JP2022115161A - robot arm - Google Patents

robot arm Download PDF

Info

Publication number
JP2022115161A
JP2022115161A JP2021011647A JP2021011647A JP2022115161A JP 2022115161 A JP2022115161 A JP 2022115161A JP 2021011647 A JP2021011647 A JP 2021011647A JP 2021011647 A JP2021011647 A JP 2021011647A JP 2022115161 A JP2022115161 A JP 2022115161A
Authority
JP
Japan
Prior art keywords
cylindrical body
robot arm
thermosetting
frp cylindrical
mounting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021011647A
Other languages
Japanese (ja)
Inventor
満雄 安田
Mitsuo Yasuda
勉 小西
Tsutomu Konishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanko Gosei Ltd
Original Assignee
Sanko Gosei Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanko Gosei Ltd filed Critical Sanko Gosei Ltd
Priority to JP2021011647A priority Critical patent/JP2022115161A/en
Publication of JP2022115161A publication Critical patent/JP2022115161A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Manipulator (AREA)

Abstract

To provide a robot arm in which while a required high torsional strength is secured, weight is sufficiently light by attaching a functional portion to a main body portion of the robot arm, the main body portion being formed as a thermoplastic setting FRP made, cylindrical body, and safety is high as a robot arm operating among human beings, with a human being, or assisting a human being, and particularly to provide a robot arm having a high fixing strength in the mounting portion of a mounting member.SOLUTION: In a robot arm 5, a closed space 10 is provided in a fitting portion of an inner side surface 6b of an end portion of a thermoplastic setting FRP made, cylindrical body 6 and a mounting member 9, and a composite resin layer 8b formed by combining a thermoplastic resin and fiber is molded in this closed space 10 under pressure and heat; a mounting member 9 assembled by its being fitted in an inside diameter of the end portion of thermoplastic setting FRP made, cylindrical body 6 and the thermoplastic setting FRP made, cylindrical body 6 are fastened to each other with a bolt 11; and the composite resin layer 8a formed by combining a thermoplastic resin and fiber is molded on an outer side surface 6a of the end portion of the thermoplastic setting FRP made, cylindrical body 6 under pressure and heat.SELECTED DRAWING: Figure 2

Description

本発明は、熱硬化性FRP製円筒筒体の外側面及び内側面の少なくとも一方に熱硬化性樹脂と繊維を複合した樹脂を加圧加熱成形してなるロボットアームに関する。 TECHNICAL FIELD The present invention relates to a robot arm formed by pressurizing and heat-molding a resin, which is a composite of a thermosetting resin and fibers, on at least one of the outer surface and the inner surface of a thermosetting FRP cylindrical body.

一般に例えばレーザー加工等に用いる工業用ロボットは1/100mm程度の先端精度が必要であり、そのためには高い剛性が必要であった。これに対して近年、少子高齢化の進展と共に人間の間で、人間と共にあるいは人間を補助して動作する工業用ロボットの必要性が高まって来ている。この様な工業用ロボットには従来の工業用ロボットの様な高い剛性は必要ではなくむしろ省エネルギーの観点や地球環境保全の観点等から、軽量化が強く望まれている。その一つの手段としてロボットアームの本体部分を熱硬化性FRP製円筒筒体に代替させることが検討されてきた。その際、使用する強化繊維にも種々あり、例えば、炭素繊維、ガラス繊維、アラミド繊維等が検討されているが、この中で特に、比強度、比弾性率の面で優れた炭素繊維を強化繊維とするCFRP(炭素繊維強化プラスチックス)が有力とされている。 In general, industrial robots used for laser processing, for example, require tip precision of about 1/100 mm, and for that reason, high rigidity is required. On the other hand, in recent years, along with the declining birthrate and aging population, there is an increasing need among humans for industrial robots that operate together with humans or assist humans. Such industrial robots do not require high rigidity unlike conventional industrial robots, and rather, weight reduction is strongly desired from the viewpoints of energy saving and global environmental protection. As one of the means, it has been studied to replace the body portion of the robot arm with a thermosetting FRP cylindrical body. At that time, there are various reinforcing fibers to be used, for example, carbon fiber, glass fiber, aramid fiber, etc. are being studied. CFRP (Carbon Fiber Reinforced Plastics), which is used as a fiber, is considered to be influential.

この本体部分を熱硬化性FRP製円筒筒体としてなるロボットアームは本体部分に機能部分を装着して各種機能を果たすことが可能となるようにする必要がある。この熱硬化性FRP製円筒筒体からなる本体部分への機能部分の装着には、熱硬化性FRP製円筒筒体の捩り強度とバランスが採れた接合法が必要とされている。 A robot arm having a main body made of a thermosetting FRP cylindrical body needs to be able to perform various functions by attaching functional parts to the main body. In order to attach the functional part to the main body made of the thermosetting FRP cylindrical body, a bonding method that balances the torsional strength of the thermosetting FRP cylindrical body is required.

特許文献1にはFRP製円筒体の端部に金属製の継ぎ手が圧入される機械装置部品において、必要とされる高い捩り強度を確保しつつ、金属製継ぎ手の圧入接合操作に伴うFRP製円筒体端部からの損傷の発生を防止し、かつ、その部分の劣化進行も防止し得る構造を提供することを課題としてFRP製円筒体と、該FRP製円筒体の端部に圧入された金属製継ぎ手との機械装置部品であって、FRP製円筒体の端面から軸方向にスリット加工が施されていることを特徴とする機械装置部品が開示された。 In Patent Document 1, in a mechanical device part in which a metal joint is press-fitted to the end of an FRP cylinder, while ensuring the required high torsional strength, the FRP cylinder accompanying the press-fit joining operation of the metal joint The object is to provide a structure that can prevent the occurrence of damage from the end of the body and also prevent the progress of deterioration of that part. A mechanical device part with a joint made of FRP is disclosed, which is characterized by slitting in the axial direction from the end face of an FRP cylindrical body.

