JP2022117440A - fusible plug - Google Patents
fusible plug Download PDFInfo
- Publication number
- JP2022117440A JP2022117440A JP2021208881A JP2021208881A JP2022117440A JP 2022117440 A JP2022117440 A JP 2022117440A JP 2021208881 A JP2021208881 A JP 2021208881A JP 2021208881 A JP2021208881 A JP 2021208881A JP 2022117440 A JP2022117440 A JP 2022117440A
- Authority
- JP
- Japan
- Prior art keywords
- fusible plug
- sintered body
- low
- pressure gas
- point alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 79
- 239000000956 alloy Substances 0.000 claims abstract description 79
- 239000011148 porous material Substances 0.000 claims abstract description 62
- 229910052751 metal Inorganic materials 0.000 claims abstract description 52
- 239000002184 metal Substances 0.000 claims abstract description 52
- 238000002844 melting Methods 0.000 claims abstract description 35
- 230000008018 melting Effects 0.000 claims abstract description 34
- 239000002131 composite material Substances 0.000 claims abstract description 14
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims abstract description 10
- 238000012360 testing method Methods 0.000 claims description 10
- 238000004663 powder metallurgy Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 17
- 239000007789 gas Substances 0.000 description 47
- 239000000843 powder Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 5
- 238000012669 compression test Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910000743 fusible alloy Inorganic materials 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910000846 In alloy Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 238000001739 density measurement Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Landscapes
- Pressure Vessels And Lids Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、可溶栓に係り、とくに、高圧ガス容器に取付けられ、該高圧ガス容器が異常な高温に晒された際に、高圧ガス容器内部のガスを短時間で放出し、容器の破損を防止することが可能な可溶栓に関する。 The present invention relates to a fusible plug that is attached to a high-pressure gas container, and that, when the high-pressure gas container is exposed to an abnormally high temperature, releases the gas inside the high-pressure gas container in a short period of time, resulting in damage to the container. It relates to a fusible plug capable of preventing
従来から、高圧容器や設備の安全装置として、可溶栓が使用されている。可溶栓は、容器や設備が火災や事故等で高温に晒された場合に、内圧の上昇による容器や設備の破損が生じる前に、栓を開放して内容物を外部に放出する、安全弁としての役割を有する。このような可溶栓の一例として、例えば、特許文献1に提案された「可溶栓」がある。特許文献1に記載された可溶栓は、一端に高圧設備と接続するためのネジ部が形成され、内部に連通孔を有し、該連通孔に低融点金属(合金)が充填され、他端に多孔組織材が接続された構成を有し、多孔組織材に低融点合金が滲入してもよいとしている。特許文献1に記載された可溶栓では、高圧容器や設備が異常高温に達すると、連通孔に充填された低融点合金が溶融して連通孔が解放され、高圧容器や設備内の内容物が多孔組織材を通過して外部に排出され、高圧容器等の破損を防止することができるとしている。 BACKGROUND ART Conventionally, fusible plugs have been used as safety devices for high-pressure vessels and equipment. A fusible plug is a safety valve that releases the plug and releases the contents to the outside before damage occurs to the container or equipment due to a rise in internal pressure when the container or equipment is exposed to high temperatures due to a fire or accident. has a role as An example of such a fusible plug is a "fusible plug" proposed in Patent Document 1, for example. The fusible plug described in Patent Document 1 has a threaded portion formed at one end for connection with high-pressure equipment, has a communication hole inside, and the communication hole is filled with a low-melting-point metal (alloy). It has a structure in which a porous structure material is connected to the end, and the low melting point alloy may permeate into the porous structure material. In the fusible plug described in Patent Document 1, when the high-pressure vessel or equipment reaches an abnormally high temperature, the low-melting-point alloy filled in the communication hole melts and the communication hole is released. passes through the porous structure material and is discharged to the outside, thereby preventing damage to the high-pressure vessel and the like.
上記したような高圧容器の内圧の上昇による爆発、破損等の事態を回避するために、高圧ガス容器にも、内容物(ガス)を急速に排出するための可溶栓を備えた安全装置が必要である。しかし、可溶栓で使用する低融点合金が高価であり、その使用量を低減するために、可溶栓を小型化する傾向が強く、また、安全装置の簡素化という傾向とも相まって、直接、可溶栓に圧力が負荷される構造とすることが要望されている。このようなことから、高圧ガス容器に取付けられ、安全装置として適切に作動する可溶栓については、まだ有効なものが開発されていないという問題があった。 In order to avoid situations such as explosions and breakage due to an increase in the internal pressure of the high-pressure container as described above, high-pressure gas containers also have a safety device equipped with a fusible plug to rapidly discharge the contents (gas). is necessary. However, the low melting point alloys used in fusible plugs are expensive, and there is a strong tendency to downsize fusible plugs in order to reduce the amount used. There is a demand for a structure in which pressure is applied to the fusible plug. For this reason, there has been a problem that an effective fusible plug that is attached to a high-pressure gas container and operates appropriately as a safety device has not yet been developed.
本発明は、上記した従来技術の問題に鑑み、高圧ガス容器用の安全装置として好適な、耐圧性に優れた可溶栓を提供することを目的とする。ここでいう「高圧」とは70MPa以上の圧力をいうものとする。また、「耐圧性に優れた」とは、圧力:87.5MPa以上の耐圧性を有する場合をいうものとする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a fusible plug excellent in pressure resistance suitable as a safety device for a high-pressure gas container in view of the above-described problems of the prior art. The term "high pressure" as used herein means a pressure of 70 MPa or higher. In addition, the phrase "excellent in pressure resistance" refers to the case of having pressure resistance of 87.5 MPa or more.
