JP2022117645A - 噴霧装置 - Google Patents
噴霧装置 Download PDFInfo
- Publication number
- JP2022117645A JP2022117645A JP2021014256A JP2021014256A JP2022117645A JP 2022117645 A JP2022117645 A JP 2022117645A JP 2021014256 A JP2021014256 A JP 2021014256A JP 2021014256 A JP2021014256 A JP 2021014256A JP 2022117645 A JP2022117645 A JP 2022117645A
- Authority
- JP
- Japan
- Prior art keywords
- water
- ozone
- gas
- nozzle
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Spray Control Apparatus (AREA)
- Coating Apparatus (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Nozzles (AREA)
Abstract
【課題】病院や介護施設、人の多く集まるホール・競技会場、繁華街などに設置して利用することが可能な、オゾン分子水を噴霧する噴霧装置を提供する。【解決手段】本発明に係る噴霧装置1は、オゾンガスと水とを混合しオゾン分子水とする気液混合部と、前記気液混合部で気液混合されたオゾン分子水を貯留する貯留タンクと、前記貯留タンクに貯留されるオゾン分子水を前記気液混合部に再度通過させる循環構造と、前記貯留タンクに貯留されるオゾン分子水を往路配管に圧送するポンプと、前記往路配管(401)に連通し、オゾン分子水を前記貯留タンクに戻すように流通させる復路配管(405)と、前記往路配管(401)に設けられ、オゾン分子水を噴霧する複数のノズル(411~414)と、からなることを特徴とする【選択図】 図16
Description
本発明は、オゾンが溶存した状態であるオゾン水をミスト状に散布することが可能な噴霧装置に関する。
現在、新型コロナウイルス(COVID-19)やこれが変異した新型コロナウイルスによるパンデミックが発生し、全世界で流行している。世界的な潮流として、温室効果ガスの影響等で気温・気象の変動もあり、新型コロナウイルス以外にも、他のウイルスや細菌による感染症の危険は常に存在し、また反復して発生して人類に被害を及ぼすとことは避けられないと考えられる。
新型コロナウイルス感染のつまびらかなメカニズムについては解明が待たれるが、そのメカニズムは接触感染、飛沫感染、空気感染(飛沫感染)であるといわれている。
新型コロナウイルスの感染が確認された当初において、CDC(アメリカ疾病予防管理センター)の調査チームが、中国武漢のコロナ患者を受け入れた病院で調査した結果により、新型コロナウイルスは、圧倒的な量(マスクや手袋の10~30倍)で床に落下し、付着していることが判明した。このような床上の新型コロナウイルスは、人が歩くことで空中に舞いあがったり、或いは、人の体温により生じる気流にのって体表付近を上昇したりして、これを人が呼吸により人体に取り込まれる、という経路で伝搬する可能性が高いとされている。
前記のような空中の新型コロナウイルス対策として、空中に二酸化塩素や次亜塩素酸を含む水溶液を消毒液として噴霧して、新型コロナウイルスを死滅させることも検討されたが、当該消毒液の人体に対する危険性は、WHO(世界保健機関)等から指摘され、日本の厚生労働省も使用を認めないことを表明している。
そこで、低い濃度では人体的に害がないオゾン水を空中に対して噴霧し、オゾンによる強力な酸化作用によりウイルスを不活性化することが考えられる。例えば、特許文献1(特許3600475号公報)には、オゾン発生器により生成されたオゾン含有気体と、水などの液体の2流体を同時に噴霧して、ウイルスなどを不活性化するオゾンスプレ装置が提案されている。
特許3600475号公報
オゾンはフッ素に次ぐ酸化性能を有するガスであり、新型コロナウイルス、高病原性鳥インフルエンザ他、あらゆるウイルス・細菌に対して不活性化効果があることが知られている。ただし、ガスとしてのオゾンは、空中でウイルスや細菌と反応する能力は低い。一方、オゾンが溶存した状態であるオゾン水では、このような能力が非常に高い。
特許文献1記載のオゾンスプレ装置によって噴霧されるミストは、実質的にオゾンガスと、水の微粒子とからなるもの(特許文献1段落番号〔0028〕、〔0029〕)であり、オゾン水自体のミストではなく、特許文献1記載の従来技術によるオゾンスプレイは、空中でウイルスや細菌と反応する能力は低いものと考えられ、従来技術に係るオゾンスプレ装置は、新型コロナウイルスなどの未知の感染症の対策として、例えば、病院や介護施設、人の多く集まるホール・競技会場、繁華街などに設置して利用し得るようなものではない、という問題があった。
この発明は、上記のような課題を解決するものであって、本発明に係る噴霧装置は、オゾンガスと水とを混合しオゾン分子水とする気液混合部と、前記気液混合部で気液混合されたオゾン分子水を貯留する貯留タンクと、前記貯留タンクに貯留されるオゾン分子水を前記気液混合部に再度通過させる循環構造と、前記貯留タンクに貯留されるオゾン分子水を往路配管に圧送するポンプと、前記往路配管に連通し、オゾン分子水を前記貯留タンクに戻すように流通させる復路配管と、前記往路配管に設けられ、オゾン分子水を噴霧する複数のノズルと、からなることを特徴とする。
また、本発明に係る噴霧装置は、前記ノズルが1流体型ノズルであり、前記ノズルから噴霧されるオゾン分子水のミストの粒径は30μm~100μmに分布していることを特徴とする。
また、本発明に係る噴霧装置は、前記ノズルが2流体型ノズルであり、前記ノズルから噴霧されるオゾン分子水のミストの粒径は5μm~30μmに分布していることを特徴とする。
また、本発明に係る噴霧装置は、前記ノズルからのオゾン分子水の噴霧が間欠的に行われることを特徴とする。
また、本発明に係る噴霧装置は、前記貯留タンクに貯留されるオゾン分子水を冷却する冷却機が設けられることを特徴とする。
また、本発明に係る噴霧装置は、前記ノズルによりオゾン分子水が噴霧される空間に環境オゾン濃度計が設けられることを特徴とする。
また、本発明に係る噴霧装置は、前記復路配管中に減圧弁が設けられることを特徴とする。
本発明に係る噴霧装置によれば、複数のノズルからはオゾン分子水を噴霧することが可能であり、ウイルスや細菌に対して高い不活性化効果が期待でき、新型コロナウイルスなどの未知の感染症の対策として、例えば、病院や介護施設、人の多く集まるホール・競技会場、繁華街などに設置して利用することが可能となる。
以下、本発明について具体的に説明する。本発明に係る噴霧装置1は、概略、オゾン分子水生成部201と、オゾン分子水生成部201で生成されたオゾン分子水を実際に噴霧する噴霧部400とから構成されている。
オゾン分子水生成部201により原水中にオゾン分子を溶存させたオゾン分子水を生成するものである。まず、本発明に係る噴霧装置1に含まれるオゾン分子水生成部201が生成するオゾン分子水について説明する。
ここでいう、オゾン分子水(Ozone water molecules hydrated)とは、オゾン分子が少なくとも原水の水分子間に高密度に存在し、水素結合率が原水の水素結合率より小さくなるほどに高密度でオゾン分子が溶存保持されたオゾン分子水をいう。別の観点からは、原水の水素結合エネルギーが減少するほどに高密度でオゾン分子が溶存保持されたオゾン分子水をいう。オゾンはその強力な酸化能力で知られているが、水及び液体中に於いて難溶解性であり水分子と結合して安定存在することはできない。気泡として存在する場合には、気泡は液体に比較して質量や密度が低い故に短時間で容易に浮上して液面から脱気されてしまう。したがって、本発明で使用される「オゾン分子水」は、「オゾン水」の語句を含むものの、従来のオゾン水のように、単に、水にオゾンの微小気泡が溶け込むことにより生成されるものとは全く異なる。
本発明でいうオゾン分子水は、オゾン分子が水分子中に散逸して水素結合率を平均して観た時、水分子間の一部の水素結合を阻害してエネルギーの低下が観察できる状態をいい、気泡でなく分子単位で存在するオゾンが極度に高密度で維持されている状態をいう。即ち、ナノ秒で水素結合の結合分離を繰り返すH2O分子群は、常に一定の割合で(水温・圧力条件が同じであれば)結合エネルギーを示すものであり、その割合が観測可能なほど顕著に減少する場合には、尋常ではない高密度でオゾン分子がH2O群分子群に分散していることを証明するものとなる。当然、酸素など水に溶解可能なガスの場合は、水素結合により溶けるので飽和濃度未満の溶存状態で、前記結合エネルギーを減少させるといった作用は起こらない。水は極めて短時間に流動変化する運動を間断なく繰り返すと共に、構造的には水分子群と隙間となる空間で成るが、オゾン分子水ではオゾンが隙間に高い比率で存在するという状態にあると予想される。分子単位で存在するオゾンは、気泡と違って浮力の影響を受けることは無いことから、液中に安定して保持することが可能となる。それに加えて、太陽光を遮断したタンク内で生成することで紫外線によるオゾン分解は抑制できる。さらに、原水を一定程度冷却するか、オゾン水生成プロセスで冷却保持することによりヘンリー定数を用いて説明される温度によるオゾンの自己分解も抑制することができる。この時、オゾン水として20℃以下であること、望ましくは15℃以下であること、これより望ましくは10℃以下であること、さらに望ましくは水分子の運動が最も緩慢で安定している4℃付近であることが生成効率を高めるために有効となる。いずれにせよ、オゾン分子水といえるほど安定化させたオゾン水であることを基本として、濃度低下、即ちオゾンが分解して酸素に変化することを抑制する方法を合わせて、本目的に適合させることが重要である。
オゾンの酸化特性は水分子と深い関連性を有する。例えば、オゾンガスと有機性ガス(例として臭気)を乾燥した気相環境で接触反応させた場合には、その酸化反応はあるものの、比較的長い作用時間が必要となる。しかし、同様の条件で加湿し水分子の浮遊・接触する条件を与えると即座に作用して酸化反応を終える。
次に、本発明において使用されるオゾン分子を含むオゾン分子水について説明する。本発明では、原水中にオゾン分子を溶存させて生成されるオゾン分子水を用いるが、以下の説明では原水中にガスが著しく多量に溶存された、さらに安定化された気液混合水である、ガス分子水和水(Gas hydration water molecules)について解説し、ガス分子の種類は限定していない。ガス分子水和水の中でガス分子の種類をオゾン分子に限定したものが上述したオゾン分子水に該当する。
まず、一般的なクラスレート(Clathrate)、ハイドレート(Hydrate)の概念について説明する。クラスレートとは、所定の化合物の結晶格子によって作られた空間の中に、他の物質原子や分子が入り込み、共有結合などの結合によらず安定な状態で存在している物質として一般的に知られている。包接化合物(「包摂」、「抱摂」などの表記もある)とも呼ばれる。例えばシリコンクラスレートの場合、所定のシリコンの結晶構造(様々なタイプがある)の中にアルカリ金属などのゲスト原子が封じ込められた状態で存在する。
また、ハイドレート(ガスハイドレート)とは水包接化合物とも呼ばれ、水素結合による水分子で構成される立体網状構造の間隙中に、他のガス分子が入り込んだ状態で存在している物質として一般的に知られている。特によく知られているメタンハイドレート(Methane hydrate)は、水分子で構成される立体網状構造の間隙中にメタン分子が入り込むことによって形成される見た目が氷、シャーベットのような物質であり、日本近海に大量に存在する天然資源であるため、その有効活用が期待されている。