特開2006-103032号公報JP-A-2006-103032

しかし特許文献1に開示された機械装置部品では特にロボットア-ムを構成するFRP製円筒体に他部材を取り付ける接合部分に関して十分な強度が得られないという問題があった。 従前より一般にロボットア-ムを構成するFRP製円筒体は3m厚程度のFRP製円筒体を所定長さに切断して、その両端部内側に他部材との取付部材を固定するようにしていた。
その場合、FRP製円筒体端部内側に形成される取付部材嵌合部に取付部材を圧入後、FRP製円筒体端部外側から取付部材嵌合部にボルトを挿通させてボルト締めを行うようにしていた。しかし、それでは十分な固定強度が得られなかった。
その場合に例えば取付部材嵌合部に接着材を塗布した上で取付部材を圧入するいう対策を採用しても、接着材が流失するという問題が生じ、固定強度が不安定になっていた。
However, with the mechanical device parts disclosed in Patent Document 1, there is a problem that sufficient strength cannot be obtained particularly for the joints where other members are attached to the FRP cylindrical body that constitutes the robot arm. Conventionally, an FRP cylindrical body that generally constitutes a robot arm is made by cutting an FRP cylindrical body with a thickness of about 3 m into a predetermined length, and attaching members to other members on the inner sides of both ends. .
In that case, after press-fitting the mounting member into the mounting member fitting portion formed inside the end portion of the FRP cylindrical body, a bolt is inserted from the outside of the end portion of the FRP cylindrical body into the fitting portion of the mounting member to tighten the bolt. I was doing However, this did not provide sufficient fixing strength.
In this case, for example, even if an adhesive is applied to the fitting portion of the mounting member and then the mounting member is press-fitted, there is a problem that the adhesive is washed away, and the fixing strength becomes unstable.

本発明は以上の従来技術における問題点に鑑み、必要とされる高い捩り強度を確保しつつ、本体部分を熱硬化性FRP製円筒筒体としてなるロボットアームの本体部分に機能部分を装着して充分に軽量でしかも人間の間で、人間と共にあるいは人間を補助して動作するロボットアームとして安全性が高いロボットアームであり、特に取付部材の取付部の固定強度が強いロボットアームを提供することを目的とする。 In view of the above-mentioned problems in the prior art, the present invention attaches a functional part to the main body of a robot arm whose main body is a cylindrical body made of thermosetting FRP while ensuring the required high torsional strength. To provide a robot arm which is sufficiently light in weight and has high safety as a robot arm that operates between humans, together with or assisting humans, and particularly having strong fixing strength at the attachment portion of an attachment member. aim.

すなわち本発明に係るロボットアームは、熱硬化性FRP製円筒筒体の外側面及び内側面の少なくとも一方に熱硬化性樹脂と繊維を複合した樹脂を加圧加熱成形してなることを特徴とする。 That is, the robot arm according to the present invention is characterized in that at least one of the outer surface and the inner surface of a thermosetting FRP cylindrical body is pressurized and heat-molded with a resin that is a composite of a thermosetting resin and fibers. .

また本発明に係るロボットアームは、熱硬化性FRP製円筒筒体端部の外側面及び内側面の少なくとも一方に熱硬化性樹脂と繊維を複合した樹脂を加圧加熱成形してなることを特徴とする。
Further, the robot arm according to the present invention is characterized in that at least one of the outer surface and the inner surface of the end portion of the thermosetting FRP cylindrical body is pressurized and heat-molded with a resin that is a composite of thermosetting resin and fiber. and

さらに本発明に係るロボットアームは、熱硬化性FRP製円筒筒体の端部内径に取付部材を組付けたロボットアームであって、熱硬化性FRP製円筒筒体端部の内側面に熱硬化性樹脂と繊維を複合した樹脂を加圧加熱成形して熱硬化性FRP製円筒筒体端部の内側に嵌合する取付部を形成したことを特徴とする。 Further, a robot arm according to the present invention is a robot arm in which a mounting member is assembled to the inner diameter of the end of a thermosetting FRP cylindrical body, and the inner surface of the end of the thermosetting FRP cylindrical body is provided with a thermosetting adhesive. It is characterized in that a mounting portion that fits inside the end portion of a thermosetting FRP cylindrical cylinder is formed by pressurizing and heating molding a resin that is a composite of a curable resin and a fiber.

加えて本発明に係るロボットアームは、熱硬化性FRP製円筒筒体の端部内径に取付部材を篏合して組付けたロボットアームであって、熱硬化性FRP製円筒筒体端部の外側面に熱硬化性樹脂と繊維を複合した樹脂を加圧加熱成形してなることを特徴とする。 In addition, a robot arm according to the present invention is a robot arm assembled by fitting a mounting member to the inner diameter of the end of a thermosetting FRP cylindrical body, wherein the end of the thermosetting FRP cylindrical body It is characterized in that the outer surface is formed by pressurizing and heating a resin that is a composite of a thermosetting resin and fibers.

さらに加えて本発明に係るロボットアームは、熱硬化性FRP製円筒筒体の端部内径に取付部材を篏合して組付けたロボットアームであって、熱硬化性FRP製円筒筒体端部の内側面と取付部材の嵌合部に閉鎖空間を設けてこの空間に熱硬化性樹脂と繊維を複合した樹脂を加圧加熱成形してなることを特徴とするロボットアーム。 In addition, a robot arm according to the present invention is a robot arm assembled by fitting a mounting member to the inner diameter of the end of a thermosetting FRP cylindrical body, wherein the end of the thermosetting FRP cylindrical body A robot arm characterized in that a closed space is provided in the fitting portion of the inner surface of the robot arm and the mounting member, and a resin obtained by combining a thermosetting resin and a fiber is pressurized and heat-molded in the closed space.

