体層は第1固体電解質層に変化して、燃料極と第1固体電解質層との積層体が得られる。 When forming the second precursor layer by coating, screen printing, spray coating, spin coating, dip coating, or the like can be used. A paste obtained by dispersing the raw material of the second precursor layer in a dispersion medium such as water or an organic solvent may be applied. By drying the coating film and heat-treating it, the dispersion medium and the additive are removed, the first precursor layer changes to the fuel electrode, the second precursor layer changes to the first solid electrolyte layer, and the fuel electrode and the first solid electrolyte layer is obtained.

第2前駆体層を気相法で成膜する場合、気相法としては、スパッタ法、PVD法、CVD法などを用いることができる。例えばスパッタ法を用いる場合、第1固体電解質材料を構成する元素を含むターゲット、および、ニッケルを含むターゲットを用いることができる。成膜時の基板温度は、例えば400℃~700℃であってもよい。成膜後、熱処理を行うことにより、第1固体電解質層中に複合酸化物が形成され得る。 When the second precursor layer is formed by a vapor phase method, the vapor phase method may be a sputtering method, a PVD method, a CVD method, or the like. For example, when the sputtering method is used, a target containing elements constituting the first solid electrolyte material and a target containing nickel can be used. The substrate temperature during film formation may be, for example, 400.degree. C. to 700.degree. A complex oxide can be formed in the first solid electrolyte layer by performing heat treatment after film formation.

第1前駆体層および第2前駆体層の少なくともいずれか一方を、加圧成形により形成してもよい。例えば、第3固体電解質材料と酸化ニッケルとを混合した粉末を型に詰め加圧することで、ペレット状の第1前駆体層を得てもよく、第1固体電解質材料の粉末を型に詰め加圧することで、ペレット状の第2前駆体層を得てもよい。より好ましくは、第3固体電解質材料と酸化ニッケルとの混合粉末を型に詰めた後、第1固体電解質材料の粉末を同じ型に詰めて、第1前駆体層の上に第2前駆体層を重ねて形成し、第1前駆体層および第2前駆体層を同時に加圧することで、積層体を得てもよい。
第1前駆体層は、燃料極を構成するため、通常第2前駆体層よりも厚く形成される。このため、第1前駆体層を加圧成形によりペレット状に形成し、第1前駆体層の上に第2前駆体層をペーストの塗布により形成してもよい。
At least one of the first precursor layer and the second precursor layer may be formed by pressure molding. For example, a pellet-like first precursor layer may be obtained by filling a mold with a powder obtained by mixing the third solid electrolyte material and nickel oxide, and pressing the powder of the first solid electrolyte material into the mold. A second precursor layer in pellet form may be obtained by pressing. More preferably, after the mixed powder of the third solid electrolyte material and nickel oxide is packed in a mold, the powder of the first solid electrolyte material is packed in the same mold, and the second precursor layer is formed on the first precursor layer. may be stacked, and the first precursor layer and the second precursor layer may be pressurized at the same time to obtain a laminate.
Since the first precursor layer constitutes the fuel electrode, it is usually formed thicker than the second precursor layer. Therefore, the first precursor layer may be formed into pellets by pressure molding, and the second precursor layer may be formed on the first precursor layer by applying a paste.

また、上記(12)において、積層体を得た後の第2固体電解質層の形成は、ニッケル元素を含まない第2固体電解質層の原料を塗布形成することで行ってもよいし、気相法により成長させてもよい。第2固体電解質層を塗布形成により成膜する場合、スクリーン印刷、スプレー塗布、スピンコート、ディップコート等を用いることができる。第2固体電解質層の原料は、第2固体電解質材料の粉末を含む。必要に応じて、バインダ、界面活性剤、および/または解膠剤などの添加剤を含ませてもよい。第2固体電解質材料を水、有機溶媒などの分散媒に分散させたペーストを塗布してもよい。塗膜を乾燥させ、熱処理を施すことにより分散媒および添加剤は除去され、第2固体電解質層が形成され得る。
第2固体電解質層を気相法で成膜する場合、気相法としては、スパッタ法、PVD法、CVD法などを用いることができる。
Further, in (12) above, the formation of the second solid electrolyte layer after obtaining the laminate may be performed by coating a raw material for the second solid electrolyte layer that does not contain nickel element, or may be performed in a gas phase. It may be grown by law. When forming the second solid electrolyte layer by coating, screen printing, spray coating, spin coating, dip coating, or the like can be used. The raw material of the second solid electrolyte layer includes powder of the second solid electrolyte material. Additives such as binders, surfactants, and/or peptizers may be included, as desired. A paste obtained by dispersing the second solid electrolyte material in a dispersion medium such as water or an organic solvent may be applied. The coating film is dried and heat-treated to remove the dispersion medium and the additive, thereby forming the second solid electrolyte layer.
When the second solid electrolyte layer is formed by a vapor phase method, the vapor phase method may be a sputtering method, a PVD method, a CVD method, or the like.

[発明の実施形態の詳細]
本発明の実施形態の具体例を、適宜図面を参照しつつ以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、添付の特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
[Details of the embodiment of the invention]
Specific examples of embodiments of the present invention will be described below with reference to the drawings as appropriate. The present invention is not limited to these examples, but is indicated by the scope of the attached claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims. .

(燃料電池)
図1に、本実施形態の燃料極-固体電解質層複合体を用いた燃料電池の具体例を示す。図1は、燃料電池セル(固体酸化物型燃料電池セル)の断面構造を示す模式図である。
(Fuel cell)
FIG. 1 shows a specific example of a fuel cell using the fuel electrode-solid electrolyte layer composite of this embodiment. FIG. 1 is a schematic diagram showing a cross-sectional structure of a fuel cell (solid oxide fuel cell).

燃料電池セル10は、セル構造体1を含む。セル構造体の断面構造の一例を、図2に模式的に示す。図2に示すように、セル構造体1は、空気極(カソード)2と、燃料極(アノード)3と、これらの間に介在する固体電解質層4とを含む。燃料極3と固体電解質層4とは一体化され、複合体を形成している。 A fuel cell 10 includes a cell structure 1 . An example of the cross-sectional structure of the cell structure is schematically shown in FIG. As shown in FIG. 2, the cell structure 1 includes an air electrode (cathode) 2, a fuel electrode (anode) 3, and a solid electrolyte layer 4 interposed therebetween. The fuel electrode 3 and the solid electrolyte layer 4 are integrated to form a composite.

燃料電池セル10は、セル構造体1のほか、空気極2に酸化剤を供給するための酸化剤流路23と、燃料極3に燃料を供給するための燃料流路53と、を備える。図1に示す例では、酸化剤流路23は、空気極側セパレータ22によって形成され、燃料流路53は、燃料極側セパレータ52によって形成され、セル構造体1は、空気極側セパレータ22と、燃料極側セパレータ52との間に挟持されている。空気極側セパレータ22の酸化剤流路23は、セル構造体1の空気極2に対向するように配置され、燃料極側セパレータ52の燃料流路53は、燃料極3に対向するように配置される。 The fuel cell 10 includes, in addition to the cell structure 1 , an oxidant channel 23 for supplying an oxidant to the air electrode 2 and a fuel channel 53 for supplying fuel to the fuel electrode 3 . In the example shown in FIG. 1, the oxidant channel 23 is formed by the air electrode side separator 22, the fuel channel 53 is formed by the fuel electrode side separator 52, and the cell structure 1 is formed by the air electrode side separator 22. , and the fuel electrode side separator 52 . The oxidant channel 23 of the air electrode side separator 22 is arranged to face the air electrode 2 of the cell structure 1, and the fuel channel 53 of the fuel electrode side separator 52 is arranged to face the fuel electrode 3. be done.

(燃料極-固体電解質複合体)
燃料極3は、多孔質である。固体電解質層4は、燃料極3上に形成された第1固体電解質層4aと、燃料極3よりも空隙率が小さく、緻密に形成された第2固体電解質層4bと、を含む。第2固体電解質層4bは、第1固体電解質層4aの燃料極3と反対側に積層される。燃料極3、第1固体電解質層4a、および、第2固体電解質層4bは一体化され、燃料極-固体電解質層複合体5を形成している。
(Fuel electrode-solid electrolyte composite)
The fuel electrode 3 is porous. The solid electrolyte layer 4 includes a first solid electrolyte layer 4a formed on the fuel electrode 3, and a densely formed second solid electrolyte layer 4b having a smaller porosity than the fuel electrode 3. The second solid electrolyte layer 4b is laminated on the side opposite to the fuel electrode 3 of the first solid electrolyte layer 4a. The fuel electrode 3, the first solid electrolyte layer 4a, and the second solid electrolyte layer 4b are integrated to form a fuel electrode-solid electrolyte layer composite 5. FIG.