メタンハイドレートが海底や凍土の中に固体で存在していることが知られているように、クラスレート、ハイドレートといった物質は、高圧環境、氷結温度域又はそれ以下の低温という条件下で、所定の結晶構造を有する固体物質の形態で存在することが一般的に認知されている。
一方、本発明の概念を説明する場合にも「ハイドレート」、「クラスレート」といった用語を用いることができるが、本発明による生成物質を意味する場合の「ハイドレート」、「クラスレート」は、上述した一般的に認知されている固体・結晶格子の構造、性質を持たない。
すなわち、既に説明したように、本発明において母体物質である水はあくまで液体であり、固体・結晶格子等格子間結合した構造ではなく、従来のクラスレート、ハイドレートとはこの点で異なるものであり、本発明の物質はガス分子水和水、または液体ハイドレートとも呼べるものである。結晶化している氷状固体である従来の固相ガス含有物質と、一方で本発明による流動する液相という母体物質状態に基本的差異があるものの、ガスが分子単位で水中に分散されているという点では共通であり、故にガス分子水和水または液体ハイドレートという表現をするものである。
2005年、R.J.D.Millerらにより、水にレーザーパルス照射で生じさせた構造変化は、50フェムト秒以内に失われることが報告されている。(Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O; Nature 434, 199-202 , 2005年3月10日発表)。すなわち、水の運動変化は極めて短時間の運動であり、時間的に計測可能な限界範囲の領域でも確かな観測が困難であった。また、仮に観測対象の水を取囲む圧力条件に変化が無い状態であっても、水温の変化により運動エネルギーは大きく変動して定量に計測ができないということがあり、常温条件にある水物性の研究の解明を妨げてきた。
本発明の生成物質であるガス分子水和水の概念図を図1に示す。これは水が絶え間なく運動するその瞬間の分子状態をモデルで示した図である。図1において、水分子H2O中のH原子は電気陰性度の大きなO原子と共有結合(図中の実線)により結合されており、プラス(+)の電荷を帯びている(水素イオン)。このH原子は、他のH2O分子中のマイナス(-)の電荷を帯びたO原子とも水素結合(図中の点線)により結合している。不純物の無い水においては、図中の各分子以外の領域は非物質空間となり、この非物質空間に、例えばアルコールのような水と水和する物質は入り込むことができるので、水とアルコールを混合した場合の総和量は両者の単純な体積の和より一定量減少する。また、水の分子運動においては、水素結合をしている箇所では、マイナスの電荷を帯びた二つの水分子の酸素原子の間で、プラスの電荷を帯びた水素イオンの渡し合い(キャッチボール)が生じていることが知られている。
ガスを水に溶かす場合、H2Oではない他の物質であるガスの分子がアルコールと同様に、非物質空間に許容されて溶存することは溶解と表現される。水に作用する環境圧力の条件と水温条件により溶存ガス濃度は、異なりはするものの、一定の条件下で特定のガスが水に溶存する量は一定量であることが知られている。一方で前述飽和濃度以下の溶解現象では、水分子間の運動エネルギー、すなわち水素結合率に変化が生じることは観測されていない。このことは、従前から知られているガスの溶解作用は、水の水素結合率に変化を生じさせるものではないということである。
そして、発明者は、一定条件での気液混合による水の処理が、水の水素結合率に明瞭な変化をもたらすというプロセス、かつそのような変化の認められる物質を初めて生成し、物質の存在を明らかにした。すなわち、当該物質である液体ハイドレートにおいては、ガスが分子単位で水分子間に高密度で入り込み、非物質領域を押し広げるため、水分子間の水素結合が成立している比率(水素結合率)が、ガス分子が入り込んでいない水の水素結合率に比べて計測可能な程度まで低下している。
この配置関係(水分子間の水素結合にガス分子が影響を与える状態の配置関係)は、分子運動により数十フェムト秒~ピコ秒という極めて短時間の単位で崩壊と結合を繰り返して変動し、観測が難しいものである。しかしながら、本発明のガス分子水和水においては当該配置関係が、数時間経過後のサンプルでも計測比較が可能な程に安定し、維持されている。ガス分子が水全体に拡散して高密度に分散存在している故に、当該配置関係に基づく水素結合率の低下が、総量として顕著に観察できる程度に計測が可能であり、また長時間維持されるものと考えられる。また、後述するように、気液混合の生成処理過程でガス分子の拡散作用に付随して水クラスターと称される水分子の塊がガス分子の放射と介在により崩壊する現象によっても水素結合率の低下がもたらされていると推定される。そして、本発明のガス分子水和水においては、溶存ガス濃度が飽和濃度以下の場合においても、未溶存水に比較して水素結合率が明瞭に低下する現象が確認できる。
本発明のガス分子水和水は水中にガス分子を溶存させて生成され、「水クラスレート」としても把握される。ここで、ガス分子が溶存される前の元の水を「原水」と規定する。原水とは一般の飲料水、工業用水、純水、井戸水など、水として概念されるものは総て含まれ、多少の不純物を含むものも包含する。
そして、ガス分子が原水に溶存した結果、ガス分子水和水が生成されるが、このガス分子水和水の水素結合率は、ガス分子を溶存させる前の原水の水素結合率よりも小さくなっている。すなわち、ガス分子水和水の中の水分子間で水素結合率が成立している割合が、原水の中で水素結合率が成立している割合に比べて低下しているのである。本発明のガス分子水和水においてはガス分子が水(原水)に溶存した状態で液体の形態を保っているため、本発明のガス分子水和水をガス分子溶存液体と呼ぶことも可能である。
別の見方をすれば、本発明のガス分子水和水においては、水中の水分子間の非物質空間(電子や中性子などの素粒子以外は本来何も無い空間)に存在するガス分子が増加する事で非物質空間を押し広げ、水分子間の水素結合を消滅させているという現象で把握される。ガス分子が水分子間に入り込み、両者の間での水素イオンのキャッチボールを阻害しているのである。その現象では、ガス分子は水分子間の距離を水素結合エネルギーで水分子を繋げることのできる距離より大きい距離まで拡げており、水分子間の水素結合エネルギーを計測した際にその総量を低下させるに至っている。
また、本発明のガス分子水和水においては、ガス分子の作用により、水分子間だけでなく水素イオンと他の混入物との間の水素結合による水素結合エネルギーが、原水の水素結合エネルギーより低下しているともいえる。
さらに別の現象理由として、後述するように、混合処理に於いてガスを液体中に高速かつ高強度の例えばキャビテーション現象を用いて封入する過程で、ガス気泡やガス分子群は爆発し、ガス分子は放射される。後に改めて説明するが、ガス分子の移動する軌道上の水クラスターは、一部が分断され、総量としては水素結合率が低下する程に現象すると考えられる。さらに、放射されて軌道を進んだガス分子は水の抵抗によりそれぞれが停止し、水中の全域に極めて高密度に散在する。この一連の過程で発生する水素結合が切り離される現象(主に水クラスター間での水素結合の消失)と、前述ガス分子が介在して水素結合が成立し難い現象(主に水素分子間での水素結合の消失)の双方の現象の作用により、今回開示する水の性質の変化現象がもたらされていると考えられる。水クラスターを崩壊させる現象が、飽和濃度以下の条件下でも顕著に水素結合率が減少するという結果に繋がっていると考えられる。
上述したこれらの作用は、後に説明するように、赤外分光法により明瞭に水素結合率が元の水である原水に比べて低下していることが観察できる程度に、高密度、高濃度で液体中に生じており(すなわちガス分子が高密度、高濃度で水中に散乱している)顕著な性質変化を原水に与えている。なお、原水とガス分子水和水と比較とされる要素として水素結合率、水素結合エネルギーなどの概念が提示されているが、比較にあたっては同じ条件下での比較であることが必要である。例えば、ガス分子以外の成分などが同等な原水とガス分子水和水と間での比較が必要とされる。さらに水温を一定にする必要がある。さらに水運動エネルギーは水温が上昇すると激しくなり計測に困難さが増すことから、低水温、好ましくは水の分子密度が最も安定するといわれる4℃に維持して計測することが肝要である。また、より誤差無く変化の程度を観察するためには対象液サンプルを原水、ガス溶存水共に複数計測してそのデータを平均化し、共に平均化したデータを比較することで明瞭な差異を捉える事ができる。その様な条件の下、上述したような水素結合率、水素結合エネルギーなどについて、原水とガス分子水和水との間での観測が意味あるものとなり、かつ両者の間で捕捉可能な差が生ずるのである。
個々の水分子およびガス分子の動き、分子間ネットワークの状態は微小世界の現象であり、かつピコ秒レベルで絶えず運動変化しているため、直接観察することは不可能である。しかしながら、水全体の水素結合エネルギーを捉えることにより、ガス分子水和水中のガス分子の振る舞いを観察することができる。通常の水においても、分子運動により水分子間の水素結合は発生と消滅を繰返しているが、本発明のガス分子水和水においては水分子間にガス分子が入り込むことにより、水分子間の水素結合が水に比べて大きい頻度(単位時間当たりに水素結合が消滅する回数)で消滅している。
図2(a)は通常の水中における水分子の振る舞いを示す模式図であり、図2(b)は本発明のガス分子水和水における水分子とガス分子の振る舞いを示す模式図であり、図1をさらに広い範囲で見た図に相当する。図2(b)はガス分子がオゾン分子の例を示すが、ガス分子はオゾン分子には限定されない。図2(a)に示すように、通常の水中において水分子はナノ秒以下の間隔で水素結合と断絶を繰返す状態を採っている。一方、図2(b)に示すように、ガス分子水和水中においてガス分子は、後述する方式に従って放射状に爆発して拡散し、図14に示すように水クラスターを貫通粉砕して進み、水の抵抗により停止した場所で水分子の海の空間に維持される。ここで、ガス分子は、周囲に比べ水素結合率の高い水クラスター部を微細化することで結合の一部を消滅させると共に、水素結合の前述のメカニズムにより水素結合の成立条件を妨げて、その一部を減少させる作用をしている。水クラスターについては後にも説明する。
また、所定の液体が本発明のガス分子水和水に相当するか否かを判定するための方法は特定のものには限定されず、あらゆる方法を採用することができる。簡単な方法の一例として、減圧によりガスを液体から取り出す方法が挙げられる。予め水素結合率などを測定した液体を公知の装置を用いて脱ガスに十分な減圧条件下におくことにより、溶け込んだガス(分子)を強制的に脱気することができる。当該プロセスの結果残った液体(原水)について水素結合率などを測定し、元の液体と比較することにより、判定対象の液体がガス分子水和水であったか否かを判定することができる。
次に本発明のガス分子水和水の生成にあたって今回採用されているスーパーキャビテーション(Supercavitation)の概念を説明する。一般的なキャビテーションは空洞現象とも言われ、高速で流れる流体(水など)の中の圧力の低い部分が気化して、非常に短い時間に蒸気のポケットが生まれ、また非常に短時間でつぶれて消滅する現象のことをいう。このキャビテーション現象を起こす場所にガスを混合して故意に強度の高い混合を行うことが可能である。スーパーキャビテーションは一般的なキャビテーションをより積極的に大量に発生させ、物体と周囲流体との摩擦を小さくする方法を云う。すなわち、スーパーキャビテーションは高い密度でキャビテーションを起こすことにより、流体の流れ方向の下流域では流体と接触する物質との摩擦抗力を減らす効果も発現する現象である。それはキャビテーションによって物体周りの液体は気化するが、気体の密度が流体である液体よりもずっと小さいため、抗力が減少するという要因による。今回の実施例では、より混合装置内での抵抗を減らしてガスを含んだ液体の流速を速める目的と、キャビテーション作用の強度を高める事でガス気泡の分断効果を増してガス分子が爆発して分子粒となって放射される程度の作用を与える目的で用いた。