また本発明に係るロボットアームは、熱硬化性FRP製円筒筒体の端部内径に篏合して組付けた取付部材と前記熱硬化性FRP製円筒筒体相互を゛をネジで締め付けるとともにて、熱硬化性FRP製円筒筒体端部の外側面に熱硬化性樹脂と繊維を複合した樹脂を加圧加熱成形してなることを特徴とする。 Further, in the robot arm according to the present invention, the mounting member assembled by fitting to the inner diameter of the end portion of the thermosetting FRP cylindrical body and the thermosetting FRP cylindrical body are tightened with screws. 2. The outer surface of the end portion of the thermosetting FRP cylindrical body is pressurized and heat-molded with a resin that is a composite of thermosetting resin and fiber.

本発明のロボットアームの製造方法は、取付部材外側面に対する複合樹脂層の形成を行う内径積層工程と、予備成形・凝固工程と、熱硬化性FRP製円筒筒体の端部内側に、外側面に繊維成形原反材を配置して予備成形・凝固工程を行った取付部材を圧入して篏合する圧入工程と、前記圧入工程によって熱硬化性FRP製円筒筒体の端部内側に、圧入して篏合した取付部材をボルトによって熱硬化性FRP製円筒筒体に対し締結するボルト締め工程と、熱硬化性FRP製円筒筒体の外側面に対する複合樹脂層の形成を行う外径積層工程と、よりなることを特徴とする。 The manufacturing method of the robot arm of the present invention includes an inner diameter lamination step of forming a composite resin layer on the outer surface of the mounting member, a preforming and solidification step, and an outer surface inside the end portion of the thermosetting FRP cylindrical body. A press-fitting step of arranging the raw fabric material for fiber molding in and press-fitting the mounting member that has undergone the preforming and solidifying process and fitting it into the end of the thermosetting FRP cylindrical cylinder by the press-fitting step. A bolt tightening step of fastening the fitted mounting member to the thermosetting FRP cylindrical body with bolts, and an outer diameter lamination step of forming a composite resin layer on the outer surface of the thermosetting FRP cylindrical body and

前記内径積層工程及び前記予備成形・凝固工程をが前記取付部材外側面に形成された凹所に繊維成形原反材を配置して行われるのが好ましい。 It is preferable that the inner diameter lamination step and the preforming/solidifying step are carried out by arranging the raw fiber material in a recess formed on the outer surface of the mounting member.

前記外径積層工程が熱硬化性FRP製円筒筒体外側面に巻回した繊維成形原反材の外側に加圧テープを巻回し、加圧して成形工程を行うのがよい。
In the outer diameter laminating step, it is preferable to perform the molding step by winding a pressure tape around the outer side of the fiber forming raw fabric material wound around the outer surface of the thermosetting FRP cylindrical body and applying pressure.

熱硬化性FRP製円筒筒体としては、とくに強化繊維が少なくとも比強度、比弾性率に優れた炭素繊維を含むものであることが、高い強度や捩りトルク伝達特性発現の点から好ましい。 For the thermosetting FRP cylindrical body, it is particularly preferable that the reinforcing fibers contain at least carbon fibers having excellent specific strength and specific elastic modulus, from the viewpoint of exhibiting high strength and torsional torque transmission characteristics.

本発明のロボットアームによれば、必要とされる高い捩り強度を確保しつつ、充分に軽量でしかも人間の間で、人間と共にあるいは人間を補助して動作する機械装置として安全性が高いロボットアームとすることができ、特に取付部材の取付部の固定強度が強いロボットアームとすることができる。
INDUSTRIAL APPLICABILITY According to the robot arm of the present invention, a robot arm that secures the required high torsional strength, is sufficiently lightweight, and has high safety as a mechanical device that operates between humans, together with humans, or to assist humans. In particular, the robot arm can have a strong fixing strength at the attachment portion of the attachment member.

(a)本発明の賦形成形方法で用いる成形原反材の概念図である。(b)図1(a)に示す成形原反材を構成する織物基材の概念図である。(a) It is a conceptual diagram of a forming raw material used in the forming forming method of the present invention. (b) It is a conceptual diagram of the textile base material which comprises the shaping|molding original fabric material shown to Fig.1 (a). 本発明の一実施の形態のロボットアームの斜視図である。1 is a perspective view of a robot arm according to one embodiment of the present invention; FIG. 図2のロボットアームの部分縦断面図である。FIG. 3 is a partial vertical cross-sectional view of the robot arm of FIG. 2; 図2のロボットアームの部分横断面図である。3 is a partial cross-sectional view of the robot arm of FIG. 2; FIG. 図3の部分断面図と同一部分について示す斜視図である。4 is a perspective view showing the same part as the partial cross-sectional view of FIG. 3; FIG. 本発明のロボットアームの製造方法の一実施の形態の他の説明図である。FIG. 8 is another explanatory diagram of one embodiment of the method for manufacturing a robot arm of the present invention; 本発明のロボットアームの製造方法の一実施の形態の他の説明図である。FIG. 8 is another explanatory diagram of one embodiment of the method for manufacturing a robot arm of the present invention; 本発明のロボットアームの製造方法の一実施の形態の他の説明図である。FIG. 8 is another explanatory diagram of one embodiment of the method for manufacturing a robot arm of the present invention; 本発明のロボットアームの製造方法の一実施の形態の他の説明図である。FIG. 8 is another explanatory diagram of one embodiment of the method for manufacturing a robot arm of the present invention; 本発明のロボットアームの製造方法の一実施の形態の他の説明図である。FIG. 8 is another explanatory diagram of one embodiment of the method for manufacturing a robot arm of the present invention; 本発明のロボットアームの製造方法の一実施の形態の他の説明図である。FIG. 8 is another explanatory diagram of one embodiment of the method for manufacturing a robot arm of the present invention; 本発明のロボットアームの製造方法の一実施の形態の他の説明図である。FIG. 8 is another explanatory diagram of one embodiment of the method for manufacturing a robot arm of the present invention; 本発明のロボットアームの製造方法の一実施の形態の説明図である。It is explanatory drawing of one embodiment of the manufacturing method of the robot arm of this invention. 図14本発明の他の実施の形態のロボットアームの部分縦断面図である。FIG. 14 is a partial vertical cross-sectional view of a robot arm according to another embodiment of the present invention; 図15本発明の実施の形態のロボットアームの本発明の実施の形態に係るロボットアーム5の曲げ強度60kgmの負荷をかけた時の安全率を測定した結果を示すグラフFig. 15 is a graph showing the result of measuring the safety factor when a load with a bending strength of 60 kgm is applied to the robot arm 5 according to the embodiment of the present invention.