本発明者らは、上記した目的を達成するために、高圧力下においても、適正に作動できる可溶栓の構造について、鋭意検討した。通常、可溶栓で使用される低融点合金は強度が低く、そのため、高圧力下に晒された場合には、可溶栓に充填された低融点合金が変位し、高圧ガス容器内部の内容物(ガス)が外部に流出する場合があるという問題がある。そこで、可溶栓の連通孔に充填される低融点合金の補強方法として、溶融した低融点合金が含浸可能な多数の空孔を有する多孔質材料を利用することに想到した。 In order to achieve the above object, the present inventors have extensively studied the structure of a fusible plug that can operate properly even under high pressure. Normally, the low-melting-point alloy used in fusible plugs has low strength, so when exposed to high pressure, the low-melting-point alloy filled in the fusible plug is displaced, and the contents inside the high-pressure gas container are displaced. There is a problem that substances (gas) may flow out to the outside. Therefore, as a method of reinforcing the low-melting-point alloy that fills the communication holes of the fusible plug, the inventors have come up with the idea of using a porous material having a large number of pores that can be impregnated with a molten low-melting-point alloy.
本発明者らは、可溶栓の連通孔にまず、多孔質材料を圧入したのち、該多孔質材料の全て又は一部に低融点合金を含浸させて複合化することに思い至った。これにより、可溶栓の連通孔内に充填された低融点合金の強度増加を安定して達成でき、可溶栓が高圧ガス容器に取り付けられた場合でも、常時には、内容物(ガス)が外部に流出することがなく、異常高温等に遭遇した場合には、低融点合金が溶融し容易に開栓して、容器内部の内容物(ガス)を容器外に流出させることができることを知見した。 The present inventors came up with the idea of first press-fitting a porous material into the communicating holes of the fusible plug, and then impregnating all or part of the porous material with a low-melting-point alloy to form a composite. As a result, it is possible to stably increase the strength of the low-melting-point alloy filled in the communication hole of the fusible plug, and even when the fusible plug is attached to the high-pressure gas container, the contents (gas) can be maintained at all times. It does not flow out to the outside, and when an abnormally high temperature is encountered, the low melting point alloy melts and can be easily opened, allowing the contents (gas) inside the container to flow out of the container. did.
本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
[1]高圧ガス容器に取付けられる可溶栓であって、連通孔を有し、該連通孔の長さ方向の少なくとも一部に装着された多孔質材料を有し、かつ前記多孔質材料の全て又は一部に低融点合金が含浸され複合化してなることを特徴とする高圧ガス容器用可溶栓。
[2]前記低融点合金が、融点:110±5.5℃である合金であることを特徴とする[1]に記載の高圧ガス容器用可溶栓。
[3]前記多孔質材料が、面積率で30%以上50%以下の空孔を有し、かつ該空孔のうち直径5μmを超える空孔を、全空孔に対する面積率で80%以上有し、日本粉末冶金工業会規格 JPMA M09-1992の規定に準拠した抗折力試験による抗折力が50MPa以上である多孔質金属焼結体であることを特徴とする[1]または[2]に記載の高圧ガス容器用可溶栓。
[4]前記多孔質金属焼結体が、多孔質オーステナイト系ステンレス鋼焼結体であることを特徴とする[3]に記載の高圧ガス容器用可溶栓。
[5]前記低融点合金が前記多孔質材料に含浸され複合化してなる領域の圧縮降伏強度が、前記低融点合金の圧縮降伏強度の1.5倍以上であることを特徴とする[1]ないし[4]のいずれかに記載の高圧ガス容器用可溶栓。
[6]環境温度:85℃で、圧力:87.5MPa以上の耐圧性を有することを特徴とする[1]ないし[5]のいずれかに記載の高圧ガス容器用可溶栓。
The present invention has been completed based on these findings and further studies. That is, the gist of the present invention is as follows.
[1] A fusible plug to be attached to a high-pressure gas container, which has a communicating hole, a porous material attached to at least a part of the length of the communicating hole, and the porous material A fusible plug for a high-pressure gas container, characterized in that it is entirely or partially impregnated with a low-melting-point alloy to form a composite.
[2] The fusible plug for a high-pressure gas container according to [1], wherein the low melting point alloy is an alloy having a melting point of 110±5.5°C.
[3] The porous material has pores with an area ratio of 30% or more and 50% or less, and among the pores, pores with a diameter of more than 5 μm have an area ratio of 80% or more with respect to all pores. and characterized by being a porous metal sintered body having a transverse rupture strength of 50 MPa or more in a transverse rupture strength test in accordance with JPMA M09-1992, a standard of the Japan Powder Metallurgy Association [1] or [2] The fusible plug for the high-pressure gas container according to .
[4] The fusible plug for a high-pressure gas container according to [3], wherein the porous metal sintered body is a porous austenitic stainless steel sintered body.
[5] The compressive yield strength of the region formed by impregnating the low melting point alloy into the porous material and forming a composite is 1.5 times or more the compressive yield strength of the low melting point alloy [1] to [ 4], the fusible plug for high pressure gas containers according to any one of
[6] The fusible plug for a high-pressure gas container according to any one of [1] to [5], which has a pressure resistance of 87.5 MPa or more at an ambient temperature of 85°C.