図3はスーパーキャビテーションが生じている状態を示す概念図である。矢印で示される高速で流れる液体中におかれた物体(黒)の後方にスーパーキャビテーションSCが生じる。
次に図4を参照しながら、本発明に係るオゾン分子水を生成するオゾン分子水生成部の構造について説明する。オゾン分子水生成部201は、貯留タンク202と、気体供給装置203と、貯留タンク202から取り出した被処理液を貯留タンク202に戻す循環系装置204と、循環系装置204の途中に設けた気液混合装置(ガス分子水和水生成装置)205と、溶解促進槽206と、貯留タンク202に付設した温度保持装置207と、を含む。
図4に示すように、貯留タンク202には取水バルブ202vを介して被処理液としての原水が注入可能である。貯留タンク202は取水した原水および後述する循環系装置204を介して循環させた気体混合液、すなわちガス分子水和水(オゾン分子水)を貯留するためのものである。貯留タンク202に貯留された液体は、温度保持装置207によって、例えば1~20℃の範囲に保持されるようになっている。この範囲に温度設定することにより、ガス分子がオゾン分子の場合、ヘンリー定数で説明される温度上昇に伴うオゾンの自己分解現象を抑制し、オゾン溶解及び濃度上昇を効率よく行い、かつ溶解させたオゾンの濃度を低下させないことが可能となる。オゾン以外のガスは殆ど温度上昇による分解という特質を持たないが、水温を高温にしないことである程度の水分子運動の安定性を保持し、結果処理効率を高く維持する事が可能となる。温度保持装置207は、条件に応じて省略することも可能である。また、温度設定範囲も、被処理液(原水及び/又はガス分子水和水)や気体(気体群)の種類や性質、さらに、添加物の有無等を総合的に考慮して設定することができる。温度保持装置207は貯留タンク202から被処理液を取り出すためのポンプ211と、取り出した被処理液を冷却するための冷却機212とを含み、貯留タンク202とポンプ211と冷却機212との間は被処理液を通過させる配管213によって連結されている。
貯留タンク202に貯留されるオゾン分子水を取り出すための配管190が設けられており、当該配管190中には、ポンプ191が設けられている。原水中に溶け込んでいるオゾンガスが脱気しないようにするためには本来貯留タンク202内を陽圧に保持することが望ましいが、本発明においては、貯留タンク202内はあえて大気圧に維持されている。このように貯留タンク202内を大気圧としておくことで、配管190から利用のために取り出されるオゾン分子水の濃度は、ほとんど低減することがない。
上記構成によって、貯留タンク202に貯留された被処理液は、ポンプ211の働きによって貯留タンク202から取り出され、冷却機212に送られる。冷却機212は送られてきた被処理液を所定範囲の温度に冷却して貯留タンク202に戻す。ポンプ211は、図外にある温度計によって計測された貯留タンク202内の被処理液の温度が所定範囲を超え冷却の必要があるときにのみ作動するようになっている。貯留タンク202を設けることにより、被処理液を一旦貯留することによって上記冷却を可能にするとともに、被処理液を安定状態に置き、これによって、例えばガス分子がオゾン分子の場合、被処理液に対するオゾンの状態を保持しつつ、溶解を熟成類似の作用によって促進させることができる。なお、寒冷地等において被処理液が凍結する恐れがある場合は、上記冷却機の代わりに、又は、上記冷却機とともにヒーター装置を用いて被処理液を加温するように構成することもできる。
本実施形態における気体供給装置203は、所定のガスを生成し供給するための装置である。基本的に気液混合装置205はキャビテーション発生に伴う真空現象を生じさせ、供給ガスは気体供給装置203から陰圧で吸引されるが、さらに必要に応じて圧搾等を行った後に供給することも可能である。必要なガスの量を供給可能なものであれば、気体供給装置203が作用するガスの発生原理等に何ら制限はない。
本実施形態に係る気体供給装置203としては、オゾナイザーが用いられている。オゾナイザーである気体供給装置203には、酸素ガスボンベ181から酸素が、また、窒素ガスボンベ182から窒素が供給され、気体供給装置203内で酸素99.5%、窒素0.5%の混合割合で50kPa~200kPaとされた上で、放電によってオゾンが発生させられる。
気体供給装置203によって生成されたオゾンガスは、気体供給管217の途中に設けたニードルバルブ218と逆止弁219を介して気液混合装置205に供給されるようになっている。また、気体供給管217中には、気体供給装置203側に第1ガス圧力計223が、気液混合装置205側に第2ガス圧力計224が設けられており、ニードルバルブバルブ218の前後でオゾンガスの圧力をモニタすることができるようになっている。
なお、被処理液に混合する気体が、たとえば、大気であれば、圧搾空気装置(コンプレッサー)等がこの気体供給装置の主要構成要素となる。複数種類の気体を混合する場合には、各気体を生成又は採取等する装置を用いる。
次に、図4および図5を参照して気液混合装置(ガス分子水和水生成装置)205の詳細について説明する。気液混合装置205はエジェクターとも呼ばれ、先述したように、発明者が水中のより微細な気泡を得ることを目指す過程で、その調整をすることにより得られた構成を持つ。気液混合装置205は、ベンチュリ管231と、ガスを供給する気体供給部としての気体供給パイプ239とを含む。
本実施形態の気液混合装置205はさらに磁気回路243を含む。ベンチュリ管231と気体供給パイプ239は、透磁性のある合成樹脂材により一体的に構成されている。ベンチュリ管231は、上流側(図5の矢印A1側)から送られた被処理液を下流側(図5の矢印A2側)へ通過させるためのパイプ状の外観を有し、被処理液は矢印A1からA2に沿った軸線方向(長手方向)に流れる。ベンチュリ管231を長手方向に貫くようにベンチュリ管231内部に画定された中空部には、上流側から下流側に向かって上流側大経路232、絞り傾斜路233、小径路234、開放傾斜路235及び下流側大経路236が、この順に連通した状態で形成されている。
上流側大経路232は、気体供給パイプ239の軸線方向(ベンチュリ管231の軸線方向に垂直な方向)に対して所定の第1の角度(例えば50度など)をもって絞り方向に傾斜する絞り傾斜路233を介して小径路234に繋げられ、その後、開放傾斜路235によって同じく軸線方向に対して所定の第2の角度(例えば30度など)を持って開放される。開放傾斜路235は、上流側大経路232と同じ外径の下流側大経路236に繋がっている。言い換えると、絞り傾斜路233の断面積(流路面積)は小径路234に向かって小さくなり、開放傾斜路235の断面積(流路面積)は小径路234から遠ざかるに従って大きくなっている。すなわち、小径路234の断面積(流路面積)はベンチュリ管231内で最小となる。一般的に第1の角度>第2の角度に設定され、絞り傾斜路233の傾きは開放傾斜路235の傾きより急である。
小径路234にはその軸線方向と垂直に気体供給パイプ239が接続され、気体供給パイプ239の開口端が小径路234の軸線方向の中央部において、小径路234に開口している。気体供給パイプ239の供給端(小径路234に開口した開口端の逆側)には気体供給装置203と連通する気体供給管217(図4)が接続されている。
小径路(オリフィス部)234の断面積(流路面積)はベンチュリ管231内で最小であり、絞り傾斜路233から小経路234に送出しされる被処理液は、急激な流路面積の減少によりきわめて高い圧力にさらされる。小経路234を通過した後、被処理液は小径路234から遠ざかるに従って断面積の大きくなる開放傾斜路235に突入し、高圧から開放されるため、小径路234の軸線方向の中央部又はその下流側近傍は、被処理液の圧力変化によって真空又は真空に近い状態になる。気体供給パイプ239の供給端に及んだガスは吸引され(被処理液の吸引圧力作用)、乱流化した被処理液内に散気される。この現象がキャビテーションである。なお、小径路(オリフィス部)234通過時点の水流の速度は毎秒約23mであるが、1ナノ秒あたりに換算すると20nmという高速度である。
ベンチュリ管231には、磁気回路243がネジ(図示を省略)などにより固定されている。磁気回路243は、ベンチュリ管231を挟んで対向する一方の磁石片245及び他方の磁石片246と、一方の磁石片245と他方の磁石片246とを連結するとともに、ベンチュリ管231への磁石片取り付けの機能を有する断面U字状の連結部材248と、により構成される。磁気回路を組むことにより磁場がエジェクターではない混合装置周囲に向けて無益に放出されることを防ぐ。磁石片245と磁石片246は、小径路234及び/又はその近傍(特に小径路234の下流側)をその磁力線(磁界)が可能な限り小経路234を中心としたエジェクター部管内の流水域全域に最も多く通過するように配されるのが好ましい。被処理液(水)とガスの双方に磁力を作用させることによって、被処理液に対して最も効率よくガスを溶解させることができると考えられるからである。
磁石片245及び磁石片246は、ネオジウム磁石などによって構成されるが、磁石の種類は特に限定はされない。連結部材248は、磁束漏れを抑制して磁力作用が被処理液等にできるだけ集中するように、磁力透磁率(μ)の大きい部材(たとえば鉄など)によって構成される。
気液混合装置205により生成されたオゾン分子水は、配管274を経由して溶解促進槽206に送られる。溶解促進槽206は円筒形状に構成され、ガスの水への溶解を促進するものである。溶解促進槽206を経由したオゾン分子水は、気液分離装置265に送られる。気液分離装置265は、被処理液と、この被処理液から脱気するガスとを分離排出するための脱気構造として機能する。気液分離装置265によって分離されたガスは、気体分解装置267によって分解して無害化した後に装置外部に放出される。
循環系装置204は、気液混合装置205を通過したガス分子水和水を循環させて再度、気液混合装置205を通過させる機能を有している。再度、気液混合装置205を通過させるのは、既にガスを溶解させた被処理液(ガス分子水和水)に再度ガスを注入することによって、ガスの溶解度と濃度をさらに高めるためである。循環系装置204は、ポンプ271を駆動源とし、貯留タンク202と溶解促進槽206を主要な構成要素とする。すなわち、ポンプ271は、貯留タンク202から配管270を介して取り出した被処理液を逆止弁272及び配管273を介して気液混合装置205に圧送する。圧送によって気液混合装置205を通過した被処理液は、配管274及び溶解促進槽206を抜け配管275を介して貯留タンク202に戻される。循環系装置204は、上記した工程を必要に応じて繰り返して実施可能に構成してある。循環させる回数は、生成しようとするガス分子水和水のガス溶解度やガス濃度等を得るために自由に設定することができる。なお、配管275の途中にはバルブ276が設けられ、バルブ276の開閉によって気液混合装置205の小径路234を通過させる被処理液の水圧を制御するために用いられる。
気液混合装置205の前段の配管中には、被処理液の流量を検出する流量計220と、当該配管内の圧力を検出する第1圧力計221と、気液混合装置205に送出する被処理液の流量を制御する電磁バルブ225とが設けられている。また、気液混合装置205の後段の配管274中には、被処理液の流量を配管274内の圧力を検出する第2圧力計222が設けられている。
次に、スーパーキャビテーションを発生させる主要部として機能する気液混合装置205について、図5、図6を用いて改めて説明する。気液混合装置205はエジェクターとも呼ばれ、発明者が水中のより微細な気泡を得ることを目指す過程で、その調整をすることにより得られた構成を持つ。