以下に本発明の実施の形態に係るロボットアームの製造に用いる繊維素材について説明する。
本発明の本発明の実施の形態に係るロボットアームは、図1(a)に示す成形原反材1を用いて製造する。図1(a)に示すように、成形原反材1は、複数本の強化繊維束2を含む織物基材3の少なくとも一方の表面に熱硬化性樹脂を主成分とする樹脂材料4が付着してなる。
The fiber material used for manufacturing the robot arm according to the embodiment of the present invention will be described below.
A robot arm according to an embodiment of the present invention is manufactured using a molded raw material 1 shown in FIG. 1(a). As shown in FIG. 1( a ), a raw fabric material 1 is a fabric base material 3 containing a plurality of reinforcing fiber bundles 2 , and a resin material 4 containing a thermosetting resin as a main component is attached to at least one surface of the fabric base material 3 . Become.

織物基材3は、図1(b)に示すように互いに平行となるよう一方向に引き揃えられた複数本の強化繊維束2を直交する二方向に織成してなる二方向性織物である。二方向性織物は、強化繊維束2間の相対位置の変化による変形がしやすく立体形状に変形しやすいこと、少ない枚数で力学的に擬似等方性を有する積層成形材を得やすい利点がある。
強化繊維束2は、炭素繊維束、黒鉛繊維束、ガラス繊維束、または、アラミド繊維束などを用いることができ、炭素繊維束であることが好ましい。炭素繊維束を用いることにより、最終製品である繊維強化樹脂成形品の力学特性を高いものとすることができる。
As shown in FIG. 1(b), the fabric base material 3 is a bidirectional fabric obtained by weaving a plurality of reinforcing fiber bundles 2 aligned in one direction so as to be parallel to each other in two orthogonal directions. The bidirectional woven fabric has the advantages of being easily deformed by changing the relative position between the reinforcing fiber bundles 2 and being easily deformed into a three-dimensional shape, and of easily obtaining a mechanically quasi-isotropic laminated molded material with a small number of sheets. .
A carbon fiber bundle, a graphite fiber bundle, a glass fiber bundle, an aramid fiber bundle, or the like can be used as the reinforcing fiber bundle 2, and the carbon fiber bundle is preferable. By using carbon fiber bundles, the mechanical properties of the fiber-reinforced resin molded product, which is the final product, can be enhanced.

織物基材3の表面に付着している樹脂材料4は、織物基材3の層間を接着する作用を得ることができる熱硬化性樹脂を主成分とする。熱硬化性樹脂としては、例えば、エポキシ、ウレタン、ポリエステルなどがある。樹脂材料4が熱硬化性樹脂を主成分とするものとすることによって成形原反材1を積層して、立体形状へと変形させた後に織物基材3の層間を接着させる場合の取り扱い性が向上し、生産性が向上する。なお、主成分とは樹脂材料4を構成する成分の中で、その割合が最も多い成分である。 The resin material 4 adhering to the surface of the fabric base material 3 is mainly composed of a thermosetting resin capable of obtaining an effect of bonding between the layers of the fabric base material 3 . Thermosetting resins include, for example, epoxy, urethane, and polyester. By using a thermosetting resin as the main component of the resin material 4, the raw fabric material 1 is laminated, deformed into a three-dimensional shape, and then bonded between the layers of the fabric base material 3. improve productivity. In addition, the main component is the component having the largest proportion among the components constituting the resin material 4 .

以下に、本発明の実施の形態を、図面を参照しながら説明する。
図2は、本発明の一実施の形態のロボットアーム5を示す。
ロボットアーム5は熱硬化性FRP製円筒筒体の一態様であるFRP製円筒体6を熱硬化性樹脂と繊維を複合した樹脂で射出成形して成り、熱硬化性樹脂と繊維を複合した複合樹脂からなる機能部7a、7bがFRP製円筒体6両端の外径側に成形されて成る。機能部7a、7bは例えば図示しない動作部、把持部、関節部等との継ぎ手として機能する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
FIG. 2 shows a robot arm 5 according to one embodiment of the invention.
The robot arm 5 is formed by injection-molding an FRP cylindrical body 6, which is one form of a thermosetting FRP cylindrical body, with a composite resin of thermosetting resin and fibers. Functional parts 7a and 7b made of resin are molded on the outer diameter side of both ends of the FRP cylindrical body 6. As shown in FIG. The functional parts 7a and 7b function as joints with, for example, an action part, a grasping part, a joint part, etc. (not shown).