本発明によれば、高圧ガスの環境下でも、通常は、容器内のガスが外部に流出することがなく、一方、異常な高温に晒された時には、容易に連通孔が開放され、内容物(高圧ガス)を放出でき、高圧ガス容器用の安全装置として有効で、かつ安価な可溶栓を提供でき、産業上格段の効果を奏する。また、多孔質材料として多孔質オーステナイト系ステンレス鋼焼結体を使用した可溶栓とすることで、耐食性が向上し、長期の使用にも耐え得る可溶栓が得られるという効果もある。 According to the present invention, even in a high-pressure gas environment, the gas in the container normally does not flow out to the outside. (High-pressure gas) can be released, it is effective as a safety device for a high-pressure gas container, and a low-cost fusible plug can be provided, producing a remarkable industrial effect. In addition, by using a porous austenitic stainless steel sintered body as a porous material to form a fusible plug, corrosion resistance is improved and a fusible plug that can withstand long-term use can be obtained.
本発明は、高圧ガス容器用として好適な可溶栓である。
本発明可溶栓は、高圧ガス容器に取り付けられ、高圧ガス容器が異常高温に晒された場合等には、高圧ガス容器内のガスを迅速に外部に放出するように作用し、常時は、高圧ガス容器内のガスを外部に放出させないように作用する。
INDUSTRIAL APPLICABILITY The present invention is a fusible plug suitable for high-pressure gas containers.
The fusible plug of the present invention is attached to a high-pressure gas container, and when the high-pressure gas container is exposed to an abnormally high temperature, it acts to quickly release the gas in the high-pressure gas container to the outside. It acts to prevent the gas in the high-pressure gas container from being released to the outside.
可溶栓は、高圧ガス容器と外部とを連通するように、穿設された連通孔を有する。連通孔には、低融点合金が充填され、常時は多孔質材料に含浸した状態で固化し、複合化した低融点合金により連通孔は閉とされる。一方、異常高温となった場合には、低融点合金が溶融し多孔質体から外部へと溶出することで、連通孔は開となり、容器内の内容物(ガス)を迅速に外部に放出することができる。なお、本発明の可溶栓は、真鍮製、ステンレス鋼製等の通常の可溶栓と同様な材料製として、所望の形状、寸法となるように、切削等の通常の方法で製作される。 The fusible plug has a communication hole drilled so as to communicate the high pressure gas container and the outside. The communicating holes are filled with a low-melting-point alloy, which is normally solidified while being impregnated with the porous material, and the communicating holes are closed by the composite low-melting-point alloy. On the other hand, when the temperature becomes abnormally high, the low-melting point alloy melts and elutes from the porous body to the outside, opening the communication holes and quickly releasing the contents (gas) in the container to the outside. be able to. The fusible plug of the present invention is made of a material similar to that of ordinary fusible plugs, such as brass or stainless steel, and is manufactured by an ordinary method such as cutting so as to have a desired shape and size. .
本発明の可溶栓1では、上記した連通孔2の長さ方向の一部を占めるように、多孔質材料3を圧入したのち、低融点合金4を多孔質材料3の全て又は一部に含浸させ、固化し複合化した状態となるようにする。この状態を模式的に図1に示す。可溶栓1はネジ部等で高圧ガス容器10と接続され、低融点合金には所定の高圧力が負荷される。なお、連通孔は、充填した低融点合金等が高圧力側からの圧力で外部に飛び出ないように、段付き構造の断面としてもよい。
In the fusible plug 1 of the present invention, after the
すなわち、本発明の可溶栓1では、連通孔2に圧入された多孔質材料3の全て又は一部に、低融点合金4を含浸させ、複合化した状態となるようにする。これにより、高圧ガス容器に取り付けられ、容器内部のガスからの高圧力が、連通孔内の低融点合金に負荷されても、低融点合金が変位することはなく、常時には容器内のガスが外部に漏れることはない。多孔質材料3の全て又は一部に含浸され複合化した低融点合金は、多孔質材料に補強されて、低融点合金のみの強度に比べ全体として、高い強度を保持した状態となる。なお、図1(a)、(b)に模式的に示されるように、低融点合金4は、多孔質材料3以外の連通孔2内にも充填される場合がある。しかし、図1(c)~(h)に示すように、本発明では、多孔質材料3以外の連通孔2内に充填される低融点合金4はできるだけ低減することが、経済的観点からも好ましい。なお、低融点合金が所望の強度、シール性を保持できれば、低融点合金の含浸・複合化は多孔質材料の一部としてもよい。
That is, in the fusible plug 1 of the present invention, all or part of the
可溶栓の連通孔に充填する低融点合金は、所望の融点に適合した合金を選定すればよく、とくに限定する必要はない。低融点合金は、Bi、Sn、In、Ag、Znなどから選ばれた2種以上の金属からなる合金で、低融点が得やすいという観点から、ビスマスBi/インジウムIn系、ビスマスBi/インジウムIn/スズSn系、ビスマスBi/インジウムIn/銀Ag系などの合金とすることが好ましい。本発明では、高圧ガス容器に取り付けるため、安全上、機能特性の安定性という観点から、使用する低融点合金としては、融点が110±5.5℃である合金とすることが好ましい。このような低融点合金としては、67質量%Bi-33質量%In合金が例示される。 The low-melting-point alloy to be filled in the communication hole of the fusible plug may be selected from alloys having a desired melting point, and is not particularly limited. The low-melting-point alloy is an alloy composed of two or more metals selected from Bi, Sn, In, Ag, Zn, etc. From the viewpoint of easily obtaining a low melting point, the bismuth-Bi/indium-based, bismuth-Bi/indium-in An alloy such as a /tin Sn system, bismuth Bi/indium In/silver Ag system or the like is preferable. In the present invention, since it is attached to a high-pressure gas container, it is preferable to use an alloy having a melting point of 110±5.5° C. from the viewpoint of safety and stability of functional characteristics. A 67 mass % Bi-33 mass % In alloy is exemplified as such a low melting point alloy.
