JP2022114244A - Thermal storage type burning facility - Google Patents

Thermal storage type burning facility Download PDF

Info

Publication number
JP2022114244A
JP2022114244A JP2021010457A JP2021010457A JP2022114244A JP 2022114244 A JP2022114244 A JP 2022114244A JP 2021010457 A JP2021010457 A JP 2021010457A JP 2021010457 A JP2021010457 A JP 2021010457A JP 2022114244 A JP2022114244 A JP 2022114244A
Authority
JP
Japan
Prior art keywords
combustion
air
heat storage
ammonia
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021010457A
Other languages
Japanese (ja)
Other versions
JP7254841B2 (en
Inventor
祐作 河本
Yusaku Kawamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2021010457A priority Critical patent/JP7254841B2/en
Publication of JP2022114244A publication Critical patent/JP2022114244A/en
Application granted granted Critical
Publication of JP7254841B2 publication Critical patent/JP7254841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Abstract

To provide a storage type burning facility where burning and heat storage are alternately switched in a pair of storage type burning devices, in which the generation of nitrogen oxide NOx is suppressed upon burning of ammonia as a fuel and the exhaust of NOx and unburnt ammonia NH3 to the outside is easily prevented.SOLUTION: In a heat storage type burning facility where burning and heat storage are alternately switched in a pair heat storage type burning devices 10a, 10b, ammonia NH3 is used as a fuel, and intake and exhaust 12a, 12b parts in the respective heat storage type burning devices are provided with air feed nozzles 14a, 14b for treatment feeding air for burning, and in the heat storage type burning device on the side of burning, ammonia is burnt in such a manner that the air ratio μ of air for burning to be mixed with ammonia is controlled to 1 or less, and on the other hand, the intake and exhaust parts of the respective heat storage type burning devices on the side of heat storage are fed with air for burning from the air feed nozzles for treatment.SELECTED DRAWING: Figure 1

Description

本発明は、蓄熱部に収容された蓄熱材に蓄熱された熱により燃焼用空気を加熱させて給排気部を通して炉内に導き、この燃焼用空気と燃料供給ノズルから供給された燃料とを混合させて炉内で燃焼させる蓄熱式燃焼装置と、燃料供給ノズルから燃料を供給するのを停止した状態で、炉内における燃焼後の燃焼排ガスを、給排気部を通して蓄熱材が収容された蓄熱部に導いて燃焼排ガスの熱を蓄熱材に蓄熱させ、この蓄熱部を通して燃焼排ガスを外部に排出させる蓄熱式燃焼装置とが対になって設けられ、この対になった蓄熱式燃焼装置において燃焼と蓄熱とを交互に切り換えて行う蓄熱式燃焼設備において、前記の燃料にアンモニアを用いた蓄熱式燃焼設備に関するものである。特に、前記のように燃料にアンモニアを用い、対になった蓄熱式燃焼装置において燃焼と蓄熱とを交互に切り換えるにあたり、アンモニアの燃焼時に窒素酸化物NOxが発生するのを抑制すると共に、アンモニアが十分に燃焼されるようにし、窒素酸化物NOxや未燃焼のアンモニアが外部に排出されるのを簡単に防止できるようにした点に特徴を有するものである。 In the present invention, the heat stored in the heat storage material contained in the heat storage unit heats the combustion air, which is led into the furnace through the air supply/exhaust unit, and the combustion air is mixed with the fuel supplied from the fuel supply nozzle. and a regenerative combustion device that burns in the furnace, and a heat storage unit in which the heat storage material is accommodated, through the supply and exhaust unit, the flue gas after combustion in the furnace in a state where the supply of fuel from the fuel supply nozzle is stopped. a regenerative combustion device that stores the heat of the combustion exhaust gas in the heat storage material and discharges the combustion exhaust gas to the outside through the heat storage unit. The present invention relates to a regenerative combustion facility using ammonia as the fuel in the regenerative combustion facility for alternately switching between heat storage and heat storage. In particular, when ammonia is used as a fuel as described above and the paired regenerative combustion apparatus alternately switches between combustion and heat storage, the generation of nitrogen oxides NOx during the combustion of ammonia is suppressed, and ammonia is It is characterized in that it is sufficiently combusted, and nitrogen oxides NOx and unburned ammonia can be easily prevented from being discharged to the outside.

従来から、工業炉等においては、燃焼排ガスの熱を利用して効率のよい燃焼を行うために、炉内において燃焼された燃焼排ガスの熱を蓄熱部に収容させた蓄熱材に蓄熱させ、燃焼用空気を前記の蓄熱部における蓄熱材に蓄熱された熱により加熱させ、このように加熱された燃焼用空気を、給排気部を通して炉内に導き、この燃焼用空気と燃料供給ノズルから供給された燃料とを混合させて炉内において燃焼させる蓄熱式燃焼装置と、燃料供給ノズルから燃料を供給するのを停止した状態で、炉内における燃焼後の燃焼排ガスを、給排気部を通して蓄熱材が収容された蓄熱部に導いて燃焼排ガスの熱を蓄熱材に蓄熱させ、この蓄熱部を通して燃焼排ガスを外部に排出させる蓄熱式燃焼装置とを対にして設け、この対になった蓄熱式燃焼装置において燃焼と蓄熱とを交互に切り換えて行うようにした蓄熱式燃焼設備が用いられている。 Conventionally, in industrial furnaces, etc., in order to perform efficient combustion using the heat of flue gas, the heat of the flue gas burned in the furnace is stored in a heat storage material stored in a heat storage unit, and burned. The combustion air is heated by the heat stored in the heat storage material in the heat storage section, and the heated combustion air is led into the furnace through the air supply and exhaust section, and supplied from the combustion air and the fuel supply nozzle. A regenerative combustion device that mixes with the fuel and burns it in the furnace, and in a state where the supply of fuel from the fuel supply nozzle is stopped, the flue gas after combustion in the furnace passes through the supply and exhaust part to the heat storage material. A regenerative combustion device that guides the heat of the combustion exhaust gas to the stored heat storage unit, stores the heat of the combustion exhaust gas in the heat storage material, and discharges the combustion exhaust gas to the outside through the heat storage unit. , regenerative combustion equipment is used in which combustion and heat storage are alternately performed.

また、従来の蓄熱式燃焼設備においては、前記のように加熱された燃焼用空気と燃料供給ノズルから供給された燃料とを混合させて炉内において燃焼させるにあたり、その燃料としては、一般に燃焼性の高い炭化水素系燃料が使用されていた。 Further, in conventional regenerative combustion equipment, when the heated combustion air and the fuel supplied from the fuel supply nozzle are mixed and burned in the furnace as described above, the fuel generally has combustibility Hydrocarbon-based fuels with high

しかし、前記の蓄熱式燃焼装置において、炭化水素系燃料を燃焼用空気と混合させて燃焼させた場合、二酸化炭素などの温室効果ガスが多く発生するという問題があった。 However, in the above regenerative combustion apparatus, when a hydrocarbon fuel is mixed with combustion air and burned, there is a problem that a large amount of greenhouse gases such as carbon dioxide are generated.