以下に、本発明の実施の形態を、図面を参照しながら説明する。
図2は、本発明の一実施の形態のロボットアーム5を示す。
ロボットアーム5は熱硬化性FRP 製円筒筒体の一態様であるFRP製円筒体6を熱硬化性樹脂と繊維を複合した樹脂で加圧加熱成形して成り、熱硬化性樹脂と繊維を複合した複合樹脂からなる機能部7a、7bがFRP製円筒体6両端の外径側に成形されて成る。機能部7a、7bは例えば図示しない動作部、把持部、関節部等との継ぎ手として機能する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
FIG. 2 shows a robot arm 5 according to one embodiment of the invention.
The robot arm 5 is formed by pressurizing and heating an FRP cylindrical body 6, which is one aspect of a thermosetting FRP cylindrical body, with a resin that is a composite of thermosetting resin and fiber. Functional parts 7a and 7b made of composite resin are molded on the outer diameter side of both ends of the FRP cylindrical body 6. As shown in FIG. The functional parts 7a and 7b function as joints with, for example, an action part, a grasping part, a joint part, etc. (not shown).

係る本実施の形態に係るロボットアーム5は、図3、図5、図4に示す様に熱硬化性FRP製円筒筒体6の外側面6a及び内側面6bの少なくとも一方に熱硬化性樹脂と繊維とを複合した複合樹脂層8a、8bを加圧加熱成形してなる。 As shown in FIGS. 3, 5 and 4, the robot arm 5 according to this embodiment has a thermosetting resin and a thermosetting resin on at least one of the outer surface 6a and the inner surface 6b of the thermosetting FRP cylindrical body 6. Composite resin layers 8a and 8b combined with fibers are molded under pressure and heat.

具体的には本実施の形態に係るロボットアーム5は、熱硬化性FRP製円筒筒体6端部Aの外側面6a及び内側面6bの少なくとも一方に熱硬化性樹脂と繊維を複合した樹脂層8a、8bを加圧加熱成形してなる。
Specifically, the robot arm 5 according to the present embodiment has a resin layer formed by combining a thermosetting resin and fibers on at least one of the outer surface 6a and the inner surface 6b of the end A of the thermosetting FRP cylindrical body 6. 8a and 8b are molded under pressure and heat.

さらに本実施の形態に係るロボットアーム5は、熱硬化性FRP製円筒筒体6の端部A内径に取付部材9を組付けたロボットアーム5であって、熱硬化性FRP製円筒筒体6端部の内側面6bに熱硬化性樹脂と繊維を複合した複合樹脂層8bを加圧加熱成形して熱硬化性FRP製円筒筒体6端部の内側に嵌合する取付部である閉鎖空間10を形成してなる。 Furthermore, the robot arm 5 according to the present embodiment is a robot arm 5 in which a mounting member 9 is assembled to the inner diameter of the end A of the thermosetting FRP cylindrical body 6, and the thermosetting FRP cylindrical body 6 A closed space, which is a mounting portion fitted inside the end portion of the thermosetting FRP cylindrical body 6, by forming a composite resin layer 8b, which is a composite of thermosetting resin and fiber, on the inner side surface 6b of the end portion. 10.

加えて本実施の形態に係るロボットアーム5は、熱硬化性FRP製円筒筒体6の端部内径に取付部材9を篏合して組付けたロボットアーム5であって、熱硬化性FRP製円筒筒体6端部の外側面6aに熱硬化性樹脂と繊維を複合した複合樹脂層8aを加圧加熱成形してなる。 In addition, the robot arm 5 according to the present embodiment is a robot arm 5 assembled by fitting a mounting member 9 to the inner diameter of the end portion of a thermosetting FRP cylindrical body 6. A composite resin layer 8a, which is a composite of a thermosetting resin and fibers, is formed on the outer surface 6a of the end portion of the cylindrical body 6 by pressing and heating.

さらに加えて本実施の形態に係るロボットアーム5は、熱硬化性FRP製円筒筒体6の端部内径に取付部材9を篏合して組付けたロボットアーム5であって、熱硬化性FRP製円筒筒体6端部の内側面6bと取付部材9の嵌合部に取付部である閉鎖空間10を設けてこの閉鎖空間10に熱硬化性樹脂と繊維を複合した複合樹脂層8bを加圧加熱成形してなる。 In addition, the robot arm 5 according to the present embodiment is a robot arm 5 assembled by fitting a mounting member 9 to the inner diameter of the end of a thermosetting FRP cylindrical body 6. A closed space 10, which is a mounting portion, is provided in the fitting portion between the inner surface 6b of the end portion of the cylindrical body 6 and the mounting member 9, and a composite resin layer 8b formed by combining a thermosetting resin and fibers is added to the closed space 10. Molded by pressure and heat.

また本実施の形態に係るロボットアーム5は、熱硬化性FRP製円筒筒体6の端部内径に篏合して組付けた取付部材9と熱硬化性FRP製円筒筒体6相互を゛をボルト11で締め付けるとともに、熱硬化性FRP製円筒筒体6端部の外側面6aに熱硬化性樹脂と繊維を複合した複合樹脂層8aを加圧加熱成形してなる。 In addition, the robot arm 5 according to the present embodiment has a mounting member 9 fitted to the inner diameter of the end portion of the thermosetting FRP cylindrical body 6 and the thermosetting FRP cylindrical body 6. While being tightened with a bolt 11, a composite resin layer 8a in which a thermosetting resin and fibers are combined is formed on the outer surface 6a of the end portion of the thermosetting FRP cylindrical body 6 under pressure and heat.