(第1固体電解質層)
第1固体電解質層4aは、第2固体電解質層4bとともに、固体電解質層4の少なくとも一部を構成する。第1固体電解質層4aは、燃料極3と第2固体電解質層4bの間に介在している。
(First solid electrolyte layer)
The first solid electrolyte layer 4a constitutes at least part of the solid electrolyte layer 4 together with the second solid electrolyte layer 4b. The first solid electrolyte layer 4a is interposed between the fuel electrode 3 and the second solid electrolyte layer 4b.

第1固体電解質層には、第1固体電解質材料として、ペロブスカイト型構造(ABO相)を有し、上記式(1)で現される組成を有する金属酸化物を用いることができる。ペロブスカイト型構造のAサイトには、元素Aが入り、Bサイトには、元素B(ホウ素を示すものではない)が入る。Bサイトの一部は、高いプロトン伝導性を確保する観点から、元素Mで置換されている。 For the first solid electrolyte layer, a metal oxide having a perovskite structure (ABO three -phase) and having a composition represented by the above formula (1) can be used as the first solid electrolyte material. The A site of the perovskite structure contains the element A, and the B site contains the element B (not indicative of boron). Part of the B site is substituted with the element M from the viewpoint of ensuring high proton conductivity.

元素Bおよび元素Mの合計に対する元素Aの比率xは、高いプロトン伝導性とイオン輸率を確保する観点から、0.95≦x≦1であることが好ましく、0.98≦x≦1であることがより好ましい。また、xが1を越えないことで、元素Aの析出が抑制され、水分の作用によりプロトン伝導体が腐食することを抑制できる。yは、プロトン伝導性を確保する観点から、0<y≦0.5であることが好ましく、0.1<y≦0.3がより好ましい。 The ratio x of element A to the sum of element B and element M is preferably 0.95 ≤ x ≤ 1, and 0.98 ≤ x ≤ 1, from the viewpoint of ensuring high proton conductivity and ion transference number. It is more preferable to have In addition, when x does not exceed 1, precipitation of the element A is suppressed, and corrosion of the proton conductor due to the action of moisture can be suppressed. From the viewpoint of ensuring proton conductivity, y preferably satisfies 0<y≦0.5, more preferably 0.1<y≦0.3.

元素Aは、Ba(バリウム)、Ca(カルシウム)およびSr(ストロンチウム)よりなる群から選択される少なくとも一種である。なかでも、優れたプロトン伝導性が得られる点で、元素AはBaを含むことが好ましい。元素Aに占めるBaの比率は、50原子%以上であることが好ましく、80原子%以上であることがより好ましい。元素AはBaのみで構成されることが更に好ましい。 Element A is at least one selected from the group consisting of Ba (barium), Ca (calcium) and Sr (strontium). Among them, the element A preferably contains Ba in terms of obtaining excellent proton conductivity. The proportion of Ba in the element A is preferably 50 atomic % or more, more preferably 80 atomic % or more. More preferably, the element A consists only of Ba.

元素Bは、Ce(セリウム)およびZr(ジルコニウム)よりなる群から選択される少なくとも一種である。なかでも、耐久性の観点から、元素BはZrを含むことが好ましい。元素Bに占めるZrの比率は、50原子%以上であることが好ましく、80原子%以上であることがより好ましい。元素BはZrのみで構成されることが更に好ましい。 Element B is at least one selected from the group consisting of Ce (cerium) and Zr (zirconium). Among them, from the viewpoint of durability, the element B preferably contains Zr. The ratio of Zr to the element B is preferably 50 atomic % or more, more preferably 80 atomic % or more. More preferably, the element B consists only of Zr.

元素Mは、Y(イットリウム)、Yb(イッテルビウム)、Er(エルビウム)、Ho(ホルミウム)、Tm(ツリウム)、Gd(ガドリニウム)、In(インジウム)およびSc(スカンジウム)よりなる群から選択される少なくとも一種である。元素Mはドーパントであって、これにより酸素欠陥が生じ、ペロブスカイト型構造を有する金属酸化物はプロトン伝導性を発現する。 Element M is selected from the group consisting of Y (yttrium), Yb (ytterbium), Er (erbium), Ho (holmium), Tm (thulium), Gd (gadolinium), In (indium) and Sc (scandium) at least one. The element M is a dopant, which causes oxygen defects, and the metal oxide having a perovskite structure develops proton conductivity.

式(1)において、酸素欠損量δは、元素Mの量に応じて決定でき、例えば、0≦δ≦0.15である。金属酸化物における各元素の比率は、例えば、電子プローブマイクロアナライザを使用した波長分散型X線分析(Wavelength Dispersive X-ray spectroscopy、以下、WDXと称する)を用いて求めることができる。 In the formula (1), the oxygen deficiency amount δ can be determined according to the amount of the element M, and for example, 0≦δ≦0.15. The ratio of each element in the metal oxide can be determined by, for example, Wavelength Dispersive X-ray spectroscopy (hereinafter referred to as WDX) using an electron probe microanalyzer.

金属酸化物の具体例としては、イットリウムがドープされたジルコン酸バリウム[BaxZr1-yy3-δ(以下、BZYと称する)]、イットリウムがドープされたセリウム酸バリウム[BaxCe1-yy3-δ(BCY)]、イットリウムがドープされたジルコン酸バリウム/セリウム酸バリウムの混合酸化物[BaxZr1-y-zCey3-δ(BZCY)]などが挙げられる。BZYの具体例として、BaZr0.80.22.9(x=1、y=0.2、δ=0.1)を用いてもよい。BCYの具体例として、BaCe0.80.22.9(x=1、y=0.2、δ=0.1)を用いてもよい。BCYおよびBZYは、400℃~600℃の中温域で高いプロトン伝導性を示す。 Specific examples of metal oxides include yttrium-doped barium zirconate [Ba x Zr 1-y Y y O 3-δ (hereinafter referred to as BZY)] and yttrium-doped barium cerate [Bax Ce1 -yYyO3-[ delta ] (BCY)], yttrium-doped barium zirconate/barium cerate mixed oxide [ BaxZr1 - y - zCezYyO3- [ delta ] ( BZCY )] and the like. As a specific example of BZY, BaZr 0.8 Y 0.2 O 2.9 (x=1, y=0.2, δ=0.1) may be used. As a specific example of BCY, BaCe 0.8 Y 0.2 O 2.9 (x=1, y=0.2, δ=0.1) may be used. BCY and BZY exhibit high proton conductivity in the medium temperature range of 400°C to 600°C.

第1固体電解質層は、上記金属酸化物のほか、ニッケル成分を含む。ただし、第1固体電解質層内では、ニッケルの少なくとも一部は、ニッケルと第1固体電解質層の金属酸化物を構成する金属元素とを含む複合酸化物の状態で存在する。例えば、第1固体電解質層がBZYを含む場合、第1固体電解質層は、BaYNiO、BaNiOなどの複合酸化物を含み得る。これらの複合酸化物は、還元され難い安定な化合物であり、燃料ガス(例えば、水素ガス)と接触しても、複合酸化物中のNiが還元され金属ニッケルに変化し難い。よって、第1固体電解質層は、後述する燃料極と比べて、還元処理による体積変化が小さい。 The first solid electrolyte layer contains a nickel component in addition to the metal oxide. However, in the first solid electrolyte layer, at least part of nickel exists in the form of a composite oxide containing nickel and a metal element that constitutes the metal oxide of the first solid electrolyte layer. For example, when the first solid electrolyte layer contains BZY, the first solid electrolyte layer may contain complex oxides such as BaY 2 NiO 5 and BaNiO 2 . These composite oxides are stable compounds that are difficult to be reduced, and even if they come into contact with fuel gas (for example, hydrogen gas), Ni in the composite oxides is reduced and hardly changed to metallic nickel. Therefore, the volume change of the first solid electrolyte layer due to reduction treatment is smaller than that of the fuel electrode, which will be described later.

第1固体電解質層の厚みは、例えば、1μm~20μm、好ましくは2μm~10μmである。 The thickness of the first solid electrolyte layer is, for example, 1 μm to 20 μm, preferably 2 μm to 10 μm.

(第2固体電解質層)
第2固体電解質層4bは、第1固体電解質層4aとともに、固体電解質層4の少なくとも一部を構成する。
第2固体電解質層には、第2固体電解質材料として、第1固体電解質層において上述したペロブスカイト型構造のプロトン伝導性金属酸化物を用いることができる。第2固体電解質層の金属酸化物は、第1固体電解質層の金属酸化物と、金属酸化物の組成が同じであってもよいし、異なっていてもよい。
(Second solid electrolyte layer)
The second solid electrolyte layer 4b constitutes at least part of the solid electrolyte layer 4 together with the first solid electrolyte layer 4a.
For the second solid electrolyte layer, the proton-conducting metal oxide having the perovskite structure described above for the first solid electrolyte layer can be used as the second solid electrolyte material. The composition of the metal oxide of the second solid electrolyte layer may be the same as or different from that of the metal oxide of the first solid electrolyte layer.