気液混合装置205よって得られることが判明された作用、すなわちスーパーキャビテーションを発生させるメカニズムを、図5、図6を用いて説明する。図5の矢印A1に示すように、上流側大経路232を通過した被処理液(以下「水」で説明する)は、絞り傾斜路233を通過するとき圧縮され、水圧が急激に高まり、圧力衝撃波が液体と液体に含まれるガス気泡、ガス分子に加えられる。同時に水の通過速度も急激に上昇する。水の圧力、速度は、小径路(オリフィス部)234を通過するときにピークに達する。
小径路(オリフィス部)234を通過する水は、高速、高圧で小径路234を通過する。小径路234を通過した後、水は開放傾斜路235に送出されるが、開放傾斜路235に送出された後も慣性の法則により、水は依然として高速で移動する。ところが、水が移動する経路の容積(開放傾斜路235の流路面積)は急速に増大するため(小径路234→開放傾斜路235)、水の中に減圧現象とともに高い真空環境が実現される。この現象により、水には小径路234に接続された気体供給パイプ239内のガスを小経路234内に吸引する(引き込む)吸引圧力が生じ、当該吸引圧力の作用により、気体供給パイプ239から小経路234を介してガスの気泡が水に供給され、気液混合液が生成される(図6(a))。
そして、図6の(b)に示すように、小径路(オリフィス部)234の高圧の圧力衝撃波のため、気泡は圧縮され、キャビテーションが発生して図6の(b)に示すように、気泡は分断され微細化する。
図6(e)は流速のイメージを示す模式図である。この爆発粉砕から放射し、拡散して止まる迄の現象においては、強力な磁場の中で行われるので生成効率が高い。また、小経路234を通過する水の速度が速ければ速いだけ高密度なキャビテーション、即ちスーパーキャビテーションの密度が高まる。
上述で記載した生成過程に加えて、一度スーパーキャビテーションのプロセスを経た気泡で、タンク内で浮いてしまわない程度に細かな数十μm以下の気泡は、再度スーパーキャビテーションのプロセスに突入して、繰返しスーパーキャビテーションの作用を受ける。
従来ハイドレート、クラスレートとして知られてきた物質は、水分子で構成される立体網状構造の間隙中に、他のガス分子が入り込んだ状態で存在している物質のことである。そして、水分子間に格子間結合が生じている氷、またはシャーベット状の固体であり、その生成プロセスは極めて高圧、低温下で行われるものであって、液層では発現しない。一方、本発明によるガス分子水和水は、例えば20℃、大気圧下といういわば常温・常圧下で生成可能なものであり、後述する微細化された水クラスター部が存在し、水分子間に格子間結合が生じていない液相下において、水分子間にガス分子が入り込んでいる。このように、本発明のガス分子水和水は、生成物としてのその形態および性質ならびに生成プロセスの観点から、従来のハイドレート、クラスレートは全く異なるものとして観念される。
なお、今回のガス分子水和水の生成にあたっては、スーパーキャビテーションの概念を採用した装置を用いたが、この概念、装置はあくまで生成方法の一例である。本発明のガス分子水和水は、これらの装置によって生成された液体には限定されないし、スーパーキャビテーションの概念によって生成された液体にも限定されない。ガス分子を原水の水分子間に溶存させることができる程度に水を分子レベルで分断し、及びガスを分子単位で放射溶存させ得るものであれば、生成の技術は特に限定はされない。
以上のような構成を有するオゾン分子水生成部201によって数種類のオゾン水を生成したので説明する。
酸素ガスボンベ181及び窒素ガスボンベ182を用いて、純酸素ガス3.95L/minと、純窒素ガス0.05L/minとを、気体供給装置203である株式会社荏原製作所製オゾナイザーOZC‐2に流入圧力0.75MPaで供給する。
オゾナイザー(気体供給装置203)では放電により酸素を高濃度オゾンガス(210g/Nm3)に変化させる。その後ニードルバルブバルブ218により、同バルブの上流の第1ガス圧力計223が0.75MPaとなるように調整すると共に、第2ガス圧力計224を参照することにより気液混合装置205に至る下流が所望の陰圧になるように必要分高濃度オゾンガス流量を絞り込む。
次に、被処理液側の流れについて説明する。貯留タンク202に導入された純水(18MΩ/cm)は、ポンプ271により気液混合装置205に供給され、気液混合装置205にて超高濃度オゾンガスを混合された後に貯留タンク202(水量50L)に戻る。
気液混合装置205は小径路234のオリフィス径が2.1mmのものを選定しており、ポンプ271は適正な流量になるようインバーター制御とする。ポンプ271により流量・水圧を増加させると小径路(オリフィス部)234でのガス吸引力が増加して、高濃度オゾンガスの流量調整用のニードルバルブバルブ218より下流のガス圧が真空圧に近づくと共に、気液混合装置205の小径路(オリフィス部)234直下流での混合は激しくなり、高濃度オゾンガスは純水中に激しく混和される。
気液混合装置205は、磁気回路243により小径路(オリフィス部)234に磁場強度4300ガウス(中心磁場)で水の流路と直行する磁気方向で照射される構造とし、磁気の作用により超高濃度オゾンガスが純水中により細かく分散させられる構造とした。
超高濃度オゾンガスの流路には、上流(オゾナイザー側)に第1ガス圧力計223、下流(気液混合装置205側)にも第2ガス圧力計224(陰圧、陽圧が共に計測できるもの)を配置し、ニードルバルブバルブ218の開閉により所望の真空度で超高濃度オゾンガスが吸引される形態になっている。
また気液混合装置205を通過する水流量は、流量計220(エフェクター社製電磁誘導式流体センサー)を配置してポンプ271、電磁バルブ225により調整した。オゾンを溶け込ませる側の原水(純水)の循環流量は流量計220により計測される。
オゾン水のサンプル採取は、オゾン分子水生成部201によってオゾン分子水生成開始から10分後(超高濃度オゾンガス供給総量40L:純水50L)で実施した。表1には、オゾン分子水生成部201によってオゾン水を生成した際の各種パラメーターを示す。オゾン分子水生成部201によって生成したオゾン水は、本発明で用いたオゾン分子水も含めてサンプル名A乃至Lの12種類である。表1中、1次側圧力[kPa]は第1圧力計221の読み値であり、2次側圧力[kPa]は第2圧力計222の読み値であり、流量[L/min]は流量計220の読み値であり、ガス圧力[mmHg]は第2ガス圧力計224の読み値であり、ガス流量[L/min]は酸素ガスボンベ181及び窒素ガスボンベ182で設定される流量の合算値である。
また、比較例としてウルトラファインバブルのオゾン水も同様に10分処理(超高濃度オゾンガス供給総量40L:純水50L)で作製した。オゾン水の生成にはIDEC社製ultrafineGaLF FZ1N-05Sを用い、本発明に用いたオゾン分子水生成部201と同じ高濃度オゾンガスを供給しウルトラファインバブルオゾン水を生成した。このとき水量はタンク容量50Lとして、毎分4Lのオゾンガスを混合してサンプル水を得て、これを計測した。なお、ウルトラファインバブルオゾン水のサンプル名を「UFB」とする。
次に、本発明におけるオゾン分子水の実態を探るべく行われた赤外線照射による分析実験について説明する。一般的に物質の解析、同定には通常の顕微鏡、X線照射やラマン分光照射、レーザー光照射を行い、これにおける散乱光ピークシフトの観測などが用いられる。図4、図5の装置により得られたオゾン水について、種々の観測方法により、その実態、特に水中のオゾンガス気泡についての観察が試みられた。
本発明のように水中にオゾンガスが分子レベルで溶存されている状態を観測するためには、もとの水(原水)に比べて水中の水素結合率に変化がもたらされている(水素結合率の低下)ことが観測されなくてはならない。X線照射方式は結晶体の計測には適するものの流動性のある液体の計測には適して居らず水素結合の状態を観測することはできなかった。ラマン分光照射では光線の特性が水計測に最適とは言えず、精度(分解能)の点から不足があり明瞭な差異に関する計測結果は得られなかった。そこで、赤外線照射による分析実験により、本発明のオゾン分子水の観測を行った。
以下、赤外線照射による分析実験の内容について説明する。本実験は、いわゆる赤外分光法(せきがいぶんこうほう、infrared spectroscopy)であり、測定対象の物質に赤外線を照射し、透過(あるいは反射)光を分光してスペクトル(スペクトルピーク)を得て、対象物の特性を知る方法をいう。
赤外線分析実験の実施にあたってはPerkin Elmer社製、フーリエ変換赤外分光分析装置(「赤外分光光度計」ともいう)Spctrum-one system Bを用いた。汎用品としての本装置は、図7(a)に示すように光源から発射された赤外線を、鏡とプリズムを通過させ、検体である液体(オゾン分子水)に照射し、液体によって反射された赤外線をプリズムと鏡を通過させて受光部に導入して、その変化を計測するものである。
すなわち、フーリエ変換赤外分光分析装置300は、L字型に屈曲された鏡301と、プリズム302と、検体配置用台座303とを備えている。検体配置用台座303の上面面中心には検体充填孔303aが設けられ、検体配置用台座303の上面に検体である液体Lをスポイドなどによって落とすことにより、液体Lが検体充填孔303aを満たす。
観測にあたっては光源から発射された赤外線IR1がL字型鏡301の第1面によって反射されてプリズム302に導かれる。プリズム302内に突入した赤外線IR1は、検体配置用台座303の検体充填孔303aに導かれ、検体充填孔303a内の液体Lによって特性の異なる赤外線IR2に遷移するとともに液体Lによって反射され、プリズム302内を進行し、プリズム302から出射される。プリズム302から出射した赤外線IR2は、L字型鏡301の第2面に到達するとともに第2面によって反射され、図示せぬ受光面に導かれる。赤外線IR1と赤外線IR2の特性の違いを解析することにより、液体Lの実態を観測することができる。
しかし、このような汎用品の構成では検体である液体Lが、直径10mm程度の円形すり鉢状に凹んで形成された検体充填孔303aに滴下された状態での観測となり、検体配置用台座303の上面で外界にさらけ出された部分と通じている。この部分の体積は大きくないため(数滴程度の滴下容量)、検体充填孔303a内の部分も含んだ滴下された液体Lの全体の温度が装置周辺の温度(室温)と瞬時に同調し、室温(28℃程度)まで上昇した。この環境下での計測では水の分子運動が余りにも激しく、赤外線分析の解析性能では試験結果の評価は困難であった。
そこで発明者は、本発明の液体観測にあたって、水温を低下させて水が最も高密度となる3.98℃付近の温度に液体を保持することと液量を増やすことで対象液が検出装置接触部位との接触で変化することを避ける事が肝要と考え、図7(b)に示すように保持器304を用意し、検体配置用台座303の上面に配置した。即ち、生成した液体(ガス分子水和水)を観測前に冷却しておくことにした。フーリエ変換赤外分光分析装置300の検体配置用台座303と保持器304を氷嚢を用いて観測前に0℃近くまで冷却した。加えて、室温(装置のある室内は28℃であった)による水温の上昇を可能な限り防止するため、検体配置用台座303の上面に液体を、保持器304を用いて保持することができるようにすると共に、20℃の常温で生成したサンプル液を一端密閉容器で冷却して0℃近くに冷却した。観測時間中に瞬時の水温上昇が起こらないように保持器304に注入するサンプル液の量を10mlに増加させた。
図7(b)の構成では、観測中のクラスレートの温度上昇が抑制され、1~2℃程度から10℃未満の温度帯、即ち水分子運動が抑制され、水素結合率の変化を解析できる程度の状態を維持した観測(水分子運動の抑制と水温変化による条件の変動が無い観測)が可能となった。
次に分析の詳細および結果を説明する。実際の分析にあっては、各サンプルにおいて、観測開始時0℃付近から温度を1℃ずつ上昇させるたびに赤外線の吸光度の測定を行い、10℃まで測定を行った。図8は、原水の赤外線分析の観測結果を示す測定データである。最上部の測定値が水温10℃のときのもので、以下1℃ずつ低下した状態のものを記載している。測定開始時点の水温でのデータは最下部のデータであり、計測順序としては下方から1℃上昇する毎に測定値を記録して全ての測定されたデータが表示されている。横軸の単位はカイザー(cm-1)であり、赤外線の振動数に該当する。縦軸は赤外線の吸光度の各データ間での相対的な強度に対応したものであり、単位はない。