以下に以上の実施の形態に係るロボットアーム5の製造工程について説明する。

まず取付部材9外側面に対する複合樹脂層8bの形成を行う内径積層工程を行う。図6に示すように取付部材9外側面に形成された凹所10に繊維成形原反材1を配置する。この際、環境温度は20℃、加工物温度は30℃程度である。
A manufacturing process of the robot arm 5 according to the above embodiment will be described below.

First, an inner diameter lamination step for forming the composite resin layer 8b on the outer surface of the mounting member 9 is performed. As shown in FIG. 6, the fiber forming material 1 is placed in a recess 10 formed on the outer surface of the mounting member 9 . At this time, the environmental temperature is 20°C and the workpiece temperature is about 30°C.

次に図7に示すように予備成形・凝固工程を行う。予備成形工程における環境温度は50℃、加工物温度は50℃程度に設定する。凝固工程における環境温度は-15℃、加工物温度は-15℃程度に設定する。
次に図8に示すように圧入工程を行う。圧入工程は熱硬化性FRP製円筒筒体6の端部内側に、外側面に形成された凹所10に繊維成形原反材1を配置して予備成形・凝固工程を行った取付部材9を圧入して篏合する態様で行う。圧入工程における環境温度は20℃、加工物温度は-15℃程度に設定する。
Next, as shown in FIG. 7, a preforming/solidification step is performed. The environmental temperature in the preforming process is set to 50°C, and the workpiece temperature is set to about 50°C. The environmental temperature in the solidification step is set to -15°C, and the workpiece temperature is set to about -15°C.
Next, as shown in FIG. 8, a press-fitting process is performed. In the press-fitting process, a mounting member 9 which has been preformed and solidified by arranging the fiber forming raw material 1 in a recess 10 formed on the outer surface inside the end portion of the thermosetting FRP cylindrical body 6 is mounted. It is performed in a mode of press-fitting and fitting. The environmental temperature in the press-fitting process is set to 20°C, and the workpiece temperature is set to about -15°C.

次いで、図9に示すようにボルト締め工程を行う。このボルト締め工程で圧入工程によって熱硬化性FRP製円筒筒体6の端部内側に、圧入して篏合した取付部材9をボルト11によって熱硬化性FRP製円筒筒体6に対し締結する。このボルト締め工程における環境温度は20℃、加工物温度は20℃程度に設定する。 Next, a bolt tightening process is performed as shown in FIG. In this bolt tightening process, the mounting member 9 press-fitted into the inner end of the thermosetting FRP cylindrical body 6 is fastened to the thermosetting FRP cylindrical body 6 with bolts 11 . The environmental temperature in this bolt tightening process is set to 20°C, and the workpiece temperature is set to about 20°C.

次に熱硬化性FRP製円筒筒体6の外側面に対する複合樹脂層8aの形成を行う外径積層工程を行う。この外径積層工程では先ず図10に示すように熱硬化性FRP製円筒筒体6外側面に繊維成形原反材1を巻回する。この際、環境温度は20℃、加工物温度は30℃程度である。
さらに引き続き図11に示すように熱硬化性FRP製円筒筒体6外側面に巻回した繊維成形原反材1の外側に加圧テープ12を巻回し、加圧する外径加圧テ-プ巻工程を行う。この際、環境温度は20℃、加工物温度は30℃程度である。
Next, an outer diameter lamination step is performed to form the composite resin layer 8a on the outer surface of the thermosetting FRP cylindrical body 6. As shown in FIG. In this outer diameter lamination step, first, as shown in FIG. At this time, the environmental temperature is 20°C and the workpiece temperature is about 30°C.
Subsequently, as shown in FIG. 11, a pressure tape 12 is wound around the outer side of the fiber forming material 1 wound on the outer surface of the thermosetting FRP cylindrical cylinder 6, and pressure is applied. carry out the process. At this time, the environmental temperature is 20°C and the workpiece temperature is about 30°C.

その状態で図12に示すように成形工程を行う。この成形工程における環境温度は80℃であり、加工物温度は80℃程度に2hr保持する。
最後に図13に示すように加圧テ-プ除去を行い、本発明の実施の形態に係るロボットアーム5の製作を完了する。
In this state, a molding process is performed as shown in FIG. The environmental temperature in this molding process is 80° C., and the workpiece temperature is maintained at about 80° C. for 2 hours.
Finally, the pressure tape is removed as shown in FIG. 13 to complete the fabrication of the robot arm 5 according to the embodiment of the present invention.

図14は本発明の他の実施の形態のロボットアームの部分縦断面図を示す。本実施の形態のロボットアーム5では他は上述の実施の形態のロボットアーム5と同様とし、取付部材9の凹部9aと貫通穴6aを設けた熱硬化性FRP製円筒筒体6端部の外側面と、熱硬化性FRP製円筒筒体6の貫通穴6cと取付部材9の嵌合部の閉鎖空間10とを接続し、繊維を複合した樹脂で射出形成してなる複合樹脂層である一体接続部8aが設けられる点が異なる。 FIG. 14 shows a partial longitudinal sectional view of a robot arm according to another embodiment of the invention. The robot arm 5 of this embodiment is otherwise the same as the robot arm 5 of the above-described embodiment. A composite resin layer that connects the side surface, the through hole 6c of the thermosetting FRP cylindrical body 6 and the closed space 10 of the fitting portion of the mounting member 9, and is formed by injection-molding a fiber-composite resin. It differs in that a connecting portion 8a is provided.