第2固体電解質層は、ニッケル成分を実質的に含まないように製造される。これにより、高い発電性能に優れた燃料電池が得られる。 The second solid electrolyte layer is manufactured so as to contain substantially no nickel component. As a result, a fuel cell with excellent power generation performance can be obtained.

第2固体電解質層の厚みは、例えば、0.2μm~20μm、好ましくは0.2μm~10μmである。第2固体電解質層の厚みがこのような範囲であると、固体電解質層の抵抗を低く抑えられる。 The thickness of the second solid electrolyte layer is, for example, 0.2 μm to 20 μm, preferably 0.2 μm to 10 μm. When the thickness of the second solid electrolyte layer is within this range, the resistance of the solid electrolyte layer can be kept low.

(燃料極)
燃料極3では、燃料流路から導入される燃料ガス(例えば、水素ガス)を酸化して、プロトンと電子とを放出する反応(燃料の酸化反応)が進行する。
(fuel electrode)
At the fuel electrode 3 , a reaction (fuel oxidation reaction) proceeds by oxidizing the fuel gas (for example, hydrogen gas) introduced from the fuel flow channel to release protons and electrons.

燃料極には、第3固体電解質材料として、第1固体電解質層において上述したペロブスカイト型構造のプロトン伝導性金属酸化物を用いることができる。燃料極の金属酸化物は、第1固体電解質層の金属酸化物または第2固体電解質層の金属酸化物と、金属酸化物の組成が同じであってもよいし、異なっていてもよい。第1固体電解質層の金属酸化物(第1固体電解質材料)、第2固体電解質層の金属酸化物(第2固体電解質材料)、および、燃料極の金属酸化物(第3固体電解質材料)、の間で、ペロブスカイト型構造のAサイトおよびBサイトに入る金属元素が同じであってもよい。ただし、各固体電解質材料における金属元素の組成比は、必ずしも同じである必要はなく、異なっていてもよい。 For the fuel electrode, the proton-conducting metal oxide having the perovskite structure described above for the first solid electrolyte layer can be used as the third solid electrolyte material. The metal oxide of the fuel electrode may have the same or different metal oxide composition as the metal oxide of the first solid electrolyte layer or the metal oxide of the second solid electrolyte layer. The metal oxide of the first solid electrolyte layer (first solid electrolyte material), the metal oxide of the second solid electrolyte layer (second solid electrolyte material), and the metal oxide of the fuel electrode (third solid electrolyte material), In between, the metal elements entering the A site and B site of the perovskite structure may be the same. However, the composition ratio of the metal elements in each solid electrolyte material does not necessarily have to be the same, and may be different.

燃料極は、上記金属酸化物のほか、ニッケル成分を含む。ニッケル成分は、例えば、金属ニッケルであり、水素解離反応を促進させる触媒としての作用を有する。 The fuel electrode contains a nickel component in addition to the above metal oxide. The nickel component is, for example, metallic nickel, and acts as a catalyst that promotes the hydrogen dissociation reaction.

燃料極の厚みは、例えば、10μm~2mmから適宜決定でき、10μm~100μmであってもよい。 The thickness of the fuel electrode can be appropriately determined, for example, from 10 μm to 2 mm, and may be from 10 μm to 100 μm.

(空気極)
空気極2は、多孔質の構造を有している。第2固体電解質層4b(固体電解質層4)がプロトン伝導性を有する場合、空気極2では、第2固体電解質層4bを介して伝導されたプロトンと、酸化物イオンとの反応(酸素の還元反応)が進行する。酸化物イオンは、酸化剤流路から導入された酸化剤(酸素)が解離することにより生成する。
(air electrode)
The air electrode 2 has a porous structure. When the second solid electrolyte layer 4b (solid electrolyte layer 4) has proton conductivity, in the air electrode 2, protons conducted through the second solid electrolyte layer 4b react with oxide ions (reduction of oxygen reaction) proceeds. Oxide ions are generated by dissociation of the oxidant (oxygen) introduced from the oxidant channel.

空気極の材料としては、公知の材料を用いることができる。空気極の材料として、例えば、ランタンを含み、かつペロブスカイト構造を有する化合物(フェライト、マンガナイト、および/またはコバルタイトなど)が好ましく、これらの化合物のうち、さらにストロンチウムを含むものがより好ましい。具体的には、ランタンストロンチウムコバルトフェライト(LSCF、La1-x1Srx1Fe1-y1Coy13-δ1、0<x1<1、0<y1<1、δ1は酸素欠損量である)、ランタンストロンチウムマンガナイト(LSM、La1-x2Srx2MnO3-δ1、0<x2<1、δ1は酸素欠損量である)、ランタンストロンチウムコバルタイト(LSC、La1-x3Srx3CoO3-δ1、0<x3≦1、δ1は酸素欠損量である)等が挙げられる。プロトンと酸化物イオンとの反応を促進させる観点から、空気極は、Pt等の触媒を含んでいてもよい。空気極の形成は、ニッケルの第2固体電解質層への拡散を抑制する観点から、850℃以下で行うことが好ましい。 A known material can be used as the material of the air electrode. As the material for the air electrode, for example, compounds containing lanthanum and having a perovskite structure (ferrite, manganite, and/or cobaltite, etc.) are preferable, and among these compounds, those containing strontium are more preferable. Specifically, lanthanum strontium cobalt ferrite (LSCF, La 1-x1 Sr x1 Fe 1-y1 Co y1 O 3-δ1 , 0<x1<1, 0<y1<1, δ1 is the amount of oxygen deficiency), lanthanum strontium manganite (LSM, La 1-x2 Sr x2 MnO 3-δ1 , 0<x2<1, δ1 is the amount of oxygen deficiency), lanthanum strontium cobaltite (LSC, La 1-x3 Sr x3 CoO 3-δ1 , 0<x3≦1, and δ1 is the amount of oxygen deficiency). From the viewpoint of promoting the reaction between protons and oxide ions, the air electrode may contain a catalyst such as Pt. From the viewpoint of suppressing the diffusion of nickel into the second solid electrolyte layer, the air electrode is preferably formed at 850° C. or less.

空気極は、例えば、上記の材料の原料の塗布により形成することができる。必要に応じて、原料とともに、バインダ、添加剤、および/または分散媒などを用いてもよい。
空気極の厚みは、特に限定されないが、例えば、5μm~2mmから適宜決定でき、5μm~40μm程度であってもよい。
The air electrode can be formed, for example, by applying raw materials of the above materials. If necessary, binders, additives, and/or dispersion media may be used together with the raw materials.
The thickness of the air electrode is not particularly limited, but can be appropriately determined, for example, from 5 μm to 2 mm, and may be about 5 μm to 40 μm.

図1および図2では、燃料極3の厚みを空気極2の厚みよりも厚くしており、燃料極3が固体電解質層4(第1固体電解質層4aおよび第2固体電解質層4b)ひいてはセル構造体1を支持する支持体として機能している。なお、燃料極3の厚みを、必ずしも空気極2よりも厚くする必要はなく、例えば、燃料極3の厚みは空気極2の厚みと同程度であってもよい。 1 and 2, the thickness of the fuel electrode 3 is made thicker than the thickness of the air electrode 2, and the fuel electrode 3 forms the solid electrolyte layer 4 (the first solid electrolyte layer 4a and the second solid electrolyte layer 4b) and thus the cell. It functions as a support that supports the structure 1 . The thickness of the fuel electrode 3 does not necessarily have to be thicker than that of the air electrode 2. For example, the thickness of the fuel electrode 3 may be approximately the same as the thickness of the air electrode 2.

(酸化剤流路および燃料流路)
酸化剤流路23は、酸化剤が流入する酸化剤入口と、反応で生成した水や未使用の酸化剤などを排出する酸化剤排出口を有する(いずれも図示せず)。酸化剤としては、例えば、酸素を含むガスが挙げられる。燃料流路53は、水蒸気および炭化水素ガスを含む燃料ガスが流入する燃料ガス入口と、未使用の燃料、反応により生成するHO、N、CO等を排出する燃料ガス排出口を有する(いずれも図示せず)。
(Oxidant channel and fuel channel)
The oxidant channel 23 has an oxidant inlet into which an oxidant flows and an oxidant outlet through which water generated by the reaction and unused oxidant are discharged (neither is shown). Oxidants include, for example, gases containing oxygen. The fuel flow path 53 has a fuel gas inlet into which fuel gas containing water vapor and hydrocarbon gas flows, and a fuel gas outlet through which unused fuel, H 2 O, N 2 , CO 2 and the like generated by reactions are discharged. (none shown).

