JP2022113648A - Photocatalytic composite material, and production method thereof - Google Patents

Photocatalytic composite material, and production method thereof Download PDF

Info

Publication number
JP2022113648A
JP2022113648A JP2022001295A JP2022001295A JP2022113648A JP 2022113648 A JP2022113648 A JP 2022113648A JP 2022001295 A JP2022001295 A JP 2022001295A JP 2022001295 A JP2022001295 A JP 2022001295A JP 2022113648 A JP2022113648 A JP 2022113648A
Authority
JP
Japan
Prior art keywords
photocatalyst
oxygen
hydrogen
composite material
generating photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022001295A
Other languages
Japanese (ja)
Inventor
賢輔 秋山
Kensuke Akiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Institute of Industrial Science and Technology
Original Assignee
Kanagawa Institute of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Institute of Industrial Science and Technology filed Critical Kanagawa Institute of Industrial Science and Technology
Publication of JP2022113648A publication Critical patent/JP2022113648A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

To provide a photocatalytic composite material that has catalytic activity to light in a wide wavelength region from the ultraviolet region to the near-infrared region and can decompose water at high conversion efficiency using the light, and a production method thereof.SOLUTION: A hydrogen generation catalyst 3 formed by a semiconductor material made of β-FeSi2 or FeGe2 and an oxygen generation catalyst 1 formed by an oxide such as TiO2, a carbide including SiC, or a nitride are bonded with a metal layer 5 made of gold, silver, or copper. A coating layer 6 made of CrOx, Cr(OH)x, or a mixture thereof is formed on the surface of the hydrogen generation catalyst 3 or around the junction of the oxygen generating catalyst 1 and the hydrogen generation catalyst 3. A reduction promoter 4 such as Pt is supported by the hydrogen generation catalyst 3, whereas an oxidation promoter 2 such as CoPi and CoBi is supported by the oxygen generation catalyst 1.SELECTED DRAWING: Figure 1

Description

本発明は、太陽光スペクトルのうち、紫外光から可視光を含み1300nmの近赤外領域に対して光触媒作用を有し、広範な波長領域で水分解可能な光触媒複合材料及びその製造方法に関し、特に、被覆層、還元反応助触媒及び酸化反応助触媒を有して反応効率を著しく高めた光触媒複合材料に関する。 The present invention relates to a photocatalyst composite material that has photocatalytic activity in the near-infrared region of 1300 nm including ultraviolet to visible light in the sunlight spectrum and is capable of decomposing water in a wide wavelength range, and a method for producing the same. In particular, the present invention relates to a photocatalyst composite material having a coating layer, a reduction reaction promoter, and an oxidation reaction promoter to remarkably increase the reaction efficiency.

光を照射することにより触媒作用を示す光触媒として、酸化チタン(TiO)を代表とする酸化物、窒化物及び酸窒化物が実用化されている。これらの光触媒は、紫外光から可視光によって光励起される。そうすると、光触媒の価電子帯の電子が伝導帯に励起され、比較的還元力が強い電子と、極めて酸化力が強い正孔が生成する。これらの光励起によって生成した電子が、水中の水素イオンを還元して水素を生成し、正孔が水酸化イオンを酸化することにより酸素を生成する。 Oxides, nitrides and oxynitrides typified by titanium oxide (TiO 2 ) have been put to practical use as photocatalysts that exhibit catalytic action upon irradiation with light. These photocatalysts are photoexcited by ultraviolet to visible light. As a result, electrons in the valence band of the photocatalyst are excited to the conduction band, and electrons with relatively strong reducing power and holes with extremely strong oxidizing power are generated. Electrons generated by these photoexcitations reduce hydrogen ions in water to generate hydrogen, and holes oxidize hydroxide ions to generate oxygen.

特許文献1には、水分解用光触媒として、光半導体に対し、酸化反応助触媒及び還元反応助触媒を担持させたものが開示されている。これらの酸化反応助触媒及び還元反応助触媒が、水の酸化反応及び還元反応を触媒し、光触媒による水分解反応速度を向上させることができる。この光触媒は、可視光領域の光を利用して水分解反応を行うものである。 Patent Document 1 discloses a water-splitting photocatalyst in which an oxidation reaction cocatalyst and a reduction reaction cocatalyst are supported on an optical semiconductor. These oxidation reaction co-catalysts and reduction reaction co-catalysts catalyze the oxidation reaction and reduction reaction of water, and can improve the water decomposition reaction rate by photocatalysis. This photocatalyst uses light in the visible light region to perform a water-splitting reaction.

一方、特許文献2には、紫外領域から近赤外領域までの太陽光を効率よく利用することができる光触媒複合材料として、β-FeSi又はFeGeからなる半導体材料と、金(Au)、銀(Ag)又は銅(Cu)からなる金属材料との複合材料が開示されている。この特許文献2に記載されたように、光触媒としては、酸化チタンのように、バンド・ギャップが広く(3.0~3.2eV)、伝導帯の標準電極電位が水からの水素発生電位(0 V vs SHE)より負電位側(卑な電位側)に位置し、価電子帯の標準電極電位が水からの酸素発生電位(+1.23 V vs SHE)より正電位側(貴な電位側)に位置しなければ、酸化・還元反応が発現しない。しかし、この酸化チタンは、太陽光スペクトルにおける紫外光域のみが利用可能な帯域となり、大部分の可視光域を活用することができず、変換効率が低い。なお、V vs SHEは水素電極(0 V)を基準とする電位であり、SHEは標準水素電極(standard hydrogen electrode)を指す。 On the other hand, in Patent Document 2, a semiconductor material composed of β-FeSi 2 or FeGe 2 , gold (Au), A composite material with a metallic material consisting of silver (Ag) or copper (Cu) is disclosed. As described in this patent document 2, the photocatalyst has a wide band gap (3.0 to 3.2 eV) like titanium oxide, and the standard electrode potential of the conduction band is the hydrogen generation potential from water (0 V vs. SHE), the standard electrode potential of the valence band is located on the positive potential side (noble potential side) of the oxygen evolution potential from water (+1.23 V vs SHE). Without it, the oxidation/reduction reaction does not occur. However, this titanium oxide has a low conversion efficiency because only the ultraviolet light region in the sunlight spectrum can be used, and most of the visible light region cannot be utilized. Note that V vs SHE is a potential based on the hydrogen electrode (0 V), and SHE refers to the standard hydrogen electrode.

そこで、この特許文献2の発明においては、β-FeSiからなる半導体材料と、Auとを接触させた光触媒複合材料が開示されている。このβ-FeSiは、伝導帯の標準電極電位e1が水からの水素発生電位E1(反応物質の還元反応の標準電極電位)よりも負電位側であるが、価電子帯の標準電極電位e2も酸素発生電位E2(酸化反応の標準電極電位)よりも負電位側にある。このため、β―FeSi単独では、水の分解は生じない。しかし、このβ―FeSiに金属としてAuを接合した複合材料は、酸化反応を生じる半導体の価電子帯の標準電極電位が酸素発生電位よりも正電位側に位置するため、水の分解反応が生じる。しかも、この複合材料は、紫外領域から近赤外領域までの太陽光に反応する。 Therefore, the invention of Patent Document 2 discloses a photocatalytic composite material in which a semiconductor material made of β-FeSi 2 and Au are brought into contact with each other. In this β-FeSi 2 , the standard electrode potential e1 of the conduction band is on the negative side of the hydrogen generation potential E1 from water (the standard electrode potential of the reduction reaction of the reactant), but the standard electrode potential e2 of the valence band is also on the negative side of the oxygen evolution potential E2 (standard electrode potential for oxidation reaction). Therefore, β-FeSi 2 alone does not cause water decomposition. However, in the composite material in which Au is bonded to β-FeSi 2 as a metal, the standard electrode potential of the valence band of the semiconductor that causes the oxidation reaction is located on the positive potential side of the oxygen generation potential, so the water decomposition reaction does not occur. occur. Moreover, this composite material responds to sunlight from the ultraviolet region to the near-infrared region.

特許第5765678号Patent No. 5765678 特許第5906513号Patent No. 5906513

しかし、この特許文献2に開示された光触媒複合材料においては、紫外光から赤外光までの可視光領域を含む広範囲な波長域に対して、光触媒活性効果を有するものの、その光電変換効率には、更に一層の改善が望まれている。 However, in the photocatalytic composite material disclosed in Patent Document 2, although it has a photocatalytic activity effect in a wide range of wavelengths including the visible light region from ultraviolet light to infrared light, the photoelectric conversion efficiency is , further improvements are desired.

本発明はかかる問題点に鑑みてなされたものであって、紫外領域から近赤外領域までの広範な波長域において光に対する触媒活性を有し、この光を利用して水を高変換効率で分解して、水素及び酸素を発生させることができる光触媒複合材料及びその製造方法を提供することを目的とする。 The present invention has been made in view of such problems, and has catalytic activity against light in a wide wavelength range from the ultraviolet region to the near infrared region, and uses this light to convert water with high efficiency. An object of the present invention is to provide a photocatalytic composite material that can be decomposed to generate hydrogen and oxygen, and a method for producing the same.

本発明に係る光触媒複合材料は、
β-FeSi及びFeGeからなる群から選択された少なくとも1種の半導体材料からなる水素発生光触媒と、
TiO、Fe、WO、BiVO又はTaを含む酸化物、SiCを含む炭化物、及びNb、CuN又はTaを含む窒化物からなる群から選択された少なくとも1種の材料からなる酸素発生光触媒と、
金、銀及び銅からなる群から選択された少なくとも1種の金属材料からなり、前記水素発生光触媒と前記酸素発生光触媒とを接合する接合材と、
前記水素発生光触媒の表面又は前記水素発生光触媒と前記酸素発生光触媒との接合部を覆うようにして形成され、CrOx、Cr(OH)x又はこれらの混合物からなる被覆層と、
を有することを特徴とする。
The photocatalytic composite material according to the present invention is
a hydrogen generating photocatalyst comprising at least one semiconductor material selected from the group consisting of β-FeSi 2 and FeGe 2 ;
from the group consisting of oxides comprising TiO2 , Fe2O3 , WO3 , BiVO4 or Ta2O5 , carbides comprising SiC , and nitrides comprising Nb3N5 , Cu3N or Ta3N5 an oxygen evolution photocatalyst made of at least one selected material;
a bonding material made of at least one metal material selected from the group consisting of gold, silver and copper and bonding the hydrogen generating photocatalyst and the oxygen generating photocatalyst;
a coating layer formed so as to cover the surface of the hydrogen generating photocatalyst or the junction between the hydrogen generating photocatalyst and the oxygen generating photocatalyst and made of CrOx, Cr(OH)x or a mixture thereof;
characterized by having

本発明に係る光触媒複合材料は、好ましくは、
前記水素発生光触媒に担持された還元反応助触媒と、
前記酸素発生光触媒に担持された酸化反応助触媒と、
を有することを特徴とする。
The photocatalytic composite material according to the present invention is preferably
a reduction reaction co-catalyst supported on the hydrogen generating photocatalyst;
an oxidation reaction co-catalyst supported on the oxygen generating photocatalyst;
characterized by having

また、例えば、前記還元反応助触媒の前記水素発生光触媒に対する担持量は、1乃至50質量%であり、前記酸化反応助触媒の前記酸素発生光触媒に対する担持量が、0.1乃至10質量%であり、前記被覆層は、そのCr成分の量が、光触媒複合材料の全量に対して、0.6乃至10質量%である。 Further, for example, the amount of the reduction reaction cocatalyst supported on the hydrogen generating photocatalyst is 1 to 50% by mass, and the amount of the oxidation reaction cocatalyst supported on the oxygen generating photocatalyst is 0.1 to 10% by mass. The coating layer has a Cr component content of 0.6 to 10% by mass with respect to the total amount of the photocatalytic composite material.

そして、例えば、
前記還元反応助触媒及び前記酸化反応助触媒は、光電着担持法により担持されている。
and, for example,
The reduction reaction co-catalyst and the oxidation reaction co-catalyst are carried by a photoelectrodeposition carrying method.