図15に本発明の実施の形態に係るロボットアーム5の曲げ強度60kgmの負荷をかけた時の安全率を測定した結果を示す。
図に示すように熱硬化性FRP製円筒筒体6単体では安全率11.1であるのに対し、ただ単に熱硬化性FRP製円筒筒体6の端部内側に、取付部材9を圧入して篏合した場合には安全率0,5であり、さらに熱硬化性FRP製円筒筒体6の端部内側であり取付部材9外側、及び熱硬化性FRP製円筒筒体6の端部外側に繊維成形原反材1を配置し、成形した場合には安全率5,5であった。これに対しボルト11によって締結し、内外側に繊維成形原反材1を配置し、成形した本発明の実施の形態に係るロボットアーム5では安全率が9.0に達した。
FIG. 15 shows the result of measuring the safety factor when a load with a bending strength of 60 kgm is applied to the robot arm 5 according to the embodiment of the present invention.
As shown in the figure, the thermosetting FRP cylindrical body 6 alone has a safety factor of 11.1. When the thermosetting FRP cylindrical body 6 is fitted together, the safety factor is 0.5. The safety factor was 5.5 when the fiber forming raw material 1 was arranged in the . On the other hand, in the robot arm 5 according to the embodiment of the present invention, which is fastened with bolts 11 and the fiber forming material 1 is placed inside and outside and formed, the safety factor reaches 9.0.

5・・・ロボットアーム、6・・・熱硬化性FRP製円筒筒体、7a、7b・・・機能部、8・・・複合樹脂層。 5: robot arm, 6: thermosetting FRP cylindrical body, 7a, 7b: function part, 8: composite resin layer.

Claims (12)

熱硬化性FRP製円筒筒体の外側面及び内側面の少なくとも一方に熱硬化性樹脂と繊維を複合した樹脂を加圧加熱成形してなることを特徴とするロボットアーム。 1. A robot arm comprising a thermosetting FRP cylindrical body and at least one of an outer surface and an inner surface of a thermosetting FRP cylindrical body formed by pressurizing and heating molding a resin obtained by combining a thermosetting resin and fibers. 熱硬化性FRP製円筒筒体端部の外側面及び内側面の少なくとも一方に熱硬化性樹脂と繊維を複合した樹脂を加圧加熱成形してなることを特徴とするロボットアーム。
1. A robot arm, characterized in that a thermosetting resin and fiber composite resin is pressurized and heat-molded on at least one of the outer surface and the inner surface of the end portion of a thermosetting FRP cylindrical cylinder.
熱硬化性FRP製円筒筒体の端部内径に取付部材を組付けたロボットアームであって、熱硬化性FRP製円筒筒体端部の内側面に熱硬化性樹脂と繊維を複合した樹脂を加圧加熱成形して熱硬化性FRP製円筒筒体端部の内側に嵌合する取付部を形成したことを特徴とするロボットアーム。 A robot arm in which a mounting member is attached to the inner diameter of the end of a thermosetting FRP cylindrical body, and a resin composite of thermosetting resin and fiber is applied to the inner surface of the end of the thermosetting FRP cylindrical body. 1. A robot arm characterized by forming a mounting portion fitted inside an end portion of a thermosetting FRP cylindrical cylinder by pressurizing and heating molding. 熱硬化性FRP製円筒筒体の端部内径に取付部材を篏合して組付けたロボットアームであって、熱硬化性FRP製円筒筒体端部の外側面に熱硬化性樹脂と繊維を複合した樹脂を加圧加熱成形してなることを特徴とするロボットアーム。 A robot arm assembled by fitting a mounting member to the inner diameter of the end of a thermosetting FRP cylindrical body, and thermosetting resin and fibers are applied to the outer surface of the end of the thermosetting FRP cylindrical body. A robot arm characterized by being formed by pressurizing and heating a composite resin. 熱硬化性 FRP 製円筒筒体端部の外側面と取付部材凹面間に熱硬化性樹脂と繊維を複合した樹脂を加圧加熱成形してなる請求項4記載のロボットアーム 5. The robot arm according to claim 4, wherein a resin obtained by combining a thermosetting resin and fibers is pressurized and heat-molded between the outer surface of the end of the thermosetting FRP cylindrical body and the concave surface of the mounting member. 熱硬化性 FRP 製円筒筒体の端部内径に取付部材を篏合して組付けたロボットアームであ って、熱硬化性 FRP 製円筒筒体端部の外側面と取付部材凹面に繊維を複合した樹脂で射出成形してなることを特徴とするロボットアーム。 A robot arm assembled by fitting a mounting member to the inner diameter of the end of a thermosetting FRP cylindrical body. A robot arm characterized by injection molding with composite resin. 取付部材凹部と貫通穴を開けた熱硬化性 FRP 製円筒筒体端部の外側面と、円筒体の貫通穴と取付部材の嵌合部の凹面とを接続し、繊維を複合した樹脂で射出形成してなる請求項6記載のロボットアーム。
The outer surface of the end of the thermosetting FRP cylindrical cylinder with the recessed portion of the mounting member and the through hole is connected to the concave surface of the through hole of the cylindrical body and the fitting portion of the mounting member, and the fiber is injected with a composite resin. 7. The robot arm according to claim 6, wherein the robot arm is formed.
熱硬化性FRP製円筒筒体の端部内径に取付部材を篏合して組付けたロボットアームであって、熱硬化性FRP製円筒筒体端部の内側面と取付部材の嵌合部に閉鎖空間を設けてこの空間に熱硬化性樹脂と繊維を複合した樹脂を加圧加熱成形してなることを特徴とするロボットアーム。 A robot arm assembled by fitting a mounting member to the inner diameter of the end of a thermosetting FRP cylindrical body, and the fitting portion between the inner surface of the end of the thermosetting FRP cylindrical body and the mounting member A robot arm characterized in that a closed space is provided and a resin obtained by combining a thermosetting resin and fibers is pressurized and heated to mold in the closed space. 熱硬化性FRP製円筒筒体の端部内径に篏合して組付けた取付部材と前記熱硬化性FRP製円筒筒体相互を゛をネジで締め付けるとともにて、熱硬化性FRP製円筒筒体端部の外側面に熱硬化性樹脂と繊維を複合した樹脂を加圧加熱成形してなることを特徴とするロボットアーム。 The thermosetting FRP cylindrical body is screwed together with a mounting member fitted to the inner diameter of the end of the thermosetting FRP cylindrical body and the thermosetting FRP cylindrical body. A robot arm characterized in that a resin obtained by combining a thermosetting resin and fibers is pressurized and heat-molded on the outer surface of the end. 取付部材外側面に対する複合樹脂層の形成を行う内径積層工程と、予備成形・凝固工程と、熱硬化性FRP製円筒筒体の端部内側に、外側面に繊維成形原反材を配置して予備成形・凝固工程を行った取付部材を圧入して篏合する圧入工程と、前記圧入工程によって熱硬化性FRP製円筒筒体の端部内側に、圧入して篏合した取付部材をボルトによって熱硬化性FRP製円筒筒体に対し締結するボルト締め工程と、熱硬化性FRP製円筒筒体の外側面に対する複合樹脂層の形成を行う外径積層工程と、よりなることを特徴とするロボットアームの製造方法。 An inner diameter lamination process for forming a composite resin layer on the outer surface of the mounting member, a preforming and solidification process, and a fiber forming raw material on the outer surface inside the end of the thermosetting FRP cylindrical body. A press-fitting step of press-fitting and fitting the mounting member that has undergone the preforming and solidifying steps, and the fitting member press-fitted and fitted into the inside of the end portion of the thermosetting FRP cylindrical body by the press-fitting step with bolts. A robot characterized by comprising a bolt tightening process for fastening to a thermosetting FRP cylindrical body, and an outer diameter lamination process for forming a composite resin layer on the outer surface of the thermosetting FRP cylindrical body. A manufacturing method of the arm. 前記内径積層工程及び前記予備成形・凝固工程をが前記取付部材外側面に形成された凹所に繊維成形原反材を配置して行われる請求項7記載のロボットアームの製造方法。 8. The method of manufacturing a robot arm according to claim 7, wherein said inner diameter lamination step and said preforming/solidifying step are carried out by arranging the raw fiber material in a recess formed on the outer surface of said mounting member. 前記外径積層工程が熱硬化性FRP製円筒筒体外側面に巻回した繊維成形原反材の外側に加圧テープを巻回し、加圧して成形工程を行う請求項7又は請求項8記載のロボットアームの製造方法。 9. The molding step according to claim 7 or 8, wherein the outer diameter lamination step is carried out by winding a pressure tape around the outer side of the fiber forming raw fabric material wound around the outer surface of the thermosetting FRP cylindrical body and applying pressure. A method for manufacturing a robot arm.
JP2021011647A 2021-01-28 2021-01-28 robot arm Pending JP2022115161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021011647A JP2022115161A (en) 2021-01-28 2021-01-28 robot arm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021011647A JP2022115161A (en) 2021-01-28 2021-01-28 robot arm