(セパレータ)
複数のセル構造体が積層されて、燃料電池が構成される場合には、例えば、セル構造体1と、空気極側セパレータ22と、燃料極側セパレータ52とが、一単位として積層され得る。複数のセル構造体1は、例えば、両面にガス流路(酸化剤流路および燃料流路)を備えるセパレータにより、直列に接続されていてもよい。
(separator)
When a fuel cell is configured by stacking a plurality of cell structures, for example, the cell structure 1, the air electrode side separator 22, and the fuel electrode side separator 52 can be stacked as one unit. A plurality of cell structures 1 may be connected in series by, for example, separators having gas channels (oxidant channel and fuel channel) on both sides.

セパレータの材料としては、電気伝導性および耐熱性の点で、ステンレス鋼、ニッケル基合金、クロム基合金等の耐熱合金が例示できる。なかでも、安価である点で、ステンレス鋼が好ましい。プロトン伝導性固体酸化物型燃料電池(PCFC:Protomic Ceramic Fuel Cell)では、動作温度が400℃~600℃程度であるため、ステンレス鋼をセパレータの材料として用いることができる。 Examples of materials for the separator include heat-resistant alloys such as stainless steel, nickel-based alloys, and chromium-based alloys in terms of electrical conductivity and heat resistance. Among them, stainless steel is preferable because it is inexpensive. In a proton conductive solid oxide fuel cell (PCFC), since the operating temperature is about 400° C. to 600° C., stainless steel can be used as the separator material.

(集電体)
燃料電池セル10は、燃料極3と燃料極側セパレータ52との間に配置され、燃料極3と接触する燃料極側集電体51を備えていてもよい。燃料極側集電体51は、集電機能に加え、燃料流路53から導入される燃料ガスを燃料極3に拡散させて供給する機能を果たす。燃料電池セル10は、また、空気極2と空気極側セパレータ22との間に配置され、空気極2と接触する空気極側集電体21を備えてもよい。空気極側集電体21は、集電機能に加え、酸化剤流路23から導入される酸化剤ガスを空気極2に拡散させて供給する機能を果たす。
すなわち、空気極側集電体21は、酸化剤流路23の少なくとも一部を形成し、燃料極側集電体51は、燃料流路53の少なくとも一部を形成する。そのため、各集電体は、十分な通気性を有する構造体であることが好ましい。
(current collector)
The fuel cell 10 may include a fuel electrode side current collector 51 that is arranged between the fuel electrode 3 and the fuel electrode side separator 52 and is in contact with the fuel electrode 3 . The fuel electrode-side current collector 51 has a function of diffusing and supplying the fuel gas introduced from the fuel flow channel 53 to the fuel electrode 3 in addition to the current collecting function. The fuel cell 10 may also include an air electrode-side current collector 21 that is arranged between the air electrode 2 and the air electrode side separator 22 and that is in contact with the air electrode 2 . The air electrode-side current collector 21 has a function of diffusing and supplying the oxidant gas introduced from the oxidant flow path 23 to the air electrode 2 in addition to the current collecting function.
That is, the air electrode side current collector 21 forms at least part of the oxidant channel 23 , and the fuel electrode side current collector 51 forms at least part of the fuel channel 53 . Therefore, each current collector is preferably a structure having sufficient air permeability.

空気極側集電体および燃料極側集電体に用いられる構造体としては、例えば、銀、銀合金、ニッケル、ニッケル合金等を含む金属多孔体、金属メッシュ、パンチングメタル、エキスパンドメタル等が挙げられる。なかでも、軽量性や通気性の点で、金属多孔体が好ましい。特に、三次元網目状の構造を有する金属多孔体が好ましい。三次元網目状の構造とは、金属多孔体を構成する棒状や繊維状の金属が相互に三次元的に繋がり合い、ネットワークを形成している構造を指す。例えば、スポンジ状の構造や不織布状の構造が挙げられる。 Examples of structures used for the air electrode side current collector and the fuel electrode side current collector include metal porous bodies containing silver, silver alloys, nickel, nickel alloys, etc., metal meshes, punched metals, expanded metals, and the like. be done. Among them, a metal porous body is preferable in terms of lightness and air permeability. In particular, a porous metal body having a three-dimensional network structure is preferred. A three-dimensional network structure refers to a structure in which rod-like or fibrous metals forming a metal porous body are connected to each other in a three-dimensional manner to form a network. Examples include a sponge-like structure and a non-woven fabric-like structure.

金属多孔体は、例えば、連続空隙を有する樹脂製の多孔体を、前記のような金属で被覆することにより形成できる。金属被覆処理の後、内部の樹脂が除去されると、金属多孔体の骨格の内部に空洞が形成されて、中空となる。このような構造を有する市販の金属多孔体としては、住友電気工業(株)製のニッケルの「セルメット」等を用いることができる。 A metal porous body can be formed, for example, by coating a resin-made porous body having continuous voids with the above metal. After the metal coating treatment, when the resin inside is removed, a cavity is formed inside the skeleton of the metal porous body, making it hollow. As a commercially available metal porous body having such a structure, "Celmet" made of nickel manufactured by Sumitomo Electric Industries, Ltd. can be used.

燃料電池は、上記のセル構造体を用いる以外は、公知の方法により製造できる。 A fuel cell can be manufactured by a known method except for using the cell structure described above.

(燃料極-固体電解質層複合部材)
図3は、図1に示す燃料電池の製造工程で用いられる燃料極-固体電解質層複合部材を有するセル構造体1Zの断面構造を示す模式図である。図3に示すように、セル構造体1Zは、空気極(カソード)2と、燃料極-固体電解質層複合部材5Zを含む。燃料極-固体電解質層複合部材5Zは、燃料極6a、第1固体電解質層6b、および第2固体電解質層6cがこの順に積層された積層体である。第2固体電解質層6cが、空気極2と接触している。燃料極6a、第1固体電解質層6b、および第2固体電解質層6cは、それぞれ、図2に示す燃料極3、第1固体電解質層4a、および第2固体電解質層4bが還元処理される前の状態である。
(Fuel electrode-solid electrolyte layer composite member)
FIG. 3 is a schematic diagram showing a cross-sectional structure of a cell structure 1Z having a fuel electrode-solid electrolyte layer composite member used in the manufacturing process of the fuel cell shown in FIG. As shown in FIG. 3, the cell structure 1Z includes an air electrode (cathode) 2 and a fuel electrode-solid electrolyte layer composite member 5Z. A fuel electrode-solid electrolyte layer composite member 5Z is a laminate in which a fuel electrode 6a, a first solid electrolyte layer 6b, and a second solid electrolyte layer 6c are stacked in this order. A second solid electrolyte layer 6 c is in contact with the air electrode 2 . The fuel electrode 6a, the first solid electrolyte layer 6b, and the second solid electrolyte layer 6c are formed before the reduction treatment of the fuel electrode 3, the first solid electrolyte layer 4a, and the second solid electrolyte layer 4b shown in FIG. is in a state of

第1固体電解質層6bは、ニッケルと、第1固体電解質材料とを含む。第1固体電解質層6bにおいて、ニッケルは、その少なくとも一部が第1固体電解質材料を構成する金属元素との複合酸化物の形で存在する。第1固体電解質層6bは、例えば、第1固体電解質材料の粉末を含むペーストを燃料極6a上に塗布後、乾燥させることにより形成され得る。 First solid electrolyte layer 6b includes nickel and a first solid electrolyte material. In the first solid electrolyte layer 6b, at least part of nickel exists in the form of a composite oxide with the metal element forming the first solid electrolyte material. The first solid electrolyte layer 6b can be formed, for example, by applying a paste containing powder of the first solid electrolyte material on the fuel electrode 6a and then drying it.

第2固体電解質層6cは、第2固体電解質材料を含み、ニッケル成分を実質的に含まない。第2固体電解質層6cは、例えば、気相法(例えば、スパッタ法)により形成され得る。第2固体電解質層6cの成膜は、第1固体電解質層6bからのニッケルの拡散を抑制するため、850℃以下で行われる。 The second solid electrolyte layer 6c contains a second solid electrolyte material and does not substantially contain a nickel component. The second solid electrolyte layer 6c can be formed, for example, by a vapor phase method (eg, sputtering method). The deposition of the second solid electrolyte layer 6c is carried out at 850° C. or lower in order to suppress the diffusion of nickel from the first solid electrolyte layer 6b.

燃料極6aは、酸化ニッケルと第3固体電解質材料とを含む。燃料極6aは、例えば、酸化ニッケルと第3固体電解質材料とを混合した粉末を型に入れ、加圧成型することにより形成され得る。 The fuel electrode 6a contains nickel oxide and a third solid electrolyte material. The fuel electrode 6a can be formed, for example, by putting a powder obtained by mixing nickel oxide and a third solid electrolyte material into a mold and molding the mixture under pressure.