一般論として、赤外線分析による水の代表的な吸光度のピーク(以下、「ピーク」と記す)は3400カイザー付近(詳しくは3200カイザーと3600カイザー)に得られるとともに、1600カイザー付近にも特有のピークが得られる。3200カイザー付近のピークは水素結合の状態に対応するものである。3600カイザー付近のピークは、水分子内の酸素原子と水素原子の結合(共有結合)の伸縮に対応し、3200カイザー付近のピークは、水分子同士の水素結合とその他の分子(ガス分子)同士間の結合の量に対応する。
次に、総てのサンプルを平均して0℃から10℃という水分子運動の比較的安定した温度領域について計測データを平均する。図9は、このようにして得られた原水の測定データの平均(上段)とUFB水の測定データの平均(下段)を例示している。
上記のように総てのサンプルを平均して0℃から10℃という水分子運動の比較的安定した温度領域について計測データを平均し、原水とガス溶存液のデータを比較する方法で検討する。分析対象となるガス溶存液から、ガスを溶存させていないコントロールとなる原水を差し引く方式で差異を確認した。例えば、図10はUFBオゾン水(平均)から原水(平均)の測定データを差し引いた値を示すグラフである。また、図11はサンプル名Lのオゾン水(平均)から原水(平均)の測定データを差し引いた値を示すグラフである。
表2に、サンプル名UFB、A乃至Lの赤外線分析による結果を示す。
水素結合エネルギーの減少値の算出は次の通りである。まず、赤外分光分析装置のデータで、4000カイザーから3700カイザーの平均値(ベースライン1(表中吸光度平均4000~3700))を求め、次に2800カイザーから2000カイザーの平均値(ベースライン2(表中吸光度平均2800~2000))を求めてこれらを平均し表中の「吸光度平均」とした。また、3700カイザーから2800カイザーの間の最大(マイナス側の最大値)を把握した(表中の「最大高さ」)。その上で、各サンプルから原水の平均データを差し引いて、ピーク強度の最大値(減少率)を把握した。
この水素結合エネルギーが減少する程度は、一方で同じ性状のサンプルで測定した動的光散乱光度計により求められた微細な気泡が多量に発生していることと符号した。
なお、一般論として最大吸収ピーク強度の定義を次のように考えることもある。
・2843カイザー以上2853カイザー以下の範囲の吸収ピーク強度の最大値(Pa1)を算出する。
・3050カイザーと2600カイザーの吸収強度の平均値(Pa2)を算出する。
・2843カイザー以上2853カイザー以下の範囲の最大吸収ピーク強度Paを、Pa1-Pa2により算出する。
・2843カイザー以上2853カイザー以下の範囲の吸収ピーク強度の最大値(Pa1)を算出する。
・3050カイザーと2600カイザーの吸収強度の平均値(Pa2)を算出する。
・2843カイザー以上2853カイザー以下の範囲の最大吸収ピーク強度Paを、Pa1-Pa2により算出する。
水中にオゾンガス分子を溶存させて生成されるオゾン分子水は、赤外分光法により測定される水分子間の水素結合のピークが、水に比べて小さいガス分子水和水が得られたことが確認された。言い換えると、本発明のオゾン分子水においては、水分子間の水素結合のピークが、水に比べて小さいことが赤外分光法により観測されるほど、オゾンガス分子が水全体に高密度に分散している。
ここで、表2中のオゾン水試料のうち、原水に比較して、オゾン水の水素結合エネルギーのピーク強度最大値が-0.0021より小さい(差分の絶対値では|-0.0021|より大きい)サンプルD乃至Lのオゾン水試料は、そうでないものより、より好適に利用することができる。
なお、上記観測方法においては、オゾン水の冷却に検体配置用台座303と保持器304とを用いたが、オゾン水を観測に適した所定温度以下に冷却し、保持する冷却装置があれば、とくにその形態は限定されない。観測に適した条件であれば、冷却温度、観測するサンプル液の量などの諸条件は特に実施形態のものには限定されない。
さらに発明者は、先述したように、ガス分子が原水、原液に分散した結果、当該原水、原液中の水分子のクラスター(水クラスター部)の状態を変えていることを見出した。独立行政法人理化学研究所のプレスリリース「均一と考えられていた液体の水に不均一な微細構造を発見」(http://www.riken.go.jp/r-world/research/results/2009/090811/index.html)にも記載があるように、均一な液体であると長らく考えられてきた水の中には微細な構造(不均一性)が存在することが知られている。大型放射光施設Spring-8のX線ビームラインIBL45XU小角散乱と高精度ラマン光分析装置等による解析の結果、水の密度の不均一性が水の中の2種類の微細構造によるものに由来することがわかった。すなわち密度の不均一性は、「氷によく似た微細構造」が「水素結合が歪んだ水分子群」の海の中につかっている水玉模様のような微細構造をしているために生じている。
ここで、「氷によく似た微細構造」は周囲に比べて水分子が高い密度で集まった状態であり、一種のクラスター構造を形成している。このことは、水分子をフェムト秒の単位で計測することにより観測されるものであり、クラスター構造はきわめて短い時間で生成・消滅を繰返していることが理解される。この高い密度で集まった水分子群の状態、すなわち水たまの玉の部分は、他の分子が低密度に存在する水領域に比較して水素結合率が高いといえる。
図14(a)は、通常の水(原水)における水クラスターの状態を示す模式図であり、数十個程度の水分子の塊が、ナノ秒以下の速度で構成を変え続けている。図14(a)では、水クラスター部を円環状のクラスター域で模式的に表している。環状のクラスターを(H2O)nで表す場合、水分子H2Oの数であるnが例えば3から60までのものについて検討がされているが、特にnの範囲は限定されない。そして、各水分子の単独での運動も存在するが、このように葡萄の房のような状態に水分子が集合したクラスター(以下、「水クラスター部」と呼ぶ)も水中で生成されるとともに、独自の動きを示す。
一方、図14(b)は、本発明のオゾン分子水における水クラスターの状態を示す模式図である。上述したとおり、本発明ではガス分子の爆発、拡散時に多量のガス分子が原水の水分子の海を貫通して横切るが、当該ガス分子の作用により、図14(a)に示された水クラスター部は分断され細分化される。図14(b)では、細分化された水クラスター部(微細化された水クラスター部)を、楕円環状のクラスター域で模式的に表している。その後、ガス分子は水分子間に存在することとなる。すなわち、図14(b)のオゾン分子水においては、原水中においてガス分子を溶存させることにより、水分子が周囲に比べ高密度に集合した原水中の水クラスター部が破砕され、図14(a)の原水に比較して水クラスター部が微細化されている。結果的に、本発明のオゾン分子水においては、水クラスター部の水分子の平均数は、原水中における水クラスター部の水分子の平均数より少ないこととなる。さらに、ナノ秒単位で変化する水クラスターにガス分子が高密度に介在することにより、大きな水クラスター部を形成することがされ難い状態が維持され、微細化された水クラスター部が保持される。結果、本発明のオゾン分子水においては、未処理の原水に比べると平均して水クラスター部の小さな状態を長時間保持することが可能となる。
本発明のオゾン分子水において微細化された水クラスターが保持されるということは、原水に比べて高密度に水分子が存在する領域が減っていることを意味する。このことは、水分子間の距離が平均的に遠くなり、結果的にオゾン分子水の水素結合率は原水の水素結合率より低下することを意味する。すなわち、本発明において、水素結合率の低下を生じさせるガス分子の作用は、単に水分子間に存在して当該水分子間の水素結合を弱める(水素結合エネルギーを低下させる)という作用のみではない。ガス分子は、原水の水クラスター部を破壊して微細化し、微細化された水クラスター部を保持するという作用を奏することによっても水素結合率の低下という効果を生じさせている。したがって、本発明のオゾン分子水が生成される条件として、溶存されたガスの量が飽和濃度に達していることは必要ではなく、既に説明した生成プロセスのように、一定の生成条件の下では、ガスの量が飽和濃度以下の場合であってもオゾン分子水が生成可能である。
次に、サンプル名UFB、A乃至Lのオゾン水について気泡の粒径測定を行ったので、これについて説明する。測定に用いた装置は大塚電子株式会社製ELSZ-2000ZSであり、動的光散乱法により気泡の粒径測定を行った。測定結果の例として、図12にはUFBオゾン水の気泡径分布の測定データを示し、図13にはサンプル名Lのオゾン水の気泡径分布の測定データを示す。表3には、各サンプルについて、個数分布がピークをとる気泡径を示す。
粒径測定の結果からは、原水はそもそも微細気泡をいれていない純水であるため除外している。また、UFBオゾン水は、気泡径ピーク(個数分布がピークをとる気泡径)が1128nmであり50nmよりも微細な気泡は測定できなかった。
本発明のオゾン分子水においては個数分布がピークをとる気泡径が50nm未満であることが望ましい。オゾン分子水生成部201におけるオゾンガス供給経路の第2ガス圧力計224が、35mmHgから-80mmHgの範囲のサンプル(A乃至C)では、気泡径ピークは1319.1から66.8nmであり、50nm以下のデータは計測できなかった。
第2ガス圧力計224のガス圧が‐200mmHgから‐370mmHgの範囲のサンプル(D、E)では、気泡径ピークは47.4から39.6nmを示した。さらに‐480mmHgから‐640mmHgの範囲のサンプル(F、G)では、気泡径ピークは24.8から24.6nmとなりより微細化されたファインバブルが多量に発生していることが確認された。
第2ガス圧力計224のガス圧が‐760mmHgの範囲のサンプル(H乃至L)では、気泡径ピークは12.2から11.3nmとなり、ほぼ全量が超微細気泡で生成されていることが確認された。
以上から、オゾン分子水生成部201でオゾン水を生成する際、気液混合装置205に供給されるオゾンガスの圧力が陰圧であること、さらに望ましくは、オゾンガスの圧力が‐200mmHg以下であること、さらにより望ましくはオゾンガスの圧力が‐760mmHg以下であることが確認できた。
赤外分光分析装置の測定により得られる水素結合エネルギーの減少作用と、動的光散乱による超微細気泡の発生状態には相関があり、超微細気泡が多量に計測できる状態は、オゾンガス分子が超高密度分散して水の水素結合エネルギーとして減少が把握できる程多量に水中に溶存している状態であることがわかる。
本発明のオゾン分子水において、オゾン分子水生成部201でオゾン水を生成する際、気液混合装置205に供給されるオゾンガスの圧力が‐760mmHg以下であると、効率よくオゾンガス或いはオゾン分子が、20nmを下回る超微細な気泡で、大量溶存させられる。
本発明に係る噴霧装置1においては、上記のようなオゾン分子水生成部201によってオゾン分子を原水中に大量に溶存させることでオゾン分子水を生成し、所定のオゾン濃度以上の高濃度オゾン水を貯留タンク202に貯留しておく。
オゾン分子水生成部201で生成し貯留タンク202に貯留する高濃度オゾン水(オゾン分子水)のオゾン濃度は、例えば、少なくとも7ppm以上に設定されている。
本発明に係る噴霧装置1で用いるオゾン水として、上記のようなオゾン分子水生成部201で生成されるオゾン分子水が好適であることを確認した。図15はオゾン水の生成法に応じた、ノズル噴霧後のオゾン濃度を示すテーブルである。