Publications (1)

Publication Number Publication Date
JP2022115161A true JP2022115161A (en) 2022-08-09

Family

ID=82747964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021011647A Pending JP2022115161A (en) 2021-01-28 2021-01-28 robot arm

Country Status (1)

Country Link
JP (1) JP2022115161A (en)

Similar Documents

Publication Publication Date Title
EP2790898B1 (en) Composite strut and fabrication method
US20080224440A1 (en) Crank for Bicycle and Method of Producing the Same
US5601676A (en) Composite joining and repair
US20100038030A1 (en) Advanced composite aerostructure article having a braided co-cured fly away hollow mandrel and method for fabrication
US8795804B2 (en) Joint structure for fiber reinforced resin and metal, and joining method for fiber reinforced resin and metal
US8672574B2 (en) Structural connecting rod made of a composite and process for producing such a connecting rod
EP2734441A1 (en) Flexible truss frame and method of making the same
US20040182967A1 (en) Fastenerless internal support for hollow structures
JP2022546613A (en) Method for Inducing Positive Lock Loading for Tension-Compression Rods and Tension-Compression Rods
US10457011B2 (en) Composite columnar structure having co-bonded reinforcement and fabrication method
CN103386692A (en) Novel robot carbon fiber arm lever designing and manufacturing method
JP2022115161A (en) robot arm
CN106864769B (en) Use the compound aircraft manufacturing tool and method of radial type mandrel
US5472653A (en) Method for producing carbon fiber-reinforced plastic molding
Gandhi et al. Manufacturing-process-driven design methodologies for components fabricated in composite materials
CN108533588B (en) Composite joint
KR20090016805A (en) Fabrication process of hybrid driveshaft based on composite materials
JP2022119507A (en) Hand rim for wheelchair and method for manufacturing the same
JP2024083663A (en) Robot arm and method for manufacturing the robot arm
JPH03161326A (en) Pipe fitted with flange made of fiber reinforced composite material and preparation thereof
JPH04255306A (en) Large pillar and its manufacture
JPH11192991A (en) Structure of frp monocock frame for bicycle and its manufacture
JP2002357284A (en) Combined pipe
JPS59109315A (en) Joined body of metal material and fiber reinforced composite material
JPH0674369A (en) Parallel joint member and manufacture thereof for fiber reinforced resin-made pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240531