燃料極6aと第1固体電解質層6bとは、共焼結されていることが好ましい。共焼結は、例えば、1400℃以上の高温で行われる。これにより、第1固体電解質層6bが燃料極6aと強固に密着する。また、燃料極6aに含まれていたニッケル元素が第1固体電解質層6bに拡散し、第1固体電解質層6b内に複合酸化物が形成される。 The fuel electrode 6a and the first solid electrolyte layer 6b are preferably co-sintered. Co-sintering is performed at a high temperature of, for example, 1400° C. or higher. As a result, the first solid electrolyte layer 6b firmly adheres to the fuel electrode 6a. Also, the nickel element contained in the fuel electrode 6a diffuses into the first solid electrolyte layer 6b, forming a composite oxide in the first solid electrolyte layer 6b.

図1および図2において、セル構造体1を図3に示すセル構造体1Zで置き換えた燃料電池を組み立てる。燃料電池を組み立てた後、燃料流路53を介して燃料極6a側から燃料ガスを供給することで、燃料極6a内の酸化ニッケルが還元されて金属ニッケルに変化する。このとき、燃料極6aは、金属ニッケルへの変化に伴い収縮し、多孔質の燃料極3aに変化する。一方、第1固体電解質層6bに含まれる複合酸化物は還元され難く、殆ど収縮しない。よって、図1に示す燃料電池10が製造され得る。 1 and 2, the fuel cell is assembled by replacing the cell structure 1 with the cell structure 1Z shown in FIG. After the fuel cell is assembled, fuel gas is supplied from the side of the fuel electrode 6a through the fuel flow path 53, whereby the nickel oxide in the fuel electrode 6a is reduced and changed to metallic nickel. At this time, the fuel electrode 6a shrinks as it changes to metallic nickel, and changes to a porous fuel electrode 3a. On the other hand, the composite oxide contained in the first solid electrolyte layer 6b is difficult to be reduced and hardly shrinks. Therefore, the fuel cell 10 shown in FIG. 1 can be manufactured.

燃料極6a(3)の収縮に伴い、第1固体電解質層6b(4a)に収縮力が加わる。しかしながら、高温での共焼結により、燃料極6aと第1固体電解質層6bとの接合は強固である。よって、還元処理後の第1固体電解質層4aに割れや剥がれは発生し難い。収縮に伴う応力は第1固体電解質層4a内で緩和され、第2固体電解質層4bに伝わる応力は低減される。よって、第2固体電解質層4bに割れや剥がれが発生し難い。 As the fuel electrode 6a (3) shrinks, a shrinkage force is applied to the first solid electrolyte layer 6b (4a). However, co-sintering at a high temperature provides strong bonding between the fuel electrode 6a and the first solid electrolyte layer 6b. Therefore, the first solid electrolyte layer 4a after the reduction treatment is less likely to be cracked or peeled off. The stress associated with contraction is relieved within the first solid electrolyte layer 4a, and the stress transmitted to the second solid electrolyte layer 4b is reduced. Therefore, the second solid electrolyte layer 4b is less likely to be cracked or peeled off.

よって、燃料極-固体電解質層複合部材5Zを用いることで、燃料極-固体電解質層複合体5の割れおよび剥がれが抑制されるため、固体電解質層(第2固体電解質層4b)と燃料極3との対向面積を大きくし易く、出力電流の大きな燃料電池を容易に実現することができる。また、この燃料電池は、第2固体電解質層4bにニッケル成分を実質的に含まないため、発電効率が高い。 Therefore, by using the fuel electrode-solid electrolyte layer composite member 5Z, cracking and peeling of the fuel electrode-solid electrolyte layer composite 5 are suppressed. A fuel cell with a large output current can be easily realized. In addition, since the second solid electrolyte layer 4b of this fuel cell does not substantially contain a nickel component, the power generation efficiency is high.

以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described below based on examples and comparative examples, but the present invention is not limited to the following examples.

[実施例1]
(1)燃料極-固体電解質層複合部材の作製
NiOと、BZY(BaZr0.80.22.9)粉末とを、バインダ(ポリビニルアルコール)、界面活性剤(ポリカルボン酸型界面活性剤)、および適量のエタノールとともに、ボールミルで混合し、造粒した。このとき、NiOとBZYとは体積比70:30で混合した。バインダ、界面活性剤の量は、NiOおよびBZYの総量100質量部に対して、それぞれ、10質量部および0.5質量部とした。得られた造粒物を一軸成形して、第1前駆体層(直径200mm、厚み0.6mm)の成形体を得た。
[Example 1]
(1) Fabrication of fuel electrode -solid electrolyte layer composite member active agent), and an appropriate amount of ethanol were mixed in a ball mill and granulated. At this time, NiO and BZY were mixed at a volume ratio of 70:30. The amounts of the binder and the surfactant were 10 parts by mass and 0.5 parts by mass, respectively, with respect to 100 parts by mass of the total amount of NiO and BZY. The obtained granules were uniaxially molded to obtain a molded body of the first precursor layer (diameter: 200 mm, thickness: 0.6 mm).

BZY(BaZr0.80.22.9)と、バインダ(エチルセルロース)と、界面活性剤(ポリカルボン酸型界面活性剤)と、適量のブチルカルビトールアセテートとを混合することにより第2前駆体層のペーストを調製した。バインダおよび界面活性剤の量は、BZY100質量部に対して、それぞれ、6質量部および0.5質量部とした。第2前駆体層のペーストを成形体の一方の表面にスクリーン印刷により塗布した。 By mixing BZY (BaZr 0.8 Y 0.2 O 2.9 ), a binder (ethyl cellulose), a surfactant (polycarboxylic acid-type surfactant), and an appropriate amount of butyl carbitol acetate, the first A paste of two precursor layers was prepared. The amounts of binder and surfactant were 6 parts by mass and 0.5 parts by mass, respectively, with respect to 100 parts by mass of BZY. The paste for the second precursor layer was applied to one surface of the compact by screen printing.

塗膜形成後の成形体を、750℃で10時間加熱し、脱バインダ処理を行った。次いで、成形体を、大気雰囲気下、1600℃で10時間焼成し、燃料極と第1固体電解質層との積層体を得た。焼結後の第2前駆体層(第1固体電解質層)の厚みは、5μmであった。 After forming the coating film, the molded body was heated at 750° C. for 10 hours to remove the binder. Next, the compact was fired at 1600° C. for 10 hours in an air atmosphere to obtain a laminate of the fuel electrode and the first solid electrolyte layer. The thickness of the second precursor layer (first solid electrolyte layer) after sintering was 5 μm.

その後、第1固体電解質層上に、第2固体電解質層としてのBZYをスパッタ法で5μm成膜した。成膜温度は650℃とした。これにより、燃料極-固体電解質層複合部材X1を得た。 Thereafter, BZY as a second solid electrolyte layer was deposited on the first solid electrolyte layer to a thickness of 5 μm by sputtering. The film formation temperature was 650°C. Thus, a fuel electrode-solid electrolyte layer composite member X1 was obtained.

(2)還元処理
続いて、燃料極-固体電解質層複合部材X1を、水素雰囲気下、600℃で10時間加熱して、燃料極に含まれるNiOをNiに還元した。これにより、燃料極-固体電解質層複合体を得た。
(2) Reduction Treatment Subsequently, the fuel electrode-solid electrolyte layer composite member X1 was heated at 600° C. for 10 hours in a hydrogen atmosphere to reduce NiO contained in the fuel electrode to Ni. Thus, a fuel electrode-solid electrolyte layer composite was obtained.

(3)燃料電池の作製
続いて、第2固体電解質層の表面に、空気極の材料であるLSCF(La0.6Sr0.4Co0.2Fe0.83-δ)の粉末と有機溶媒(ブチルカルビトールアセテート)とを混合したLSCFペーストをスクリーン印刷し、120℃で乾燥させ、空気極を形成した。これにより、図2に示すセル構造体を得た。
空気極の厚みは10μmであった。
(3) Fabrication of fuel cell Subsequently, LSCF (La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ ) powder, which is the material of the air electrode, was applied to the surface of the second solid electrolyte layer. and an organic solvent (butyl carbitol acetate) were screen-printed and dried at 120° C. to form an air electrode. As a result, the cell structure shown in FIG. 2 was obtained.
The thickness of the air electrode was 10 μm.