本試験では、生成方法別にオゾン水を生成し、1流体型ノズル(ミストの平均粒径は50μm)による噴霧後の濃度、及び、2流体型ノズル(ミストの平均粒径は5μm)による噴霧後の濃度をそれぞれ計測した。オゾン水の生成法としては、(1)本発明に係るオゾン分子水生成部201で生成したオゾン水(オゾン分子水)、(2)磁気回路243が設けられていないオゾン分子水生成部201で生成したオゾン水、(3)電気分解法で生成したオゾン水、(4)バブリング法によるオゾン水(炭酸ガスを毎分0.1L/分添加)の4種類を用いた。
オゾンは、水に難溶解性のガスでオゾンは微細気泡として一時的に水中に存在するといわれている。本試験では、4種類のオゾン水生成方式で各7ppm、30ppmの濃度のオゾン水を生成してノズル細霧後の濃度維持率を計測した。また、図15(A)は水温が20℃である場合、図15(B)は水温が5℃である場合のテーブルである。
噴霧後のオゾン濃度の計測においては、ロート状の容器にテフロン製の網フィルターを設け、この網フィルターで液化したミストを採取し、これを紫外線吸収式溶存オゾン濃度計により濃度計測した。紫外線吸収式溶存オゾン濃度計の原理は、採取したオゾン水に紫外線を照射しオゾン水を通過した後の紫外線と、オゾン水照射前の紫外線とを比較することでオゾン濃度を検出する。
図15(A)に示す水温が20℃である場合、1流体型ノズルによる噴霧後で、2桁の比較的高い割合でオゾンが残留したのは(1)の方法によるオゾン水に限られている。また、図15(B)に示す水温が5℃である場合には、(1)の方法によるオゾン水は、1流体型ノズルによる噴霧後、凡そ90%のオゾンが残留する。いずれのケースでも、水温が低い方が、より高い濃度でオゾンは水中に残留する。また、2流体型ノズルによる噴霧後で、有効なオゾン濃度が検出されたのは、水温が20℃の場合、5℃の場合のいずれも、(1)の方法に限られている。
上記のように、通常の生成方法で生成したオゾン水は、オゾンが難溶解性のガスであることから、水中にオゾンガス気泡(数百ナノメートルから数ミクロン径の気泡)が存在する形態となっている。従って、大気圧環境下で短時間(通常1分から数分で溶存オゾン濃度は半減するとされている)で濃度低下してしまう。さらに、これを、ノズルで噴霧しようとした場合、100μmの平均粒径のノズルを噴出させた時でも、水圧(吐出させるための水圧)の掛かった状態から大気開放されて噴霧された水粒となった瞬間に、水粒中のオゾンガスは散逸してしまい、採取して紫外線吸収式溶存オゾン濃度計で計測しても濃度は計測できない状態となる。
以上から、本発明に係る噴霧装置1で用いるオゾン水として、オゾン分子水生成部201で生成されるオゾン分子水が好適であることが確認できたので、以下、噴霧装置1の実施形態では、オゾン水として、オゾン分子水生成部201で生成されるオゾン分子水を用いたことを前提として説明する。
図16は本発明の第1実施形態に係る噴霧装置1における噴霧部400の概略を示す図であり、図17は本発明の第1実施形態に係る噴霧装置1の制御ブロック図を示す図である。
図16に示される噴霧部400の構成は、図4に示されるオゾン分子水生成部201と配管で連結された構成である。このような噴霧部400により、室内、または室外の人のいる環境に高濃度のオゾン分子水をミストとして微細噴霧することが目的である。
オゾン分子水生成部201における貯留タンク202には、貯留タンク202中のオゾン分子水を流通させることができる往路配管401が接続されている。この往路配管401は、折り返して再び貯留タンク202に戻る復路配管405と連通している。また、往路配管401には、往路配管401中にオゾン分子水を圧送するポンプ191が設けられている。オゾン分子水生成部201の貯留タンク202から、ポンプ191により吐出(加圧)することで往路配管401内に常時送水を行うようにする。
往路配管401には、往路配管401内の圧力を検出する圧力計403が設けられている。圧力計403で検出された信号は、噴霧制御部450に対して送信される。噴霧制御部450は、例えば、CPUとCPU上で動作するプログラムを保持するROMとCPUのワークエリアであるRAMなどからなる汎用のマイクロコンピューターなどの情報処理装置を用いることができる。このような噴霧制御部450は、図17で接続される各構成とデータ通信を行い、各構成から所定のデータを受信して演算を行ったり、所定のデータを指令などとして出力したりすることができるようになっている。噴霧制御部450では、圧力計403で検出された信号が所定の範囲に収まっているかをモニタする。また、当該信号に基づいてポンプ191に対して制御指令を出力するようにしてもよい。
復路配管405中で、貯留タンク202の上流側には減圧弁407が設けられている。減圧弁407は、ノズルに噴き出すのに必要な水圧に配管内(往路配管401、復路配管405)を維持しながら、貯留タンク202に戻すオゾン分子水を減圧して、貯留タンク202内に戻すオゾン分子水の水流による衝撃を減少させる。
往路配管401と復路配管405とは、長距離(例えば、片道で200mといった距離)を通水できる形状を持ち、その管内で滞留(停止)して室温や日光による昇温により、オゾン濃度が低下する、といったことを抑制するために、熱絶縁材408が配管の周囲に設けられることが好ましい。往路配管401と復路配管405の配管材料にはステンレス、硬質塩化ビニール、PTFE、PFA、シリコン等の耐オゾン材料が用い得る。
なお、片道の往路配管401を200mとした根拠は、安定化したオゾン分子水では200m通水して濃度維持率が85%以上であったことである。
本発明に係る噴霧装置1においては、往路配管401に対して、折り返す復路配管405が設けられ、貯留タンク202にオゾン分子水を循環させる構成が採用されている。ここで、貯留タンク202中のオゾン分子水は、往路配管401や復路配管405を経て温度上昇した場合でも、貯留タンク202に戻され、冷却機212により再び冷却されることとなる。貯留タンク202で貯留され、冷却機212により維持されるオゾン分子水の温度は少なくとも20℃以下とされることが好ましいが、より好ましくは4~10℃とされる。このように温度が維持されたオゾン分子水は、気液混合装置205へと循環したり、或いは、往路配管401に送水されたりする。
本発明に係る噴霧装置1においては、人のいる環境の一定上部(例えば、2m~10m)に多数のノズル(例えば、配管に2~5m程度の間隔で、水平方向に噴き出す等の形態で、配置されている)が配置されるよう配管を敷設することを想定している。図16に示す実施形態では、例として、往路配管401から分岐した配管に、第1ノズル411、第2ノズル412、第3ノズル413、第4ノズル414の4つの1流体型のノズルが設けられる例を示す。設けるノズルの数は、これに限定される分けではなく、あくまで図16では例示的に示している。
ポンプ191で送水するオゾン分子水は、各ノズルに供給される。ノズルには、超微細ノズルを用いることが好ましい。超微細ノズルはその仕様によるが、水の吐出水圧が0.2~1.0MPaであるものがよい。1流体型ノズルから、噴霧されるオゾン分子水のミストは、50μm以下の平均粒径を有することが好ましいが、ミストの平均粒径が100μm以下であっても構わない。一般的に、1流体型ノズルから噴霧されるオゾン分子水のミストの粒径は30μm~100μmに分布している。
このような微細レベルのミストが要求されるのは、オゾン分子水が空気中に広く分散されて、浮遊しているウイルスや細菌と接触しやすくなるからである。また、このような微細レベルのミストであれば、床や壁、人体体表等を濡らしてしまうことを避けることができる。
第1ノズル411、第2ノズル412、第3ノズル413、第4ノズル414の上流側には、それぞれ第1液体電磁弁415、第2液体電磁弁416、第3液体電磁弁417、第4液体電磁弁418が設けられており、これら電磁弁は噴霧制御部450からの制御信号に基づいて開閉される。これにより、それぞれのノズルからは、必要なタイミングでオゾン分子水のミストを間欠的に噴霧することができる。また、選択したノズルのみからオゾン分子水のミストを噴霧することができる。
ノズルによりオゾン分子水が噴霧される空間に第1環境オゾン濃度計431、第2環境オゾン濃度計432が設けられる。本実施形態では、2台の環境オゾン濃度計が設けられている例に基づいて説明しているが、設ける環境オゾン濃度計の台数がこれに限定されるものではない。また、環境オゾン濃度計は、人が存在する位置を基準として設けられる。すなわち、環境オゾン濃度計の設置場所は、必ずしもミストを噴霧するノズルの近傍である必要はない。第1環境オゾン濃度計431、第2環境オゾン濃度計432で検出されたオゾン濃度に係る検出データは、噴霧制御部450に対して送信され、先の各電磁弁の制御の判断材料として利用される。
噴霧制御部450による電磁弁の開閉制御としては、例えば、オゾン濃度の検出データが所定値を下回った場合、電磁弁を一定時間「開」とし、同検出データが所定値を上回った場合、電磁弁を「閉」とするように設定することができる。また、環境オゾン濃度計が設けられないような系を採用する場合は、所定時間間隔毎に周期的に電磁弁を一定時間「開」とする制御とすることもできる。往路配管401には、新鮮なオゾン分子水が常に満たされており、かつ噴霧に必要な水圧を維持しているところに、電磁弁が開くと、オゾン分子水の微細水粒がノズルから噴き出される。
以上のように構成される本発明に係る噴霧装置1によれば、複数のノズルからはオゾン分子水を噴霧することが可能であり、ウイルスや細菌に対して高い不活性化効果が期待でき、新型コロナウイルスなどの未知の感染症の対策として、例えば、病院や介護施設、人の多く集まるホール・競技会場、繁華街などに設置して利用することが可能となる。
次に、本発明に係る噴霧装置1の他の実施形態について説明する。図18は本発明の第2実施形態に係る噴霧装置1における噴霧部400の概略を示す図であり、図19は本発明の第2実施形態に係る噴霧装置1の制御ブロック図を示す図である。
第2実施形態に係る噴霧装置1は、先の実施形態と噴霧部400の構成のみが異なっている。より具体的には、先の実施形態ではノズルとして1流体型ノズルが用いられていたが、第2実施形態に係る噴霧装置1では、2流体型ノズルを用いることを特徴としている。以下、先の実施形態と異なる点について説明する。同一の参照符号が付せられた構成については、先の実施形態と同様のものである。
第2実施形態に係る噴霧装置1においては、往路配管401から、2流体型ノズルである第1ノズル421、第2ノズル422、第3ノズル423、第4ノズル424に対してオゾン分子水が供給されるようになっている。
図18において、点線の流路はエアー配管420を示している。コンプレッサ435は、このエアー配管420に対して圧縮空気を供給している。エアー配管420にはガス圧力計437が設けられており、このガス圧力計437で検出されるガス圧データは、噴霧制御部450に送信されるようになっている。噴霧制御部450では、ガス圧力計437で検出されるガス圧データが所定の範囲に収まっているかをモニタする。エアー配管420に供給される圧搾空気は0.2~1.0MPa程度とされることが好ましい。
エアー配管420からは、2流体型ノズルの各ノズルに圧縮空気が供給されるようになっている。第1ノズル421、第2ノズル422、第3ノズル423、第4ノズル424のエアー配管420の上流側には、それぞれ第1気体電磁弁425、第2気体電磁弁426、第3気体電磁弁427、第4気体電磁弁428が設けられており、これら電磁弁は噴霧制御部450からの制御信号に基づいて開閉される。
2流体型ノズルに対しては、往路配管401から各液体電磁弁を経由してオゾン分子水が供給されると共に、エアー配管420から各気体電磁弁を経由して経由して圧縮空気が供給される。ここで、図20を参照して2流体型ノズルについて説明する。2流体型ノズルとしては、図20(A)に示す外部混合型ノズル440、(B)に示す内部混合型ノズル444の構造のものなどを本実施形態で利用することができる。
図20(A)の外部混合型ノズル440は、外筒ノズル441と、外筒ノズル441とこの内径側に間隙を持って配されている内筒ノズル442とから構成され、内筒ノズル442に対してオゾン分子水が供給され、外筒ノズル441と内筒ノズル442との間に圧縮空気が供給されることで、オゾン分子水のミストが図示するように噴霧される。