本発明に係る光触媒複合材料の製造方法は、
Pt、Rh、若しくはIrの塩化物、塩化酸水和物又は硝酸物と、水素発生光触媒との混合水溶液に、犠牲剤として、pHが7における標準酸化還元電位が0~+0.7Vである物質を添加する工程と、
水素発生光触媒にのみ吸収され、酸素発生光触媒を透過する波長の光を照射する工程と、
Cr(VI)イオンを含む水溶液と、還元反応助触媒を水素発生光触媒に担持させた半導体複合材料の粉末を混合させた混合水溶液に、犠牲剤として、中性の水酸基を持つ化合物を添加する工程と、
水素発生光触媒及び酸素発生光触媒のいずれにも吸収される光を照射する工程と、
水溶液から分離回収した複合粉末を大気中で乾燥する工程と、
Co3+若しくはMn2+イオンを生成するCo若しくはMnの塩化物又は硝酸物の水溶液に、リン酸緩衝液、リン酸水溶液、ホウ酸緩衝液、ホウ酸水溶液、アンモニア液、及び水酸化ナトリウム水溶液からなる群から選択された1種の溶液を添加する工程と、
酸素発生光触媒に吸収される波長域の光を照射する工程と、
を有することを特徴とする。
The method for producing a photocatalytic composite material according to the present invention comprises:
A substance having a standard oxidation-reduction potential of 0 to +0.7 V at pH 7 as a sacrificial agent in a mixed aqueous solution of Pt, Rh, or Ir chloride, chloride hydrate, or nitrate and a hydrogen generating photocatalyst. a step of adding
a step of irradiating with light having a wavelength that is absorbed only by the hydrogen generating photocatalyst and that passes through the oxygen generating photocatalyst;
A step of adding a compound having a neutral hydroxyl group as a sacrificial agent to a mixed aqueous solution obtained by mixing an aqueous solution containing Cr(VI) ions and a powder of a semiconductor composite material in which a reduction reaction promoter is supported on a hydrogen generating photocatalyst. When,
a step of irradiating with light that is absorbed by both the hydrogen-producing photocatalyst and the oxygen-producing photocatalyst;
a step of drying the composite powder separated and recovered from the aqueous solution in the atmosphere;
An aqueous solution of chloride or nitrate of Co or Mn that produces Co 3+ or Mn 2+ ions, phosphate buffer, phosphoric acid aqueous solution, borate buffer, boric acid aqueous solution, ammonia solution, and sodium hydroxide aqueous solution. adding one solution selected from the group;
a step of irradiating with light in a wavelength range that is absorbed by the oxygen-generating photocatalyst;
characterized by having

本発明によれば、可視光を含み紫外光から近赤外光の1300nmまでの長波長域に至る広範な波長域で光触媒活性を有する。また、前記水素発生光触媒の表面に、前記還元反応助触媒を含めて覆うようにして、CrO、Cr(OH)又はこれらの混合物からなる被覆層を形成することにより、逆反応(水素と酸素との燃焼反応による水合成)も抑制することができる。更に、水素発生光触媒と酸素発生光触媒との接合部の周囲を前記被覆層で被覆することにより、水中への電荷の漏れを抑制できる。これにより、高い活性で水分解反応を生じさせることができる。 According to the present invention, it has photocatalytic activity in a wide range of wavelengths, including visible light, from ultraviolet light to near-infrared light up to 1300 nm. In addition, a reverse reaction (with hydrogen Water synthesis by combustion reaction with oxygen) can also be suppressed. Furthermore, by coating the periphery of the junction between the hydrogen-producing photocatalyst and the oxygen-producing photocatalyst with the above-mentioned coating layer, it is possible to suppress leakage of charges into water. Thereby, a highly active water-splitting reaction can be caused.

更に、還元反応助触媒を水素発生光触媒に選択的に担持させ、酸化反応助触媒を酸素発生光触媒に選択的に担持させることにより、複合光触媒の各構成材料に適切な助触媒を担持させたので、高効率で水素及び酸素を発生させることができる。 Furthermore, by selectively supporting the reduction reaction promoter on the hydrogen generating photocatalyst and selectively supporting the oxidation reaction promoter on the oxygen generating photocatalyst, each constituent material of the composite photocatalyst was supported with an appropriate promoter. , can generate hydrogen and oxygen with high efficiency.

本発明の実施形態に係る光触媒複合材料を示す模式図である。1 is a schematic diagram showing a photocatalyst composite material according to an embodiment of the present invention; FIG. 同じく、本発明の他の実施形態に係る光触媒複合材料を示す模式図である。Similarly, it is a schematic diagram showing a photocatalyst composite material according to another embodiment of the present invention. 助触媒を担持していない光触媒複合材料粉末(β-FeSi+TiO:助触媒なし)に対し水中において高圧水銀ランプ光を照射し、発生した水素(◎)及び酸素(×)の発生量を示すグラフ図である。A photocatalyst composite material powder (β-FeSi 2 +TiO 2 : no co-catalyst) carrying no co-catalyst was irradiated with light from a high-pressure mercury lamp in water, and the amount of hydrogen (◎) and oxygen (x) generated was measured. FIG. 10 is a graph diagram showing FIG. 還元反応助触媒として1質量%のPtを担持させた光触媒複合材料粉末(β-FeSi+TiO+Pt:被覆層なし)に対し水中において高圧水銀ランプ光を照射して、発生した水素(◎)及び酸素(×)の量を示すグラフ図である。A photocatalyst composite material powder (β-FeSi 2 +TiO 2 +Pt: no coating layer) supporting 1% by mass of Pt as a reduction reaction co-catalyst was irradiated with light from a high-pressure mercury lamp in water to generate hydrogen (◎). and oxygen (x). 1質量%のPt担持に加えて、被覆層として、2質量%のCr(OH)層を被覆した光触媒複合材料粉末(β-FeSi+TiO+Pt+Cr被覆層)対し水中において高圧水銀ランプ光を照射して、発生した水素(◎、◇)及び酸素(+、×)の量を示すグラフ図である。In addition to supporting 1% by mass of Pt, a photocatalyst composite material powder (β-FeSi 2 +TiO 2 +Pt + Cr coating layer) coated with 2% by mass of Cr(OH) X layer as a coating layer was exposed to high-pressure mercury lamp light in water. FIG. 4 is a graph showing the amounts of hydrogen (⊚, ◇) and oxygen (+, ×) generated by irradiation. 被覆層として、2質量%のCr(OH)層を被覆した光触媒複合材料(β-FeSi+TiO+Pt+Cr被覆層)に対し水中において高圧水銀ランプ光を照射して、発生した水素(◇)及び酸素(×)の発生量を示すグラフ図である。A photocatalyst composite material (β-FeSi 2 +TiO 2 +Pt+Cr coating layer) coated with a 2 mass % Cr(OH) X layer as a coating layer was irradiated with light from a high-pressure mercury lamp in water to generate hydrogen (◇). and oxygen (x) generation amounts. TiO粉末に、酸化反応助触媒として0.1質量%のCoPi又はCoBiを担持させた光触媒複合材料粉末(TiO+CoPi又はCoBi)に対し還元犠牲剤の硝酸銀(AgNO)を添加した水溶液中において高圧水銀ランプ光を照射して、発生した酸素発生量のピーク値を示すグラフ図である。Photocatalyst composite material powder (TiO 2 +CoPi or CoBi) in which 0.1% by mass of CoPi or CoBi is supported as an oxidation reaction co-catalyst on TiO 2 powder, and silver nitrate (AgNO 3 ) as a reduction sacrificial agent is added to the aqueous solution. is a graph showing the peak value of the amount of oxygen generated by irradiating light from a high-pressure mercury lamp at . 6H-SiC粉末に、酸化反応助触媒として0.1質量%のCoO、CoPi又はCoBiを担持させた光触媒複合材料粉末(6H-SiC+CoOx、CoPi又はCoBi)に対し還元犠牲剤のAgNOを添加した水溶液中において高圧水銀ランプ光を照射して、発生した酸素発生量のピーク値を示すグラフ図である。AgNO 3 as a reduction sacrificial agent is added to the photocatalyst composite material powder (6H-SiC+CoOx, CoPi or CoBi) in which 0.1% by mass of CoO x , CoPi or CoBi is supported as an oxidation reaction co-catalyst on 6H-SiC powder. FIG. 2 is a graph showing the peak value of the amount of oxygen generated by irradiating light from a high-pressure mercury lamp in an aqueous solution. β-FeSi/Au/TiO複合粉末に、1質量%Pt、2質量%CrO被覆層、及び0.1質量%CoBiを担持させた光触媒複合材料(β-FeSi+TiO+Pt+CrO被覆層+CoBi)に対し水中において高圧水銀ランプ光を照射して、発生した水素(◎)及び酸素(×)の発生量を示すグラフ図である。A photocatalyst composite material (β - FeSi 2 + TiO 2 + Pt+CrO X coating FIG. 3 is a graph showing the amounts of hydrogen (⊚) and oxygen (×) generated when a layer +CoBi) is irradiated with light from a high-pressure mercury lamp in water. β-FeSi/Au/TiO複合粉末に、1質量%Pt、2質量%CrO被覆層、及び0.1質量%CoBiを担持させた光触媒複合材料(β-FeSi+TiO+Pt+CrO被覆層+CoBi)に対し水中においてキセノンランプ光を照射して、発生した水素及び酸素の発生量と、TiOにおける水素(◇、○)及び酸素(+、×)の発生量とを比較して示すグラフ図である。A photocatalyst composite material (β - FeSi 2 + TiO 2 + Pt+CrO X coating Layer + CoBi) is irradiated with xenon lamp light in water, and the amount of hydrogen and oxygen generated is compared with the amount of hydrogen (◇, ○) and oxygen (+, ×) generated in TiO2 . It is a graph diagram. 助触媒を担持していない光触媒複合材料(β-FeSi及び6H-SiC並びにAu層)からなる半導体複合粉末に対し、水中において高圧水銀ランプ光を照射して、発生した水素(◆)及び酸素(×)の量を、照射経過時間に対して示したグラフ図である。Hydrogen (♦) and oxygen generated by irradiating a semiconductor composite powder made of a photocatalytic composite material (β-FeSi 2 and 6H-SiC and an Au layer) that does not support a promoter with high-pressure mercury lamp light in water It is a graph showing the amount of (x) with respect to irradiation elapsed time. β―FeSi水素発生光触媒3、6H-SiC酸素発生光触媒1及びAu層5からなる複合材料に、0.1質量%Coをホウ酸コバルト(CoBi)として担持させた光触媒複合材料(還元反応助触媒4は担持せず)を使用して、これに水中で高圧水銀ランプ光を照射したときの水素(◇)及び酸素(×)の発生量を示すグラフ図である。A photocatalyst composite material (reduction reaction aid) in which 0.1% by mass of Co is supported as cobalt borate (CoBi) on a composite material consisting of a β-FeSi 2 hydrogen generating photocatalyst 3, a 6H-SiC oxygen generating photocatalyst 1, and an Au layer 5. 4 is a graph showing the amounts of hydrogen (⋄) and oxygen (x) generated when a catalyst 4 is not supported and irradiated with light from a high-pressure mercury lamp in water. β―FeSi水素発生光触媒3、6H-SiC酸素発生光触媒1及びAu層5からなる複合材料に、0.1質量%Coをリン酸コバルト(CoPi)として担持させた光触媒複合材料(還元反応助触媒4は担持せず)を使用して、これに水中で高圧水銀ランプ光を照射したときの水素(◆)及び酸素(×)の発生量を示すグラフ図である。A photocatalyst composite material (reduction reaction aid) in which 0.1% by mass of Co is supported as cobalt phosphate (CoPi) on a composite material consisting of a β-FeSi 2 hydrogen generating photocatalyst 3, a 6H-SiC oxygen generating photocatalyst 1, and an Au layer 5. 4 is a graph showing the amount of hydrogen (♦) and oxygen (x) generated when a catalyst 4 is not supported and irradiated with light from a high-pressure mercury lamp in water. β-FeSi水素発生光触媒3、6H-SiC酸素発生光触媒1及びAu層5からなる複合材料に、1質量%Ptの還元反応助触媒4を担持させ、4質量%Cr(OH)の被覆層6を形成した粉末に、水中で高圧水銀ランプ光を照射したときの水素(◇)及び酸素(×)の発生量を示すグラフ図である。A composite material consisting of β-FeSi 2 hydrogen generating photocatalyst 3, 6H-SiC oxygen generating photocatalyst 1 and Au layer 5 is supported with 1 mass% Pt reduction reaction co-catalyst 4 and coated with 4 mass% Cr(OH) X. 4 is a graph showing the amounts of hydrogen (⋄) and oxygen (x) generated when the powder having the layer 6 formed thereon is irradiated with light from a high-pressure mercury lamp in water. β-FeSi水素発生光触媒3、6H-SiC酸素発生光触媒1及びAu層5からなる複合材料に、1質量%Ptの還元反応助触媒4を担持させた後、4質量%CrOxの被覆層6を形成し、酸化反応助触媒2の0.1質量%Coをホウ酸コバルト(CoBi)として担持させた複合粉末に、水中で高圧水銀ランプ光を照射したときの水素(◇)及び酸素(×)の発生量を示すグラフ図である。A composite material consisting of a β-FeSi 2 hydrogen generating photocatalyst 3, a 6H-SiC oxygen generating photocatalyst 1, and an Au layer 5 was loaded with a 1% by mass Pt reduction reaction cocatalyst 4, and then a 4% by mass CrOx coating layer 6. , and when the composite powder in which 0.1 mass% Co of the oxidation reaction promoter 2 is supported as cobalt borate (CoBi) is irradiated with light from a high-pressure mercury lamp in water, hydrogen (◇) and oxygen (× ) is a graph showing the amount of generation. β-FeSi水素発生光触媒3、6H-SiC酸素発生光触媒1及びAu層5からなる複合材料に、1質量%Ptの還元反応助触媒4を担持させた後、3質量%Cr(OH)の被覆層6を形成し、酸化反応助触媒2の0.1質量%Coをリン酸コバルト(CoPi)として担持させた複合粉末に、水中で高圧水銀ランプ光を照射したときの水素(◇)及び酸素(×)の発生量を示すグラフ図である。A composite material consisting of β-FeSi 2 hydrogen generating photocatalyst 3, 6H-SiC oxygen generating photocatalyst 1 and Au layer 5 was loaded with 1 mass% Pt reduction reaction cocatalyst 4, and then 3 mass% Cr(OH) X and 0.1 mass% Co of the oxidation reaction promoter 2 is supported as cobalt phosphate (CoPi). Hydrogen (◇) when irradiated with high-pressure mercury lamp light in water and oxygen (x) generation amounts. β-FeSi水素発生光触媒3、6H-SiC酸素発生光触媒1及びAu層5からなる複合材料に、1質量%Ptの還元反応助触媒4を担持させた後、4質量%Cr(OH)の被覆層6を形成し、酸化反応助触媒2の0.1質量%Coをホウ酸コバルト(CoBi)として担持させた複合粉末に、水中でキセノンランプ光を照射したときの水素(◆)及び酸素(×)の発生量を示すグラフ図である。A composite material consisting of β-FeSi 2 hydrogen generating photocatalyst 3, 6H-SiC oxygen generating photocatalyst 1 and Au layer 5 was loaded with 1 mass% Pt reduction reaction promoter 4, and then 4 mass% Cr(OH) X , and the composite powder in which 0.1% by mass of Co of the oxidation reaction cocatalyst 2 is supported as cobalt borate (CoBi) is irradiated with xenon lamp light in water. Hydrogen (♦) and It is a graph chart showing the amount of generated oxygen (x).