上記で得られたセル構造体の燃料極の表面に、ガス流路を有するステンレス鋼製の燃料極側セパレータを積層し、空気極の表面に、ガス流路を有するステンレス鋼製のカソード側セパレータを積層し、燃料電池Y1を組み立てた。
アノード側セパレータおよびカソード側セパレータのそれぞれに、リード線の一方の端部を接合した。各リード線の他方の端部は、燃料電池の外部に引き出し、各リード線の間の電流値および電圧値を計測できるように、計測器に接続した。
(4)評価
600℃の運転条件で燃料電池を稼働させた。燃料極側に露点25℃に加湿された水素を1L/分の流量で、空気極側に露点―40℃以下の合成空気(酸素と窒素のみの混合物)を1L/分の流量で供給し、OCV(開回路電圧)を測定した。
A stainless steel anode-side separator having gas flow paths is laminated on the surface of the fuel electrode of the cell structure obtained above, and a stainless steel cathode-side separator having gas flow paths is laminated on the surface of the air electrode. were stacked to assemble the fuel cell Y1.
One end of the lead wire was joined to each of the anode-side separator and the cathode-side separator. The other end of each lead wire was pulled out of the fuel cell and connected to a measuring instrument so that the current value and voltage value between each lead wire could be measured.
(4) Evaluation The fuel cell was operated under operating conditions of 600°C. Hydrogen humidified to a dew point of 25 ° C. is supplied to the fuel electrode side at a flow rate of 1 L / min, and synthetic air (a mixture of only oxygen and nitrogen) having a dew point of −40 ° C. or less is supplied to the air electrode side at a flow rate of 1 L / min, OCV (open circuit voltage) was measured.

[比較例1]
NiOと、BZY(BaZr0.80.22.9)粉末とを、バインダ(ポリビニルアルコール)、界面活性剤(ポリカルボン酸型界面活性剤)、および適量のエタノールとともに、ボールミルで混合し、造粒した。このとき、NiOとBZYとは体積比70:30で混合した。バインダ、界面活性剤の量は、NiOおよびBZYの総量100質量部に対して、それぞれ、10質量部および0.5質量部とした。得られた造粒物を一軸成形して、第1前駆体層(直径200mm、厚み0.6mm)の成形体を得た。成形体を、750℃で10時間加熱し、脱バインダ処理を行った。次いで、成形体を、大気雰囲気下、1600℃で10時間焼成し、燃料極の焼結体を得た。
[Comparative Example 1]
NiO and BZY (BaZr 0.8 Y 0.2 O 2.9 ) powder are mixed in a ball mill with a binder (polyvinyl alcohol), a surfactant (polycarboxylic acid-type surfactant), and an appropriate amount of ethanol. and granulated. At this time, NiO and BZY were mixed at a volume ratio of 70:30. The amounts of the binder and the surfactant were 10 parts by mass and 0.5 parts by mass, respectively, with respect to 100 parts by mass of the total amount of NiO and BZY. The obtained granules were uniaxially molded to obtain a molded body of the first precursor layer (diameter: 200 mm, thickness: 0.6 mm). The compact was heated at 750° C. for 10 hours to remove the binder. Next, the molded body was fired at 1600° C. for 10 hours in an air atmosphere to obtain a sintered body of the fuel electrode.

その後、燃料極上に、第2固体電解質層としてのBZYをスパッタ法で10μm成膜した。成膜温度は650℃とした。これにより、燃料極-固体電解質層複合部材X2を得た。 Thereafter, BZY as a second solid electrolyte layer was deposited on the fuel electrode to a thickness of 10 μm by sputtering. The film formation temperature was 650°C. Thus, a fuel electrode-solid electrolyte layer composite member X2 was obtained.

上記の燃料極-固体電解質層複合部材X2を用いて、実施例1と同様にして燃料電池Y2を作成し、同様に評価した。 Using the fuel electrode-solid electrolyte layer composite member X2, a fuel cell Y2 was produced in the same manner as in Example 1 and evaluated in the same manner.

[比較例2]
NiOと、BZY(BaZr0.80.22.9)粉末とを、バインダ(ポリビニルアルコール)、界面活性剤(ポリカルボン酸型界面活性剤)、および適量のエタノールとともに、ボールミルで混合し、造粒した。このとき、NiOとBZYとは体積比70:30で混合した。バインダ、界面活性剤の量は、NiOおよびBZYの総量100質量部に対して、それぞれ、10質量部および0.5質量部とした。得られた造粒物を一軸成形して、第1前駆体層(直径200mm、厚み0.6mm)の成形体を得た。
[Comparative Example 2]
NiO and BZY (BaZr 0.8 Y 0.2 O 2.9 ) powder are mixed in a ball mill with a binder (polyvinyl alcohol), a surfactant (polycarboxylic acid-type surfactant), and an appropriate amount of ethanol. and granulated. At this time, NiO and BZY were mixed at a volume ratio of 70:30. The amounts of the binder and the surfactant were 10 parts by mass and 0.5 parts by mass, respectively, with respect to 100 parts by mass of the total amount of NiO and BZY. The obtained granules were uniaxially molded to obtain a molded body of the first precursor layer (diameter: 200 mm, thickness: 0.6 mm).

BZY(BaZr0.80.22.9)と、バインダ(エチルセルロース)と、界面活性剤(ポリカルボン酸型界面活性剤)と、適量のブチルカルビトールアセテートとを混合することにより第2固体電解質層のペーストを調製した。バインダおよび界面活性剤の量は、BZY100質量部に対して、それぞれ、6質量部および0.5質量部とした。ペーストを成形体の一方の表面にスクリーン印刷により塗布した。 By mixing BZY (BaZr 0.8 Y 0.2 O 2.9 ), a binder (ethyl cellulose), a surfactant (polycarboxylic acid-type surfactant), and an appropriate amount of butyl carbitol acetate, the first A paste of two solid electrolyte layers was prepared. The amounts of binder and surfactant were 6 parts by mass and 0.5 parts by mass, respectively, with respect to 100 parts by mass of BZY. The paste was applied to one surface of the compact by screen printing.

塗膜形成後の成形体を、750℃で10時間加熱し、脱バインダ処理を行った。次いで、成形体を、大気雰囲気下、1600℃で10時間焼成し、燃料極と第2固体電解質層との焼結体を得た。焼結後の第2固体電解質層の厚みは、5μmであった。これにより、燃料極-固体電解質層複合部材X3を得た。 After forming the coating film, the molded body was heated at 750° C. for 10 hours to remove the binder. Next, the molded body was fired at 1600° C. for 10 hours in an air atmosphere to obtain a sintered body of the fuel electrode and the second solid electrolyte layer. The thickness of the second solid electrolyte layer after sintering was 5 μm. Thus, a fuel electrode-solid electrolyte layer composite member X3 was obtained.

上記の燃料極-固体電解質層複合部材X3を用いて、実施例1と同様にして燃料電池Y3を作成し、同様に評価した。 Using the fuel electrode-solid electrolyte layer composite member X3, a fuel cell Y3 was produced in the same manner as in Example 1 and evaluated in the same manner.

燃料極-固体電解質層複合部材X1を用いた実施例1の燃料電池Y1は、1.05Vの高いOCVを示した。また、評価後の燃料電池を分解し、燃料極-固体電解質層複合体を取り出したところ、第2固体電解質層に割れ(クラック)および剥がれは視認されなかった。 The fuel cell Y1 of Example 1 using the fuel electrode-solid electrolyte layer composite member X1 exhibited a high OCV of 1.05V. Further, when the fuel cell after evaluation was disassembled and the fuel electrode-solid electrolyte layer composite was taken out, cracks and peeling were not visually observed in the second solid electrolyte layer.

一方、燃料極-固体電解質層複合部材X2を用いた比較例1の燃料電池Y2では、OCVは0.3V以下であり、発電が困難であった。評価後の燃料電池を分解し、燃料極-固体電解質層複合体を取り出したところ、第2固体電解質層の一部が燃料極から剥離していた。また、第2固体電解質層に多数のクラックが目視で確認された。 On the other hand, in the fuel cell Y2 of Comparative Example 1 using the fuel electrode-solid electrolyte layer composite member X2, the OCV was 0.3 V or less, and power generation was difficult. When the fuel cell after evaluation was disassembled and the fuel electrode-solid electrolyte layer composite was taken out, it was found that part of the second solid electrolyte layer was separated from the fuel electrode. Also, many cracks were visually observed in the second solid electrolyte layer.