また、図20(B)の内部混合型ノズル444は、吹き出し口448の前段に空洞部447が設けられており、この空洞部447に対して液体導入部446からオゾン分子水が供給され、気体導入部445から圧縮空気が供給されることで、空洞部447において両者が混合され、吹き出し口448からオゾン分子水のミストが図示するように噴霧される。
上記のような2流体型ノズルが用いられることで、第2実施形態に係る噴霧装置1においては、平均粒径が5μmであるオゾン分子水のミストからノズルから噴霧されるように設定することが好ましい。なお、2流体型ノズルから、噴霧されるオゾン分子水のミストは、5μm以下の平均粒径を有することが好ましいが、ミストの平均粒径が100μm以下であっても構わない。一般的に、2流体型ノズルから噴霧されるオゾン分子水のミストの粒径は5μm~30μmに分布している。
また、上記のような外部混合型ノズル440、内部混合型ノズル444の2流体型ノズルに代えて、ネブライザーなどの構成を利用してオゾン分子水のミストを噴霧させるようにすることもできる。
例えば、第1ノズル421を例に取ると、噴霧制御部450からの制御信号に基づいて、第1液体電磁弁415が「開」とされオゾン分子水が供給されると同時に、第1気体電磁弁425が「開」とされ圧縮空気が供給されることで、第1ノズル421からオゾン分子水のミストが噴霧されるようになっている。第1ノズル421以外の他のノズルも同様の制御により、オゾン分子水のミストを噴霧することができる。
このように、噴霧制御部450による制御で、それぞれのノズルからは、必要なタイミングでオゾン分子水のミストを間欠的に噴霧することができるし、選択したノズルのみからオゾン分子水のミストを噴霧することができる。
以上のような第2実施形態に係る噴霧装置1によっても、複数のノズルからはオゾン分子水を噴霧することが可能であり、ウイルスや細菌に対して高い不活性化効果が期待でき、新型コロナウイルスなどの未知の感染症の対策として、例えば、病院や介護施設、人の多く集まるホール・競技会場、繁華街などに設置して利用することが可能となる。
以上のような本発明に係る噴霧装置1によって噴霧されるオゾン分子水のミストが、新型コロナウイルスに対しても有効である可能性について検証したので説明する。
なお、これまで説明した実施形態では、往路配管401中の4箇所において、1流体型ノズル又は2流体型ノズルのいずれか一つのノズルを設ける例について説明したが、それぞれの箇所において複数の方向に向けられたノズルを複数設けるようにしてもよい。この場合、各ノズルは制御信号により選択的に開閉する液体電磁弁(2流体型ノズルの場合は気体電磁弁も)を設けるようにしておくことが好ましい。このような構成を採用することで、例えば、屋外などでは風向きの変化に応じて、「開」として制御するノズルを選択して、ウイルスや細菌に対して有効的にオゾン分子水を噴霧することが可能となる。
また、往路配管401中のオゾン分子水の圧力を制御して、ノズルから噴霧するオゾン分子水の水粒の径を制御するように構成することも好ましい実施形態である。例えば、往路配管401中のオゾン分子水の圧力を低下させることで、ノズルから噴霧する水粒の径を大きくし、落下速度の速いオゾン分子水のミストを吹き出させるようにすることなどができる。このような構成は、圧力計403で検出される信号に基づいて、ポンプ191のモーター(不図示)をインバーター制御することなどで実現可能である。
検証1
まず、検証1として、霧状のものではないが、本発明に係る噴霧装置1で用いるオゾン分子水が、コロナウイルス等を死滅させることが可能であるかについての確認試験を行った。被験物質は、7ppmと30ppmのオゾン分子水であり、使用したヒトコロナウイルスはHuman Coronavirus 229E(ATCC VR-740)であり、使用細胞はMRC-5 Lang Fibroblast(ATCC 171)である。
検証1
まず、検証1として、霧状のものではないが、本発明に係る噴霧装置1で用いるオゾン分子水が、コロナウイルス等を死滅させることが可能であるかについての確認試験を行った。被験物質は、7ppmと30ppmのオゾン分子水であり、使用したヒトコロナウイルスはHuman Coronavirus 229E(ATCC VR-740)であり、使用細胞はMRC-5 Lang Fibroblast(ATCC 171)である。
試験においては、まず、最初に、規定各マイクロチューブにオゾン分子水300μlを注入した後、ヒトコロナウイルス等の溶液100μlをたらし、ヴォルテックスで10秒程度すばやく混合してサンプルを作成した。また、ヴォルテックスを用いずに、上記マイクロチューブを手振りで10秒程度すばやく混合したサンプルも作成した。このように作成したマイクロチューブ中のサンプルに、RNA抽出液700μlを加え抽出しPCRで分析した。以上のような試験の結果を、図21に示す。図21からも分かるとおり、7ppmと30ppmのいずれのオゾン分子水も、ヒトコロナウイルスを不活化したり、細胞を死滅させたりすることができることが確認できた。以上から、新型コロナウイルスに対しても、本発明に係る噴霧装置1のオゾン分子水が有効であることが推測できる。
検証2
次に、検証2として、25m3の実大空間試験室(工学院大学八王子キャンパス11号館、25m3バイオクリーンルーム)で行った乳酸菌による新型コロナウイルスの模擬試験について説明する。ヒトコロナウイルスの死滅のしやすさ(新型コロナウイルスも同程度と仮定)は、乳酸菌の死滅のしやすさより、高いことが知られている。従って、乳酸菌が死滅するような状況下では、ヒトコロナウイルスも死滅する蓋然性が極めて高く、さらに、新型コロナウイルスも死滅する可能性が高い。
検証2
次に、検証2として、25m3の実大空間試験室(工学院大学八王子キャンパス11号館、25m3バイオクリーンルーム)で行った乳酸菌による新型コロナウイルスの模擬試験について説明する。ヒトコロナウイルスの死滅のしやすさ(新型コロナウイルスも同程度と仮定)は、乳酸菌の死滅のしやすさより、高いことが知られている。従って、乳酸菌が死滅するような状況下では、ヒトコロナウイルスも死滅する蓋然性が極めて高く、さらに、新型コロナウイルスも死滅する可能性が高い。
このような根拠により、乳酸菌による新型コロナウイルスの模擬試験を以下の要領で実施した。この模擬試験では、25m2の実大空間試験室に対して、先の実施形態で説明した2流体型ノズルによる噴霧が行われた。また、模擬試験は、7ppmと30ppmの双方のオゾン分子水について行われた。
試験方法
1.37℃で24hrs培養した乳酸菌(Lactobacillusu plantarum AN3-2)液を100倍に希釈し、試験菌液とする。
2.実大空間試験室を水拭き後、HEPAフィルターを経た外気を30分間置換する。その後、吸排気を止める。
3.試験菌液をハリオサイエンス社製ネブライザーで、10μm以下の粒径で実大空間試験室中に10minで10mlを噴霧する。(乳酸菌濃度は106cfu/mlであり、総量107cfuとなる。)
4.初期濃度を、精密エアサンプラーで5分間2,500mlサンプルリングし、エアポンプ手前のミリポアフィルターで菌体を採取後、GAM寒天培地で培養する。(乳酸菌濃度は実大空間中で、20,000cfu/m3であり、2,500mlサンプリングする。
5.本発明に係る噴霧装置1によるオゾン分子水の噴霧を開始した時刻を0分とし、以後、15分・30分・45分・120分にそれぞれ2,500mlサンプリングし、培養し、コロニーカウントにより評価する。
試験方法
1.37℃で24hrs培養した乳酸菌(Lactobacillusu plantarum AN3-2)液を100倍に希釈し、試験菌液とする。
2.実大空間試験室を水拭き後、HEPAフィルターを経た外気を30分間置換する。その後、吸排気を止める。
3.試験菌液をハリオサイエンス社製ネブライザーで、10μm以下の粒径で実大空間試験室中に10minで10mlを噴霧する。(乳酸菌濃度は106cfu/mlであり、総量107cfuとなる。)
4.初期濃度を、精密エアサンプラーで5分間2,500mlサンプルリングし、エアポンプ手前のミリポアフィルターで菌体を採取後、GAM寒天培地で培養する。(乳酸菌濃度は実大空間中で、20,000cfu/m3であり、2,500mlサンプリングする。
5.本発明に係る噴霧装置1によるオゾン分子水の噴霧を開始した時刻を0分とし、以後、15分・30分・45分・120分にそれぞれ2,500mlサンプリングし、培養し、コロニーカウントにより評価する。
ここで、噴霧装置1では、2流体型ノズル(ミストの平均粒径は5μm)を用いて、コンプレッサ圧力0.8MPa、吐出水量3ml/分とした。
6.時刻0分から、実大空間試験室におけるオゾンガス濃度の計測を行った。
6.時刻0分から、実大空間試験室におけるオゾンガス濃度の計測を行った。
以上のような試験方法により得られた結果を、図22に示す。なお、図22中に示したコロニーカウント数[pts]に係る曲線は補間により得たものである。図22に示されるように、7ppmのオゾン分子水の噴霧によれば、凡そ90分程度で乳酸菌を死滅させることができることが分かった。また、30ppmのオゾン分子水の噴霧によれば、凡そ60分程度で乳酸菌を死滅させることができた。
また、図22に示されるように、7ppm、30ppmのオゾン分子水のいずれの場合も、環境中のガス濃度は、0.1ppmを超えることはなかった。日本の場合には1985年日本産業衛生学会で、1日8時間、週40時間程度の労働時間中にオゾンの許容濃度等の勧告値として0.1ppmが示されている。すなわち、オゾンガスは0.1ppmを越える濃度で人の存在する空間に発生させて使用することはできない。本発明に係る噴霧装置1によれば、オゾン分子水として30ppmの高濃度のものを噴霧にしつつも、環境オゾン濃度を0.1ppm以下に維持できたということで、非常に強いオゾン水反応をしながら安全値に維持することができた。
特許文献1記載のオゾン殺菌装置及びオゾンスプレ装置特許では、オゾン濃度に関する記述は0.1~0.5ppmとなっているが、これは環境中のガス濃度であると考えられる。要は、ドライミストで噴霧するものの、それらが気化して発生するガスだけを捉えており、そもそもオゾン水としてミストにどれだけのオゾンが溶存しているかは検討されていない。
令和2年5月14日、公立大学法人奈良県立医科大学及び一般社団法人MBTコンソーシアム「(世界初)オゾンによる新型コロナウイルス不活化を確認」(https://www.naramed-u.ac.jp/university/kenkyu-sangakukan/oshirase/r2nendo/documents/press_2.pdf)には、新型コロナウイルスに対して、オゾンガス1ppm(安全基準の10倍)、6ppm(安全基準の60倍)を、60分(または55分)作用させて99%の不活化を行ったことが開示されている。このように、オゾンガスが新型コロナウイルス不活化に有効であることは報告されたものの、オゾンガスでの殺菌・殺ウイルス効果は極めて低い。一方、本発明に係る噴霧装置1においては、オゾンが溶存しているオゾン水のミストを噴霧することで、コロナウイルスの不活化を短時間に行うことを可能としている。
1・・・噴霧装置
181・・・酸素ガスボンベ
182・・・窒素ガスボンベ
190・・・配管
191・・・ポンプ
201・・・オゾン分子水生成部
202・・・貯留タンク
202v・・・取水バルブ
203・・・気体供給装置
204・・・循環系装置
205・・・気液混合装置(液体クラスレート生成装置)
206・・・溶解促進槽
202・・・貯留タンク
207・・・温度保持装置
211・・・ポンプ
212・・・冷却機
213・・・配管
217・・・気体供給管
218・・・ニードルバルブバルブ
219・・・逆止弁
220・・・流量計
221・・・第1圧力計
222・・・第2圧力計