以下、本発明の実施の形態について、添付の図面を参照して具体的に説明する。図1は、本実施形態に係る光触媒複合材料の構造を示す模式図である。粒状又は粉状の例えばSiCからなる酸素発生光触媒1の表面に、多数の粒状又は粉状の例えばβ-FeSiからなる水素発生光触媒3が、例えば金からなる金属層5を介して接合されている。この酸素発生光触媒1の表面には,例えば粒子又は粉末状のCoPiからなる酸化反応助触媒2が担持されており、水素発生光触媒3の表面には、例えば粒子又は粉末状のPtからなる還元反応助触媒4が担持されている。そして、水素発生光触媒3の表面は、還元反応助触媒4を含めて、被覆層6に被覆されている。又は、図2に示すように、被覆層6は、水素発生光触媒3と酸素発生光触媒1との接合部の周囲に被覆されている。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing the structure of the photocatalyst composite material according to this embodiment. A large number of granular or powdery hydrogen generating photocatalysts 3 made of, for example, β-FeSi 2 are joined to the surface of a granular or powdery oxygen generating photocatalyst 1 made of, for example, SiC via a metal layer 5 made of, for example, gold. there is On the surface of this oxygen generating photocatalyst 1, an oxidation reaction co-catalyst 2 made of, for example, CoPi particles or powder is supported, and on the surface of the hydrogen generating photocatalyst 3, for example, a reduction reaction made of Pt in particles or powder. A co-catalyst 4 is supported. The surface of the hydrogen generating photocatalyst 3 , including the reduction reaction promoter 4 , is covered with a coating layer 6 . Alternatively, as shown in FIG. 2 , the coating layer 6 is coated around the junction between the hydrogen-producing photocatalyst 3 and the oxygen-producing photocatalyst 1 .

水素発生光触媒3は、β-FeSi及びFeGeからなる群から選択された少なくとも1種の半導体材料である。これらの半導体の伝導子帯の標準電極電位が水からの水素発生電位(0 V vs SHE)より卑な電位側に位置し、光照射で励起されたキャリアの電子によって水素イオン還元反応で水素が発生する。また、酸素発生光触媒1は、TiO、Fe、WO、BiVO又はTaを含む酸化物、SiCを含む炭化物、及びNb、CuN又はTaを含む窒化物からなる群から選択された少なくとも1種の材料である。これらの半導体の価電子帯の標準電極電位が水からの酸素発生電位(+1.23 V vs SHE)より貴な電位側に位置し、光照射で励起されたキャリアの正孔によって水の酸化反応で酸素が発生する。 The hydrogen generating photocatalyst 3 is at least one semiconductor material selected from the group consisting of β-FeSi 2 and FeGe 2 . The standard electrode potential of the conduction band of these semiconductors is located on the more negative potential side than the potential for hydrogen evolution from water (0 V vs SHE), and the electrons of the carriers excited by light irradiation cause hydrogen to be reduced by the hydrogen ion reduction reaction. Occur. Further, the oxygen generating photocatalyst 1 includes oxides containing TiO 2 , Fe 2 O 3 , WO 3 , BiVO 4 or Ta 2 O 5 , carbides containing SiC, and Nb 3 N 5 , Cu 3 N or Ta 3 N 5 at least one material selected from the group consisting of nitrides containing The standard electrode potential of the valence band of these semiconductors is located on the nobler potential side than the oxygen evolution potential from water (+1.23 V vs SHE), and the oxidation reaction of water occurs due to the carrier holes excited by light irradiation. Oxygen is generated.

水素発生光触媒3と酸素発生光触媒1との接合には、Au層、Ag層又はCu層等の金属層5が使用される。これらの金属は、β-FeSi又はFeGeを酸素発生光触媒1の表面に、例えば、スパッタ法、蒸着法、又はCVD法等で合成する際に、Si又はGeとの共晶反応(Cuでは共析反応)によって、分散した粒子状β-FeSi又はFeGeとなって合成することが可能になる。この金属層5がない場合は、連続的な膜状に被覆された状態で、β-FeSi又はFeGeが合成される。なお、これらの金属は酸素発生光触媒1と水素発生光触媒3との接合界面に挿入される。 A metal layer 5 such as an Au layer, Ag layer or Cu layer is used for bonding the hydrogen generating photocatalyst 3 and the oxygen generating photocatalyst 1 . These metals undergo a eutectic reaction with Si or Ge ( in the case of Cu eutectoid reaction) allows synthesis into dispersed particulate β-FeSi 2 or FeGe 2 . Without this metal layer 5, β-FeSi 2 or FeGe 2 is synthesized in a continuous film-like coating. In addition, these metals are inserted into the joint interface between the oxygen generating photocatalyst 1 and the hydrogen generating photocatalyst 3 .

そして、還元反応助触媒4としては、Pt、Rh,Pd、IrO、RuO、又はNiO等を使用することができる。これらの物質は相互に代替性がある。この還元反応助触媒4の水素発生光触媒3に対する担持量は、例えば、1乃至50質量%である。一方、酸化反応助触媒2としては、リン酸コバルト(通称CoPi)、ホウ酸コバルト(通称CoBi)、Co(OH)、又はMnO等を使用することができる。この酸化反応助触媒4の酸素発生光触媒3に対する担持量は、例えば、0.1乃至10質量%である。これらの物質も相互に代替性がある。 As the reduction reaction promoter 4 , Pt, Rh, Pd, IrO2, RuO2 , NiO, or the like can be used. These substances are mutually substitutable. The amount of the reduction reaction cocatalyst 4 supported on the hydrogen generating photocatalyst 3 is, for example, 1 to 50% by mass. On the other hand, as the oxidation reaction promoter 2, cobalt phosphate (commonly known as CoPi), cobalt borate (commonly known as CoBi), Co(OH) x , MnO x or the like can be used. The amount of the oxidation reaction promoter 4 supported on the oxygen generating photocatalyst 3 is, for example, 0.1 to 10% by mass. These substances are also substitutable for each other.

被覆層6の材質は、例えば、CrO若しくはCr(OH)又はその混合物である。この被覆層は、そのCr成分の量が、光触媒複合材料の全量に対して0.6乃至10質量%であることが好ましい。また、金属層5は、金、銀又は銅からなる。 The material of the coating layer 6 is, for example, CrO x or Cr(OH) x or a mixture thereof. The coating layer preferably has a Cr component content of 0.6 to 10% by mass with respect to the total amount of the photocatalytic composite material. Also, the metal layer 5 is made of gold, silver or copper.

次に、上述の構造を有する光触媒複合材料の製造方法について説明する。先ず、第1工程においては、粒状又は粉状の多数の酸素発生光触媒1の表面に、金属層5を介して、粒状又は粉状の多数の水素発生光触媒3を接合する。例えば、粒状又は粉状の酸素発生光触媒1の表面に、蒸着法又はアークプラズマ堆積法等により、金、銀又は銅からなる金属材料の粒子(金属層5)を付着させる。その後、蒸着法、スパッタ法、又は化学気相成長法等の既存の半導体合成方法にて、β-FeSi等の半導体材料からなる水素発生光触媒3の粒子を、金属層5上に、Si又はGeとの共晶温度(Cuは共析温度)以上の合成温度で堆積させる。このようにして、酸素発生光触媒1及び水素発生光触媒3が、金属層5で接合された複合光触媒を得る。 Next, a method for producing the photocatalyst composite material having the structure described above will be described. First, in the first step, a large number of granular or powdery hydrogen generating photocatalysts 3 are bonded to the surface of a large number of granular or powdery oxygen generating photocatalysts 1 via a metal layer 5 . For example, particles of a metal material (metal layer 5) made of gold, silver or copper are attached to the surface of the granular or powdery oxygen generating photocatalyst 1 by vapor deposition, arc plasma deposition, or the like. After that, particles of the hydrogen generating photocatalyst 3 made of a semiconductor material such as β-FeSi 2 are deposited on the metal layer 5 by an existing semiconductor synthesis method such as a vapor deposition method, a sputtering method, or a chemical vapor deposition method. It is deposited at a synthesis temperature higher than the eutectic temperature with Ge (the eutectoid temperature for Cu). Thus, a composite photocatalyst in which the oxygen-producing photocatalyst 1 and the hydrogen-producing photocatalyst 3 are bonded with the metal layer 5 is obtained.

次に、第2工程においては、水素発生光触媒3の上に、粒子状又は粉末状の還元反応助触媒4を、光電着担持法により、選択的に担持させる。還元反応助触媒4の出発材料であるPt,Rh若しくはIrの塩化物、塩素酸水和物又は硝酸塩と、前記第1工程で得た複合光触媒との混合水溶液に、犠牲剤として、pH7における標準酸化還元電位が0~+0.7Vである物質(例えば、ホルムアルデヒド(HCHO))を添加する。次に、水素発生光触媒3にのみ吸収され、酸素発生光触媒1を透過する波長の光を水溶液中の物質に照射する。水素発生光触媒3であるβ-FeSi及びFeGeにのみ吸収される光としては、波長が450~1500nmの光がある。この波長域の光の照度は、例えば、100W/mである。これにより、水素発生光触媒3のみが光エネルギを吸収して、その表面にのみ、還元反応助触媒4が付着し、還元反応助触媒4が水素発生光触媒3にのみ選択的に担持される。 Next, in the second step, a particulate or powdered reduction reaction cocatalyst 4 is selectively supported on the hydrogen generating photocatalyst 3 by a photoelectrodeposition supporting method. As a sacrificial agent, standard A substance with a redox potential of 0 to +0.7 V (eg formaldehyde (HCHO)) is added. Next, the substance in the aqueous solution is irradiated with light having a wavelength that is absorbed only by the hydrogen-producing photocatalyst 3 and that passes through the oxygen-producing photocatalyst 1 . Light absorbed only by β-FeSi 2 and FeGe 2 as the hydrogen generating photocatalyst 3 includes light with a wavelength of 450 to 1500 nm. The illuminance of light in this wavelength range is, for example, 100 W/m 2 . As a result, only the hydrogen-producing photocatalyst 3 absorbs light energy, the reduction reaction promoter 4 adheres only to its surface, and the reduction reaction promoter 4 is selectively supported only on the hydrogen-producing photocatalyst 3 .

次に,第3工程においては、水素発生光触媒3の表面を、還元反応助触媒4と共に、被覆層6で被覆する。先ず、Cr(VI)イオンを含む水溶液(無水クロム酸、クロム酸カリウム、又はクロム酸ナトリウム等)と、第2工程で得た複合材料(還元反応助触媒4が担持された水素発生光触媒3と、酸素発生光触媒1とが金属層5により接合された複合材の粉末)の水溶液との混合水溶液に、犠牲剤として、中性の水酸基を持つ化合物(メタノール、エタノール、又はプロパノール等)を添加する。この犠牲剤は、反応促進のために添加される。そして、この混合水溶液に、水素発生光触媒3及び酸素発生光触媒1の双方に、吸収される光を照射する。このような光としては、例えば、全波長である擬似太陽光のキセノン光またはハロゲン光がある。このときの照度は、例えば、2kW/mである。その後、水溶液から光触媒複合材料の粉末を分離回収し,大気中で乾燥する。これにより、水素発生光触媒3の表面を、還元反応助触媒4を含めて覆う被覆層6が形成される。 Next, in the third step, the surface of the hydrogen generating photocatalyst 3 is covered with the coating layer 6 together with the reduction reaction promoter 4 . First, an aqueous solution containing Cr(VI) ions (chromic anhydride, potassium chromate, sodium chromate, etc.) and the composite material obtained in the second step (hydrogen generation photocatalyst 3 supporting reduction reaction cocatalyst 4) , a composite material powder in which the oxygen-generating photocatalyst 1 is bonded by a metal layer 5) is mixed with an aqueous solution, and a compound having a neutral hydroxyl group (methanol, ethanol, propanol, etc.) is added as a sacrificial agent. . This sacrificial agent is added to promote the reaction. Then, this mixed aqueous solution is irradiated with light that is absorbed by both the hydrogen-producing photocatalyst 3 and the oxygen-producing photocatalyst 1 . Such light includes, for example, xenon light or halogen light of pseudo-sunlight with all wavelengths. The illuminance at this time is, for example, 2 kW/m 2 . After that, the powder of the photocatalyst composite material is separated and collected from the aqueous solution and dried in the atmosphere. As a result, a coating layer 6 covering the surface of the hydrogen generating photocatalyst 3 including the reduction reaction promoter 4 is formed.

この場合に、中性の水酸基を持つ化合物(犠牲剤)を添加しない場合には、被覆層6は還元反応助触媒4を含めて、水素発生光触媒3の表面のみに形成される。例えば、還元反応助触媒4のPtを中心として、水素発生光触媒3であるβ-FeSi粒子のみにCr(OH)xが被着し、Crの担持量はCr(VI)イオン原料の添加量に拘わらず、0.3~0.4質量%の範囲で一定である。即ち、Cr層は、β-FeSi粒子の表面に被覆されるが、それ以上は堆積せず、層厚も変わらない。しかし、この場合、β-FeSi粒子と酸素発生光触媒1であるTiO粒子との接合部分、即ち、金属層5のAu層の部分は、被覆層6で覆われていないので、この部分で、電荷(光励起キャリアの電子と正孔)がリークしてしまう。そうすると、この光励起の電子及び正孔と反応して生成すべき水素及び酸素の発生速度が低くなる。 In this case, if no compound (sacrificial agent) having a neutral hydroxyl group is added, the coating layer 6 is formed only on the surface of the hydrogen generating photocatalyst 3 including the reduction reaction promoter 4 . For example, Cr(OH)x adheres only to the β-FeSi 2 particles that are the hydrogen generation photocatalyst 3, centering on Pt of the reduction reaction cocatalyst 4, and the amount of Cr supported is the amount of Cr(VI) ion raw material added. Regardless, it is constant in the range of 0.3 to 0.4% by mass. That is, the Cr layer is coated on the surface of the β-FeSi 2 grains, but no more is deposited and the layer thickness does not change. However, in this case, the joint portion between the β-FeSi 2 particles and the TiO 2 particles as the oxygen generating photocatalyst 1, that is, the Au layer portion of the metal layer 5 is not covered with the coating layer 6, so this portion , the charge (electrons and holes of photoexcited carriers) leaks. Then, the generation rate of hydrogen and oxygen to be generated by reaction with the photoexcited electrons and holes is reduced.