本発明で可溶栓の連通孔に圧入する多孔質材料としては、所望の強度を確保しやすいという観点から、多孔質金属焼結体とすることが好ましい。多孔質金属焼結体としては、空孔を面積率で30%以上、好ましくは50%以下で、空孔のうち直径5μmを超える空孔を全空孔に対し面積率で80%以上有する多孔質金属焼結体が例示できる。 In the present invention, the porous material to be press-fitted into the communicating hole of the fusible plug is preferably a porous metal sintered body from the viewpoint of easily securing the desired strength. The porous metal sintered body has pores with an area ratio of 30% or more, preferably 50% or less, and pores with a diameter exceeding 5 μm among all pores having an area ratio of 80% or more. sintered metal can be exemplified.
多孔質金属焼結体の空孔が面積率で30%未満では、低融点合金を含浸させるとき、低融点合金の溶湯が多孔質焼結体の空孔に含浸せず、低融点合金を補強することができない。また、異常高温に晒されたときに、低融点合金が溶融し外部に放出され、連通孔「開」となっても、容器内のガスを外部に迅速に放出することができない。一方、空孔が面積率で50%を超えると、空孔が多すぎて強度が低下し、高圧下で変形して、所望の低融点合金の強度補強が不十分となる恐れがある。このため、多孔質金属焼結体の空孔率は30%以上50%以下とすることが好ましい。また、空孔のうち直径5μmを超える空孔を全空孔に対し面積率で80%未満では、微細な空孔量が増加し、低融点合金の溶湯が焼結体の空孔に含浸しにくく、所望の強度を確保することができにくくなる。このようなことから、多孔質金属焼結体は、上記したように面積率で30%以上で、好ましくは50%以下の空孔率で、空孔のうち直径5μmを超える空孔を全空孔面積に対して80%以上有する多孔質金属焼結体とすることが好ましい。 If the area ratio of the pores in the porous metal sintered body is less than 30%, the molten metal of the low melting point alloy does not impregnate the pores of the porous sintered body and reinforces the low melting point alloy. Can not do it. Also, when exposed to abnormally high temperatures, the low-melting-point alloy melts and is released to the outside, and even if the communication hole is "opened", the gas in the container cannot be quickly released to the outside. On the other hand, if the area ratio of the pores exceeds 50%, there are too many pores, the strength is lowered, and deformation under high pressure may result in insufficient reinforcement of the desired strength of the low-melting-point alloy. Therefore, the porosity of the porous metal sintered body is preferably 30% or more and 50% or less. In addition, when the area ratio of pores with a diameter of more than 5 μm to all pores is less than 80%, the amount of fine pores increases, and the molten metal of the low melting point alloy impregnates the pores of the sintered body. It becomes difficult to secure the desired strength. For this reason, the porous metal sintered body has an area ratio of 30% or more, preferably 50% or less, as described above, and all the pores having a diameter of more than 5 μm are voids. It is preferable to use a porous metal sintered body having 80% or more of the pore area.
このような多孔質金属焼結体としては、多孔質オーステナイト系ステンレス鋼焼結体とすることが好ましい。本発明の可溶栓は、屋内外の高圧ガス環境下での使用となるため、多孔質金属焼結体は、耐食性に優れた多孔質オーステナイト系ステンレス鋼焼結体とすることが好ましい。多孔質オーステナイト系ステンレス鋼焼結体は、耐水素脆性にも優れているため、高圧水素ガス環境下における使用にも適している。なお、オーステナイト系ステンレス鋼としては、例えば、SUS 201、SUS 202、SUS 301、SUS 302、SUS 303、SUS 303Se、SUS 304、SUS 304L、SUS 304N1、SUS 304N2、SUS 304LN、SUS 305、SUS 309S、SUS 310S、SUS 316、SUS 316L、SUS 316N、SUS 316LN、SUS 316J1、SUS 316J1L、SUS 317、SUS 317L、SUS 317J1、SUS 321、SUS 347、SUH 660等が例示できる。 Such a porous metal sintered body is preferably a porous austenitic stainless steel sintered body. Since the fusible plug of the present invention is used indoors and outdoors in a high-pressure gas environment, the porous metal sintered body is preferably a porous austenitic stainless steel sintered body with excellent corrosion resistance. Since the porous austenitic stainless steel sintered body is also excellent in resistance to hydrogen embrittlement, it is suitable for use in a high-pressure hydrogen gas environment. Examples of austenitic stainless steel include SUS 201, SUS 202, SUS 301, SUS 302, SUS 303, SUS 303Se, SUS 304, SUS 304L, SUS 304N1, SUS 304N2, SUS 304LN, SUS 305, SUS 309S, SUS 310S, SUS 316, SUS 316L, SUS 316N, SUS 316LN, SUS 316J1, SUS 316J1L, SUS 317, SUS 317L, SUS 317J1, SUS 321, SUS 347, SUH 660 and the like.