また、燃料極-固体電解質層複合部材X3を用いた比較例2の燃料電池Y3では、OCVは0.96Vであり、実施例1の燃料電池Y1よりも低かった。評価後の燃料電池を分解し、燃料極-固体電解質層複合体を取り出したところ、第2固体電解質層に割れ(クラック)および剥がれは視認されなかった。燃料電池Y3のOCVが燃料電池Y1のOCVよりも低い理由は、燃料極(第1前駆体層)とともに第2固体電解質層を高温(1600℃)で共焼結していることから、燃料極に含まれるニッケルの一部が第2固体電解質層に拡散し、第2固体電解質層のプロトン伝導性が低下したためと考えられる。 Further, in the fuel cell Y3 of Comparative Example 2 using the fuel electrode-solid electrolyte layer composite member X3, the OCV was 0.96 V, which was lower than that of the fuel cell Y1 of Example 1. When the fuel cell after evaluation was disassembled and the fuel electrode-solid electrolyte layer composite was taken out, no cracks or peeling of the second solid electrolyte layer was visually observed. The reason why the OCV of the fuel cell Y3 is lower than that of the fuel cell Y1 is that the fuel electrode (first precursor layer) and the second solid electrolyte layer are co-sintered at a high temperature (1600° C.). part of the nickel contained in the diffusion into the second solid electrolyte layer, and the proton conductivity of the second solid electrolyte layer decreased.

本開示の実施形態に係る燃料極-固体電解質層複合部材および燃料極-固体電解質層複合体は、固体電解質型燃料電池(SOFC)での利用に適し、特に400℃~600℃の中温域で動作するSOFCに適している。 The fuel electrode-solid electrolyte layer composite member and the fuel electrode-solid electrolyte layer composite according to the embodiments of the present disclosure are suitable for use in solid oxide fuel cells (SOFC), particularly in the medium temperature range of 400 ° C. to 600 ° C. Suitable for working SOFC.

1、1Z:セル構造体
2:空気極
3:燃料極
4:固体電解質層
4a:第1固体電解質層
4b:第2固体電解質層
5:燃料極-固体電解質層複合体
5Z:燃料極-固体電解質層複合部材
6a:燃料極
6b:第1固体電解質層
6c:第2固体電解質層
10:燃料電池
21、51:集電体
22、52:セパレータ
23:酸化剤流路
53:燃料流路
1, 1Z: cell structure 2: air electrode 3: fuel electrode 4: solid electrolyte layer 4a: first solid electrolyte layer 4b: second solid electrolyte layer 5: fuel electrode-solid electrolyte layer composite 5Z: fuel electrode-solid Electrolyte layer composite member 6a: Fuel electrode 6b: First solid electrolyte layer 6c: Second solid electrolyte layer 10: Fuel cell 21, 51: Current collector 22, 52: Separator 23: Oxidant channel 53: Fuel channel

Claims (16)

多孔質の燃料極と、
前記燃料極上に形成された第1固体電解質層と、
前記第1固体電解質層の前記燃料極と反対側に積層された、前記燃料極よりも小さな空隙率を有する第2固体電解質層と、を含み、
前記第1固体電解質層は、第1固体電解質材料と、ニッケル元素と前記第1固体電解質材料を構成する金属元素とを含む複合酸化物と、を含み、
前記第2固体電解質層は、第2固体電解質材料を含み、且つニッケル元素を実質的に含まず、
前記燃料極は、第3固体電解質材料と、金属ニッケルとを含む、燃料極-固体電解質層複合体。
a porous fuel electrode;
a first solid electrolyte layer formed on the fuel electrode;
a second solid electrolyte layer having a porosity smaller than that of the fuel electrode, the second solid electrolyte layer being laminated on the opposite side of the first solid electrolyte layer from the fuel electrode;
The first solid electrolyte layer includes a first solid electrolyte material and a composite oxide containing a nickel element and a metal element constituting the first solid electrolyte material,
the second solid electrolyte layer contains a second solid electrolyte material and does not substantially contain nickel element;
The fuel electrode is a fuel electrode-solid electrolyte layer composite including a third solid electrolyte material and metallic nickel.
前記第1固体電解質層におけるニッケル含有割合は、前記燃料極におけるニッケル含有割合よりも小さい、請求項1に記載の燃料極-固体電解質層複合体。 2. The fuel electrode-solid electrolyte layer composite according to claim 1, wherein the nickel content in said first solid electrolyte layer is smaller than the nickel content in said fuel electrode. 前記第1固体電解質層は、金属ニッケルを実質的に含まない、請求項1または請求項2に記載の燃料極-固体電解質層複合体。 3. The fuel electrode-solid electrolyte layer composite according to claim 1, wherein said first solid electrolyte layer does not substantially contain metallic nickel. 前記第1固体電解質層は、酸化ニッケルを実質的に含まない、請求項1から請求項3のいずれか1項に記載の燃料極-固体電解質層複合体。 4. The fuel electrode-solid electrolyte layer composite according to claim 1, wherein said first solid electrolyte layer does not substantially contain nickel oxide. 前記第2固体電解質層の厚みは、0.2μm~20μmである、請求項1から請求項4のいずれか1項に記載の燃料極-固体電解質層複合体。 5. The fuel electrode-solid electrolyte layer composite according to claim 1, wherein the second solid electrolyte layer has a thickness of 0.2 μm to 20 μm. 前記第1固体電解質材料、前記第2固体電解質材料、および、前記第3固体電解質材料の少なくとも1つが、ペロブスカイト型構造を有し、かつ下記式(1):
x1-yy3-δ
で表される金属酸化物を含み、
元素Aは、Ba、CaおよびSrよりなる群から選択される少なくとも一種であり、
元素Bは、CeおよびZrよりなる群から選択される少なくとも一種であり、
元素Mは、Y、Yb、Er、Ho、Tm、Gd、InおよびScよりなる群から選択される少なくとも一種であり、
δは酸素欠損量であり、0.95≦x≦1、0<y≦0.5を満たす、請求項1から請求項5のいずれか1項に記載の燃料極-固体電解質層複合体。
At least one of the first solid electrolyte material, the second solid electrolyte material, and the third solid electrolyte material has a perovskite structure, and the following formula (1):
A x B 1-y M y O 3-δ
Including a metal oxide represented by
Element A is at least one selected from the group consisting of Ba, Ca and Sr,
Element B is at least one selected from the group consisting of Ce and Zr,
element M is at least one selected from the group consisting of Y, Yb, Er, Ho, Tm, Gd, In and Sc;
6. The fuel electrode-solid electrolyte layer composite according to any one of claims 1 to 5, wherein δ is the amount of oxygen deficiency and satisfies 0.95≤x≤1 and 0<y≤0.5.
請求項1から請求項6のいずれか1項に記載の燃料極-固体電解質層複合体と、空気極とを含み、前記燃料極と前記空気極との間に前記第2固体電解質層が介在するセル構造体、
前記空気極に酸化剤を供給するための酸化剤流路、および、
前記燃料極に燃料を供給するための燃料流路、を備える燃料電池。
A fuel electrode-solid electrolyte layer composite according to any one of claims 1 to 6 and an air electrode, wherein the second solid electrolyte layer is interposed between the fuel electrode and the air electrode a cell structure that
an oxidant channel for supplying an oxidant to the air electrode; and
A fuel cell comprising: a fuel channel for supplying fuel to the fuel electrode.
燃料極と、第1固体電解質層と、前記燃料極と前記第1固体電解質層との積層体の前記第1固体電解質層側に積層された第2固体電解質層と、を有し、
前記第1固体電解質層は、第1固体電解質材料と、ニッケル元素と前記第1固体電解質材料を構成する金属元素とを含む複合酸化物と、を含み、
前記第2固体電解質層は、第2固体電解質材料を含み、且つニッケル元素を実質的に含まず、
前記燃料極は、第3固体電解質材料と、酸化ニッケルとを含む、燃料極-固体電解質層複合部材。
a fuel electrode, a first solid electrolyte layer, and a second solid electrolyte layer laminated on the first solid electrolyte layer side of a laminate of the fuel electrode and the first solid electrolyte layer,
The first solid electrolyte layer includes a first solid electrolyte material and a composite oxide containing a nickel element and a metal element constituting the first solid electrolyte material,
the second solid electrolyte layer contains a second solid electrolyte material and does not substantially contain nickel element;
The fuel electrode is a fuel electrode-solid electrolyte layer composite member containing a third solid electrolyte material and nickel oxide.
前記第1固体電解質層は酸化ニッケルを実質的に含まないか、または前記第1固体電解質層における酸化ニッケルの含有割合は、前記燃料極における酸化ニッケルの含有割合よりも小さい、請求項8に記載の燃料極-固体電解質層複合部材。 9. The method according to claim 8, wherein said first solid electrolyte layer does not substantially contain nickel oxide, or the content of nickel oxide in said first solid electrolyte layer is lower than the content of nickel oxide in said fuel electrode. fuel electrode-solid electrolyte layer composite member. 前記第1固体電解質層は、酸化ニッケルを実質的に含まない、請求項9に記載の燃料極-固体電解質層複合部材。 10. The fuel electrode-solid electrolyte layer composite member according to claim 9, wherein said first solid electrolyte layer does not substantially contain nickel oxide. 前記第1固体電解質材料、前記第2固体電解質材料、および、前記第3固体電解質材料の少なくとも1つが、ペロブスカイト型構造を有し、かつ下記式(2):
x1-yy3-δ
で表される金属酸化物を含み、
元素Aは、Ba、CaおよびSrよりなる群から選択される少なくとも一種であり、
元素Bは、CeおよびZrよりなる群から選択される少なくとも一種であり、
元素Mは、Y、Yb、Er、Ho、Tm、Gd、InおよびScよりなる群から選択される少なくとも一種であり、
δは酸素欠損量であり、0.95≦x≦1、0<y≦0.5を満たす、請求項8から請求項10のいずれか1項に記載の燃料極-固体電解質層複合部材。
At least one of the first solid electrolyte material, the second solid electrolyte material, and the third solid electrolyte material has a perovskite structure, and the following formula (2):
A x B 1-y M y O 3-δ
Including a metal oxide represented by
Element A is at least one selected from the group consisting of Ba, Ca and Sr,
Element B is at least one selected from the group consisting of Ce and Zr,
element M is at least one selected from the group consisting of Y, Yb, Er, Ho, Tm, Gd, In and Sc;
11. The fuel electrode-solid electrolyte layer composite member according to any one of claims 8 to 10, wherein δ is the amount of oxygen deficiency and satisfies 0.95≤x≤1 and 0<y≤0.5.
酸化ニッケル(NiO)を含む燃料極と、第1固体電解質材料、および、ニッケルと前記第1固体電解質材料を構成する金属元素との複合酸化物を含む第1固体電解質層と、の積層体を得る工程と、
前記積層体の前記第1固体電解質層側に、第2固体電解質材料を含み且つニッケル元素を実質的に含まない第2固体電解質層を、850℃以下で形成し、燃料極-固体電解質層複合部材を得る工程と、
前記燃料極-固体電解質層複合部材の前記第2固体電解質層側に空気極を形成し、セル構造体を得る工程と、を有する、燃料電池の製造方法。
A laminate of a fuel electrode containing nickel oxide (NiO), a first solid electrolyte material, and a first solid electrolyte layer containing a composite oxide of nickel and a metal element constituting the first solid electrolyte material a process of obtaining
A second solid electrolyte layer containing a second solid electrolyte material and substantially free of nickel element is formed on the first solid electrolyte layer side of the laminate at 850° C. or less, and the fuel electrode-solid electrolyte layer composite obtaining a member;
forming an air electrode on the second solid electrolyte layer side of the fuel electrode-solid electrolyte layer composite member to obtain a cell structure.
前記燃料極に含まれる酸化ニッケルを金属ニッケルに還元する還元処理工程をさらに有する、請求項12に記載の燃料電池の製造方法。 13. The method of manufacturing a fuel cell according to claim 12, further comprising a reduction treatment step of reducing nickel oxide contained in said fuel electrode to metallic nickel. 前記積層体を得る工程において、前記第1固体電解質層は酸化ニッケルを実質的に含まないか、または酸化ニッケルの含有割合が前記燃料極よりも小さい、請求項12または請求項13に記載の燃料電池の製造方法。 14. The fuel according to claim 12 or 13, wherein in the step of obtaining the laminate, the first solid electrolyte layer does not substantially contain nickel oxide or has a nickel oxide content lower than that of the fuel electrode. Battery manufacturing method. 前記積層体を得る工程が、
第3固体電解質材料および酸化ニッケルを含む第1前駆体層上に、前記第1固体電解質材料を含む第2前駆体層を形成する工程と、
前記第1前駆体層および前記第2前駆体層を1400℃以上で熱処理し、前記第1前駆体層に対応する前記燃料極と、前記第2前駆体層に対応する前記第1固体電解質層と得る工程とを含む、請求項12から請求項14のいずれか1項に記載の燃料電池の製造方法。
The step of obtaining the laminate includes
forming a second precursor layer containing the first solid electrolyte material on a first precursor layer containing the third solid electrolyte material and nickel oxide;
The first precursor layer and the second precursor layer are heat-treated at 1400° C. or higher, and the fuel electrode corresponding to the first precursor layer and the first solid electrolyte layer corresponding to the second precursor layer 15. The method of manufacturing a fuel cell according to any one of claims 12 to 14, comprising the step of obtaining
前記第2前駆体層は、ニッケル元素を実質的に含まない、請求項15に記載の燃料電池の製造方法。 16. The method of manufacturing a fuel cell according to claim 15, wherein said second precursor layer does not substantially contain nickel element.
JP2019122150A 2019-06-28 2019-06-28 Fuel electrode-solid electrolyte layer composite, fuel electrode-solid electrolyte layer composite member, fuel cell, and fuel cell manufacturing method Pending JP2022119219A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019122150A JP2022119219A (en) 2019-06-28 2019-06-28 Fuel electrode-solid electrolyte layer composite, fuel electrode-solid electrolyte layer composite member, fuel cell, and fuel cell manufacturing method
PCT/JP2020/022292 WO2020261935A1 (en) 2019-06-28 2020-06-05 Fuel electrode-solid electrolyte layer composite body, fuel electrode-solid electrolyte layer composite member, fuel cell and method for producing fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019122150A JP2022119219A (en) 2019-06-28 2019-06-28 Fuel electrode-solid electrolyte layer composite, fuel electrode-solid electrolyte layer composite member, fuel cell, and fuel cell manufacturing method