一方、被覆層6の形成時に、犠牲剤としてのメタノールを添加した場合は、水素発生光触媒3としてのβ-FeSi粒子と、酸素発生光触媒1としてのTiO粒子との接合部分であるAu層5にも、Cr(OH)x層が被着し、Cr被覆層6の担持量が増大する。即ち、金属層5も被覆層6で覆われる結果、β-FeSi粒子とTiO粒子との接合部分で、電荷の流出が抑制される。この結果、光励起された電子と正孔が、水の還元反応及び酸化反応に高効率で利用されるため、水素及び酸素の発生速度が高まる。 On the other hand, when methanol is added as a sacrificial agent at the time of forming the coating layer 6, the Au layer which is the junction portion between the β-FeSi 2 particles as the hydrogen generating photocatalyst 3 and the TiO 2 particles as the oxygen generating photocatalyst 1 A Cr(OH)x layer is deposited on 5 as well, increasing the loading of the Cr coating layer 6 . That is, as a result of covering the metal layer 5 with the coating layer 6, outflow of electric charges is suppressed at the joints between the β-FeSi 2 particles and the TiO 2 particles. As a result, the photoexcited electrons and holes are efficiently utilized in the reduction and oxidation reactions of water, thereby increasing the generation rate of hydrogen and oxygen.

更に詳述すると、Cr(VI)イオンを含む水溶液(無水クロム酸、クロム酸カリウム、又はクロム酸ナトリウム等)中に、酸素発生光触媒1に水素発生光触媒3が接合され還元反応助触媒4が水素発生光触媒3に担持された複合材料を装入し、この複合材料に、水素発生光触媒3及び酸素発生光触媒1の双方に吸収される光(全波長光)を照射すると、水素発生光触媒3で発生した電子が、水素発生光触媒3の表面で、水溶液中のCr6+イオンをCr3+イオンに還元し、この還元反応によりCr(OH)xが生成する。そして、このCr(OH)xがβ-FeSi等の水素発生光触媒3の表面に堆積する。このとき、水溶液中にメタノール等の犠牲剤を添加すると、前述の如く、水素発生光触媒3としてのβ-FeSi粒子と、酸素発生光触媒1としてのTiO粒子との接合部分であるAu金属層5の周囲にも、Cr(OH)x層が被着し、Cr被覆層6の担持量が増大すると共に、接合部の金属層5からの電荷の流出が防止されて、光励起された電荷が水の還元反応及び酸化反応に有効に利用される。このような被覆層6の形成過程において、酸素発生光触媒1で発生した電子と正孔のうち、酸素発生光触媒1の表面には、正孔が蓄積するので、メタノールの酸化反応(CHOH→CHO+H)が促進される。更に、酸素発生光触媒1の表面のうちAu金属層5の周囲でもCr6+の還元反応(Cr6+→Cr3+)が起こり、Cr被覆層6が堆積する。 More specifically, in an aqueous solution (chromic anhydride, potassium chromate, sodium chromate, etc.) containing Cr(VI) ions, the hydrogen generation photocatalyst 3 is joined to the oxygen generation photocatalyst 1, and the reduction reaction promoter 4 is hydrogen. When the composite material supported by the generating photocatalyst 3 is charged and this composite material is irradiated with light (full-wavelength light) that is absorbed by both the hydrogen generating photocatalyst 3 and the oxygen generating photocatalyst 1, the hydrogen generating photocatalyst 3 generates The generated electrons reduce Cr 6+ ions in the aqueous solution to Cr 3+ ions on the surface of the hydrogen generating photocatalyst 3, and this reduction reaction produces Cr(OH)x. Then, this Cr(OH)x deposits on the surface of the hydrogen generating photocatalyst 3 such as β-FeSi 2 . At this time, when a sacrificial agent such as methanol is added to the aqueous solution, as described above, the Au metal layer, which is the joint portion between the β-FeSi 2 particles as the hydrogen generating photocatalyst 3 and the TiO 2 particles as the oxygen generating photocatalyst 1, is formed. A Cr(OH)x layer is also deposited around 5 to increase the carrying amount of the Cr coating layer 6 and prevent the outflow of charges from the metal layer 5 at the junction, so that the photoexcited charges are removed. It is effectively used for reduction and oxidation reactions of water. In the process of forming the coating layer 6, among the electrons and holes generated in the oxygen generating photocatalyst 1, holes accumulate on the surface of the oxygen generating photocatalyst 1, so that the oxidation reaction of methanol (CH 3 OH→ CH 3 O+H + ) is promoted. Furthermore, a reduction reaction of Cr 6+ (Cr 6+ →Cr 3+ ) also occurs around the Au metal layer 5 on the surface of the oxygen generating photocatalyst 1 , and a Cr coating layer 6 is deposited.

次に、第4工程においては、酸素発生光触媒1の表面に、粒子状又は粉末状の酸化反応助触媒2を、光電着法により、選択的に担持させる。先ず、Co3+若しくはMn2+イオンを生成するCo若しくはMnの塩化物又は硝酸塩の水溶液に、リン酸緩衝液、リン酸水溶液、ホウ酸緩衝液、ホウ酸水溶液、アンモニア液、及び水酸化ナトリウム水溶液のいずれか1種を添加する。そして、酸素発生光触媒1に吸収される波長域の光を混合水溶液に照射する。このような波長域の光としては、キセノン光又はハロゲン光等の擬似太陽光がある。このとき、リン酸水溶液及びホウ酸水溶液が水中で電離して生成したPO 3-等の陰イオンが、酸化物、窒化物、酸窒化物又はSiCといった酸素発生光触媒1の粒子の表面で、正孔と反応して結合するときに、Coイオン等を酸素発生光触媒1の表面に付着させる。β-FeSi等の水素発生光触媒3でも同様に正孔が生成するが、酸素発生触媒と接合している場合には、この正孔は酸素発生触媒で発生した電子と再結合して消滅するので、水素発生光触媒3にはCo等の酸化反応助触媒2は付着しない。これにより、SiC又はTiO等の酸素発生光触媒1の表面に、CoPi,CoBi,Co(OH)又はMnO等の粉末状又は粒子状の酸化反応助触媒2が担持される。これにより,図1に示す構造の光触媒複合材料が得られる。なお、上述の第2工程及び第3工程と、第4工程とは、その順序を入れ替えてもよい。 Next, in the fourth step, a particulate or powdery oxidation reaction co-catalyst 2 is selectively supported on the surface of the oxygen generating photocatalyst 1 by a photoelectrodeposition method. First, an aqueous solution of a Co or Mn chloride or nitrate that produces Co 3+ or Mn 2+ ions is added with a phosphate buffer, an aqueous phosphate solution, a borate buffer, an aqueous boric acid solution, an ammonia solution, and an aqueous sodium hydroxide solution. Add one of them. Then, the mixed aqueous solution is irradiated with light in a wavelength range that is absorbed by the oxygen-generating photocatalyst 1 . Light in such a wavelength range includes pseudo-sunlight such as xenon light or halogen light. At this time, the anions such as PO 4 3- generated by the ionization of the phosphoric acid aqueous solution and the boric acid aqueous solution in water are generated on the surface of the oxygen generating photocatalyst 1 particles such as oxides, nitrides, oxynitrides or SiC, Co ions or the like adhere to the surface of the oxygen generating photocatalyst 1 when reacting with and bonding to holes. Holes are also generated in the hydrogen generating photocatalyst 3 such as β-FeSi 2 , but when bonded to the oxygen generating catalyst, these holes recombine with electrons generated by the oxygen generating catalyst and disappear. Therefore, the oxidation reaction promoter 2 such as Co does not adhere to the hydrogen generating photocatalyst 3 . As a result, a powdery or particulate oxidation reaction co-catalyst 2 such as CoPi, CoBi , Co(OH) x or MnOx is supported on the surface of the oxygen generating photocatalyst 1 such as SiC or TiO2 . As a result, a photocatalyst composite material having the structure shown in FIG. 1 is obtained. The order of the above-described second and third steps and the fourth step may be changed.

次に、上述のごとく構成された光触媒複合材料の動作について説明する。図1に示すように、本実施形態の光触媒複合材料を水中におき、紫外光域から赤外光域までの波長域の光をこの光触媒複合材料に照射する。そうすると、β-FeSi等の水素発生光触媒3に電子が励起し、SiC等の酸素発生光触媒1に正孔が生成する。そして、β-FeSi等の水素発生光触媒3において、Pt等の還元反応助触媒4の作用により還元反応が促進され、水中のHイオンが電子を受けてHに還元される。また、SiC等の酸素発生光触媒1において、CoPi等の酸化反応助触媒2の作用により酸化反応が促進され、水分子が正孔を受けてOに酸化される。このように、水素発生に適切な物質である水素発生光触媒3に対し、還元反応助触媒4を使用して水素発生の還元反応を促進し、酸素発生に適切な物質である酸素発生光触媒1に対し、酸化反応助触媒2を使用して酸素発生の酸化反応を促進するから、本発明により、紫外光から赤外光までの広い波長域の光に反応して、極めて高効率で、水を水素と酸素に分解することができる。 Next, the operation of the photocatalyst composite material constructed as described above will be described. As shown in FIG. 1, the photocatalyst composite material of this embodiment is placed in water and irradiated with light in a wavelength range from ultraviolet light to infrared light. Then, electrons are excited in the hydrogen generating photocatalyst 3 such as β-FeSi 2 and holes are generated in the oxygen generating photocatalyst 1 such as SiC. Then, in the hydrogen generating photocatalyst 3 such as β-FeSi 2 , the reduction reaction is promoted by the action of the reduction reaction promoter 4 such as Pt, and the H 2 + ions in water receive electrons and are reduced to H 2 . In addition, in the oxygen generating photocatalyst 1 such as SiC, the oxidation reaction is promoted by the action of the oxidation reaction co-catalyst 2 such as CoPi, and water molecules receive holes and are oxidized to O 2 . In this way, the reduction reaction cocatalyst 4 is used for the hydrogen generating photocatalyst 3, which is a substance suitable for hydrogen generation, to promote the reduction reaction of hydrogen generation, and the oxygen generating photocatalyst 1, which is a substance suitable for oxygen generation, is produced. On the other hand, since the oxidation reaction cocatalyst 2 is used to promote the oxidation reaction of oxygen generation, the present invention reacts to light in a wide wavelength range from ultraviolet light to infrared light, and converts water with extremely high efficiency. It can be decomposed into hydrogen and oxygen.

また、本発明においては、CrO層又はCr(OH)層により、水素発生光触媒3を被覆するから、上述の水の分解反応の逆反応である水素と酸素の燃焼反応による水合成反応を阻止することができる。これにより、本発明においては、触媒の高い活性を得て、水の分解反応を高効率でかつ迅速に進行させることができる。 In addition, in the present invention, since the hydrogen generating photocatalyst 3 is coated with a CrO x layer or a Cr(OH) x layer, the water synthesis reaction by the combustion reaction of hydrogen and oxygen, which is the reverse reaction of the above-described water decomposition reaction, can be performed. can be prevented. Thereby, in the present invention, high activity of the catalyst can be obtained, and the water decomposition reaction can proceed highly efficiently and rapidly.

次に、本発明の実施例及び実施例から一部の構成物が欠如した比較例の光触媒の水素及び酸素の発生量について説明する。 Next, the amounts of hydrogen and oxygen generated by the photocatalysts of the examples of the present invention and the photocatalysts of the comparative examples lacking some constituents from the examples will be described.

「比較例:図3の光触媒複合材料:水素発生光触媒3+酸素発生光触媒1」
図3は、助触媒を担持していない光触媒複合材料(β-FeSi水素発生光触媒3及びTiO酸素発生光触媒1をAu接合剤(金属層5)により接合)を使用し、この光触媒複合材料に対し水中において高圧水銀ランプ光(波長:350~500nm)を照射して、発生した水素及び酸素の量を、照射経過時間に対して示したグラフ図である。この図3に示すように、水素発生量は照射経過時間と共に若干上昇するが、酸素の発生は認められない。なお、この図3に示す光触媒複合材料は、助触媒2,4を担持しておらず、被覆層6も形成していない。
"Comparative example: Photocatalyst composite material in FIG. 3: hydrogen generating photocatalyst 3 + oxygen generating photocatalyst 1"
FIG. 3 shows a photocatalyst composite material (β-FeSi 2 hydrogen generation photocatalyst 3 and TiO 2 oxygen generation photocatalyst 1 bonded with an Au bonding agent (metal layer 5)) that does not support a promoter, and this photocatalyst composite material is a graph showing the amount of hydrogen and oxygen generated by irradiating high-pressure mercury lamp light (wavelength: 350 to 500 nm) in water against the elapsed irradiation time. As shown in FIG. 3, the amount of hydrogen generated slightly increases with the elapsed irradiation time, but the generation of oxygen is not observed. The photocatalyst composite material shown in FIG. 3 does not support the co-catalysts 2 and 4 and does not form the coating layer 6 either.