223・・・第1ガス圧力計
224・・・第2ガス圧力計
225・・・電磁バルブ
231・・・ベンチュリ管
232・・・上流側大経路
233・・・絞り傾斜路
234・・・小径路
235・・・開放傾斜路
236・・・下流側大経路
239・・・気体供給パイプ
243・・・磁気回路
245・・・一方の磁石片
246・・・他方の磁石片
248・・・連結部材
265・・・気液分離装置
267・・・気体分解装置
270・・・配管
271・・・ポンプ
272・・・逆止弁
273・・・配管
274・・・配管
275・・・配管
276・・・バルブ
300・・・フーリエ変換赤外分光分析装置
301・・・鏡
302・・・プリズム
303・・・検体配置用台座
303a・・・検体充填孔
304・・・保持器
400・・・噴霧部
401・・・往路配管
403・・・圧力計
405・・・復路配管
407・・・減圧弁
408・・・熱絶縁材
411・・・第1ノズル(1流体型ノズル)
412・・・第2ノズル(1流体型ノズル)
413・・・第3ノズル(1流体型ノズル)
414・・・第4ノズル(1流体型ノズル)
415・・・第1液体電磁弁
416・・・第2液体電磁弁
417・・・第3液体電磁弁
418・・・第4液体電磁弁
420・・・エアー配管
421・・・第1ノズル(2流体型ノズル)
422・・・第2ノズル(2流体型ノズル)
423・・・第3ノズル(2流体型ノズル)
424・・・第4ノズル(2流体型ノズル)
425・・・第1気体電磁弁
426・・・第2気体電磁弁
427・・・第3気体電磁弁
428・・・第4気体電磁弁
431・・・第1環境オゾン濃度計
432・・・第2環境オゾン濃度計
435・・・コンプレッサ
437・・・ガス圧力計
440・・・外部混合型ノズル
441・・・外筒ノズル
442・・・内筒ノズル
444・・・内部混合型ノズル
445・・・気体導入部
446・・・液体導入部
447・・・空洞部
448・・・吹き出し口
450・・・噴霧制御部
181・・・酸素ガスボンベ
182・・・窒素ガスボンベ
190・・・配管
191・・・ポンプ
201・・・オゾン分子水生成部
202・・・貯留タンク
202v・・・取水バルブ
203・・・気体供給装置
204・・・循環系装置
205・・・気液混合装置(液体クラスレート生成装置)
206・・・溶解促進槽
202・・・貯留タンク
207・・・温度保持装置
211・・・ポンプ
212・・・冷却機
213・・・配管
217・・・気体供給管
218・・・ニードルバルブバルブ
219・・・逆止弁
220・・・流量計
221・・・第1圧力計
222・・・第2圧力計
223・・・第1ガス圧力計
224・・・第2ガス圧力計
225・・・電磁バルブ
231・・・ベンチュリ管
232・・・上流側大経路
233・・・絞り傾斜路
234・・・小径路
235・・・開放傾斜路
236・・・下流側大経路
239・・・気体供給パイプ
243・・・磁気回路
245・・・一方の磁石片
246・・・他方の磁石片
248・・・連結部材
265・・・気液分離装置
267・・・気体分解装置
270・・・配管
271・・・ポンプ
272・・・逆止弁
273・・・配管
274・・・配管
275・・・配管
276・・・バルブ
300・・・フーリエ変換赤外分光分析装置
301・・・鏡
302・・・プリズム
303・・・検体配置用台座
303a・・・検体充填孔
304・・・保持器
400・・・噴霧部
401・・・往路配管
403・・・圧力計
405・・・復路配管
407・・・減圧弁
408・・・熱絶縁材
411・・・第1ノズル(1流体型ノズル)
412・・・第2ノズル(1流体型ノズル)
413・・・第3ノズル(1流体型ノズル)
414・・・第4ノズル(1流体型ノズル)
415・・・第1液体電磁弁
416・・・第2液体電磁弁
417・・・第3液体電磁弁
418・・・第4液体電磁弁
420・・・エアー配管
421・・・第1ノズル(2流体型ノズル)
422・・・第2ノズル(2流体型ノズル)
423・・・第3ノズル(2流体型ノズル)
424・・・第4ノズル(2流体型ノズル)
425・・・第1気体電磁弁
426・・・第2気体電磁弁
427・・・第3気体電磁弁
428・・・第4気体電磁弁
431・・・第1環境オゾン濃度計
432・・・第2環境オゾン濃度計
435・・・コンプレッサ
437・・・ガス圧力計
440・・・外部混合型ノズル
441・・・外筒ノズル
442・・・内筒ノズル
444・・・内部混合型ノズル
445・・・気体導入部
446・・・液体導入部
447・・・空洞部
448・・・吹き出し口
450・・・噴霧制御部
Claims (7)
- オゾンガスと水とを混合しオゾン分子水とする気液混合部と、
前記気液混合部で気液混合されたオゾン分子水を貯留する貯留タンクと、
前記貯留タンクに貯留されるオゾン分子水を前記気液混合部に再度通過させる循環構造と、
前記貯留タンクに貯留されるオゾン分子水を往路配管に圧送するポンプと、
前記往路配管に連通し、オゾン分子水を前記貯留タンクに戻すように流通させる復路配管と、
前記往路配管に設けられ、オゾン分子水を噴霧する複数のノズルと、からなることを特徴とする噴霧装置。 - 前記ノズルが1流体型ノズルであり、前記ノズルから噴霧されるオゾン分子水のミストの粒径は30μm~100μmに分布していることを特徴とする請求項1に記載の噴霧装置。
- 前記ノズルが2流体型ノズルであり、前記ノズルから噴霧されるオゾン分子水のミストの粒径は5μm~30μmに分布していることを特徴とする請求項1に記載の噴霧装置。
- 前記ノズルからのオゾン分子水の噴霧が間欠的に行われることを特徴とする請求項1乃至請求項3のいずれか1項に記載の噴霧装置。
- 前記貯留タンクに貯留されるオゾン分子水を冷却する冷却機が設けられることを特徴とする請求項1乃至請求項4のいずれか1項に記載の噴霧装置。
- 前記ノズルによりオゾン分子水が噴霧される空間に環境オゾン濃度計が設けられることを特徴とする請求項1乃至請求項5のいずれか1項に記載の噴霧装置。
- 前記復路配管中に減圧弁が設けられることを特徴とする請求項1乃至請求項6のいずれか1項に記載の噴霧装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021014256A JP2022117645A (ja) | 2021-02-01 | 2021-02-01 | 噴霧装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021014256A JP2022117645A (ja) | 2021-02-01 | 2021-02-01 | 噴霧装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022117645A true JP2022117645A (ja) | 2022-08-12 |
Family
ID=82750438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021014256A Pending JP2022117645A (ja) | 2021-02-01 | 2021-02-01 | 噴霧装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022117645A (ja) |
-
2021
- 2021-02-01 JP JP2021014256A patent/JP2022117645A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101917647B1 (ko) | 공명 발포와 진공 캐비테이션 현상에 의한 산화성 라디칼 또는 환원성 라디칼을 가지는 울트라 파인 버블의 제조 방법 및 울트라 파인 버블수 제조 장치 | |
KR101122979B1 (ko) | 기액 혼합 장치 | |
Vadlapudi et al. | Green synthesis of silver and gold nanoparticles | |
ES2800649T3 (es) | Procedimiento de eliminación de esporas utilizando una composición de peróxido vaporosa | |
EP3197622B1 (en) | Composition containing spherical and coral-shaped nanoparticles and method of making same | |
CA2767993C (en) | Composition and process for production thereof | |
Ding et al. | Sodium bicarbonate nanoparticles for amplified cancer immunotherapy by inducing pyroptosis and regulating lactic acid metabolism | |
JPWO2011149031A1 (ja) | ガス分子が高密度に溶存した液体クラスレート | |
US20170368220A1 (en) | Devices for disinfection, deodorization, and/or sterilization of objects | |
EP2566524A1 (de) | Plasmageneriertes gas-sterilisationsverfahren | |
WO2017195852A1 (ja) | 生体投与可能な水溶液及びその製造方法 | |
EP3908131A1 (de) | Vorrichtung und verfahren zum extrahieren und aspirieren von wirkstoffen, insbesondere aus der cannabispflanze | |
JP2022117645A (ja) | 噴霧装置 | |
WO2021075425A1 (ja) | ウルトラファインバブル含有溶液を含む殺菌剤 | |
JP7336095B2 (ja) | 化学剤の除染方法及び生物剤の除染方法 | |
DE60114472T2 (de) | Verfahren zum auffinden von ozonverbrauchenden verbindungen | |
CN112897470B (zh) | 集中传输式氙准分子光源臭氧发生器的臭氧喷洒架构 | |
EP3781218B1 (de) | Desinfektionsverfahren mit einem durch reaktion von h2o2 und no2- in situ gebildetem desinfektionswirkstoff | |
KR100943204B1 (ko) | 혈액순환 개선용 기능성 음용수 및 이의 제조방법 | |
Yan et al. | Guidelines for using 3-Nitro-L-Tyrosine as an antidegradation reagent of H 2 O 2 in the cold atmospheric plasma-stimulated solutions | |
WO1995014484A1 (fr) | GENERATEUR DE RADICAUX LIBRES $i(IN VIVO) | |
KR101732414B1 (ko) | 미세버블의 고농도화 장치 및 미세버블의 고농도화 방법 | |
Wardoyo | Biomass burning; ultrafine particles, concentration, and organ effect | |
WO2022092069A1 (ja) | 高速ナノミストおよびその生成方法と生成装置、処理方法と処理装置および計測方法と計測装置 | |
WO2018003557A1 (ja) | ミスト生成装置、ミスト生成方法および殺菌・脱臭方法 |