なお、この多孔質金属焼結体は、日本粉末冶金工業会規格 JPMA M09-1992(対応ISO規格ISO3325)の規定に準拠した抗折力試験を行い、抗折力を求め、抗折力が50MPa以上である多孔質金属焼結体とすることが好ましい。多孔質金属焼結体の抗折力が50MPa未満では、低融点合金を多孔質材料に含浸した状態で複合化しても、高圧ガス容器用可溶栓として十分な強度を確保できなくなる。このため、多孔質金属焼結体の抗折力は50MPa以上とすることが好ましい。なお、より好ましくは100MPa以上である。 In addition, this porous metal sintered body was subjected to a transverse rupture strength test in accordance with the Japan Powder Metallurgy Association standard JPMA M09-1992 (corresponding ISO standard ISO3325), and the transverse rupture strength was found to be 50 MPa. It is preferable to use a porous metal sintered body as described above. If the transverse rupture strength of the porous metal sintered body is less than 50 MPa, even if the porous material is impregnated with the low-melting-point alloy and composited, it will not be possible to ensure sufficient strength as a fusible plug for a high-pressure gas container. Therefore, it is preferable that the transverse rupture strength of the porous metal sintered body is 50 MPa or more. In addition, it is more preferably 100 MPa or more.
また、本発明の可溶栓では、連通孔内で、低融点合金が上記した多孔質金属焼結体に含浸された状態で複合化してなる領域の圧縮降伏強度が、低融点合金のみの圧縮降伏強度の1.5倍以上であることが好ましい。本発明の可溶栓では、多孔質金属焼結体を連通孔の長さ方向の少なくとも一部に装着しているが、低融点合金が多孔質金属焼結体に含浸された状態で複合化してなる領域の圧縮降伏強度が、低融点合金のみの圧縮降伏強度の1.5倍未満では、所望の低融点合金の強度補強を行うことができなくなり、高圧ガス容器用として、所望の耐圧性を有する可溶栓を得ることができなくなる。なお、より好ましくは2.0倍以上である。 Further, in the fusible plug of the present invention, the compressive yield strength of the region formed by combining the porous metal sintered body impregnated with the low-melting-point alloy in the communicating hole is higher than that of the low-melting-point alloy alone. It is preferably at least 1.5 times the yield strength. In the fusible plug of the present invention, the porous metal sintered body is attached to at least a part of the communicating hole in the length direction, and the low melting point alloy is impregnated into the porous metal sintered body to form a composite. If the compressive yield strength of the region is less than 1.5 times the compressive yield strength of the low melting point alloy alone, the desired strength reinforcement of the low melting point alloy cannot be performed, and the desired pressure resistance can be obtained for high pressure gas containers. It becomes impossible to obtain fusible plugs. In addition, it is more preferably 2.0 times or more.
なお、ここでいう「所望の耐圧性を有する」とは、可溶栓が高圧ガス容器に接続された状態で、可溶栓に負荷された所定の高圧力に抗して、内容物の漏れが認められない状態をいうものとする。上記した構成の本発明可溶栓であれば、圧力:87.5MPa以上の耐圧性を有する。 Here, "having desired pressure resistance" means that when the fusible plug is connected to a high-pressure gas container, the content leaks against a predetermined high pressure applied to the fusible plug. is not allowed. The fusible plug of the present invention configured as described above has a pressure resistance of 87.5 MPa or more.
つぎに、上記した多孔質金属焼結体の好ましい製造方法について説明する。
原料とする合金粉末と、黒鉛粉末と、潤滑剤粉末とを混合して混合粉としたのち、これら混合粉を金型に装入して加圧成形し圧粉体とし、該圧粉体を焼結して、多孔質金属焼結体とする。
Next, a preferred method for producing the porous metal sintered body described above will be described.
After the alloy powder, the graphite powder, and the lubricant powder as raw materials are mixed to form a mixed powder, the mixed powder is charged into a mold and press-molded to form a green compact, and the green compact is formed. It is sintered to form a porous metal sintered body.
原料粉として、使用する合金粉末は、30メッシュの篩を通過し(以下、30メッシュアンダー、あるいは-30メッシュともいう)、350メッシュの篩を通過しない(以下、350メッシュオーバー、あるいは+350メッシュともいう)粒度分布に調整した合金粉末とすることが好ましい。-350メッシュの粒子が存在すると、直径5μm未満の微細空孔の存在量が増加し、低融点合金の溶湯が焼結体の空孔に溶浸しにくく、所望の強度を確保することができにくくなる。 The alloy powder used as the raw material powder passes through a 30-mesh sieve (hereinafter also referred to as 30-mesh under or -30 mesh) and does not pass through a 350-mesh sieve (hereinafter referred to as 350-mesh over or +350 mesh). It is preferable to use an alloy powder whose particle size distribution is adjusted. - The presence of 350 mesh particles increases the amount of micropores with a diameter of less than 5μm, making it difficult for the molten low-melting alloy to infiltrate into the pores of the sintered body, making it difficult to secure the desired strength. Become.
また、使用する合金粉末については、可溶栓に圧入するときの耐酸化性及び耐食性の観点から、上記した粒度分布を有するオーステナイト系ステンレス鋼粉とすることが好ましい。なお、好ましいオーステナイト系ステンレス鋼としては、SUS 201、SUS 202、SUS 301、SUS 302、SUS 303、SUS 303Se、SUS 304、SUS 304L、SUS 304N1、SUS 304N2、SUS 304LN、SUS 305、SUS 309S、SUS 310S、SUS 316、SUS 316L、SUS 316N、SUS 316LN、SUS 316J1、SUS 316J1L、SUS 317、SUS 317L、SUS 317J1、SUS 321、SUS 347、SUH 660等が例示される。また、使用する潤滑剤としては、ステアリン酸亜鉛等が例示できる。 As for the alloy powder to be used, it is preferable to use an austenitic stainless steel powder having the above-described particle size distribution from the viewpoint of oxidation resistance and corrosion resistance when press-fitting into a fusible plug. Preferred austenitic stainless steels include SUS 201, SUS 202, SUS 301, SUS 302, SUS 303, SUS 303Se, SUS 304, SUS 304L, SUS 304N1, SUS 304N2, SUS 304LN, SUS 305, SUS 309S, SUS 310S, SUS 316, SUS 316L, SUS 316N, SUS 316LN, SUS 316J1, SUS 316J1L, SUS 317, SUS 317L, SUS 317J1, SUS 321, SUS 347, SUH 660 and the like. Moreover, zinc stearate etc. can be illustrated as a lubricant to be used.