「比較例:図4の光触媒複合材料:水素発生光触媒3+酸素発生光触媒1+還元反応助触媒4」
図4は、β-FeSi水素発生光触媒3にPt還元反応助触媒4を担持させた光触媒複合材料(酸素発生光触媒1はTiO、接合材(金属層5)はAu、酸化反応助触媒2は担持せず)を使用して、これに水中で高圧水銀ランプ光を照射したときの水素及び酸素の発生量を示すグラフ図である。この図4に示すように、水素発生量は、紫外光の照射により、高速度で上昇していく。酸素発生量は、光照射により、徐々にではあるが、経過時間と共に上昇している。このように、Pt還元反応助触媒4を水素発生光触媒3に担持させるだけで、水素の発生量は、Ptを担持させない場合に比して約10倍程度に増加している。
"Comparative example: photocatalyst composite material in FIG. 4: hydrogen generating photocatalyst 3 + oxygen generating photocatalyst 1 + reduction reaction co-catalyst 4"
FIG. 4 shows a photocatalyst composite material in which a Pt reduction reaction promoter 4 is supported on a β-FeSi 2 hydrogen generation photocatalyst 3 (the oxygen generation photocatalyst 1 is TiO 2 , the bonding material (metal layer 5) is Au, the oxidation reaction promoter 2 is not supported), and is a graph showing the amount of hydrogen and oxygen generated when this is irradiated with light from a high-pressure mercury lamp in water. As shown in FIG. 4, the amount of hydrogen generated increases at a high speed due to irradiation with ultraviolet light. The amount of oxygen generated increases with the passage of time due to light irradiation, albeit gradually. As described above, only by supporting the Pt reduction reaction cocatalyst 4 on the hydrogen generating photocatalyst 3, the amount of hydrogen generated is increased by about ten times as compared with the case where Pt is not supported.

「実施例:図5の光触媒複合材料:水素発生光触媒3+酸素発生光触媒1+還元反応助触媒4+被覆層6」
図5は、本発明の実施形態に係る光触媒複合材料の水素発生量及び酸素発生量を示し、これらの水素発生量及び酸素発生量に対する被覆層6の効果を示す図である。この図は、被覆層6としてCr(OH)層を形成したときに、その光照射時に、犠牲剤として、メタノールを使用した場合の効果を示す。この図5の光触媒複合材料は、β-FeSi水素発生光触媒3にPt還元反応助触媒4を担持させ、酸素発生光触媒1としてTiOを使用し、これをAu層(金属層5)によりβ-FeSi水素発生光触媒3に接合したものである。なお、酸化反応助触媒2は担持していない。図中、◎及び◇のプロットは水素の発生量を示し、+及び×のプロットは酸素の発生量を示す。そして、◎及び+は、犠牲剤としてメタノールを使用しなかった場合、◇及び×は、犠牲剤としてメタノールを使用した場合の測定値である。この水素発生量及び酸素発生量は、水中で、光触媒複合材料に紫外光を500μW/cmの照度で照射した場合に得られたものである。被覆層6のCr量を蛍光X線分析した結果、メタノールを使用しなかった場合に形成された被覆層6は、Cr量が0.3~0.4質量%であり、メタノールを使用した場合に形成された被覆層6は、Cr量が1乃至5質量%であった。このように、メタノール添加により、被覆層6は十分に厚く形成されたことがわかる。また、紫外光照射期間の途中(22時間経過後)に、大気中で1時間焼鈍処理を行った。その結果、図5に示すように、焼鈍処理を実施するまでは、水素発生量及び酸素発生量に対するメタノール添加の影響は小さい。しかし、焼鈍処理した後は、メタノールを添加してCr(OH)層を形成した場合は、水素発生量(◇)及び酸素発生量(×)のいずれも、紫外光照射時間と共に、著しく増加している。これに対し、メタノールを添加しなかった場合は、水素発生量(◎)及び酸素発生量(+)のいずれも低い値であった。この相違は、Cr(OH)被覆層の形成時に、メタノールの添加により十分な厚さのCr(OH)層が形成されたことによるものである。また、このメタノールの添加効果は、焼鈍処理により大きく発現することが分かる。この焼鈍処理の条件は、光触媒複合材料の構成材料(水素発生光触媒3又は被覆層6等)により、適宜決めることができる。
"Example: Photocatalytic composite material in Fig. 5: hydrogen generating photocatalyst 3 + oxygen generating photocatalyst 1 + reduction reaction promoter 4 + coating layer 6"
FIG. 5 is a diagram showing the hydrogen generation amount and oxygen generation amount of the photocatalytic composite material according to the embodiment of the present invention, and showing the effect of the coating layer 6 on these hydrogen generation amounts and oxygen generation amounts. This figure shows the effect of using methanol as a sacrificial agent when a Cr(OH) X layer is formed as the coating layer 6 and irradiated with light. The photocatalyst composite material of FIG. 5 has a Pt reduction reaction cocatalyst 4 supported on a β-FeSi 2 hydrogen generating photocatalyst 3, uses TiO 2 as the oxygen generating photocatalyst 1, and uses this with an Au layer (metal layer 5) to form a β - FeSi 2 is bonded to the hydrogen generating photocatalyst 3 . Note that the oxidation reaction co-catalyst 2 is not supported. In the figure, the plots of ◎ and ◇ indicate the amount of hydrogen generated, and the plots of + and x indicate the amount of oxygen generated. ◎ and + are measured values when methanol is not used as a sacrificial agent, and ◇ and × are measured values when methanol is used as a sacrificial agent. The amount of hydrogen generated and the amount of oxygen generated were obtained when the photocatalyst composite material was irradiated with ultraviolet light at an illuminance of 500 μW/cm 2 in water. As a result of fluorescent X-ray analysis of the Cr content of the coating layer 6, the coating layer 6 formed without using methanol has a Cr content of 0.3 to 0.4% by mass, and when methanol is used The coating layer 6 formed in 1 had a Cr content of 1 to 5% by mass. Thus, it can be seen that the addition of methanol formed the coating layer 6 sufficiently thick. Further, in the middle of the ultraviolet light irradiation period (after 22 hours have passed), an annealing treatment was performed in the air for 1 hour. As a result, as shown in FIG. 5, the influence of the addition of methanol on the amount of hydrogen generated and the amount of oxygen generated is small until the annealing treatment is performed. However, after the annealing treatment, when methanol was added to form a Cr(OH) X layer, both the amount of hydrogen generation (⋄) and the amount of oxygen generation (×) increased significantly with UV light irradiation time. is doing. In contrast, when methanol was not added, both the amount of hydrogen generated (⊚) and the amount of oxygen generated (+) were low. This difference is due to the addition of methanol during the formation of the Cr(OH) X coating layer to form a sufficiently thick Cr(OH) X layer. Moreover, it turns out that the addition effect of this methanol expresses largely by annealing treatment. The conditions for this annealing treatment can be appropriately determined according to the constituent materials of the photocatalyst composite material (hydrogen generating photocatalyst 3, coating layer 6, etc.).

「実施例:図6の光触媒複合材料:水素発生光触媒3+酸素発生光触媒1+還元反応助触媒4+被覆層6」
図6はメタノールを添加した状態でCr(OH)被覆層を形成した場合において、紫外線の照射の途中で換気を行い、雰囲気をリセットしたときの水素及び酸素の発生量を示すグラフ図である。この図6の光触媒複合材料は、β-FeSi水素発生光触媒3にPt還元反応助触媒4を担持させ、TiO酸素発生光触媒1をβ-FeSi水素発生光触媒3にAu層5により接合したものであり、このβ-FeSi水素発生光触媒3の表面及びβ-FeSi水素発生光触媒3と酸素発生光触媒1との接合部周囲にCr(OH)被覆層6を形成したものである。図中、プロット□は水素発生量、プロット×は酸素発生量を示す。紫外光照射後、22時間経過した時点で、1時間大気中で焼鈍した。よって、紫外光照射後22時間までは、水素発生量及び酸素発生量は図5と同様である。また、焼鈍処理後の水素発生量及び酸素発生量の増加態様も、図5と同様である。図6においては、紫外光照射後、44時間経過した時点で、換気を行い、水分解反応をリセットした。その後、水素発生量及び酸素発生量は、焼鈍直後と同様に高速度で増加した。また、紫外線照射後、70時間経過した時点で、再度換気を行ったが、その後、同様に、水素発生量及び酸素発生量は迅速に上昇した。特に、紫外線照射後44時間経過した後は、換気後の水素及び酸素の発生量の増加態様は、モル比で水素:酸素=2:1であり、水の分解により水素及び酸素が化学量論的比率で発生していることが分かる。このようにして、水素発生の機能を有するβ-FeSi等の水素発生光触媒3に、還元反応助触媒4を担持させ、更に、水素発生光触媒3の表面にCr(OH)被覆層6を被覆したので、水素と酸素との燃焼反応による水合成に起因する逆反応が抑制され、高い活性で水分解反応が生じる。
"Example: Photocatalytic composite material in Fig. 6: hydrogen generating photocatalyst 3 + oxygen generating photocatalyst 1 + reduction reaction promoter 4 + coating layer 6"
FIG. 6 is a graph showing the amount of hydrogen and oxygen generated when the atmosphere is reset by ventilating during the irradiation of ultraviolet rays in the case where the Cr(OH) X coating layer is formed with methanol added. . In the photocatalytic composite material of FIG. 6, the β-FeSi 2 hydrogen generating photocatalyst 3 supports the Pt reduction reaction cocatalyst 4, and the TiO 2 oxygen generating photocatalyst 1 is bonded to the β-FeSi 2 hydrogen generating photocatalyst 3 by the Au layer 5. A Cr(OH) X coating layer 6 is formed on the surface of this β-FeSi 2 hydrogen generating photocatalyst 3 and around the junction between the β-FeSi 2 hydrogen generating photocatalyst 3 and oxygen generating photocatalyst 1 . In the figure, the plot □ indicates the amount of hydrogen generated, and the plot x indicates the amount of oxygen generated. After 22 hours from irradiation with ultraviolet light, annealing was performed in air for 1 hour. Therefore, the amount of hydrogen generated and the amount of oxygen generated are the same as in FIG. 5 until 22 hours after irradiation with ultraviolet light. In addition, the mode of increase in the amount of hydrogen generated and the amount of oxygen generated after the annealing treatment is also the same as in FIG. In FIG. 6, after 44 hours from the irradiation of ultraviolet light, ventilation was performed to reset the water-splitting reaction. After that, the amount of hydrogen generated and the amount of oxygen generated increased at a high rate like immediately after annealing. In addition, when 70 hours had passed after the irradiation with ultraviolet rays, ventilation was performed again, but after that, similarly, the amount of hydrogen generated and the amount of oxygen generated rapidly increased. In particular, after 44 hours have passed since ultraviolet irradiation, the increase in the amount of hydrogen and oxygen generated after ventilation is hydrogen:oxygen = 2:1 in molar ratio, and hydrogen and oxygen are stoichiometric due to the decomposition of water. It can be seen that it occurs at a reasonable rate. In this way, the hydrogen generating photocatalyst 3 such as β-FeSi 2 having the function of generating hydrogen is supported with the reduction reaction promoter 4, and the surface of the hydrogen generating photocatalyst 3 is coated with a Cr(OH) 2 X coating layer 6. The coating suppresses the reverse reaction caused by the combustion reaction of hydrogen and oxygen resulting in water synthesis, and the water splitting reaction occurs with high activity.

「比較例:図7の単独光触媒:酸素発生光触媒1+酸化反応助触媒2」
図7は、前述の第4工程において、TiO酸素発生光触媒1にCoPi又はCoBi酸化反応助触媒2を担持させた光触媒の効果(酸素発生量)を示す図である。図7において、(ア)はTiO粉末のみの場合、(イ)はCo(NOと、リン酸カリウム(K-Phosphate)とから、CoPi(リン酸コバルト)をTiO粉末の表面に担持させた場合、(ウ)はCo(NOと、HPOとから、CoPi(リン酸コバルト)をTiO粉末の表面に担持させた場合、(エ)はCo(NOと、HBOとから、CoBi(ホウ酸コバルト)をTiO粉末の表面に担持させた場合の酸素発生量を示す。いずれも、紫外光(UV)500μW/cmを2時間照射したときの酸素発生量である。
"Comparative example: single photocatalyst in FIG. 7: oxygen generating photocatalyst 1 + oxidation reaction co-catalyst 2"
FIG. 7 is a diagram showing the effect (oxygen generation amount) of the photocatalyst in which the CoPi or CoBi oxidation reaction cocatalyst 2 is supported on the TiO 2 oxygen generating photocatalyst 1 in the fourth step described above. In FIG. 7, (a) is the case of TiO 2 powder only, (b) is Co(NO 3 ) 2 and potassium phosphate (K-Phosphate), and CoPi (cobalt phosphate) is added to the surface of the TiO 2 powder. When Co ( NO _ 3 ) From 2 and H 3 BO 3 , the amount of oxygen generated when CoBi (cobalt borate) is supported on the surface of TiO 2 powder is shown. Both are the amount of oxygen generated when 500 μW/cm 2 of ultraviolet light (UV) is irradiated for 2 hours.

この図7に示すように、酸素発生光触媒1としてのTiO単独の場合に比して、酸化反応助触媒2としてのCoPi又はCoBiを担持させた場合は、酸素発生量が著しく増大している。 As shown in FIG. 7, compared to TiO 2 alone as the oxygen generating photocatalyst 1, when CoPi or CoBi is supported as the oxidation reaction cocatalyst 2, the amount of oxygen generated is significantly increased. .