Publications (1)

Publication Number Publication Date
JP2022119219A true JP2022119219A (en) 2022-08-17

Family

ID=74061236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019122150A Pending JP2022119219A (en) 2019-06-28 2019-06-28 Fuel electrode-solid electrolyte layer composite, fuel electrode-solid electrolyte layer composite member, fuel cell, and fuel cell manufacturing method

Country Status (2)

Country Link
JP (1) JP2022119219A (en)
WO (1) WO2020261935A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6774361B2 (en) * 2016-04-04 2020-10-21 パナソニック株式会社 Membrane electrode assembly and solid oxide fuel cell
WO2019107194A1 (en) * 2017-11-29 2019-06-06 国立大学法人京都大学 Proton conductor, proton-conducting cell structure, water vapor electrolysis cell, and method for producing hydrogen electrode-solid electrolyte layer complex

Also Published As

Publication number Publication date
WO2020261935A1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
Fabbri et al. Towards the next generation of solid oxide fuel cells operating below 600 C with chemically stable proton‐conducting electrolytes
US11233262B2 (en) Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell and manufacturing method for electrochemical element
EP1768208A2 (en) High performance anode-supported solid oxide fuel cell
EP2495791B1 (en) Fuel cell, cell stack, fuel cell module, and fuel cell device
US9070946B2 (en) Electrolyte-electrode joined assembly and method for producing the same
CN106848358B (en) Doped cerium oxide based solid oxide fuel cell and preparation method thereof
JP6658754B2 (en) Solid oxide fuel cell and method for producing electrolyte layer-anode assembly
US20080248395A1 (en) Electrolyte-Electrode Joined Assembly and Method for Producing the Same
CN107112564B (en) Battery structure, method for manufacturing same, and fuel cell
US20230392249A1 (en) Manufacturing Method for Alloy Material, Alloy Material, Electrochemical Element, Electrochemical Module, Electrochemical Device, Energy System and Solid Oxide Fuel Cell
JP6370696B2 (en) Cell structure, electrolyte membrane-electrode assembly, and fuel cell
JP5247051B2 (en) Fuel cell and fuel cell stack, and fuel cell
EP2973810B1 (en) Fuel cell system including multilayer interconnect
JP7129707B2 (en) LAMINATED STRUCTURE OF IONIC AND ELECTRONIC MIXED CONDUCTIVE ELECTROLYTE AND ELECTRODE, AND METHOD FOR MANUFACTURING THE SAME
EP3343682B1 (en) Flat plate-shaped solid oxide fuel cell and cell module comprising same
KR102111859B1 (en) Solid oxide fuel cell and a battery module comprising the same
CN110402514B (en) Substrate with electrode layer for metal-supported electrochemical device, and method for manufacturing the same
JP7107875B2 (en) Manufacturing method of fuel electrode-solid electrolyte layer composite
JP2004355814A (en) Solid oxide fuel battery cell and its manufacturing method
KR20120085488A (en) Solid electrolyte for solid oxide fuel cell, and solid oxide fuel cell including the solid electrolyte
WO2020261935A1 (en) Fuel electrode-solid electrolyte layer composite body, fuel electrode-solid electrolyte layer composite member, fuel cell and method for producing fuel cell
JP4913257B1 (en) Solid oxide fuel cell
JP2018174116A (en) Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and manufacturing method of electrochemical element
WO2018181924A1 (en) Electrochemical element, electrochemical module, solid oxide fuel cell and production method
JP2022115542A (en) solid oxide fuel cell