また、圧粉体の成形方法は、とくに限定されないが、成形プレス等を用いることが好ましい。所定形状に成形された圧粉体は、焼結され、所定形状の多孔質焼結体とされる。なお、焼結条件は、上記した空孔率となるように、またJPMA M09-1992の規定に準拠した抗折力試験により求められる抗折力で50MPa以上となるように、調整することが好ましい。 Also, the method for molding the green compact is not particularly limited, but it is preferable to use a molding press or the like. The green compact molded into a predetermined shape is sintered into a porous sintered body having a predetermined shape. It is preferable to adjust the sintering conditions so that the porosity described above is obtained and that the transverse rupture strength obtained by the transverse rupture strength test in accordance with JPMA M09-1992 is 50 MPa or more. .
このようにして得られた多孔質材料(多孔質金属焼結体)を、可溶栓の連通孔に圧入する。なお、多孔質材料の圧入は、上記した連通孔の長さ方向の一部で断面全体を占めるように、圧入することが好ましい。多孔質材料の圧入長さは、晒される環境に応じて決定すればよく、とくに限定する必要はない。晒らされる高圧力に応じて、低融点合金が変位しない程度に、低融点合金を補強できる長さであればよい。例えば、高圧:87.5MPaの環境下で、抗折力:50MPa以上の多孔質材料(多孔質金属焼結体)であれば、連通孔の長手方向で3mm~15mm程度、圧入することが好ましい。 The porous material (porous metal sintered body) thus obtained is pressed into the communicating hole of the fusible plug. It should be noted that the porous material is preferably press-fitted so that a portion of the communication hole in the length direction occupies the entire cross section. The press-fit length of the porous material may be determined according to the exposed environment, and is not particularly limited. The length should be sufficient to reinforce the low melting point alloy to the extent that the low melting point alloy is not displaced according to the high pressure to which it is exposed. For example, in a high-pressure environment of 87.5 MPa, if the porous material (porous metal sintered body) has a transverse rupture strength of 50 MPa or more, it is preferable to press-fit into the communicating hole about 3 mm to 15 mm in the longitudinal direction.
ついで、可溶栓の連通孔の長手方向の一部に多孔質材料(多孔質金属焼結体)を圧入したのち、さらに連通孔に低融点合金を溶融状態で充填し、該多孔質材料(多孔質金属焼結体)の全て又は一部に低融点合金を含浸させ、固化し複合化した状態とする。 Next, a porous material (porous metal sintered body) is press-fitted into a part of the communicating hole of the fusible plug in the longitudinal direction, and then the communicating hole is filled with a low-melting-point alloy in a molten state, and the porous material ( All or part of the porous metal sintered body) is impregnated with a low-melting-point alloy and solidified into a composite state.
これにより、連通孔に充填された低融点合金は、多孔質材料(多孔質金属焼結体)に補強されて、低融点合金のみの圧縮降伏強度に比べ全体として、1.5倍以上の高い強度を保持した状態となる。 As a result, the low-melting-point alloy filled in the communicating pores is reinforced by the porous material (porous metal sintered body), and as a whole, the compressive yield strength is at least 1.5 times higher than that of the low-melting-point alloy alone. It is held.
以下、実施例に基づき、さらに本発明について説明する。 The present invention will be further described below based on examples.
内部に穿設された連通孔2を有する真鍮製可溶栓1を作製した。連通孔2は、図1に示すような段差を有する構造とした。そして、連通孔2の高圧ガス容器10側(直径:9mmφ側)から多孔質金属焼結体3を圧入した。圧入した多孔質金属焼結体の長さは9mmとした。
A brass fusible plug 1 having a
上記した多孔質金属焼結体が圧入された連通孔に、ついで、低融点合金(67質量%Bi-33質量%In合金:融点110℃)を溶融状態で充填し、圧入した多孔質金属焼結体に含浸させ、固化し複合化した状態の可溶栓とした。また、多孔質金属焼結体を圧入することなく、連通孔全体を充満するように低融点合金を充填した可溶栓を従来例とした。 A low-melting-point alloy (67% by mass Bi-33% by mass In alloy: melting point 110°C) was then filled in a molten state into the continuous hole into which the porous metal sintered body was press-fitted, and the porous metal sintered body was press-fitted. The solidified body was impregnated with it and solidified to form a composite fusible plug. A fusible plug filled with a low-melting-point alloy so as to fill the entire communicating hole without press-fitting a porous metal sintered body was used as a conventional example.