そして、近年においては、二酸化炭素などの温室効果ガスを削減することが要望され、燃料に炭化水素系燃料以外のものを用いることが検討されている。 In recent years, there has been a demand for reducing greenhouse gases such as carbon dioxide, and the use of fuels other than hydrocarbon fuels has been studied.

ここで、炭化水素系燃料以外の燃料として、従来から低燃焼性燃料のアンモニアを用いることが検討されている。 Here, conventionally, the use of ammonia, which is a low-flammability fuel, has been studied as a fuel other than the hydrocarbon-based fuel.

しかし、アンモニアは、炭化水素系燃料に比べて燃焼性が悪くて燃焼時に失火しやすく、また燃焼時に窒素酸化物NOxが発生しやすいという問題があった。また、アンモニアは有毒で僅か1ppmでも刺激臭を放つため環境にも悪影響を及ぼすという問題もあった。 However, ammonia has poor combustibility compared to hydrocarbon fuels, and is prone to misfires during combustion, and also tends to generate nitrogen oxides NOx during combustion. Ammonia is also toxic and emits an irritating odor even at a mere 1 ppm, which poses a problem of having an adverse effect on the environment.

そして、従来においては、前記のようなアンモニアを燃焼させるにあたって、特許文献1に示されるように、燃料のアンモニアを噴出させるバーナーチップの下流側にディフューザーを配置し、アンモニアを自然吸引された燃焼用空気と一緒にディフューザーの周辺を迂回させて混合させ、このように混合されたアンモニアと燃焼用空気とを、渦流状態にしてディフューザーの上側に滞留させて燃焼させ、アンモニアの燃焼性を高めるようにしたものや、特許文献2に示されるように、低燃焼性燃料のアンモニアと燃焼用空気とを予混合させて均一化させた後、このように予混合させたガスを、スワラにより旋回させて強く攪拌しながら燃焼させて、アンモニアの燃焼性を高めるようにしたものが提案されている。 Conventionally, when burning ammonia as described above, as shown in Patent Document 1, a diffuser is arranged downstream of a burner tip that ejects the ammonia of the fuel, and ammonia is naturally sucked. The mixed ammonia and the combustion air are mixed together with the air by detouring around the diffuser, and the mixed ammonia and the combustion air are retained above the diffuser and burned to increase the combustibility of the ammonia. Alternatively, as shown in Patent Document 2, ammonia, which is a low-flammability fuel, and combustion air are premixed and homogenized, and then the premixed gas is swirled by a swirler. It has been proposed that ammonia is burned while being strongly stirred to enhance the combustibility of ammonia.

しかし、前記の特許文献1、2においては、アンモニアの燃焼性を高めることは示されているが、アンモニアの燃焼時に発生する窒素酸化物NOxを抑制することはできなかった。 However, although the aforementioned Patent Documents 1 and 2 disclose that the combustibility of ammonia is enhanced, they have not been able to suppress the nitrogen oxides NOx generated during the combustion of ammonia.

また、従来においては、特許文献3~6に示されるように、前記のような蓄熱式燃焼設備において、窒素酸化物NOxが含まれる燃焼排ガスが導かれる位置にアンモニアを噴出させて、燃焼後の燃焼排ガスに含まれる窒素酸化物NOxを減少させるようにしたものが提案されている。 Further, conventionally, as shown in Patent Documents 3 to 6, in the regenerative combustion equipment as described above, ammonia is jetted to a position where the combustion exhaust gas containing nitrogen oxides NOx is guided, and after combustion It has been proposed to reduce nitrogen oxide NOx contained in combustion exhaust gas.

しかし、前記の特許文献1~6に示される何れのものにおいても、前記のように蓄熱式燃焼設備の燃料にアンモニアを用い、対になった蓄熱式燃焼装置により燃焼と蓄熱とを交互に切り換えるにあたり、蓄熱式燃焼装置によりアンモニアを燃焼させる際に窒素酸化物NOxが発生するのを抑制すると共に、確実にアンモニアが燃焼されるようにして、窒素酸化物NOxや未燃焼のアンモニアが外部に排出されるのを防止することはできなかった。 However, in any of the above Patent Documents 1 to 6, ammonia is used as the fuel for the regenerative combustion equipment as described above, and the paired regenerative combustion equipment alternately switches between combustion and heat storage. Therefore, when burning ammonia with a regenerative combustion device, the generation of nitrogen oxides NOx is suppressed, and ammonia is reliably burned, and nitrogen oxides NOx and unburned ammonia are discharged to the outside. could not prevent it from happening.

実公昭50-8257号公報Japanese Utility Model Publication No. 50-8257 特開2016-130619号公報JP 2016-130619 A 特開平7-293815号公報JP-A-7-293815 特開平10-110941号公報JP-A-10-110941 特開2000-65316号公報JP-A-2000-65316 特許第3045430号公報Japanese Patent No. 3045430

本発明は、蓄熱部に収容された蓄熱材に蓄熱された熱により燃焼用空気を加熱させて給排気部を通して炉内に導き、この燃焼用空気と燃料供給ノズルから供給された燃料とを混合させて炉内で燃焼させる蓄熱式燃焼装置と、燃料供給ノズルから燃料を供給するのを停止した状態で、炉内における燃焼後の燃焼排ガスを、給排気部を通して蓄熱材が収容された蓄熱部に導いて燃焼排ガスの熱を蓄熱材に蓄熱させ、この蓄熱部を通して燃焼排ガスを外部に排出させる蓄熱式燃焼装置とが対になって設けられ、この対になった蓄熱式燃焼装置において燃焼と蓄熱とを交互に切り換えて行う蓄熱式燃焼設備において、前記の燃料にアンモニアを用いた場合における前記のような問題を解決することを課題とするものである。 In the present invention, the heat stored in the heat storage material contained in the heat storage unit heats the combustion air, which is led into the furnace through the air supply/exhaust unit, and the combustion air is mixed with the fuel supplied from the fuel supply nozzle. and a regenerative combustion device that burns in the furnace, and a heat storage unit in which the heat storage material is accommodated, through the supply and exhaust unit, the flue gas after combustion in the furnace in a state where the supply of fuel from the fuel supply nozzle is stopped. a regenerative combustion device that stores the heat of the combustion exhaust gas in the heat storage material and discharges the combustion exhaust gas to the outside through the heat storage unit. An object of the present invention is to solve the above-mentioned problems in the case of using ammonia as the fuel in a regenerative combustion facility in which heat storage is alternately performed.

すなわち、本発明においては、前記のような蓄熱式燃焼設備において、蓄熱式燃焼装置によりアンモニアを燃焼させる際に窒素酸化物NOxが発生するのを抑制すると共に、確実にアンモニアが燃焼されるようにして、窒素酸化物NOxや未燃焼のアンモニアが外部に排出されるのを簡単に防止できるようにすることを課題とするものである。 That is, in the present invention, in the regenerative combustion equipment as described above, the generation of nitrogen oxides NOx is suppressed when ammonia is burned by the regenerative combustion device, and the ammonia is reliably burned. It is therefore an object of the present invention to easily prevent nitrogen oxides NOx and unburned ammonia from being discharged to the outside.