「比較例:図8の単独光触媒:酸素発生光触媒1+酸化反応助触媒2」
図8は、上記第4工程において、酸素発生光触媒1として、6H-SiC粉末を使用し、この6H-SiC粉末に、CoPi又はCoBiの酸化反応助触媒2を担持させたときの効果(酸素発生量)を示す図である。この図8の単独光触媒(酸素発生光触媒1)は、被覆層6を形成していない。図8において、(ア)は6H-SiC粉末のみの場合、(イ)は6H-SiC粉末の表面にCoOxを担持させた場合、(ウ)はCo(NOと、リン酸カリウム(K-Phosphate)とから、CoPi(リン酸コバルト)を6H-SiC粉末の表面に担持させた場合、(エ)はCo(NOと、HPOとから、CoPi(リン酸コバルト)を6H-SiC粉末の表面に担持させた場合、(オ)はCo(NOと、HBOとから、CoBi(ホウ酸コバルト)を6H-SiC粉末の表面に担持させた場合の酸素発生量を示す。いずれも、紫外光(UV)500μW/cmを2時間照射したときの酸素発生量である。
"Comparative example: single photocatalyst in FIG. 8: oxygen generating photocatalyst 1 + oxidation reaction co-catalyst 2"
FIG. 8 shows the effect (oxygen generation Quantity). The single photocatalyst (oxygen generating photocatalyst 1) in FIG. In FIG. 8, (a) is the case of 6H—SiC powder only, (b) is the case of supporting CoOx on the surface of the 6H—SiC powder, (c) is Co(NO 3 ) 2 and potassium phosphate ( K-Phosphate), when CoPi (cobalt phosphate) is supported on the surface of 6H-SiC powder, (d) is Co(NO 3 ) 2 and H 2 PO 4 , CoPi (cobalt phosphate) ) was supported on the surface of the 6H-SiC powder, and (e) was Co(NO 3 ) 2 and H BO 3 , and CoBi (cobalt borate) was supported on the surface of the 6H-SiC powder. It shows the amount of oxygen generated in the case. Both are the amount of oxygen generated when 500 μW/cm 2 of ultraviolet light (UV) is irradiated for 2 hours.

この図8に示すように、酸素発生光触媒1としてのSiC単独の場合に比して、酸化反応助触媒2としてのCoPi又はCoBiを担持させた場合は、酸素発生量が著しく増大している。但し、SiCの場合は、K-Phosphateを使用すると、失活している。従って、酸素発生光触媒1の材料に応じて、適切な方法で酸化反応助触媒を担持させることが必要である。 As shown in FIG. 8, when CoPi or CoBi as the oxidation reaction co-catalyst 2 is carried, the oxygen generation amount is remarkably increased compared to the case of SiC alone as the oxygen generation photocatalyst 1 . However, SiC is deactivated when K-Phosphate is used. Therefore, depending on the material of the oxygen generating photocatalyst 1, it is necessary to support the oxidation reaction co-catalyst by an appropriate method.

「実施例:図9の光触媒複合材料:水素発生光触媒3+酸素発生光触媒1+還元反応助触媒4+酸化反応助触媒2+被覆層6」
図9は、水素発生光触媒3としてのβ-FeSiと、酸素発生光触媒1としてのTiOとを、金属層5としてのAu層により接合した複合光触媒粉末に、還元反応助触媒4として、1質量%のPtを担持させ、更に、被覆層6として、2質量%のCrO層を水素発生光触媒3に被覆し、更に、Co(NOと、HBOとの反応によりCoBiを光析出させて、酸素発生光触媒1の表面に酸化反応助触媒2としてのCoBiを担持させた光触媒複合材料に対し、紫外光を照射した場合の水素発生量と酸素発生量の変化を示すグラフ図である。
"Example: Photocatalyst composite material in Fig. 9: hydrogen generating photocatalyst 3 + oxygen generating photocatalyst 1 + reduction reaction co-catalyst 4 + oxidation reaction co-catalyst 2 + coating layer 6"
FIG. 9 shows a composite photocatalyst powder in which β-FeSi 2 as a hydrogen generating photocatalyst 3 and TiO 2 as an oxygen generating photocatalyst 1 are joined by an Au layer as a metal layer 5, and 1 as a reduction reaction promoter 4. 2% by mass of Pt is supported, the hydrogen generating photocatalyst 3 is coated with 2% by mass of CrOx layer as the coating layer 6, and Co(NO 3 ) 2 and H 3 BO 3 are reacted to form CoBi Graph showing the change in the amount of hydrogen generated and the amount of oxygen generated when the photocatalyst composite material in which CoBi is supported on the surface of the oxygen generating photocatalyst 1 as the oxidation reaction co-catalyst 2 by photoprecipitating is irradiated with ultraviolet light. It is a diagram.

この図9に示すように、紫外光の照射時間の経過と共に、水素の発生量と酸素の発生量はいずれも増大していく。この図9に示す発生量の変化パターンは、図6に示す変化パターンの紫外光照射経過時間の22時間後(焼鈍後)の変化パターンに類似している。図6に示す発生量の変化パターンは、水素発生光触媒3に還元反応助触媒4を担持させ、この水素発生光触媒3を被覆層6で被覆した複合光触媒粉末について得られたものであるから、その光触媒効果(光活性効果)と図9に示す複合光触媒の光触媒効果とが同程度であるということは、図9に示す複合光触媒の酸化反応助触媒2であるCoBiの効果が小さいことを意味している。これは、酸素発生光触媒1であるTiOの正孔が十分な酸化ポテンシャルを有しているため、酸化反応助触媒2の効果が小さいためであると考えられる。しかしながら、酸素発生光触媒1がSiCである場合には、特に、酸化反応助触媒2を担持させることによる触媒効果の向上を図ることが有効である。この点は、酸素発生光触媒1としてSiCを使用した図8に示すように、SiC単独の場合(ア)に比して、酸化反応助触媒2としてCoPi又はCoBiを担持させた場合(エ)、(オ)の方が、酸素発生量が著しく高いことから明らかである。 As shown in FIG. 9, both the amount of hydrogen generated and the amount of oxygen generated increase with the lapse of the irradiation time of the ultraviolet light. The change pattern of the amount of generation shown in FIG. 9 is similar to the change pattern shown in FIG. 6 after 22 hours (after annealing) of the ultraviolet light irradiation elapsed time. The change pattern of the amount of generation shown in FIG. The fact that the photocatalytic effect (photoactivation effect) and the photocatalytic effect of the composite photocatalyst shown in FIG. 9 are comparable means that the effect of CoBi, which is the oxidation reaction co-catalyst 2 of the composite photocatalyst shown in FIG. 9, is small. ing. This is probably because the holes of TiO 2 , which is the oxygen generating photocatalyst 1 , have a sufficient oxidation potential, so that the effect of the oxidation reaction co-catalyst 2 is small. However, when the oxygen-generating photocatalyst 1 is SiC, it is particularly effective to improve the catalytic effect by supporting the oxidation reaction co-catalyst 2 . In this regard, as shown in FIG. 8 in which SiC is used as the oxygen generating photocatalyst 1, the case of carrying CoPi or CoBi as the oxidation reaction co-catalyst 2 (d), compared to the case of SiC alone (a), This is evident from the fact that the amount of oxygen generated is significantly higher in (e).

「実施例:図10の光触媒複合材料:水素発生光触媒3+酸素発生光触媒1+還元反応助触媒4+酸化反応助触媒2+被覆層6」
図10は、本発明の実施例の光触媒複合材料(β-FeSi+TiO+Pt+CrOx被覆層+CoBi)と、TiO単独の光触媒とに対し、水中で、1200W/mのキセノン光を照射した場合の水素及び酸素の発生量を示す。図中、◇及び○のプロットは水素発生量を示し、+及び×のプロットは酸素発生量を示す。また、◇及び+は、上記実施例の光触媒複合材料についてのものであり、○及び×は、TiO光触媒についてのものである。この図10に示すように、TiO光触媒の場合は、キセノン光に対する水素及び酸素の発生量が少ない。これに対し、本発明の実施例の光触媒複合材料は、キセノン光に対しても優れた光活性効果を示し、照射時間と共に、水素及び酸素の発生量が増大していく。このように、本発明の実施例の光触媒複合材料は、キセノン光についても、図8等に示す紫外光に対する光活性効果と同等の効果を奏する。
"Example: Photocatalytic composite material in Fig. 10: hydrogen generating photocatalyst 3 + oxygen generating photocatalyst 1 + reduction reaction promoter 4 + oxidation reaction promoter 2 + coating layer 6"
FIG. 10 shows the case where the photocatalyst composite material (β-FeSi 2 +TiO 2 +Pt+CrOx coating layer+CoBi) of the example of the present invention and the photocatalyst made of TiO 2 alone were irradiated with xenon light of 1200 W/m 2 in water. shows the amount of hydrogen and oxygen generated. In the figure, plots of ◇ and ○ indicate the amount of hydrogen generated, and plots of + and x indicate the amount of oxygen generated. Also, ◇ and + are for the photocatalytic composite material of the above example, and ◯ and × are for the TiO 2 photocatalyst. As shown in FIG. 10, in the case of the TiO 2 photocatalyst, the amounts of hydrogen and oxygen generated by xenon light are small. On the other hand, the photocatalyst composite materials of the examples of the present invention exhibit excellent photoactivation effects even with respect to xenon light, and the amount of hydrogen and oxygen generated increases with irradiation time. Thus, the photocatalyst composite material of the embodiment of the present invention exhibits the same photoactivation effect for xenon light as the photoactivation effect for ultraviolet light shown in FIG. 8 and the like.

以上のように、図3乃至図6及び図9乃至図10は、酸素発生光触媒1として、TiOを使用した複合光触媒の水素ガス発生量及び酸素ガス発生量を示す。図3に示すように、水素発生光触媒3及び酸素発生光触媒1からなる光触媒複合材料のみであると、水素及び酸素の発生量は少ない。一方、還元反応助触媒4を担持した図4の光触媒複合材料の場合は、水素の発生量が急激に増加しているが、酸素の発生量は少ない。これに対し、図5の実施例のように、更に、水素発生光触媒3を被覆材6で覆った場合には、製造工程においてメタノールを使用することにより、水素及び酸素の発生量が大きく増加している。図6の実施例の場合は、メタノールを添加した状態でCrOx被覆層6を形成したものであるが、水素及び酸素が十分多量に発生している。これらは、被覆層6の形成時に、メタノールを添加することにより、被覆層6が厚く形成された効果である。一方、図7及び図8に示す光触媒は、β―FeSiを使用しない単独光触媒、即ち、夫々TiO及び6H-SiC単独の光触媒であるが、酸化反応助触媒2を担持することにより、酸素の発生量は増大している。このように、酸化反応助触媒2の担持により、酸素発生光触媒1における酸素発生量が増大することが認められる。しかしながら、当然であるが、水素は発生しない。これらに対し、図9及び図10の実施例の光触媒複合材料は、水素発生光触媒3、酸素発生光触媒1、還元反応助触媒4,酸化反応助触媒2及び被覆層6の全てを備えている。即ち、図9及び図10の光触媒複合材料は、図5及び図6の実施例の光触媒複合材料に対し、酸化反応助触媒2を更に付加したものであるが、水素及び酸素のガスは、いずれも高速度で発生している。次に、酸素発生光触媒1として、6H―SiCを使用した光触媒複合材料のガス発生量について、説明する。 As described above, FIGS. 3 to 6 and 9 to 10 show the hydrogen gas generation amount and oxygen gas generation amount of the composite photocatalyst using TiO 2 as the oxygen generating photocatalyst 1. FIG. As shown in FIG. 3, the photocatalyst composite material consisting of the hydrogen generating photocatalyst 3 and the oxygen generating photocatalyst 1 alone generates less hydrogen and oxygen. On the other hand, in the case of the photocatalyst composite material of FIG. 4 supporting the reduction reaction cocatalyst 4, the amount of hydrogen generated increases sharply, but the amount of oxygen generated is small. On the other hand, when the hydrogen generating photocatalyst 3 is further covered with the coating material 6 as in the example of FIG. 5, the amount of hydrogen and oxygen generated greatly increases due to the use of methanol in the manufacturing process. ing. In the embodiment of FIG. 6, the CrOx coating layer 6 is formed with methanol added, and sufficiently large amounts of hydrogen and oxygen are generated. These are the effects of thickening the coating layer 6 by adding methanol when forming the coating layer 6 . On the other hand, the photocatalysts shown in FIGS. 7 and 8 are single photocatalysts that do not use β-FeSi 2 , namely TiO 2 and 6H—SiC single photocatalysts, respectively. is increasing. Thus, it is recognized that the amount of oxygen generated in the oxygen generating photocatalyst 1 is increased by supporting the oxidation reaction cocatalyst 2 . However, as a matter of course, no hydrogen is generated. 9 and 10, the photocatalyst composite material of the examples of FIGS. That is, the photocatalyst composite materials of FIGS. 9 and 10 are obtained by further adding the oxidation reaction co-catalyst 2 to the photocatalyst composite materials of the examples of FIGS. also occurs at high speed. Next, the gas generation amount of the photocatalytic composite material using 6H-SiC as the oxygen generating photocatalyst 1 will be described.