得られた可溶栓1の一方に、図1に示すように、高圧ガス容器10を、ネジ部を介して接続し、環境温度:85℃で、連通孔内の低融点合金に高圧力(87.5MPa)を付与し、可溶栓としての耐圧性を評価した。
As shown in FIG. 1, a high-
なお、圧入された多孔質金属焼結体は、つぎのような方法で製造した。
表1に示す成分系の合金粉末(鋼粉)に、潤滑剤粉末を配合し、混合、混練して混合粉とした。なお、配合した合金粉(鋼粉)は、予め分級し、表1に示す粒度分布を調整したSUS 316鋼粉とした。ついで、得られた混合粉を金型に装入し成形プレスにより加圧成形して、所定寸法(大きさ:略9mmφ)の圧粉体とした。
The press-fitted porous metal sintered body was manufactured by the following method.
An alloy powder (steel powder) having a component system shown in Table 1 was blended with a lubricant powder, mixed and kneaded to obtain a mixed powder. The blended alloy powder (steel powder) was classified in advance and used as SUS 316 steel powder having an adjusted particle size distribution shown in Table 1. Next, the obtained mixed powder was charged into a mold and pressure-molded by a molding press to obtain a compact having a predetermined size (size: approximately 9 mmφ).
ついで、これら圧粉体を、焼結温度:1100~1350℃で焼結し、多孔質金属焼結体(多孔質オーステナイト系ステンレス鋼焼結体)とした。得られた多孔質金属焼結体の全空孔率は、密度測定により求めた。密度測定はアルキメデス法によった。また、全空孔に対する微細空孔の比率は、焼結体のプレス方向断面について、光学顕微鏡により組織を撮像し、画像解析により直径5μm以下の微細空孔の全面積と全空孔の面積を求め、(直径5μm以下の微細空孔の全面積)/(全空孔の面積)により求めた。なお、測定箇所は円周上3箇所とした。 Then, these compacts were sintered at a sintering temperature of 1100 to 1350° C. to obtain porous metal sintered bodies (porous austenitic stainless steel sintered bodies). The total porosity of the resulting porous metal sintered body was determined by density measurement. Density measurements were made by the Archimedes method. In addition, the ratio of micropores to all pores was obtained by imaging the structure of the cross section of the sintered body in the pressing direction with an optical microscope and analyzing the image to determine the total area of micropores with a diameter of 5 μm or less and the area of all pores. (Total area of micropores with a diameter of 5 μm or less)/(Area of all pores). The measurement points were three points on the circumference.
なお、上記した多孔質金属焼結体と同じ製造方法で作製した焼結体から、JPMA M09-1992の規定に準拠した抗折力試験片(幅:10mm、厚さ:6mm、長さ:40mm)を採取して、抗折力試験を実施し、抗折力を算出し、表2に示す。試験に用いたローラは直径5mmのものを用い、支持用ローラの中心間距離(支点間距離)は20mmとした。なお、抗折力は次式を用いて算出した。
抗折力=(3×F×L)/(2×b×h2)
ここで、F:試験片が破断したときの荷重(N)
L:支点間の距離(mm)
b:試験片の幅(mm)
h:試験片の厚さ(mm)
In addition, from the sintered body produced by the same manufacturing method as the porous metal sintered body described above, a transverse rupture strength test piece (width: 10 mm, thickness: 6 mm, length: 40 mm ) was collected, a transverse rupture strength test was performed, and the transverse rupture strength was calculated and shown in Table 2. The rollers used in the test had a diameter of 5 mm, and the distance between the centers of the supporting rollers (distance between the fulcrums) was 20 mm. The transverse rupture strength was calculated using the following formula.
Bending strength = (3 x F x L)/(2 x b x h 2 )
Here, F: load (N) when the test piece breaks
L: Distance between fulcrums (mm)
b: Width of test piece (mm)
h: Thickness of test piece (mm)
なお、上記した本発明例と同じように、多孔質金属焼結体が圧入され、さらに低融点合金が充填された連通孔内から、低融点合金が多孔質金属焼結体に含浸され、固化し複合化してなる領域と、多孔質金属焼結体に含浸されず低融点合金のみからなる領域とから、それぞれ圧縮試験片(試験片サイズ:φ9mm×8mm)を採取し、圧縮試験を実施し、圧縮降伏強度をそれぞれ求めた。圧縮試験は、図2に示すように、固定台座の上に圧縮試験片を静置し、圧縮稼働治具を介し、1mm/secの変位速度で負荷して試験片を圧縮し、降伏したときの圧縮応力を求め、「圧縮降伏強度」とした。得られた結果から圧縮降伏強度の比(複合化してなる領域の圧縮降伏強度)/(低融点合金のみの領域の圧縮降伏強度)、を算出した。得られた結果を表2に併記して示す。 In addition, in the same manner as in the example of the present invention described above, the porous metal sintered body is press-fitted, and the low melting point alloy is impregnated into the porous metal sintered body from the communicating hole filled with the low melting point alloy and solidified. Compression test specimens (specimen size: φ9 mm × 8 mm) were taken from the composite region and the region not impregnated with the porous metal sintered body but composed only of the low-melting alloy, and a compression test was performed. , and the compressive yield strength were obtained. In the compression test, as shown in Fig. 2, a compression test piece is placed on a fixed pedestal. The compressive stress of was obtained, and was defined as "compressive yield strength". From the obtained results, the ratio of compressive yield strength (compressive yield strength of composite region)/(compressive yield strength of region containing only low melting point alloy) was calculated. The obtained results are also shown in Table 2.
このように、連通孔に圧入した多孔質金属焼結体のうち本発明の範囲に適合するものは抗折力:50MPa以上の抗折力を有し、しかも低融点合金を含浸させ複合化することにより、低融点合金のみの場合に比べて1.5倍以上の高い圧縮降伏強度を有する多孔質材料である。 Thus, among the porous metal sintered bodies press-fitted into the communicating holes, those that conform to the scope of the present invention have a transverse rupture strength of 50 MPa or more, and are composited by impregnating with a low-melting alloy. As a result, the porous material has a compressive yield strength that is 1.5 times higher than that of the low-melting-point alloy alone.