本発明に係る蓄熱式燃焼設備においては、前記のような課題を解決するため、蓄熱部に収容された蓄熱材に蓄熱された熱により燃焼用空気を加熱させて給排気部を通して炉内に導き、この燃焼用空気と燃料供給ノズルから供給された燃料とを混合させて炉内で燃焼させる蓄熱式燃焼装置と、燃料供給ノズルから燃料を供給するのを停止した状態で、炉内における燃焼後の燃焼排ガスを、給排気部を通して蓄熱材が収容された蓄熱部に導いて燃焼排ガスの熱を蓄熱材に蓄熱させ、この蓄熱部を通して燃焼排ガスを外部に排出させる蓄熱式燃焼装置とが対になって設けられ、この対になった蓄熱式燃焼装置において燃焼と蓄熱とを交互に切り換えて行う蓄熱式燃焼設備において、前記の燃料にアンモニアを用い、各蓄熱式燃焼装置における前記の給排気部に対してそれぞれ燃焼用空気を供給する処理用空気供給ノズルを設け、燃焼側の蓄熱式燃焼装置において、アンモニアと混合させる燃焼用空気の空気比μを1以下にしてアンモニアを燃焼させる一方、蓄熱側の蓄熱式燃焼装置における給排気部に対して前記の処理用空気供給ノズルから燃焼用空気を供給するようにした。 In the regenerative combustion equipment according to the present invention, in order to solve the above problems, the combustion air is heated by the heat stored in the heat storage material contained in the heat storage unit, and guided into the furnace through the air supply and exhaust unit. , a regenerative combustion device that mixes the combustion air and fuel supplied from the fuel supply nozzle and burns it in the furnace, and after the combustion in the furnace with the supply of fuel from the fuel supply nozzle stopped The combustion exhaust gas is guided through the supply and exhaust part to a heat storage unit containing a heat storage material, the heat of the combustion exhaust gas is stored in the heat storage material, and the combustion exhaust gas is discharged to the outside through this heat storage unit. In the regenerative combustion equipment for alternately switching between combustion and heat storage in the paired regenerative combustion devices, ammonia is used as the fuel, and the air supply and exhaust part in each regenerative combustion device are provided with processing air supply nozzles that supply combustion air to each of them, and in the regenerative combustion device on the combustion side, the air ratio μ of the combustion air to be mixed with ammonia is set to 1 or less to burn ammonia, while heat storage Combustion air is supplied from the processing air supply nozzle to the air supply/exhaust part of the regenerative combustion apparatus on the side.

ここで、前記のように燃料にアンモニアを用い、このアンモニアと混合させる燃焼用空気の空気比μを1以下にして燃焼させると、アンモニアの燃焼時に窒素酸化物NOxが発生するのが抑制される一方、アンモニアが完全に燃焼されず、アンモニアの一部が燃焼されずに残るようになる。但し、このように燃焼されずに残ったアンモニアは、燃焼排ガスと一緒に蓄熱側の蓄熱式燃焼装置における給排気部に導かれ、前記の処理用空気供給ノズルからこの給排気部に供給された燃焼用空気によって燃焼されずに残ったアンモニアが燃焼されるようになる。ここで、アンモニアと混合させる燃焼用空気の空気比μを1以下にして燃焼させるにあたって、燃焼用空気の空気比μを0.99~0.94の範囲にすると、アンモニアの燃焼時に発生する窒素酸化物NOxの量を少なくすると共に、燃焼されずに残るアンモニアを少なくすることができ、特に、燃焼用空気の空気比μを約0.95にすると、アンモニアの燃焼時に窒素酸化物NOxが殆んど発生しなくなるため好ましい。 Here, when ammonia is used as the fuel as described above and the air ratio μ of the combustion air mixed with ammonia is set to 1 or less for combustion, the generation of nitrogen oxides NOx is suppressed during the combustion of ammonia. On the other hand, the ammonia is not completely combusted and some of the ammonia remains uncombusted. However, the ammonia left unburned in this way was led to the air supply/exhaust part of the regenerative combustion apparatus on the heat storage side together with the combustion exhaust gas, and was supplied to the air supply/exhaust part from the processing air supply nozzle. Ammonia remaining without being burned by the combustion air is burned. Here, when the air ratio μ of the combustion air to be mixed with ammonia is set to 1 or less for combustion, if the air ratio μ of the combustion air is set in the range of 0.99 to 0.94, nitrogen generated when ammonia is burned The amount of oxide NOx can be reduced and the amount of ammonia remaining unburned can be reduced. It is preferable because it will not occur.

また、本発明に係る蓄熱式燃焼設備において、前記のように蓄熱側の蓄熱式燃焼装置における給排気部に処理用空気供給ノズルから燃焼用空気を供給させて、燃焼されずに残ったアンモニアを燃焼させるにあたっては、蓄熱側の蓄熱式燃焼装置における給排気部において、燃焼されずに残ったアンモニアが燃焼用空気によって確実に燃焼されるようにするため、処理用空気供給ノズルから燃焼用空気を蓄熱側の蓄熱式燃焼装置における給排気部内に噴出させることが好ましい。なお、前記の処理用空気供給ノズルを蓄熱式燃焼装置の近傍に設けることも可能であるが、前記のように処理用空気供給ノズルから燃焼用空気を蓄熱側の蓄熱式燃焼装置における給排気部内に噴出させるようにすると、燃焼されずに残ったアンモニアのほぼ全量が、蓄熱側の蓄熱式燃焼装置における給排気部に供給された燃焼用空気によって確実に燃焼されるようになる。 Further, in the regenerative combustion equipment according to the present invention, as described above, the combustion air is supplied from the processing air supply nozzle to the air supply/exhaust part of the regenerative combustion device on the heat storage side, and the remaining unburned ammonia is removed. For combustion, in order to ensure that the remaining unburned ammonia is combusted by the combustion air in the air supply and exhaust section of the regenerative combustion device on the heat storage side, combustion air is supplied from the processing air supply nozzle. It is preferable to jet into the air supply/exhaust part of the regenerative combustion device on the heat storage side. Although it is possible to provide the processing air supply nozzle in the vicinity of the regenerative combustion apparatus, as described above, the combustion air is supplied from the processing air supply nozzle to the inside of the air supply and exhaust section of the regenerative combustion apparatus on the heat storage side. , almost all of the remaining unburned ammonia is reliably combusted by the combustion air supplied to the air supply/exhaust section of the regenerative combustion device on the regenerative side.

本発明における蓄熱式燃焼設備においては、前記のように対になった蓄熱式燃焼装置において燃焼と蓄熱とを交互に切り換えて行うにあたり、燃料にアンモニアを用い、各蓄熱式燃焼装置における前記の給排気部に対してそれぞれ燃焼用空気を供給する処理用空気供給ノズルを設け、燃焼側の蓄熱式燃焼装置において、アンモニアと混合させる燃焼用空気の空気比μを1以下にしてアンモニアを燃焼させるようにしたため、アンモニアの燃焼時に窒素酸化物NOxが発生するのが抑制される一方、アンモニアが完全に燃焼されずに一部が残るが、燃焼されずに残った未燃焼のアンモニアが燃焼排ガスと一緒に蓄熱側の蓄熱式燃焼装置における給排気部に導かれると、この給排気部に処理用空気供給ノズルから供給された燃焼用空気によって燃焼されずに残った未燃焼のアンモニアが完全に燃焼されるようになる。 In the regenerative combustion equipment of the present invention, when alternately switching between combustion and heat storage in the paired regenerative combustion devices as described above, ammonia is used as the fuel, and the above-mentioned supply in each regenerative combustion device is performed. Processing air supply nozzles are provided to supply combustion air to the exhaust portions, respectively, and in the regenerative combustion device on the combustion side, the air ratio μ of the combustion air to be mixed with ammonia is set to 1 or less to burn ammonia. As a result, the generation of nitrogen oxides NOx is suppressed during the combustion of ammonia. When it is guided to the air supply/exhaust part of the regenerative combustion device on the heat storage side, the unburned ammonia remaining without being burned by the combustion air supplied to the air supply/exhaust part from the processing air supply nozzle is completely burned. Become so.

この結果、本発明における蓄熱式燃焼設備においては、前記のようにアンモニアの燃焼時に窒素酸化物NOxが発生するのが抑制されると共に、燃焼時に燃焼されずに残ったアンモニアが完全に燃焼されるようになり、窒素酸化物NOxや未燃焼のアンモニアが外部に排出されるのを簡単に防止できるようになる。 As a result, in the regenerative combustion equipment of the present invention, as described above, the generation of nitrogen oxides NOx during the combustion of ammonia is suppressed, and the remaining ammonia that has not been burned during combustion is completely burned. As a result, it is possible to easily prevent nitrogen oxides NOx and unburned ammonia from being discharged to the outside.

本発明の実施形態に係る蓄熱式燃焼設備における燃焼と蓄熱とを交互に切り換える対になった一方の蓄熱式燃焼装置に、蓄熱部に収容された蓄熱材に蓄熱された熱により燃焼用空気を加熱させて給排気部を通して炉内に導き、燃料供給ノズルから供給されたアンモニアとこの燃焼用空気の空気比μが1以下になるように混合させてアンモニアを炉内で燃焼させる一方、燃焼後の燃焼排ガスを他方の蓄熱式燃焼装置の蓄熱部に導く途中の給排気部に、処理用空気供給ノズルから燃焼用空気を供給して、燃焼排ガス中における未燃焼のアンモニアを燃焼させ、これらの燃焼排ガスの熱を蓄熱材に蓄熱させ、この蓄熱部を通して燃焼排ガスを外部に排出させる状態を示した概略断面説明図である。Combustion air is supplied to one of the paired regenerative combustion devices for alternately switching between combustion and heat storage in the regenerative combustion facility according to the embodiment of the present invention, using the heat stored in the heat storage material accommodated in the heat storage unit. The ammonia is heated and introduced into the furnace through the air supply and exhaust section, and the ammonia supplied from the fuel supply nozzle and the combustion air are mixed so that the air ratio μ is 1 or less, and the ammonia is burned in the furnace. Combustion air is supplied from the processing air supply nozzle to the air supply/exhaust part on the way of leading the flue gas of one to the heat storage part of the other regenerative combustion device, and unburned ammonia in the flue gas is burned. FIG. 4 is a schematic cross-sectional explanatory view showing a state in which the heat of combustion exhaust gas is stored in a heat storage material and the combustion exhaust gas is discharged to the outside through this heat storage unit. 同実施形態に係る蓄熱式燃焼設備において、前記の一方の蓄熱式燃焼装置と他方の蓄熱式燃焼装置とにおける燃焼と蓄熱とを切り換え、他方の蓄熱式燃焼装置において空気比μが1以下になるようにしてアンモニアを炉内で燃焼させる一方、一方の蓄熱式燃焼装置における給排気部に、処理用空気供給ノズルから燃焼用空気を供給して燃焼排ガス中における未燃焼のアンモニアを燃焼させ、これらの燃焼排ガスの熱を蓄熱材に蓄熱させ、この蓄熱部を通して燃焼排ガスを外部に排出させる状態を示した概略断面説明図である。In the regenerative combustion equipment according to the same embodiment, the one regenerative combustion device and the other regenerative combustion device switch between combustion and heat storage, and the other regenerative combustion device has an air ratio μ of 1 or less. While ammonia is burned in the furnace in this manner, combustion air is supplied from a processing air supply nozzle to the air supply/exhaust part of one of the regenerative combustion devices to burn unburned ammonia in the combustion exhaust gas. 1 is a schematic cross-sectional explanatory view showing a state in which the heat of combustion exhaust gas is stored in a heat storage material and the combustion exhaust gas is discharged to the outside through this heat storage unit.

以下、本発明の実施形態に係る蓄熱式燃焼設備を添付図面に基づいて具体的に説明する。なお、本発明に係る蓄熱式燃焼設備は、下記の実施形態に示したものに限定されず、発明の要旨を変更しない範囲において、適宜変更して実施できるものである。 Hereinafter, a regenerative combustion facility according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings. It should be noted that the regenerative combustion equipment according to the present invention is not limited to those shown in the following embodiments, and can be modified as appropriate without changing the gist of the invention.

この実施形態における蓄熱式燃焼設備においては、図1及び図2に示すように、対になった蓄熱式燃焼装置10a,10bを炉1内に向けて対向するように設け、この対になった蓄熱式燃焼装置10a,10bにおいて燃焼と蓄熱とを交互に切り換えて行うようにしている。 In the regenerative combustion equipment of this embodiment, as shown in FIGS. Combustion and heat storage are alternately performed in the regenerative combustion devices 10a and 10b.

そして、各蓄熱式燃焼装置10a,10bにおいて、それぞれ燃焼を行う場合には、それぞれ蓄熱材xが収容された蓄熱部11a,11bに燃焼用空気Airを導き、前記の蓄熱材xに蓄熱された熱により燃焼用空気Airを加熱させて、それぞれの給排気部12a,12bを通して炉1内に供給させると共に、各蓄熱式燃焼装置10a,10bにおける前記の給排気部12a,12bの近傍に設けた各燃料供給ノズル13a,13bから燃料のアンモニアNHを、前記のように供給される燃焼用空気Airの空気比μが1以下になるようにそれぞれ給排気部12a,12bの近傍に供給して、前記の燃焼用空気Airと混合させて炉1内で燃焼させるようにしている。 When combustion is performed in each of the regenerative combustion devices 10a and 10b, the combustion air Air is guided to the heat storage units 11a and 11b in which the heat storage material x is accommodated, respectively, and the heat is stored in the heat storage material x. Combustion air Air is heated by heat and supplied into the furnace 1 through the respective air supply and exhaust units 12a and 12b, and provided near the air supply and exhaust units 12a and 12b in the regenerative combustion devices 10a and 10b. Ammonia NH 3 as fuel is supplied from the fuel supply nozzles 13a and 13b to the vicinity of the air supply/exhaust units 12a and 12b, respectively, so that the air ratio μ of the combustion air Air supplied as described above is 1 or less. , is mixed with the combustion air Air and burned in the furnace 1 .

一方、各蓄熱式燃焼装置10a,10bにおいて、それぞれ蓄熱を行う場合には、それぞれ燃料供給ノズル13a,13bから燃料を供給させるのを停止させた状態で、炉1内における燃焼後の燃焼排ガスを、それぞれ給排気部12a,12bを通して蓄熱材xが収容された蓄熱部11a,11bに導いて燃焼排ガスの熱を蓄熱材xに蓄熱させ、このように蓄熱材xに熱を蓄熱させた後の燃焼排ガスを外部に排出させるようにしている。 On the other hand, when heat is stored in each of the regenerative combustion devices 10a and 10b, the flue gas after combustion in the furnace 1 is discharged while the supply of fuel from the fuel supply nozzles 13a and 13b is stopped. The heat of the flue gas is guided to the heat storage units 11a and 11b containing the heat storage material x through the air supply/exhaust units 12a and 12b, respectively, and the heat of the combustion exhaust gas is stored in the heat storage material x. Combustion exhaust gas is discharged to the outside.

ここで、この実施形態における蓄熱式燃焼設備においては、図1及び図2に示すように、前記のように各蓄熱式燃焼装置10a,10bにおける各蓄熱部11a,11bに燃焼用空気Airを供給するにあたり、給気装置20から各蓄熱式燃焼装置10a,10bにおける各蓄熱部11a,11bに向けて燃焼用空気Airを導く空気案内経路21の部分にそれぞれ開閉弁21a,21bを設けている。 Here, in the regenerative combustion equipment in this embodiment, as shown in FIGS. For this purpose, on-off valves 21a and 21b are provided in portions of an air guide path 21 for guiding combustion air Air from the air supply device 20 toward the heat storage units 11a and 11b in the regenerative combustion devices 10a and 10b, respectively.

そして、前記の開閉弁21a,21bを制御装置(図示せず)により開閉させて、前記の給気装置20から空気案内経路21を通して各蓄熱式燃焼装置10a,10bにおける各蓄熱部11a,11bへの燃焼用空気Airの供給と停止とを切り換えるようにしている。ここで、前記の開閉弁21a,21bについては、弁を開いた状態を白抜きで示す一方、弁を閉じた状態を黒塗りで示している。 Then, the on-off valves 21a and 21b are opened and closed by a control device (not shown), and the air is supplied from the air supply device 20 through the air guide path 21 to the heat storage units 11a and 11b in the regenerative combustion devices 10a and 10b. The supply and stop of the combustion air Air are switched. Here, with respect to the on-off valves 21a and 21b, the open state is shown in white, while the closed state is shown in black.

また、この実施形態における蓄熱式燃焼設備においては、各蓄熱式燃焼装置10a,10bにおける各給排気部12a,12bにそれぞれ処理用空気供給ノズル14a,14bを設け、各処理用空気供給ノズル14a,14bに対して前記の給気装置20から燃焼用空気Airを導く処理用空気案内経路22の部分にそれぞれ開閉弁22a,22bを設けている。 Further, in the regenerative combustion equipment according to this embodiment, processing air supply nozzles 14a and 14b are provided in the air supply/exhaust units 12a and 12b of the regenerative combustion devices 10a and 10b, respectively. On-off valves 22a and 22b are provided in portions of the processing air guide path 22 that guides the combustion air Air from the air supply device 20 to 14b, respectively.

そして、前記の開閉弁22a,22bを制御装置(図示せず)により開閉させて、前記の給気装置20から処理用空気案内経路22を通して各処理用空気供給ノズル14a,14bへの処理用の燃焼用空気Airの供給と停止とを切り換えるようにしている。ここで、前記の開閉弁22a,22bについても、弁を開いた状態を白抜きで示す一方、弁を閉じた状態を黒塗りで示している。 The on-off valves 22a and 22b are opened and closed by a control device (not shown), and the processing air is supplied from the air supply device 20 through the processing air guide path 22 to the processing air supply nozzles 14a and 14b. He is trying to switch supply and stop of combustion air Air. Here, with regard to the on-off valves 22a and 22b as well, the open state is shown in white, while the closed state is shown in black.

また、この実施形態における蓄熱式燃焼設備において、前記のように各蓄熱式燃焼装置10a,10bにおける各給排気部12a,12bの近傍に設けた各燃料供給ノズル13a,13bから燃料のアンモニアNHを炉1内に供給するにあたっては、アンモニアNHを各燃料供給ノズル13a,13bに導く燃料案内経路31の部分にそれぞれ開閉弁31a,31bを設けている。 Further, in the regenerative combustion equipment in this embodiment, as described above, ammonia NH 3 as fuel is supplied from the fuel supply nozzles 13a, 13b provided in the vicinity of the air supply/exhaust units 12a, 12b in the regenerative combustion devices 10a, 10b. is supplied into the furnace 1, on-off valves 31a and 31b are provided in the portions of the fuel guide path 31 that guide the ammonia NH3 to the fuel supply nozzles 13a and 13b, respectively.

そして、前記の開閉弁31a,31bを制御装置(図示せず)により開閉させて、前記の燃料案内経路31を通して各燃料供給ノズル13a,13bに供給するアンモニアNHの供給と停止とを切り換えるようにしている。ここで、前記の開閉弁31a,31bについても、弁を開いた状態を白抜きで示す一方、弁を閉じた状態を黒塗りで示している。 Then, the opening/closing valves 31a and 31b are opened and closed by a control device (not shown) to switch between supply and stop of ammonia NH3 supplied to the fuel supply nozzles 13a and 13b through the fuel guide path 31. I have to. Here, with respect to the on-off valves 31a and 31b as well, the open state is shown in white, while the closed state is shown in black.

また、この実施形態における蓄熱式燃焼設備において、前記のように各蓄熱式燃焼装置10a,10bにおいて、アンモニアNHを燃焼させた後の炉1内における燃焼排ガスを、排気装置40により各蓄熱式燃焼装置10a,10bにおける各給排気部12a,12bから蓄熱材xが収容された蓄熱部11a,11bを通して吸引させて外部に排気させるにあたり、燃焼排ガスを各蓄熱式燃焼装置10a,10bの蓄熱部11a,11bを通して排気装置40に導く排気経路41の部分にそれぞれ開閉弁41a,41bを設けている。 Further, in the regenerative combustion equipment in this embodiment, as described above, in the regenerative combustion devices 10a and 10b, the combustion exhaust gas in the furnace 1 after burning the ammonia NH 3 is When the combustion exhaust gas is sucked from the air supply/exhaust units 12a and 12b of the combustion devices 10a and 10b through the heat storage units 11a and 11b in which the heat storage material x is accommodated and is exhausted to the outside, the combustion exhaust gas is introduced into the heat storage units of the regenerative combustion devices 10a and 10b. On-off valves 41a and 41b are provided in portions of the exhaust path 41 leading to the exhaust device 40 through 11a and 11b, respectively.

そして、前記の開閉弁41a,41bを制御装置(図示せず)により開閉させて、前記の排気経路41を通して燃焼排ガスを排気装置40に導く蓄熱式燃焼装置10a,10bを切り換えるようにしている。ここで、前記の開閉弁41a,41bについても、弁を開いた状態を白抜きで示す一方、弁を閉じた状態を黒塗りで示している。 A control device (not shown) opens and closes the on-off valves 41a and 41b to switch the regenerative combustion devices 10a and 10b that lead the combustion exhaust gas to the exhaust device 40 through the exhaust path 41. FIG. Here, with respect to the on-off valves 41a and 41b as well, the open state is shown in white, while the closed state is shown in black.

そして、この実施形態における蓄熱式燃焼設備において、一方の蓄熱式燃焼装置10aにおいてアンモニアNHを燃焼させる一方、他方の蓄熱式燃焼装置10bにおいて燃焼排ガスの熱を蓄熱させて燃焼排ガスを排気させる場合、アンモニアNHを燃焼させる一方の蓄熱式燃焼装置10aにおいては、図1に示すように、前記の空気案内経路21に設けた一方の開閉弁21aを開けて、前記の給気装置20から燃焼用空気Airを一方の蓄熱式燃焼装置10aにおける蓄熱部11aに導いて、この燃焼用空気Airを蓄熱部11aにおいて蓄熱された蓄熱材xにより加熱させ、このように加熱された燃焼用空気Airを、この蓄熱式燃焼装置10aにおける給排気部12aを通して炉1内に供給すると共に、前記の燃料案内経路31に設けた一方の開閉弁31aを開けて、アンモニアNHを前記の燃料案内経路31を通して一方の燃料供給ノズル13aに導き、この燃料供給ノズル13aからアンモニアNHを、前記の給排気部12aを通して炉1内に供給される燃焼用空気Airに向けて噴射させ、このアンモニアNHに対して前記の加熱された燃焼用空気Airの空気比μが1以下になるように混合させて燃焼させるようにする。 In the regenerative combustion equipment of this embodiment, one regenerative combustion device 10a burns ammonia NH 3 while the other regenerative combustion device 10b stores the heat of combustion exhaust gas and discharges the combustion exhaust gas. , in one regenerative combustion device 10a for burning ammonia NH3 , as shown in FIG. The combustion air Air is guided to the heat storage section 11a in one of the regenerative combustion devices 10a, and the combustion air Air is heated by the heat storage material x stored in the heat storage section 11a. , the ammonia NH 3 is supplied into the furnace 1 through the air supply/exhaust part 12a of the regenerative combustion apparatus 10a, and one opening/closing valve 31a provided in the fuel guide path 31 is opened to allow ammonia NH 3 to flow through the fuel guide path 31. One fuel supply nozzle 13a is introduced, and ammonia NH 3 is injected from this fuel supply nozzle 13a toward the combustion air Air supplied into the furnace 1 through the air supply/exhaust part 12a. are mixed and burned so that the air ratio μ of the heated combustion air Air is 1 or less.

このように、アンモニアNHを燃焼用空気Airの空気比μが1以下になるように混合させて燃焼させると、燃焼時における窒素酸化物NOxの発生が抑制され、特に、燃焼用空気の空気比μを0.99~0.94の範囲にすると、アンモニアNHの燃焼時に発生する窒素酸化物NOxの量を少なくできると共に、燃焼されずに残る未燃焼のアンモニアを少なくすることができ、さらに、燃焼用空気の空気比μを約0.95にすると、アンモニアの燃焼時に窒素酸化物NOxが殆んど発生しなくなる。 In this way, when ammonia NH 3 is mixed and burned so that the air ratio μ of the combustion air Air is 1 or less, the generation of nitrogen oxides NOx during combustion is suppressed. When the ratio μ is in the range of 0.99 to 0.94, the amount of nitrogen oxides NOx generated when ammonia NH 3 is burned can be reduced, and the amount of unburned ammonia remaining without being burned can be reduced. Furthermore, when the air ratio μ of the combustion air is set to approximately 0.95, almost no nitrogen oxides NOx are generated during the combustion of ammonia.

一方、前記のように燃焼排ガスの熱を蓄熱させて燃焼排ガスを排気させる他方の蓄熱式燃焼装置10bにおいては、前記の排気経路41に設けた他方の開閉弁41bを開け、前記のようにアンモニアNHを燃焼用空気Airと空気比μが1以下になるようにして燃焼させた後の未燃焼のアンモニアNHを含む燃焼排ガスを、前記の排気装置40により、排気経路41から他方の蓄熱式燃焼装置10bにおける蓄熱部11bを通して給排気部12bに吸引すると共に、前記の処理用空気案内経路22に設けた他方の開閉弁22bを開けて、燃焼用空気Airを他方の処理用空気供給ノズル14bから前記の給排気部12bに供給し、前記の燃焼排ガスに含まれる未燃焼のアンモニアNHをこの燃焼用空気Airにより燃焼させ、前記の燃焼排ガスと未燃焼のアンモニアNHを燃焼させた燃焼排ガスとを一緒に、他方の蓄熱式燃焼装置10bにおける蓄熱部11bに吸引させて、これらの燃焼排ガスの熱を蓄熱材xに蓄熱させた後、この燃焼排ガスを前記の排気経路41を通して排気装置40に導き、外部に排気させるようにする。 On the other hand, in the other regenerative combustion device 10b for accumulating the heat of the combustion exhaust gas and discharging the combustion exhaust gas as described above, the other opening/closing valve 41b provided in the exhaust passage 41 is opened to release ammonia as described above. The combustion exhaust gas containing unburned ammonia NH 3 after burning NH 3 with the combustion air Air so that the air ratio μ is 1 or less is discharged from the exhaust path 41 to the other heat storage by the exhaust device 40. At the same time, the other opening/closing valve 22b provided in the processing air guide path 22 is opened to allow the combustion air Air to flow through the other processing air supply nozzle. 14b to the air supply/exhaust part 12b, the unburned ammonia NH 3 contained in the combustion exhaust gas was burned with this combustion air Air, and the combustion exhaust gas and the unburned ammonia NH 3 were burned. The combustion exhaust gas is sucked together with the combustion exhaust gas into the heat storage section 11b in the other regenerative combustion device 10b, and after the heat of these combustion exhaust gases is accumulated in the heat storage material x, the combustion exhaust gas is discharged through the exhaust path 41. It is guided to the device 40 and exhausted to the outside.

ここで、前記のように一方の蓄熱式燃焼装置10aにおいてアンモニアNHを燃焼させる一方、他方の蓄熱式燃焼装置10bにおいて燃焼排ガスの熱を蓄熱させて排気させるようにすると、アンモニアNHの燃焼時に窒素酸化物NOxが発生するのが抑制されると共に、前記の燃焼時に燃焼されずに残った未燃焼のアンモニアNHも前記のように蓄熱側の給排気部12aにおいて燃焼されるようになり、窒素酸化物NOxや未燃焼のアンモニアを含む燃焼排ガスが排気装置40によって外部に排出されるのを簡単に防止できるようになる。 Here, as described above, one regenerative combustion device 10a burns ammonia NH3 , while the other regenerative combustion device 10b stores the heat of the combustion exhaust gas and exhausts it. At the same time, the generation of nitrogen oxides NOx is suppressed, and the unburned ammonia NH3 remaining unburned during the combustion is also burned in the heat storage side air supply/exhaust part 12a as described above. , the combustion exhaust gas containing nitrogen oxides NOx and unburned ammonia can be easily prevented from being discharged to the outside by the exhaust device 40 .

また、この実施形態における蓄熱式燃焼設備において、前記の図1の場合とは逆に、他方の蓄熱式燃焼装置10bにおいてアンモニアNHを燃焼させる一方、一方の蓄熱式燃焼装置10aにおいて燃焼排ガスの熱を蓄熱させて燃焼排ガスを排気させる場合には、図2に示すように、他方の蓄熱式燃焼装置10bにおいて、前記の空気案内経路21に設けた他方の開閉弁21bを開けて、給気装置20から燃焼用空気Airを他方の蓄熱式燃焼装置10aにおける蓄熱部11bに導いて、この燃焼用空気Airを蓄熱部11bにおいて蓄熱された蓄熱材xにより加熱させ、このように加熱された燃焼用空気Airを、この蓄熱式燃焼装置10bにおける給排気部12bを通して炉1内に供給すると共に、前記の燃料案内経路31に設けた他方の開閉弁31bを開けて、燃料案内経路31を通してアンモニアNHを他方の燃料供給ノズル13bに導き、この燃料供給ノズル13bからアンモニアNHを、前記の給排気部12bを通して炉1内に供給される燃焼用空気Airに向けて噴射させ、このアンモニアNHに対して前記の加熱された燃焼用空気Airの空気比μが1以下になるように混合させて燃焼させる。 In addition, in the regenerative combustion equipment in this embodiment, contrary to the case of FIG. When the heat is accumulated and the combustion exhaust gas is discharged, as shown in FIG. Combustion air Air is led from the device 20 to the heat storage section 11b of the other regenerative combustion device 10a, and this combustion air Air is heated by the heat storage material x stored in the heat storage section 11b, and the combustion thus heated is achieved. Ammonia NH 3 is introduced to the other fuel supply nozzle 13b, and ammonia NH 3 is injected from this fuel supply nozzle 13b toward the combustion air Air supplied into the furnace 1 through the air supply/exhaust part 12b, and this ammonia NH 3 are mixed and burned so that the air ratio μ of the heated combustion air Air is 1 or less.

また、前記のように燃焼排ガスの熱を蓄熱させて燃焼排ガスを排気させる一方の蓄熱式燃焼装置10aにおいては、前記の排気経路41に設けた一方の開閉弁41aを開け、前記のようにアンモニアNHを燃焼用空気Airと空気比μが1以下になるようにして燃焼させた後の未燃焼のアンモニアNHを含む燃焼排ガスを、前記の排気装置40により、排気経路41から一方の蓄熱式燃焼装置10aにおける蓄熱部11aを通して給排気部12aに吸引すると共に、前記の処理用空気案内経路22に設けた一方の開閉弁22aを開けて、燃焼用空気Airを一方の処理用空気供給ノズル14aから前記の給排気部12aに供給し、前記の燃焼排ガスに含まれる未燃焼のアンモニアNHをこの燃焼用空気Airにより燃焼させ、前記の燃焼排ガスと未燃焼のアンモニアNHを燃焼させた燃焼排ガスとを一緒に、一方の蓄熱式燃焼装置10aにおける蓄熱部11aに吸引させて、これらの燃焼排ガスの熱を蓄熱材xに蓄熱させた後、この燃焼排ガスを前記の排気経路41を通して排気装置40に導き、外部に排気させるようにする。 Further, in one of the regenerative combustion devices 10a for accumulating the heat of the combustion exhaust gas and discharging the combustion exhaust gas as described above, one opening/closing valve 41a provided in the exhaust path 41 is opened, and ammonia is discharged as described above. The combustion exhaust gas containing unburned ammonia NH 3 after burning NH 3 with the combustion air Air in such a manner that the air ratio μ is 1 or less is discharged from the exhaust path 41 to one side by the exhaust device 40. At the same time, one opening/closing valve 22a provided in the processing air guide path 22 is opened to allow the combustion air Air to flow through one of the processing air supply nozzles. 14a to the air supply/exhaust part 12a, the unburned ammonia NH 3 contained in the combustion exhaust gas was burned with this combustion air Air, and the combustion exhaust gas and the unburned ammonia NH 3 were burned. The combustion exhaust gas is sucked together with the combustion exhaust gas into the heat storage unit 11a in one regenerative combustion device 10a, and after the heat of the combustion exhaust gas is accumulated in the heat storage material x, the combustion exhaust gas is discharged through the exhaust path 41. It is guided to the device 40 and exhausted to the outside.

このように、他方の蓄熱式燃焼装置10bにおいてアンモニアNHを燃焼させる一方、一方の蓄熱式燃焼装置10aにおいて燃焼排ガスの熱を蓄熱させて燃焼排ガスを排気させるようにすると、前記の図1に示した場合と同様に、アンモニアNHの燃焼時に窒素酸化物NOxが発生するのが抑制されると共に、の燃焼時に燃焼されずに残った未燃焼のアンモニアNHも蓄熱側の給排気部12aにおいて燃焼されるようになり、窒素酸化物NOxや未燃焼のアンモニアを含む燃焼排ガスが排気装置40によって外部に排出されるのを簡単に防止できるようになる。 In this manner, while the ammonia NH 3 is burned in the other regenerative combustion device 10b, the heat of the flue gas is accumulated in the regenerative combustion device 10a and the flue gas is exhausted. As in the case shown, the generation of nitrogen oxides NOx is suppressed during the combustion of ammonia NH 3 , and the unburned ammonia NH 3 remaining unburned during the combustion of ammonia NH 3 is also removed from the heat storage side air supply/exhaust part 12a. It is possible to easily prevent combustion exhaust gas containing nitrogen oxides NOx and unburned ammonia from being discharged to the outside by the exhaust device 40.

1 :炉
10a :蓄熱式燃焼装置
10b :蓄熱式燃焼装置
11a :蓄熱部
11b :蓄熱部
12a :給排気部
12b :給排気部
13a :燃料供給ノズル
13b :燃料供給ノズル
14a :処理用空気供給ノズル
14b :処理用空気供給ノズル
20 :給気装置
21 :空気案内経路
21a :開閉弁
21b :開閉弁
22 :処理用空気案内経路
22a :開閉弁
22b :開閉弁
31 :燃料案内経路
31a :開閉弁
31b :開閉弁
40 :排気装置
41 :排気経路
41a :開閉弁
41b :開閉弁
Air :燃焼用空気
NH :アンモニア
x :蓄熱材
Reference Signs List 1: Furnace 10a: Regenerative Combustion Device 10b: Regenerative Combustion Device 11a: Heat Storage Unit 11b: Heat Storage Unit 12a: Supply/Exhaust Unit 12b: Supply/Exhaust Unit 13a: Fuel Supply Nozzle 13b: Fuel Supply Nozzle 14a: Processing Air Supply Nozzle 14b: processing air supply nozzle 20: air supply device 21: air guide path 21a: on-off valve 21b: on-off valve 22: processing air guide path 22a: on-off valve 22b: on-off valve 31: fuel guide path 31a: on-off valve 31b : On-off valve 40 : Exhaust device 41 : Exhaust path 41a : On-off valve 41b : On-off valve Air : Combustion air NH 3 : Ammonia x : Heat storage material

Claims (3)

蓄熱部に収容された蓄熱材に蓄熱された熱により燃焼用空気を加熱させて給排気部を通して炉内に導き、この燃焼用空気と燃料供給ノズルから供給された燃料とを混合させて炉内で燃焼させる蓄熱式燃焼装置と、燃料供給ノズルから燃料を供給するのを停止した状態で、炉内における燃焼後の燃焼排ガスを、給排気部を通して蓄熱材が収容された蓄熱部に導いて燃焼排ガスの熱を蓄熱材に蓄熱させ、この蓄熱部を通して燃焼排ガスを外部に排出させる蓄熱式燃焼装置とが対になって設けられ、この対になった蓄熱式燃焼装置において燃焼と蓄熱とを交互に切り換えて行う蓄熱式燃焼設備において、前記の燃料にアンモニアを用い、各蓄熱式燃焼装置における前記の給排気部に対してそれぞれ燃焼用空気を供給する処理用空気供給ノズルを設け、燃焼側の蓄熱式燃焼装置において、アンモニアと混合させる燃焼用空気の空気比μを1以下にしてアンモニアを燃焼させる一方、蓄熱側の蓄熱式燃焼装置における給排気部に対して前記の処理用空気供給ノズルから燃焼用空気を供給することを特徴とする蓄熱式燃焼設備。 Combustion air is heated by the heat stored in the heat storage material accommodated in the heat storage unit and guided into the furnace through the air supply/exhaust unit. and the combustion exhaust gas after combustion in the furnace is guided through the supply and exhaust part to the heat storage part containing the heat storage material in a state where the supply of fuel from the fuel supply nozzle is stopped. A regenerative combustion device that stores the heat of the exhaust gas in a heat storage material and discharges the combustion exhaust gas to the outside through the heat storage unit is provided in a pair, and the paired regenerative combustion device alternately performs combustion and heat storage. in the regenerative combustion equipment, wherein ammonia is used as the fuel, processing air supply nozzles are provided to supply combustion air to the air supply and exhaust units in each regenerative combustion device, and the combustion side is In the regenerative combustion apparatus, the air ratio μ of the combustion air to be mixed with ammonia is set to 1 or less, and ammonia is burned, while the processing air supply nozzle is fed to the air supply/exhaust part of the regenerative combustion apparatus on the heat storage side. Regenerative combustion equipment characterized by supplying combustion air. 請求項1に記載の蓄熱式燃焼設備において、前記のアンモニアと燃焼用空気とを混合させて燃焼させるにあたり、燃焼用空気の空気比μを0.99~0.94の範囲にしたことを特徴とする蓄熱式燃焼設備。 In the regenerative combustion equipment according to claim 1, when the ammonia and the combustion air are mixed and burned, the air ratio μ of the combustion air is set in the range of 0.99 to 0.94. Regenerative combustion equipment. 請求項1又は請求項2に記載の蓄熱式燃焼設備において、前記の処理用空気供給ノズルを前記の各蓄熱式燃焼装置の給排気部に設け、前記の処理用空気供給ノズルから蓄熱側の蓄熱式燃焼装置における給排気部内に燃焼用空気を噴出させることを特徴とする蓄熱式燃焼設備。 3. The regenerative combustion equipment according to claim 1, wherein the processing air supply nozzle is provided in the air supply/exhaust part of each of the regenerative combustion devices, and heat is stored on the heat storage side from the processing air supply nozzle. A regenerative combustion facility characterized by jetting combustion air into an air supply/exhaust part of a combustion system.
JP2021010457A 2021-01-26 2021-01-26 Regenerative combustion equipment Active JP7254841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021010457A JP7254841B2 (en) 2021-01-26 2021-01-26 Regenerative combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021010457A JP7254841B2 (en) 2021-01-26 2021-01-26 Regenerative combustion equipment

Publications (2)

Publication Number Publication Date
JP2022114244A true JP2022114244A (en) 2022-08-05
JP7254841B2 JP7254841B2 (en) 2023-04-10

Family

ID=82658570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021010457A Active JP7254841B2 (en) 2021-01-26 2021-01-26 Regenerative combustion equipment

Country Status (1)

Country Link
JP (1) JP7254841B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133905A (en) * 1993-11-10 1995-05-23 Tokyo Gas Co Ltd Low-nitrogen oxide generation alternating burning method
US5759022A (en) * 1995-10-16 1998-06-02 Gas Research Institute Method and system for reducing NOx and fuel emissions in a furnace
JP2018076985A (en) * 2016-11-07 2018-05-17 三菱日立パワーシステムズ株式会社 Thermal power generation plant, boiler, and method for modifying the boiler
JP2018115789A (en) * 2017-01-17 2018-07-26 中外炉工業株式会社 Heat storage type combustion facility
JP2018155412A (en) * 2017-03-15 2018-10-04 国立大学法人東北大学 Fuel combustion apparatus, and combustion method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133905A (en) * 1993-11-10 1995-05-23 Tokyo Gas Co Ltd Low-nitrogen oxide generation alternating burning method
US5759022A (en) * 1995-10-16 1998-06-02 Gas Research Institute Method and system for reducing NOx and fuel emissions in a furnace
JP2018076985A (en) * 2016-11-07 2018-05-17 三菱日立パワーシステムズ株式会社 Thermal power generation plant, boiler, and method for modifying the boiler
JP2018115789A (en) * 2017-01-17 2018-07-26 中外炉工業株式会社 Heat storage type combustion facility
JP2018155412A (en) * 2017-03-15 2018-10-04 国立大学法人東北大学 Fuel combustion apparatus, and combustion method

Also Published As

Publication number Publication date
JP7254841B2 (en) 2023-04-10

Similar Documents

Publication Publication Date Title
US20170261206A1 (en) Stoker-type incinerator
CN108496040B (en) Radiant tube burner apparatus
TWI746538B (en) Radiant tube burner facility and industrial furnace
JP5752156B2 (en) Combustion control method for combustion apparatus
JP7184471B2 (en) Regenerative combustion equipment
JP7254841B2 (en) Regenerative combustion equipment
CN108700293B (en) Industrial furnace
JP2020091054A (en) Combustion control method and incinerator
JP2014048020A (en) Continuous type heating furnace
JPWO2009110038A1 (en) Oxyfuel boiler pulverized coal burner
JP5171065B2 (en) Continuous heating furnace
JP2011252669A (en) Combustion control method of heat storage combustion type heat treating furnace
TWI686570B (en) Industrial furnace
TW202115347A (en) Liquid fuel combustion device
JP7387243B2 (en) Ammonia fuel combustion equipment
JP2022109395A (en) industrial furnace
JP7210119B2 (en) industrial furnace
TWI839719B (en) Combustion device
JP4033127B2 (en) Combustion control method for tubular flame burner
JP2014122743A (en) Powder combustion device, and operational method of the same
JP3709775B2 (en) Regenerative burner and combustion method thereof
JP2012057873A (en) Heat storage type combustion device, and heating furnace
JP5404533B2 (en) Combustion control method of heat storage combustion type heat treatment furnace
JP2023039682A (en) Ammonia fuel combustion device
KR20190136540A (en) Super-low NOx Emission Combustion Apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230329

R150 Certificate of patent or registration of utility model

Ref document number: 7254841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150