「比較例:図11の光触媒複合材料:水素発生光触媒3+酸素発生光触媒1」
図11は、助触媒を担持していない光触媒複合材料(β-FeSi水素発生光触媒3及び6H-SiC酸素発生光触媒1並びにAu接合剤(金属層5))を使用し、この光触媒複合材料に対し水中において高圧水銀ランプ光を照射して、発生した水素及び酸素の量を、照射経過時間に対して示したグラフ図である。この図11に示すように、水素発生量は照射経過時間と共に上昇するが、酸素の発生は認められない。なお、この図11の光触媒複合材料は、還元反応助触媒4及び酸化反応助触媒2と被覆層6が使用されていない。
"Comparative example: Photocatalyst composite material in FIG. 11: hydrogen generating photocatalyst 3 + oxygen generating photocatalyst 1"
In FIG. 11, a photocatalyst composite material (β-FeSi 2 hydrogen generation photocatalyst 3 and 6H-SiC oxygen generation photocatalyst 1 and Au bonding agent (metal layer 5)) that does not support a promoter is used, and this photocatalyst composite material FIG. 4 is a graph showing the amounts of hydrogen and oxygen generated by irradiating high-pressure mercury lamp light in water with respect to the elapsed irradiation time. As shown in FIG. 11, the amount of hydrogen generated increases with the elapsed irradiation time, but no oxygen is generated. 11, the reduction reaction promoter 4, the oxidation reaction promoter 2, and the coating layer 6 are not used.

「比較例:図12の光触媒複合材料:水素発生光触媒3+酸素発生光触媒1+酸化反応助触媒2」
「比較例:図13の光触媒複合材料:水素発生光触媒3+酸素発生光触媒1+酸化反応助触媒2」
図12は、β―FeSi水素発生光触媒3に、Au層5を介して6H-SiC酸素発生光触媒1を接合し、この6H-SiC酸素発生光触媒1にCoBi酸化反応助触媒2を担持させた光触媒複合材料(還元反応助触媒4は担持せず)を使用して、これに水中で高圧水銀ランプ光を照射したときの水素及び酸素の発生量を示すグラフ図である。CoBiは、0.1質量%Coをホウ酸コバルト(CoBi)として担持させたものである。なお、被覆層6は形成していない。図12の光触媒複合材料は、紫外光の照射により水素量は順調に増加しているが、酸素ガスは発生していない。また、図13は、CoBi酸化反応助触媒2の代わりに、CoPi酸化反応助触媒2を使用した場合に、水中で高圧水銀ランプ光を照射したときの水素及び酸素の発生量を示すグラフ図である。なお、CoPiは、0.1質量%Coをリン酸コバルト(CoPi)として担持させたものである。この図13に示す光触媒複合材料は、水素及び酸素ガスの発生量が少ない。
"Comparative example: photocatalyst composite material in FIG. 12: hydrogen generating photocatalyst 3 + oxygen generating photocatalyst 1 + oxidation reaction co-catalyst 2"
"Comparative example: photocatalyst composite material in FIG. 13: hydrogen generating photocatalyst 3 + oxygen generating photocatalyst 1 + oxidation reaction co-catalyst 2"
In FIG. 12, a β-FeSi 2 hydrogen generating photocatalyst 3 is bonded with a 6H-SiC oxygen generating photocatalyst 1 via an Au layer 5, and a CoBi oxidation reaction co-catalyst 2 is supported on this 6H-SiC oxygen generating photocatalyst 1. FIG. 4 is a graph showing the amounts of hydrogen and oxygen generated when a photocatalyst composite material (without a reduction reaction cocatalyst 4 supported) is irradiated with light from a high-pressure mercury lamp in water. CoBi is obtained by supporting 0.1 mass % Co as cobalt borate (CoBi). Note that the coating layer 6 is not formed. In the photocatalyst composite material of FIG. 12, the amount of hydrogen is steadily increased by irradiation with ultraviolet light, but oxygen gas is not generated. FIG. 13 is a graph showing the amount of hydrogen and oxygen generated when the CoPi oxidation reaction co-catalyst 2 is used instead of the CoBi oxidation reaction co-catalyst 2 and the high-pressure mercury lamp light is irradiated in water. be. CoPi is obtained by supporting 0.1% by mass Co as cobalt phosphate (CoPi). The photocatalytic composite material shown in FIG. 13 generates less hydrogen and oxygen gas.

「実施例:図14の光触媒複合材料:水素発生光触媒3+酸素発生光触媒1+還元反応助触媒4+被覆層6」
図14は、酸素発生光触媒1として6H-SiCを使用した本発明の実施例において、被覆層6の水素発生量及び酸素発生量に対する効果を示すグラフ図である。即ち、β―FeSi水素発生光触媒3に、Au層5を介して6H-SiC酸素発生光触媒1を接合し、このβ-FeSi水素発生光触媒3にPt還元反応助触媒4を光電着により担持させた後、被覆層6として犠牲剤のメタノールを添加した状態でCr(OH)x層を形成した光触媒複合材料(酸化反応助触媒2は担持せず)について水素及び酸素の発生量を示すグラフ図である。なお、Ptは1質量%、Cr(OH)は4質量%とした。この光触媒複合材料に水中で高圧水銀ランプ光を照射したとき、この図14に示すように、水素発生量は、紫外光の照射により、高速度で上昇していく。即ち、紫外光の25時間照射で水素発生量は4.5μmolまで上昇する。酸素発生量も、光照射により、徐々にではあるが、経過時間と共に上昇しており、25時間で0.5μmolまで上昇する。このように、水素発生光触媒3に被覆層6を形成し、Pt還元反応助触媒4を水素発生光触媒3に担持させることにより、水素ガスの発生量は、図11及び図12に示す光触媒複合材料の場合に比して約4倍程度に増加している。
"Example: Photocatalytic composite material in Fig. 14: hydrogen generating photocatalyst 3 + oxygen generating photocatalyst 1 + reduction reaction promoter 4 + coating layer 6"
FIG. 14 is a graph showing the effect of the coating layer 6 on the amount of hydrogen generated and the amount of oxygen generated in the example of the present invention using 6H—SiC as the oxygen generating photocatalyst 1 . That is, a 6H-SiC oxygen generating photocatalyst 1 is bonded to a β - FeSi2 hydrogen generating photocatalyst 3 via an Au layer 5, and a Pt reduction reaction promoter 4 is supported on this β-FeSi2 hydrogen generating photocatalyst 3 by photoelectrodeposition. Graph showing the amount of hydrogen and oxygen generated from a photocatalyst composite material (without supporting the oxidation reaction co-catalyst 2) in which a Cr(OH)x layer is formed as a coating layer 6 with the addition of methanol as a sacrificial agent. It is a diagram. Note that Pt was 1% by mass, and Cr(OH) X was 4% by mass. When this photocatalyst composite material is irradiated with light from a high-pressure mercury lamp in water, the amount of hydrogen generated increases at a high speed due to irradiation with ultraviolet light, as shown in FIG. That is, the amount of hydrogen generated increases to 4.5 μmol after 25 hours of irradiation with ultraviolet light. The amount of oxygen generated also gradually increased with the passage of time due to light irradiation, and increased to 0.5 μmol in 25 hours. Thus, by forming the coating layer 6 on the hydrogen generating photocatalyst 3 and supporting the Pt reduction reaction cocatalyst 4 on the hydrogen generating photocatalyst 3, the amount of hydrogen gas generated can be reduced to that of the photocatalyst composite material shown in FIGS. is about four times as large as that in the case of .

「実施例:図15の光触媒複合材料:水素発生光触媒3+酸素発生光触媒1+還元反応助触媒4+酸化反応助触媒2+被覆層6」
「実施例:図16の光触媒複合材料:水素発生光触媒3+酸素発生光触媒1+還元反応助触媒4+酸化反応助触媒2+被覆層6」
図15は、前述の第4工程において、β-FeSi水素発生光触媒3にPt還元反応助触媒4を担持させ、被覆層6として犠牲剤のメタノールを添加した状態でCr(OH)x層を形成し、酸素発生光触媒1である6H-SiC粉末に、CoBi酸化反応助触媒2を担持させた光触媒複合材料の水素及び酸素の発生量を示すグラフ図である。なお、Ptは1質量%、Cr(OH)は4質量%である。また、図16は、前述の第4工程において、β-FeSi水素発生光触媒3にPt還元反応助触媒4を担持させ、被覆層6として犠牲剤のメタノールを添加した状態でCr(OH)x層を形成し、酸素発生光触媒1である6H-SiC粉末に、CoPi酸化反応助触媒2を担持させた光触媒複合材料の水素及び酸素の発生量を示すグラフ図である。なお、これらの光触媒複合材料において、β-FeSi水素発生光触媒3と6H-SiC酸素発生光触媒1とは、Au層5により接合されている。また、Ptは1質量%、Cr(OH)は3質量%である。これらの光触媒複合材料に水中で高圧水銀ランプ光を照射した場合、図15及び図16に示すように、水素発生量は、紫外光の照射により、高速度で上昇し、酸素発生量も高速度で共に上昇している。特に、図15及び図16の場合は、酸化反応助触媒2を担持しているので、酸素の発生量も25時間の紫外光照射で2μmolまで増加し、高い酸素発生量が得られている。そして、発生水素と酸素のモル量は2:1の水の化学量論組成に対応する。
"Example: Photocatalyst composite material in Fig. 15: hydrogen generating photocatalyst 3 + oxygen generating photocatalyst 1 + reduction reaction co-catalyst 4 + oxidation reaction co-catalyst 2 + coating layer 6"
"Example: Photocatalyst composite material in Fig. 16: hydrogen generating photocatalyst 3 + oxygen generating photocatalyst 1 + reduction reaction co-catalyst 4 + oxidation reaction co-catalyst 2 + coating layer 6"
FIG. 15 shows that in the fourth step described above, the β-FeSi 2 hydrogen generating photocatalyst 3 is supported with the Pt reduction reaction co-catalyst 4, and a Cr(OH)x layer is formed as the coating layer 6 with methanol added as a sacrificial agent. 1 is a graph showing the amounts of hydrogen and oxygen generated from a photocatalytic composite material formed by supporting a CoBi oxidation reaction cocatalyst 2 on 6H—SiC powder, which is an oxygen generating photocatalyst 1. FIG. Note that Pt is 1% by mass and Cr(OH) X is 4% by mass. In addition, FIG. 16 shows that in the above-described fourth step, the β-FeSi 2 hydrogen generating photocatalyst 3 is supported with the Pt reduction reaction cocatalyst 4, and the coating layer 6 is Cr(OH)x with methanol added as a sacrificial agent. 1 is a graph showing the amounts of hydrogen and oxygen generated from a photocatalytic composite material in which a layer is formed and a CoPi oxidation reaction co-catalyst 2 is supported on 6H—SiC powder as an oxygen generating photocatalyst 1. FIG. In these photocatalytic composite materials, the β-FeSi 2 hydrogen generating photocatalyst 3 and the 6H-SiC oxygen generating photocatalyst 1 are joined together by the Au layer 5 . Also, Pt is 1 mass % and Cr(OH) X is 3 mass %. When these photocatalytic composite materials were irradiated with light from a high-pressure mercury lamp in water, as shown in FIGS. are rising together. In particular, in the case of FIGS. 15 and 16, since the oxidation reaction co-catalyst 2 is supported, the amount of oxygen generated increases to 2 μmol after 25 hours of ultraviolet light irradiation, and a high oxygen generation amount is obtained. The molar amounts of hydrogen and oxygen generated then correspond to a 2:1 water stoichiometry.

「実施例:図17の複合光触媒:水素発生光触媒3+酸素発生光触媒1+還元反応助触媒4+酸化反応助触媒2+被覆層6」
図17は、本発明の実施例の光触媒複合材料(β-FeSi+6H-SiC+Pt+CrOx被覆層+CoBi+Au)に対し、水中で、1200W/mのキセノン光を照射した場合の水素及び酸素の発生量を示す。なお、この光触媒複合材料は、β-FeSi/Au/6H-SiCの複合粉末に1質量%のPtを担持させた後、4質量%のCr(OH)を形成し、0.1質量%のCoをホウ酸コバルト(CoBi)として担持させたものである。この図17に示すように、本発明の実施例の光触媒複合材料は、キセノン光に対しても優れた光活性効果を示し、照射時間と共に、水素及び酸素の発生量が増大していく。このように、本発明の実施例の光触媒複合材料は、キセノン光についても、図15等に示す紫外光に対する光活性効果と同等の効果を奏する。
"Example: Composite photocatalyst in Fig. 17: hydrogen generating photocatalyst 3 + oxygen generating photocatalyst 1 + reduction reaction co-catalyst 4 + oxidation reaction co-catalyst 2 + coating layer 6"
FIG. 17 shows the amount of hydrogen and oxygen generated when the photocatalytic composite material (β-FeSi 2 +6H-SiC+Pt+CrOx coating layer+CoBi+Au) of the example of the present invention is irradiated with xenon light of 1200 W/m 2 in water. show. In this photocatalytic composite material, 1% by mass of Pt was supported on a composite powder of β-FeSi 2 /Au/6H—SiC, and then 4% by mass of Cr(OH) X was formed. % of Co is supported as cobalt borate (CoBi). As shown in FIG. 17, the photocatalytic composite material of the example of the present invention exhibits an excellent photoactivation effect even with respect to xenon light, and the amount of hydrogen and oxygen generated increases with irradiation time. Thus, the photocatalyst composite material of the embodiment of the present invention exhibits the same photoactivation effect for xenon light as the photoactivation effect for ultraviolet light shown in FIG. 15 and the like.

以上のように、酸素発生光触媒3に6H-SiCを使用した場合も、図11に示すように、水素発生光触媒3と酸素発生光触媒1のみの光触媒複合材料のときは、紫外光の照射時間と共に水素の発生量が増大するものの、酸素の発生量は少ない。また、図12及び図13も、同様に、酸素発生光触媒1に6H-SiCを使用した光触媒複合材料であるが、更に、これに酸化反応助触媒2を担持させても、酸素の発生量は少ない。これに対し、図14は、酸化反応助触媒2を担持しないが、還元反応助触媒4を担持すると共に、被覆層6を形成した光触媒複合材料であるので、水素発生量が25時間の紫外光照射で4.5μmolまで上昇し、酸素発生量が0.5μmolまで上昇する。また、図15及び図16は、水素発生光触媒3、酸素発生光触媒1,還元反応助触媒4,酸化反応助触媒2及び被覆層6の全てを備えているので、紫外光の照射による水素及び酸素の発生量はいずれも高い。また、図17に示すように、キセノン光の照射でも、同様に、水素及び酸素の発生量が高い。即ち、特に、β-FeSiとSiCとの複合粉末においては、Pt又はその代替材料の担持と、Cr(OH)の被覆とによって、水素発生速度が向上し、更に、CoBi又はCoPiの効果によって、酸素発生速度が向上した結果、水分解による水素発生速度:酸素発生速度が2:1となり、高効率で水が分解されたことがわかる。 As described above, even when 6H—SiC is used for the oxygen generating photocatalyst 3, as shown in FIG. Although the amount of hydrogen generated increases, the amount of oxygen generated is small. 12 and 13 also show a photocatalyst composite material using 6H—SiC as the oxygen generating photocatalyst 1. Even if the oxidation reaction co-catalyst 2 is supported on this photocatalyst composite material, the amount of oxygen generated is reduced. Few. On the other hand, since FIG. 14 is a photocatalyst composite material that does not support the oxidation reaction promoter 2 but supports the reduction reaction promoter 4 and forms the coating layer 6, the amount of hydrogen generated is 25 hours. Irradiation raises it to 4.5 μmol and oxygen evolution to 0.5 μmol. 15 and 16 are equipped with all of the hydrogen generating photocatalyst 3, the oxygen generating photocatalyst 1, the reduction reaction promoter 4, the oxidation reaction promoter 2, and the coating layer 6, so that hydrogen and oxygen generated by irradiation with ultraviolet light are both high. In addition, as shown in FIG. 17, the amounts of hydrogen and oxygen generated are also high in the case of irradiation with xenon light. That is, in particular, in the composite powder of β-FeSi 2 and SiC, the hydrogen generation rate is improved by supporting Pt or its substitute material and coating with Cr(OH) 2 X , and furthermore, the effect of CoBi or CoPi As a result, the rate of hydrogen generation by water decomposition: the rate of oxygen generation became 2:1, indicating that water was decomposed with high efficiency.

本発明によれば、太陽光スペクトルのうち、可視光を含み紫外光から近赤外光の1300nmまでの長波長に至る広範な波長域で光活性を有し、水素発生光触媒を被覆層で被覆したので、高効率で水素及び酸素を発生させることができると共に、逆反応(水素と酸素との燃焼反応による水合成)も抑制することができ、高い活性で水分解反応を生じさせることができる。また、還元反応助触媒を水素発生光触媒に選択的に担持させ、酸化反応助触媒を酸素発生光触媒に選択的に担持させることにより、更に、水素及び酸素の発生量が増大する。このため、本発明は、光触媒を使用した高効率の水分解反応による水素製造技術の開発に寄与する。 According to the present invention, of the sunlight spectrum, it has photoactivity in a wide wavelength range from ultraviolet light to near infrared light up to 1300 nm including visible light, and the hydrogen generating photocatalyst is coated with a coating layer. Therefore, hydrogen and oxygen can be generated with high efficiency, the reverse reaction (water synthesis by the combustion reaction of hydrogen and oxygen) can be suppressed, and the water splitting reaction can be caused with high activity. . In addition, by selectively supporting the reduction reaction promoter on the hydrogen generating photocatalyst and selectively supporting the oxidation reaction promoter on the oxygen generating photocatalyst, the amounts of hydrogen and oxygen generated are further increased. Therefore, the present invention contributes to the development of hydrogen production technology by highly efficient water-splitting reaction using a photocatalyst.

1:酸素発生光触媒
2:酸化反応助触媒
3:水素発生光触媒
4:還元反応助触媒
5:金属層
6:被覆層
1: Oxygen generation photocatalyst 2: Oxidation reaction promoter 3: Hydrogen generation photocatalyst 4: Reduction reaction promoter 5: Metal layer 6: Coating layer

Claims (7)

β-FeSi及びFeGeからなる群から選択された少なくとも1種の半導体材料からなる水素発生光触媒と、
TiO、Fe、WO、BiVO又はTaを含む酸化物、SiCを含む炭化物、及びNb、CuN又はTaを含む窒化物からなる群から選択された少なくとも1種の材料からなる酸素発生光触媒と、
金、銀及び銅からなる群から選択された少なくとも1種の金属材料からなり、前記水素発生光触媒と前記酸素発生光触媒とを接合する接合材と、
前記水素発生光触媒の表面又は前記水素発生光触媒と前記酸素発生光触媒との接合部を覆うようにして形成され、CrO、Cr(OH)又はこれらの混合物からなる被覆層と、
を有することを特徴とする光触媒複合材料。
a hydrogen generating photocatalyst comprising at least one semiconductor material selected from the group consisting of β-FeSi 2 and FeGe 2 ;
from the group consisting of oxides comprising TiO2 , Fe2O3 , WO3 , BiVO4 or Ta2O5 , carbides comprising SiC , and nitrides comprising Nb3N5 , Cu3N or Ta3N5 an oxygen evolution photocatalyst made of at least one selected material;
a bonding material made of at least one metal material selected from the group consisting of gold, silver and copper and bonding the hydrogen generating photocatalyst and the oxygen generating photocatalyst;
a coating layer formed so as to cover the surface of the hydrogen generating photocatalyst or the junction between the hydrogen generating photocatalyst and the oxygen generating photocatalyst and made of CrO x , Cr(OH) x or a mixture thereof;
A photocatalytic composite material comprising:
前記水素発生光触媒に担持された還元反応助触媒と、
前記酸素発生光触媒に担持された酸化反応助触媒と、
を有することを特徴とする請求項1に記載の光触媒複合材料。
a reduction reaction co-catalyst supported on the hydrogen generating photocatalyst;
an oxidation reaction co-catalyst supported on the oxygen generating photocatalyst;
The photocatalyst composite material according to claim 1, characterized by comprising:
前記還元反応助触媒の前記水素発生光触媒に対する担持量は、1乃至50質量%であることを特徴とする請求項2に記載の光触媒複合材料。 3. The photocatalyst composite material according to claim 2, wherein the amount of the reduction reaction cocatalyst supported on the hydrogen generating photocatalyst is 1 to 50% by mass. 前記酸化反応助触媒の前記酸素発生光触媒に対する担持量が、0.1乃至10質量%であることを特徴とする請求項2に記載の光触媒複合材料。 3. The photocatalyst composite material according to claim 2, wherein the amount of the oxidation reaction cocatalyst supported on the oxygen generating photocatalyst is 0.1 to 10% by mass. 前記被覆層は、そのCr成分の量が、光触媒複合材料の全量に対して、0.6乃至10質量%であることを特徴とする請求項1乃至4のいずれか1項に記載の光触媒複合材料。 The photocatalyst composite according to any one of claims 1 to 4, wherein the coating layer has a Cr component content of 0.6 to 10% by mass with respect to the total amount of the photocatalyst composite material. material. 前記還元反応助触媒及び前記酸化反応助触媒は、光電着担持法により担持されていることを特徴とする請求項2乃至4のいずれか1項に記載の光触媒複合材料。 5. The photocatalyst composite material according to claim 2, wherein the reduction reaction co-catalyst and the oxidation reaction co-catalyst are supported by a photodeposition supporting method. Pt、Rh、若しくはIrの塩化物、塩化酸水和物又は硝酸物と、水素発生光触媒との混合水溶液に、犠牲剤として、pHが7における標準酸化還元電位が0~+0.7Vである物質を添加する工程と、
水素発生光触媒にのみ吸収され、酸素発生光触媒を透過する波長の光を照射する工程と、
Cr(VI)イオンを含む水溶液と、還元反応助触媒を水素発生光触媒に担持させた半導体複合材料の粉末を混合させた混合水溶液に、犠牲剤として、中性の水酸基を持つ化合物を添加する工程と、
水素発生光触媒及び酸素発生光触媒のいずれにも吸収される光を照射する工程と、
水溶液から分離回収した複合粉末を大気中で乾燥する工程と、
Co3+若しくはMn2+イオンを生成するCo若しくはMnの塩化物又は硝酸物の水溶液に、リン酸緩衝液、リン酸水溶液、ホウ酸緩衝液、ホウ酸水溶液、アンモニア液、及び水酸化ナトリウム水溶液からなる群から選択された1種の溶液を添加する工程と、
酸素発生光触媒に吸収される波長域の光を照射する工程と、
を有することを特徴とする光触媒複合材料の製造方法。
A substance having a standard oxidation-reduction potential of 0 to +0.7 V at pH 7 as a sacrificial agent in a mixed aqueous solution of Pt, Rh, or Ir chloride, chloride hydrate, or nitrate and a hydrogen generation photocatalyst. a step of adding
a step of irradiating with light having a wavelength that is absorbed only by the hydrogen generating photocatalyst and that passes through the oxygen generating photocatalyst;
A step of adding a compound having a neutral hydroxyl group as a sacrificial agent to a mixed aqueous solution obtained by mixing an aqueous solution containing Cr(VI) ions and a powder of a semiconductor composite material in which a reduction reaction promoter is supported on a hydrogen generating photocatalyst. When,
a step of irradiating with light that is absorbed by both the hydrogen-producing photocatalyst and the oxygen-producing photocatalyst;
a step of drying the composite powder separated and recovered from the aqueous solution in the atmosphere;
An aqueous solution of chloride or nitrate of Co or Mn that produces Co 3+ or Mn 2+ ions, phosphate buffer, phosphoric acid aqueous solution, borate buffer, boric acid aqueous solution, ammonia solution, and sodium hydroxide aqueous solution. adding one solution selected from the group;
a step of irradiating with light in a wavelength range that is absorbed by the oxygen-generating photocatalyst;
A method for producing a photocatalytic composite material, comprising:
JP2022001295A 2021-01-23 2022-01-06 Photocatalytic composite material, and production method thereof Pending JP2022113648A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021009205 2021-01-23
JP2021009205 2021-01-23

Publications (1)

Publication Number Publication Date
JP2022113648A true JP2022113648A (en) 2022-08-04

Family

ID=82658295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022001295A Pending JP2022113648A (en) 2021-01-23 2022-01-06 Photocatalytic composite material, and production method thereof

Country Status (1)

Country Link
JP (1) JP2022113648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115845890A (en) * 2022-11-25 2023-03-28 广东科学技术职业学院 Reticular photocatalyst material, preparation method, application and equipment thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115845890A (en) * 2022-11-25 2023-03-28 广东科学技术职业学院 Reticular photocatalyst material, preparation method, application and equipment thereof
CN115845890B (en) * 2022-11-25 2024-02-27 广东科学技术职业学院 Reticular photocatalyst material, preparation method, application and equipment thereof

Similar Documents

Publication Publication Date Title
Yin et al. Selective electro-or photo-reduction of carbon dioxide to formic acid using a Cu–Zn alloy catalyst
Suzuki et al. Z-scheme water splitting under visible light irradiation over powdered metal-complex/semiconductor hybrid photocatalysts mediated by reduced graphene oxide
Kondo Cu 2 O as a photocatalyst for overall water splitting under visible light irradiation
Kato et al. Synthesis of highly active rhodium-doped SrTiO 3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting
Maeda et al. Direct water splitting into hydrogen and oxygen under visible light by using modified TaON photocatalysts with d 0 electronic configuration
Qiu et al. Visible-Light-Driven Cu (II)−(Sr1− y Na y)(Ti1− x Mo x) O3 Photocatalysts Based on Conduction Band Control and Surface Ion Modification
JP4803414B2 (en) Novel Z-scheme-type photocatalytic system for complete decomposition of visible light active water and method for complete decomposition of water using said catalyst
Matsumoto et al. Photocatalytic reduction of carbon dioxide on p-type CaFe2O4 powder
Ida et al. Black-colored nitrogen-doped calcium niobium oxide nanosheets and their photocatalytic properties under visible light irradiation
JP4107807B2 (en) Oxysulfide photocatalyst for visible light decomposition of water
Nishimoto et al. Photocatalytic dehydrogenation of aliphatic alcohols by aqueous suspensions of platinized titanium dioxide
WO2005087371A1 (en) Photocatalyst based on composite oxide responsive to visible light and method for decomposition and removal of harmful chemical material using the same
JP2004059507A (en) Method for reducing carbon dioxide by using photocatalyst
EP1366813B1 (en) Photocatalysts for decomposition of water with visible light
JP2022113648A (en) Photocatalytic composite material, and production method thereof
CN110237853B (en) Gadolinium chromate/silver phosphate composite photocatalyst and application thereof in VOCs purification
Kozlova et al. Semiconductor photocatalysts and mechanisms of carbon dioxide reduction and nitrogen fixation under UV and visible light
JPS6044053A (en) Photo-reactive membrane like catalyst
Nguyen et al. Development of Nb–NiMoO4/g-C3N4 direct Z scheme heterojunctions for effective photocatalytic conversion of carbon dioxide to valuable products
JP2004275946A (en) Perovskite type multicomponent oxide visible light responsive photocatalyst, hydrogen manufacturing method using the same and harmful chemical substance decomposing method
JP2003019437A (en) Photocatalyst, method for producing hydrogen using the photocatalyst, and method for decomposing harmful matter
JP2003236389A (en) Photocatalyst containing titanium fluoronitride for decomposition of water on irradiation with visible light
JP3096728B2 (en) Method and apparatus for decomposing water by sunlight
Takeuchi et al. Effect of Pt loading on the photocatalytic reactivity of titanium oxide thin films prepared by ion engineering techniques
JP2015167882A (en) Photocatalyst production method, photocatalyst, and hydrogen generation method