可溶栓としての耐圧性の評価結果を表3に示す。
本発明例(可溶栓)はいずれも85℃の環境温度に晒されても、低融点合金の変位はなく、また破損もなく、したがって、内容物の放出は認められなかった。可溶栓を120℃程度に加熱すると、低融点金属が溶融し、内容物の放出が認められた。このように、本発明の可溶栓は、環境温度:85℃までの環境下において、圧力:87.5MPa以上の耐圧性を有する可溶栓であるといえる。一方、本発明の範囲を外れる比較例では、破損またはガス漏れが発生した。
Table 3 shows the evaluation results of pressure resistance as a fusible plug.
Even when all of the present invention examples (fusible plugs) were exposed to an ambient temperature of 85° C., the low-melting-point alloy was neither displaced nor damaged, and therefore no release of the contents was observed. When the fusible plug was heated to about 120°C, the low melting point metal melted and the contents were released. As described above, the fusible plug of the present invention can be said to be a fusible plug having a pressure resistance of 87.5 MPa or higher in an environment with an environmental temperature of up to 85°C. On the other hand, in Comparative Examples outside the scope of the present invention, damage or gas leakage occurred.
なお、連通孔に多孔質金属焼結体を圧入しない従来例では、環境温度が85℃の場合はもちろん室温の場合にも、低融点合金の変位が認められた。 In addition, in the conventional example in which the porous metal sintered body is not press-fitted into the communicating hole, displacement of the low-melting-point alloy was observed not only when the environmental temperature was 85°C, but also when it was room temperature.
1 可溶栓
2 連通孔
3 多孔質材料(多孔質金属焼結体)
4 低融点合金
10 高圧ガス容器
1
4 low
Claims (6)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022102033.9A DE102022102033A1 (en) | 2021-01-29 | 2022-01-28 | fusible plug |
CN202210105005.5A CN114811139A (en) | 2021-01-29 | 2022-01-28 | Fusible plug |
US17/586,900 US11859766B2 (en) | 2021-01-29 | 2022-01-28 | Fusible plug |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021012573 | 2021-01-29 | ||
JP2021012573 | 2021-01-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022117440A true JP2022117440A (en) | 2022-08-10 |
JP7548895B2 JP7548895B2 (en) | 2024-09-10 |
Family
ID=82749896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021208881A Active JP7548895B2 (en) | 2021-01-29 | 2021-12-23 | Fusible plug |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7548895B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005147230A (en) | 2003-11-13 | 2005-06-09 | Neriki:Kk | Safety valve for compressed gas cylinder |
JP2005331016A (en) | 2004-05-19 | 2005-12-02 | Senju Sprinkler Kk | Fusible plug |
JP2006329374A (en) | 2005-05-30 | 2006-12-07 | Senju Sprinkler Kk | Fusible plug and manufacturing method thereof |
JP5775688B2 (en) | 2010-12-20 | 2015-09-09 | 株式会社フジキン | Soluble valve for safety valve |
-
2021
- 2021-12-23 JP JP2021208881A patent/JP7548895B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP7548895B2 (en) | 2024-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10035190B2 (en) | Multilevel parts from agglomerated spherical metal powder | |
EP2088341A1 (en) | Multilayer sliding member and method for manufacturing the same | |
JPS5930761B2 (en) | Method for manufacturing chromium-copper contacts | |
US10745780B2 (en) | Cu-based sintered bearing and production method for Cu-based sintered bearing | |
EP1082578B1 (en) | Lead-free projectiles made by liquid metal infiltration | |
Tabeshfar et al. | Dimensional changes during liquid phase sintering of Fe–Cu compacts | |
JP2022117440A (en) | fusible plug | |
Liu et al. | Metal injection moulding of aluminium alloy 6061 with tin | |
US20160236276A1 (en) | Process for Obtaining Tight Components by Powder Metallurgy | |
US11859766B2 (en) | Fusible plug | |
CN107427923B (en) | Mechanical part and its manufacturing method | |
US9782809B2 (en) | Method for manufacturing a roll for hot or cold rolling of flat metal products | |
EP0808226A1 (en) | Processes for extruding powdered metals including tantalum and niobium | |
JP2016053210A (en) | Exhaust valve device and gas cushion material | |
JP6467535B1 (en) | Cu-based powder for infiltration | |
US20200011377A1 (en) | Plain bearing composite material having a metallic support layer and a metallic bearing metal layer | |
JP3325034B2 (en) | Sintered sliding member comprising multiple layers and method for producing the same | |
WO2016148137A1 (en) | Machine component and production method therefor | |
JP6867255B2 (en) | Complex with low coefficient of thermal expansion and high adhesion | |
Widyastuti et al. | Investigation of the Dwelling Time and Compaction Pressure Effect on Mechanical Properties and Microstructure of the Cu-Sn Composite | |
JP2005256149A (en) | Treatment method for metallic body having open hole and metallic body | |
Daye et al. | Processing of Powder Metallurgy Bronze and Brass | |
Petroni et al. | Evaluation of press-and-sinter processing parameters in titanium hydride powder metallurgy | |
Riera Colom et al. | Elastic behaviour under compressive stresses states of sintered metallic parts | |
RU47270U1 (en) | COMPOSITE SINTERED PRODUCT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20211223 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231018 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240328 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240813 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240829 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7548895 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |