JP2022110398A - Compound, and method for producing the same - Google Patents

Compound, and method for producing the same Download PDF

Info

Publication number
JP2022110398A
JP2022110398A JP2021005788A JP2021005788A JP2022110398A JP 2022110398 A JP2022110398 A JP 2022110398A JP 2021005788 A JP2021005788 A JP 2021005788A JP 2021005788 A JP2021005788 A JP 2021005788A JP 2022110398 A JP2022110398 A JP 2022110398A
Authority
JP
Japan
Prior art keywords
compound
general formula
mmol
solution
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021005788A
Other languages
Japanese (ja)
Inventor
直哉 熊谷
Naoya Kumagai
シュ ウェイ
Wei Zhu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microbial Chemistry
Original Assignee
Institute of Microbial Chemistry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microbial Chemistry filed Critical Institute of Microbial Chemistry
Priority to JP2021005788A priority Critical patent/JP2022110398A/en
Publication of JP2022110398A publication Critical patent/JP2022110398A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

To provide a compound that has a cyclic tetradentate ligand skeleton, can form a metal complex, and can be used as a light-emitting device.SOLUTION: The present invention relates to a compound represented by general formula (1), and a compound as a partially reduced body thereof (where Ar is an aryl group).SELECTED DRAWING: Figure 1

Description

本発明は、環状4座配位子骨格を有する化合物、及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a compound having a cyclic tetradentate ligand skeleton and a method for producing the same.

一般に、多座(2座、3座)配位子は、金属イオン対する会合定数が大きく、単座配位子よりも安定な錯体を形成することが知られている。2座配位子、3座配位子に比して4座配位子は、合成困難なため極めて珍しい。 It is generally known that multidentate (bidentate, tridentate) ligands have a large association constant with respect to metal ions and form more stable complexes than monodentate ligands. Compared to bidentate and tridentate ligands, tetradentate ligands are extremely rare due to their difficulty in synthesis.

さらに、強固な錯体形成能を有し得る、剛直な環状構造を有する4座環状配位子として、ポルフィリンやフタロシアニンが知られている(非特許文献1参照)。ポルフィリンやフタロシアニンは、その骨格部分は平面状であり、キラリティーを有しない点、及び2つのNH基の脱プロトン化により4座となるためマイナス2価の配位子として作用する点が構造上の特徴として知られている。
しかしながら、ポルフィリンやフタロシアニン以外の4座環状配位子については、これまでにほぼ報告がされていない。
Furthermore, porphyrins and phthalocyanines are known as tetradentate cyclic ligands having a rigid cyclic structure that can have strong complex-forming ability (see Non-Patent Document 1). Porphyrins and phthalocyanines are structurally characterized by the fact that their skeletons are planar and do not have chirality, and that they act as negative divalent ligands because they become tetradentate by deprotonating two NH groups. known as a feature of
However, there have been almost no reports on tetradentate cyclic ligands other than porphyrins and phthalocyanines.

Chemical Review(2016)117.2910-3043Chemical Review (2016) 117.2910-3043

本発明は、前記従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、環状4座配位子骨格を有し、金属錯体を形成することができ、発光素子として利用可能な化合物を提供することを目的とする。 An object of the present invention is to solve the above-mentioned conventional problems and to achieve the following objects. That is, an object of the present invention is to provide a compound that has a cyclic tetradentate ligand skeleton, can form a metal complex, and can be used as a light-emitting device.

前記課題を解決するための手段としては、以下の通りである。即ち、
本発明の化合物は、下記一般式(1)及び下記一般式(2)のいずれかで表される。

Figure 2022110398000002
Figure 2022110398000003
ただし、前記一般式(1)~(2)中、Arは、アリール基を表す。 Means for solving the above problems are as follows. Namely
The compound of the present invention is represented by either the following general formula (1) or the following general formula (2).
Figure 2022110398000002
Figure 2022110398000003
However, in the general formulas (1) and (2), Ar represents an aryl group.

本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、環状4座配位子骨格を有し、金属錯体を形成することができ、発光素子として利用可能な化合物を提供することができる。 According to the present invention, it is possible to solve the above-mentioned problems in the conventional art, achieve the above-mentioned objects, have a cyclic tetradentate ligand skeleton, can form a metal complex, and can be used as a light-emitting device. A compound can be provided.

図1は、本発明の一般式(1)で表される化合物(2つのArが、p-メトキシベンジル基である場合)のX線構造解析における側面及び上面の分子構造を模式的に示す図である。FIG. 1 is a diagram schematically showing the molecular structure of the side and top surfaces in X-ray structural analysis of the compound represented by the general formula (1) of the present invention (when two Ars are p-methoxybenzyl groups). is. 図2は、本発明の化合物(1-1)の紫外線-可視光スペクトルを示す図である。FIG. 2 is a diagram showing the ultraviolet-visible spectrum of compound (1-1) of the present invention. 図3は、本発明の化合物(1-1)の紫外線-可視光スペクトルを示す図である。FIG. 3 is a diagram showing the ultraviolet-visible spectrum of compound (1-1) of the present invention. 図4Aは、本発明の化合物(1-1)の蛍光発光スペクトルを示す図である。FIG. 4A is a diagram showing the fluorescence emission spectrum of compound (1-1) of the present invention. 図4Bは、本発明の化合物(1-1)の蛍光発光スペクトルを示す図である。FIG. 4B is a diagram showing the fluorescence emission spectrum of compound (1-1) of the present invention. 図5は、本発明の化合物(1-1)の発光波長461nmにおける蛍光とTFA量の関係を示す図である。FIG. 5 is a diagram showing the relationship between the fluorescence of the compound (1-1) of the present invention at an emission wavelength of 461 nm and the amount of TFA. 図6は、本発明の化合物(1-1)の発光波長461nmにおける蛍光とTFA量の関係を示す図である。FIG. 6 is a diagram showing the relationship between the fluorescence of the compound (1-1) of the present invention at an emission wavelength of 461 nm and the amount of TFA. 図7は、本発明の化合物(1-1)及び化合物(1-2)の酸性条件下における蛍光発光スペクトルを示す図である。FIG. 7 shows the fluorescence emission spectra of compound (1-1) and compound (1-2) of the present invention under acidic conditions.

(一般式(1)及び一般式(2)のいずれかで表される化合物)
本発明の化合物は、下記一般式(1)及び下記一般式(2)のいずれかで表される化合物であり、環状4座配位子骨格を有する環状4座配位型ピリジル窒素配位子である。
前記化合物が4つのキノリン骨格を有することから、本発明者は、前記化合物をテトラキノリン(TEtrauinoline,TEQ)と命名した。
(Compound represented by either general formula (1) or general formula (2))
The compound of the present invention is a compound represented by either the following general formula (1) or the following general formula (2), and is a cyclic tetradentate pyridyl nitrogen ligand having a cyclic tetradentate ligand skeleton. is.
The present inventor named the compound tetraquinoline ( TEQ ) because the compound has four quinoline skeletons.

Figure 2022110398000004
Figure 2022110398000004

Figure 2022110398000005
ただし、前記一般式(1)~(2)中、Arは、アリール基を表す。
Figure 2022110398000005
However, in the general formulas (1) and (2), Ar represents an aryl group.

前記一般式(1)における2つの前記Arは、互いに同じであっても、異なっていてもよい。
前記一般式(2)における2つの前記Arは、互いに同じであっても、異なっていてもよい。
前記Arとしては、アリール基であれば特に制限はなく、目的に応じて適宜選択することができるが、下記一般式(a)(p-アルコキシフェニル基)が好ましい。
The two Ars in the general formula (1) may be the same or different.
The two Ars in the general formula (2) may be the same or different.
Ar is not particularly limited as long as it is an aryl group, and can be appropriately selected depending on the intended purpose, but the following general formula (a) (p-alkoxyphenyl group) is preferable.

Figure 2022110398000006
ただし、前記一般式(a)中、Rは、水素、アルキル基、及びトリフルオロメチルスルホニル基(CFSO )のいずれかを表し、*は、結合手を表す。
前記Rにおける前記アルキル基としては、例えば、メチル基、n-ペンチル基などが挙げられる。
Figure 2022110398000006
However, in the general formula (a), R represents hydrogen, an alkyl group, or a trifluoromethylsulfonyl group (CF 3 SO 2 ), and * represents a bond.
Examples of the alkyl group for R include a methyl group and an n-pentyl group.

図1に、本発明の一般式(1)で表される化合物(Arが、p-メトキシフェニル基である場合)のX線構造解析における側面及び上面の分子構造を模式的に表した図を示す。
前記一般式(1)で表される化合物、及び前記一般式(2)で表される化合物は、テトラキノリン骨格が非平面であり、キラリティーを有し、この点で、公知のポルフィリン(骨格が平面であり、キラリティーを有しない)とは異なる。
また、前記一般式(1)で表される化合物は、中性である一方、前記一般式(2)で表される化合物は、2つのNH基の脱プロトン化により4座となるためマイナス2価の配位子として作用する点で、両者の性質は異なる。
ポルフィリンのキラル化には、ポルフィリン骨格の外側の置換基部位へのキラル素子導入が必要であるが、活性本体である金属中心からは大きな空間的解離がある。前記一般式(1)で表される化合物、及び前記一般式(2)で表される化合物は、主骨格がキラル立体化しており、金属中心の極近傍にキラル環境を形成できる。前記一般式(1)で表される化合物、及び前記一般式(2)で表される化合物では、テトラキノリン骨格に対して前記Arの誘導体化、及び追加の置換基部位への置換基導入をすることも可能であり、機能附与及び機能分化の分子設計の自由度も高い。
FIG. 1 schematically shows the side and top molecular structures in X-ray structural analysis of the compound represented by the general formula (1) of the present invention (when Ar is a p-methoxyphenyl group). show.
The compound represented by the general formula (1) and the compound represented by the general formula (2) have a non-planar tetraquinoline skeleton and chirality. is planar and has no chirality).
Further, the compound represented by the general formula (1) is neutral, while the compound represented by the general formula (2) becomes tetradentate by deprotonating two NH groups, so minus 2 Both have different properties in that they act as valence ligands.
Chiralization of porphyrins requires the introduction of chiral elements into substituent sites outside the porphyrin skeleton, but there is a large spatial dissociation from the active metal center. The compound represented by the general formula (1) and the compound represented by the general formula (2) have a chiral steric main skeleton and can form a chiral environment very close to the metal center. In the compound represented by the general formula (1) and the compound represented by the general formula (2), derivatization of the Ar to the tetraquinoline skeleton and introduction of a substituent to an additional substituent site are performed. It is also possible to do so, and there is a high degree of freedom in molecular design for functional endowment and functional differentiation.

前記ポルフィリンから形成される金属ポルフィリン錯体には、膨大な研究例がある。これらの研究例を利用して、前記一般式(1)で表される化合物、及び前記一般式(2)で表される化合物の価数の変調とキラリティーを導入した上で、エミュレーションを行うことができる。これにより、前記一般式(1)で表される化合物、及び前記一般式(2)で表される化合物の配位子骨格は、合目的性の高い分子構造展開が可能な汎用配位子骨格として利用できる可能性が高い。 There are numerous examples of research on metalloporphyrin complexes formed from the above porphyrins. Using these research examples, emulation is performed after introducing valence modulation and chirality of the compound represented by the general formula (1) and the compound represented by the general formula (2). be able to. As a result, the compound represented by the general formula (1) and the ligand skeleton of the compound represented by the general formula (2) are general-purpose ligand skeletons capable of developing highly purposeful molecular structures. likely to be used as

前記一般式(1)で表される化合物、及び前記一般式(2)で表される化合物は、金属錯体を形成することができる。
中でも、前記一般式(1)で表される化合物は、銅(II)イオンを選択的に取り込み、銅錯体を形成することができる。
前記一般式(1)で表される化合物から形成される金属錯体は、後述する一般式(3)で表される化合物である。前記一般式(2)で表される化合物から形成される金属錯体は、後述する一般式(4)で表される化合物である。
前記一般式(1)で表される化合物は、銅(II)イオンを選択的に取り込むため、環境中の重金属を除去する除去剤、及びCu2+定量試薬として利用可能である。
The compound represented by the general formula (1) and the compound represented by the general formula (2) can form a metal complex.
Among them, the compound represented by the general formula (1) can selectively incorporate copper (II) ions to form a copper complex.
The metal complex formed from the compound represented by the general formula (1) is a compound represented by the general formula (3) described later. The metal complex formed from the compound represented by the general formula (2) is a compound represented by the general formula (4) described later.
Since the compound represented by the general formula (1) selectively takes in copper (II) ions, it can be used as a remover for removing heavy metals in the environment and as a Cu 2+ quantitative reagent.

前記一般式(1)で表される化合物は、蛍光を発光することができ、発光素子として利用可能である。また、前記一般式(1)で表される化合物は、酸性環境下において蛍光の発光強度が増強される。酸の濃度に比例して前記蛍光の発光強度が増強されるため、環境中の酸性度を測定するプローブとして利用可能である。 The compound represented by the general formula (1) can emit fluorescence and can be used as a light-emitting device. In addition, the compound represented by the general formula (1) has enhanced fluorescence emission intensity in an acidic environment. Since the emission intensity of the fluorescence is enhanced in proportion to the acid concentration, it can be used as a probe for measuring the acidity in the environment.

(一般式(3)及び一般式(4)のいずれかで表される化合物)
本発明の化合物は、下記一般式(3)及び下記一般式(4)のいずれかで表される化合物であり、環状4座配位子骨格を有する金属錯体である。
(Compound represented by either general formula (3) or general formula (4))
The compound of the present invention is a compound represented by either the following general formula (3) or the following general formula (4), and is a metal complex having a cyclic tetradentate ligand skeleton.

Figure 2022110398000007
ただし、前記一般式(3)中、Arは、アリール基を表し、Bはアニオンを表す。
Figure 2022110398000008
ただし、前記一般式(4)中、Arは、アリール基を表し、Mは、金属を表す。
Figure 2022110398000007
However, in the general formula (3), Ar represents an aryl group, and B- represents an anion.
Figure 2022110398000008
However, in said general formula (4), Ar represents an aryl group and M represents a metal.

前記一般式(3)におけるArは、前記一般式(1)中のArと同じである。好ましい態様も同じである。
前記一般式(3)におけるBは、アニオンである。前記アニオンとしては、特に制限はなく目的に応じて適宜選択することができ、例えば、TfO、BF 、Clなどが挙げられる。
Ar in the general formula (3) is the same as Ar in the general formula (1). A preferred embodiment is also the same.
B - in the general formula (3) is an anion. The anion is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include TfO , BF 4 , Cl and the like.

前記一般式(4)におけるArは、前記一般式(2)中のArと同じである。好ましい態様も同じである。
前記一般式(4)におけるMは、金属である。前記金属としては、特に制限はなく目的に応じて適宜選択することができ、例えば、鉄、コバルト、亜鉛などが挙げられる。
Ar in the general formula (4) is the same as Ar in the general formula (2). A preferred embodiment is also the same.
M in the general formula (4) is a metal. The metal is not particularly limited and can be appropriately selected depending on the intended purpose. Examples thereof include iron, cobalt, and zinc.

(構造式1dで表される化合物)
本発明の化合物は、下記構造式1dで表される化合物であり、前記一般式(1)~(4)のいずれかで表される化合物の製造過程における中間体化合物である。
(Compound represented by Structural Formula 1d)
The compound of the present invention is a compound represented by the following structural formula 1d, and is an intermediate compound in the production process of the compound represented by any one of the general formulas (1) to (4).

Figure 2022110398000009
Figure 2022110398000009

(構造式1Dで表される化合物)
本発明の化合物は、下記構造式1Dで表される化合物であり、前記構造式1dで表される化合物の金属錯体である。
(Compound Represented by Structural Formula 1D)
The compound of the present invention is a compound represented by Structural Formula 1D below, and is a metal complex of the compound represented by Structural Formula 1d.

Figure 2022110398000010
Figure 2022110398000010

(化合物の製造方法)
本発明の化合物の製造方法は、前記一般式(1)から(4)のいずれかで表される化合物の製造方法であって、前記構造式1dで表される化合物と下記一般式(b)で表される化合物とを反応させる反応工程を少なくとも含み、更に必要に応じて、その他の工程を有する。
(Method for producing compound)
A method for producing a compound of the present invention is a method for producing a compound represented by any one of the general formulas (1) to (4), wherein the compound represented by the structural formula 1d and the following general formula (b) It includes at least a reaction step of reacting with a compound represented by and, if necessary, other steps.

Figure 2022110398000011
ただし、前記一般式(b)中、Rは、アルキル基を表す。
前記Rにおける前記アルキル基としては、例えば、メチル基、n-ペンチル基などが挙げられる。
前記一般式(b)で表される化合物としては、4-エチニルアニソール(R:メチル基)、1-エチニル-4-(n-ペンチルオキシ)ベンゼン(R:n-ペンチル基)が好ましい。
Figure 2022110398000011
However, in said general formula (b), R1 represents an alkyl group.
Examples of the alkyl group for R 1 include a methyl group and an n-pentyl group.
As the compound represented by the general formula (b), 4-ethynylanisole (R 1 : methyl group) and 1-ethynyl-4-(n-pentyloxy)benzene (R 1 : n-pentyl group) are preferable. .

<反応工程>
前記反応工程としては、特に制限はなく、目的に応じて適宜選択することができるが、アミドの活性化剤と塩基の存在下にて行うことが好ましい。
前記活性化剤、及び塩基の組み合わせとしては、2,4,6-トリメトキシピリジン、及びトリフルオロメタンスルホン酸無水物が好ましい。前記反応工程における前記触媒の使用量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記構造式1dで表される化合物に対して、2モル等量~10モル等量が好ましい。
<Reaction process>
The reaction step is not particularly limited and can be appropriately selected depending on the intended purpose, but is preferably carried out in the presence of an amide activator and a base.
2,4,6-trimethoxypyridine and trifluoromethanesulfonic anhydride are preferred as the combination of the activator and base. The amount of the catalyst used in the reaction step is not particularly limited and can be appropriately selected according to the purpose. quantity is preferred.

前記反応工程において使用される溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1,2-ジクロロエタン、ジクロロメタン、トルエンなどが挙げられる。 The solvent used in the reaction step is not particularly limited and can be appropriately selected depending on the intended purpose. Examples thereof include 1,2-dichloroethane, dichloromethane and toluene.

前記反応工程における反応温度としては、特に制限はなく、目的に応じて適宜選択することができるが、0℃~80℃が好ましい。
前記反応工程における反応時間としては、特に制限はなく、目的に応じて適宜選択することができるが、10時間~30時間が好ましい。
前記反応工程における圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、大気圧が好ましい。
The reaction temperature in the reaction step is not particularly limited and may be appropriately selected depending on the purpose, but is preferably 0°C to 80°C.
The reaction time in the reaction step is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 10 to 30 hours.
The pressure in the reaction step is not particularly limited and can be appropriately selected depending on the purpose, but atmospheric pressure is preferred.

以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に制限されるものではない。
なお、実施例中、「Me」は「メチル基」を表し、「Et」は「エチル基」を表し、「TMS」は「トリメチルシリル基」を表し、「Tf」は「トリフルオロメチルスルホニル基」を表し、「Ac」は「アセチル基」を表し、「Ph」は「フェニル基」を表し、「rt」は、室温を示す。また、各種の溶離液などの溶液における混合比は、容量比を示す。
EXAMPLES The present invention will be described in more detail based on examples below, but the present invention is not limited to the following examples.
In the examples, "Me" represents "methyl group", "Et" represents "ethyl group", "TMS" represents "trimethylsilyl group", and "Tf" represents "trifluoromethylsulfonyl group". , "Ac" represents an "acetyl group", "Ph" represents a "phenyl group", and "rt" represents room temperature. In addition, the mixing ratios in solutions such as various eluents indicate volume ratios.

(実施例1)
<化合物(1-1)の合成>
<<化合物1a:2-クロロキノリン-8-カルボン酸の合成>>
アルゴン雰囲気下の三径フラスコに、8-ブロモ-2-クロロキノリン(2.425g,10mmol)と無水テトラヒドロフラン(THF,40mL)を入れた。-78℃でn-ブチルリチウム(nBuLi,3.85mL,10mmol,2.6Mヘキサン溶液)を添加し、20分間撹拌した。反応溶液にCOを30分間、通気した。出発物質が消失したら1N HClを添加して反応を停止し、反応溶液のpHが10になるまで1N NaOHを添加した。反応溶液を水で抽出し、水層を酢酸エチル及びジクロロメタンで洗浄した。水層に1N HClを添加すると白色固体が生じた。ジクロロメタンを添加して固体を溶解し、水層をジクロロメタンで抽出した。有機層を塩水で洗浄し、無水NaSOで乾燥した。溶媒を減圧留去すると、化合物1a(1.774g,収率85%)が黄色固体として得られた。
(Example 1)
<Synthesis of compound (1-1)>
<<Compound 1a: Synthesis of 2-chloroquinoline-8-carboxylic acid>>
8-bromo-2-chloroquinoline (2.425 g, 10 mmol) and anhydrous tetrahydrofuran (THF, 40 mL) were placed in a three-necked flask under an argon atmosphere. At −78° C., n-butyllithium (nBuLi, 3.85 mL, 10 mmol, 2.6 M hexane solution) was added and stirred for 20 minutes. CO2 was bubbled through the reaction solution for 30 minutes. Once the starting material disappeared, 1N HCl was added to quench the reaction, and 1N NaOH was added until the pH of the reaction solution was 10. The reaction solution was extracted with water, and the aqueous layer was washed with ethyl acetate and dichloromethane. Addition of 1N HCl to the aqueous layer resulted in a white solid. Dichloromethane was added to dissolve the solids and the aqueous layer was extracted with dichloromethane. The organic layer was washed with brine and dried over anhydrous Na2SO4 . Evaporation of the solvent under reduced pressure gave compound 1a (1.774 g, yield 85%) as a yellow solid.

Figure 2022110398000012
Figure 2022110398000012

Figure 2022110398000013
Figure 2022110398000013

上記で得られた化合物1a(2-クロロキノリン-8-カルボン酸)のH NMRスペクトルを示す。
H NMR(400MHz,CDCl):δ14.80(bs,1H),8.85(dd,J=7.6,1.6Hz,1H),8.35(d,J=8.8Hz,1H),8.11(dd,J=8.0,1.2Hz,1H),7.78(t,J=7.6Hz,1H),7.59(d,J=8.8Hz,1H).
1 H NMR spectrum of compound 1a (2-chloroquinoline-8-carboxylic acid) obtained above is shown.
1 H NMR (400 MHz, CDCl 3 ): δ 14.80 (bs, 1H), 8.85 (dd, J = 7.6, 1.6 Hz, 1H), 8.35 (d, J = 8.8 Hz, 1H), 8.11 (dd, J = 8.0, 1.2Hz, 1H), 7.78 (t, J = 7.6Hz, 1H), 7.59 (d, J = 8.8Hz, 1H) ).

<<化合物1b:酸性メチル2-クロロキノリン-8-カルボキシレートの合成>>
アルゴン雰囲気下のシュレンクチューブに、得られた化合物1a(4.67g,22.5mmol、トルエン(100mL)、MeOH(20mL)を入れた。0℃でトリメチルシリルジアゾメタン(TMSCHN,15.8mL,31.5mmol,2Mヘキサン溶液)を添加し、30分間撹拌した。反応溶液を室温まで昇温し、さらに22時間撹拌した。出発物質が消失したら、1N HClを添加して反応を停止した。反応溶液のpHが7.5になるまで飽和NaHCO溶液を添加した。反応溶液を酢酸エチルで抽出し、塩水で洗浄し、無水NaSOで乾燥した。溶液を減圧留去し、残留物をシリカゲルクロマトグラフィー(溶離液:ヘキサン:酢酸エチル=90:10 to 80:20 to 75:25)で精製すると、化合物1b(3.814g,収率76%)が黄色固体として得られた。
<<Compound 1b: Synthesis of acidic methyl 2-chloroquinoline-8-carboxylate>>
The resulting compound 1a (4.67 g, 22.5 mmol, toluene (100 mL) and MeOH ( 20 mL) was placed in a Schlenk tube under an argon atmosphere. 5 mmol, 2 M hexane solution) was added and stirred for 30 minutes.The reaction solution was allowed to warm to room temperature and stirred for an additional 22 hours.When the starting material disappeared, the reaction was quenched by the addition of 1N HCl. Saturated NaHCO 3 solution was added until the pH was 7.5.The reaction solution was extracted with ethyl acetate, washed with brine and dried over anhydrous Na 2 SO 4. The solution was evaporated under reduced pressure and the residue was purified with silica gel. Purification by chromatography (eluent: hexane:ethyl acetate=90:10 to 80:20 to 75:25) gave compound 1b (3.814 g, yield 76%) as a yellow solid.

Figure 2022110398000014
Figure 2022110398000014

Figure 2022110398000015
Figure 2022110398000015

上記で得られた化合物1b(酸性メチル2-クロロキノリン-8-カルボキシレート)のH NMRスペクトルを示す。
H NMR(400MHz,CDCl):δ8.12(d,J=8.8Hz,1H),8.09(dd,J=7.2,1.6Hz,1H),7.95(dd,J=8.4,1.6Hz,1H),7.59(t,J=7.2Hz,1H),7.44(d,J=8.4Hz,1H),4.05(s,3H).
1 H NMR spectrum of compound 1b (acidic methyl 2-chloroquinoline-8-carboxylate) obtained above is shown.
1 H NMR (400 MHz, CDCl 3 ): δ 8.12 (d, J=8.8 Hz, 1 H), 8.09 (dd, J=7.2, 1.6 Hz, 1 H), 7.95 (dd, J = 8.4, 1.6Hz, 1H), 7.59 (t, J = 7.2Hz, 1H), 7.44 (d, J = 8.4Hz, 1H), 4.05 (s, 3H ).

<<化合物1c:メチル2-(2-アミノフェニル)キノリン-8-カルボキシレートの合成>>
室温、アルゴン雰囲気下の三径フラスコに、化合物1b(2.44g,11mmol)、(2-アミノフェニル)ボロン酸(1.656g,12.1mmol)、KCO(11.40g,82.5mmol)、テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh,635.6mg,0.55mol)、ジオキサン(100mL)、水(40mL)を入れた。反応溶液を70℃で20時間撹拌した。出発物質が消失したら、水と酢酸エチルを添加した。反応溶液を酢酸エチルで抽出し、塩水で洗浄し、無水NaSOで乾燥した。溶液をシリカゲルろ過(溶離液:酢酸エチル)し、減圧留去し、残留物をシリカゲルクロマトグラフィー(溶離液:ヘキサン:酢酸エチル=5:1)で精製すると、化合物1c(2.82g,収率92%)が黄色固体として得られた。
<<Compound 1c: Synthesis of methyl 2-(2-aminophenyl)quinoline-8-carboxylate>>
Compound 1b (2.44 g, 11 mmol), (2-aminophenyl)boronic acid (1.656 g, 12.1 mmol), K 2 CO 3 (11.40 g, 82.1 mmol) were placed in a three-necked flask at room temperature under an argon atmosphere. 5 mmol), tetrakis(triphenylphosphine)palladium (Pd(PPh 3 ) 4 , 635.6 mg, 0.55 mol), dioxane (100 mL) and water (40 mL) were added. The reaction solution was stirred at 70° C. for 20 hours. Once the starting material disappeared, water and ethyl acetate were added. The reaction solution was extracted with ethyl acetate, washed with brine and dried over anhydrous Na2SO4 . The solution was filtered through silica gel (eluent: ethyl acetate), evaporated under reduced pressure, and the residue was purified by silica gel chromatography (eluent: hexane:ethyl acetate=5:1) to give compound 1c (2.82 g, yield 92%) was obtained as a yellow solid.

Figure 2022110398000016
Figure 2022110398000016

Figure 2022110398000017
Figure 2022110398000017

上記で得られた化合物1c(メチル2-(2-アミノフェニル)キノリン-8-カルボキシレート)のH NMRスペクトルを示す。
H NMR(400MHz,CDCl):δ8.23(dd,J=7.6,1.6Hz,1H),8.18(d,J=8.8Hz,1H),7.94-7.92(m,2H),7.77(dd,J=8.0,1.2Hz,1H),7.50(t,J=7.2Hz,1H),7.23-7.19(m,1H),6.82-6.74(m,4H),4.01(s,3H).
1 H NMR spectrum of compound 1c (methyl 2-(2-aminophenyl)quinoline-8-carboxylate) obtained above is shown.
1 H NMR (400 MHz, CDCl 3 ): δ 8.23 (dd, J=7.6, 1.6 Hz, 1 H), 8.18 (d, J=8.8 Hz, 1 H), 7.94-7. 92 (m, 2H), 7.77 (dd, J = 8.0, 1.2Hz, 1H), 7.50 (t, J = 7.2Hz, 1H), 7.23-7.19 (m , 1H), 6.82-6.74 (m, 4H), 4.01 (s, 3H).

<<化合物1d:3,7-ジアザ-1(2,8),5(8,2)-ジキノリーナ-2,6(1,2)-ジベンザシクロオクタファン-4,8-ジオンの合成>>
アルゴン雰囲気下の三径フラスコに、得られた化合物1c(278.3mg,1mmol)、THF(60mL)を入れた。-78℃で、反応溶液にカリウムtert-ブトキシド(t-BuOK,3mL,3mmol,1M THF溶液)を滴下した。ゆっくりかつ0.5時間以内に室温まで昇温し、さらに1時間撹拌した。出発物質が消失したら、飽和NHCl溶液を添加して反応を停止した。反応溶液を酢酸エチルで抽出し、塩水で洗浄し、無水NaSOで乾燥した。溶液を減圧留去し、残留物をシリカゲルクロマトグラフィー(溶離液:ヘキサン:酢酸エチル=1:1 to 1:2)で精製すると、化合物1d(149.5mg,収率61%)が黄色固体として得られた。
<<Compound 1d: Synthesis of 3,7-diaza-1(2,8),5(8,2)-diquinolina-2,6(1,2)-dibenzcyclooctaphane-4,8-dione> >
The resulting compound 1c (278.3 mg, 1 mmol) and THF (60 mL) were placed in a three-diameter flask under an argon atmosphere. At −78° C., potassium tert-butoxide (t-BuOK, 3 mL, 3 mmol, 1 M THF solution) was added dropwise to the reaction solution. It was slowly warmed to room temperature within 0.5 hours and stirred for an additional hour. Once the starting material disappeared, the reaction was quenched by the addition of saturated NH 4 Cl solution. The reaction solution was extracted with ethyl acetate, washed with brine and dried over anhydrous Na2SO4 . The solution was evaporated under reduced pressure, and the residue was purified by silica gel chromatography (eluent: hexane:ethyl acetate=1:1 to 1:2) to give compound 1d (149.5 mg, yield 61%) as a yellow solid. Got.

Figure 2022110398000018
Figure 2022110398000018

Figure 2022110398000019
Figure 2022110398000019

上記で得られた化合物1d(3,7-ジアザ-1(2,8),5(8,2)-ジキノリーナ-2,6(1,2)-ジベンザシクロオクタファン-4,8-ジオン)のH NMRスペクトルを示す。
H NMR(400MHz,CDCl):δ12.55(s,2H),8.53(dd,J=7.2,1.6Hz,2H),8.34(d,J=8.4Hz,2H),7.91(dd,J=8.0,1.2Hz,2H),7.79(d,J=8.4Hz,2H),7.66-7.64(m,2H),7.57-7.48(m,8H).
Compound 1d obtained above (3,7-diaza-1(2,8),5(8,2)-diquinolina-2,6(1,2)-dibenzcyclooctaphane-4,8-dione) ) shows the 1 H NMR spectrum.
1 H NMR (400 MHz, CDCl 3 ): δ 12.55 (s, 2H), 8.53 (dd, J = 7.2, 1.6 Hz, 2H), 8.34 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 8.0, 1.2Hz, 2H), 7.79 (d, J = 8.4Hz, 2H), 7.66-7.64 (m, 2H), 7.57-7.48 (m, 8H).

<<化合物(1-1):テトラキノリン(TEQ)の合成>>
アルゴン雰囲気下の密閉チューブに化合物1d(98.5mg,0.2mmol)、2,4,6-トリメトキシピリジン(2,4,6-(OMe)-pyridine,169.2mg,1mmol)、1,2-ジクロロエタン(DCE,3mL)を入れた。0℃で、反応溶液にトリフルオロメタンスルホン酸無水物(TfO,105μL,0.64mmol)を滴下し、さらに15分間撹拌した。4-エチニルアニソール(0.26mL,2mmol)を添加し、反応溶液を80℃で22時間加温した。反応が完結したら、EtNを添加して反応を停止した。反応溶液をシリカゲルパッドでろ過(溶離液:ジクロロメタン(DCM):酢酸エチル=1:1)した。溶液を濃縮し、塩基性Alでろ過(溶離液:DCM:酢酸エチル=20:1)した。溶液を減圧留去し、残留物をEtOで7回洗浄(溶媒は遠心分離除去)すると、化合物(1-1)(60.2mg,収率42%)が淡灰色固体として得られた。上記EtO溶液を減圧留去し、残留物をシリカゲルクロマトグラフィー(溶離液:ヘキサン:酢酸エチル=1:1 to 1:3)で精製すると粗生成物が得られ、これを少量のEtOで洗浄すると、化合物(1-1)が淡灰色固体として追加で3.0mg(収率2%)得られた。
<<Compound (1-1): Synthesis of tetraquinoline (TEQ)>>
Compound 1d (98.5 mg, 0.2 mmol), 2,4,6-trimethoxypyridine (2,4,6-(OMe) 3 -pyridine, 169.2 mg, 1 mmol), and 1 were placed in a sealed tube under an argon atmosphere. , 2-dichloroethane (DCE, 3 mL) was added. At 0° C., trifluoromethanesulfonic anhydride (Tf 2 O, 105 μL, 0.64 mmol) was added dropwise to the reaction solution and stirred for an additional 15 minutes. 4-Ethynylanisole (0.26 mL, 2 mmol) was added and the reaction solution was warmed to 80° C. for 22 hours. Once the reaction was complete, Et 3 N was added to quench the reaction. The reaction solution was filtered through a silica gel pad (eluent: dichloromethane (DCM):ethyl acetate=1:1). The solution was concentrated and filtered over basic Al 2 O 3 (eluent: DCM:ethyl acetate=20:1). The solution was evaporated under reduced pressure and the residue was washed with Et 2 O seven times (the solvent was removed by centrifugation) to give compound (1-1) (60.2 mg, 42% yield) as a pale gray solid. . The above Et 2 O solution was evaporated under reduced pressure, and the residue was purified by silica gel chromatography (eluent: hexane:ethyl acetate=1:1 to 1:3) to give a crude product, which was added to a small amount of Et 2 Washing with O gave an additional 3.0 mg (2% yield) of compound (1-1) as a pale gray solid.

Figure 2022110398000020
Figure 2022110398000020

Figure 2022110398000021
Figure 2022110398000021

上記で得られた化合物(1-1)(TEQ)のH NMRスペクトルを示す。
H NMR(400MHz,DMF-d):δ8.44(d,J=8.4Hz,2H),8.05-8.01(m,4H),7.75(dd,J=7.2,1.6Hz,2H),7.67-7.58(m.12H),7.52(s,2H),7.17-7.15(m,4H),3.90(s,6H).
1 H NMR spectrum of the compound (1-1) (TEQ) obtained above is shown.
1 H NMR (400 MHz, DMF-d 7 ): δ 8.44 (d, J=8.4 Hz, 2H), 8.05-8.01 (m, 4H), 7.75 (dd, J=7. 2, 1.6Hz, 2H), 7.67-7.58 (m.12H), 7.52 (s, 2H), 7.17-7.15 (m, 4H), 3.90 (s, 6H).

(実施例2)
<化合物(1-2):TEQ-OHの合成>
アルゴン雰囲気下の密閉チューブに化合物(1-1)(TEQ,36.0mg,0.05mmol)、ピリジン塩酸塩(Py・HCl,2.311g,20mmol)を入れ、反応溶液を180℃で11時間撹拌した。反応が完結したら2N NaOHを添加し、pH=7で反応を停止した。DCMとMeOHを添加して固体をほぼ溶解した。反応溶液をDCMで抽出し、塩水で洗浄し、無水NaSOで乾燥した。溶液を減圧留去し、残留物をシリカゲルクロマトグラフィー(溶離液:DCM:MeOH=95:5)で精製すると、化合物(1-2)(22.1mg,収率64%)が淡黄色固体として得られた。
(Example 2)
<Compound (1-2): Synthesis of TEQ-OH>
Compound (1-1) (TEQ, 36.0 mg, 0.05 mmol) and pyridine hydrochloride (Py·HCl, 2.311 g, 20 mmol) were placed in a sealed tube under an argon atmosphere, and the reaction solution was heated at 180° C. for 11 hours. Stirred. After the reaction was complete, 2N NaOH was added to quench the reaction at pH=7. DCM and MeOH were added to dissolve most of the solids. The reaction solution was extracted with DCM, washed with brine and dried over anhydrous Na2SO4 . The solution was evaporated under reduced pressure, and the residue was purified by silica gel chromatography (eluent: DCM:MeOH=95:5) to give compound (1-2) (22.1 mg, yield 64%) as a pale yellow solid. Got.

Figure 2022110398000022
Figure 2022110398000022

Figure 2022110398000023
Figure 2022110398000023

上記で得られた化合物(1-2)(TEQ-OH)のH NMRスペクトルを示す。
H NMR(400MHz,DMF-d):δ9.97(s,2H),8.44(d,J=8.4Hz,2H),8.07-8.02(m,4H),7.75-7.73(m,2H),7.66-7.57(m.8H),7.51-7.49(m,6H),7.06-7.02(m,4H).
The 1 H NMR spectrum of the compound (1-2) (TEQ-OH) obtained above is shown.
1 H NMR (400 MHz, DMF-d 7 ): δ 9.97 (s, 2H), 8.44 (d, J = 8.4 Hz, 2H), 8.07-8.02 (m, 4H), 7 .75-7.73 (m, 2H), 7.66-7.57 (m.8H), 7.51-7.49 (m, 6H), 7.06-7.02 (m, 4H) .

(実施例3)
<化合物(1-3):TEQ-OTfの合成>
アルゴン雰囲気下の密閉チューブに化合物(1-2)(TEQ-OH,27.7mg,0.04mmol)、ピリジン(2mL)を入れた。0℃で、反応溶液にTfO(52.5μL,0.32mmol)を滴下した。反応溶液を室温まで昇温し、さらに24時間撹拌した。反応が完結したら、飽和NHClを添加して反応を停止した。反応溶液をDCMで抽出し、塩水で洗浄し、無水NaSOで乾燥した。溶液を減圧留去し、残留物を塩基性Alクロマトグラフィー(溶離液:DCM:MeOH=40:1)で精製すると、化合物(1-3)(22.3mg,収率58%)が白色固体として得られた。
(Example 3)
<Compound (1-3): Synthesis of TEQ-OTf>
Compound (1-2) (TEQ-OH, 27.7 mg, 0.04 mmol) and pyridine (2 mL) were placed in a sealed tube under an argon atmosphere. At 0° C., Tf 2 O (52.5 μL, 0.32 mmol) was added dropwise to the reaction solution. The reaction solution was warmed to room temperature and stirred for an additional 24 hours. Once the reaction was complete, it was quenched by the addition of saturated NH 4 Cl. The reaction solution was extracted with DCM, washed with brine and dried over anhydrous Na2SO4 . The solution was evaporated under reduced pressure and the residue was purified by basic Al 2 O 3 chromatography (eluent: DCM:MeOH=40:1) to give compound (1-3) (22.3 mg, yield 58%). was obtained as a white solid.

Figure 2022110398000024
Figure 2022110398000024

Figure 2022110398000025
Figure 2022110398000025

上記で得られた化合物(1-3)(TEQ-OTf)のH NMRスペクトルを示す。
H NMR(400MHz,DMF-d):δ8.45(d,J=8.4Hz,2H),8.06-8.04(m,2H),7.92-7.88(m,6H),7.78-7.70(m.8H),7.66-7.61(m,8H).
1 H NMR spectrum of the compound (1-3) (TEQ-OTf) obtained above is shown.
1 H NMR (400 MHz, DMF-d 7 ): δ 8.45 (d, J = 8.4 Hz, 2H), 8.06-8.04 (m, 2H), 7.92-7.88 (m, 6H), 7.78-7.70 (m.8H), 7.66-7.61 (m, 8H).

(実施例4)
<化合物(1-4):TEQ-OPentlyの合成>
アルゴン雰囲気下の密閉チューブに化合物1d(98.5mg,0.2mmol)、2,4,6-トリメトキシピリジン(2,4,6-(OMe)-pyridine,169.2mg,1mmol)、1,2-ジクロロエタン(DCE,3mL)を入れた。0℃で、反応溶液にトリフルオロメタンスルホン酸無水物(TfO,105μL,0.64mmol)を滴下し、さらに15分間撹拌した。1-エチニル-4-(n-ペンチルオキシ)ベンゼン(376.5mg,2mmol)を添加し、反応溶液を80℃で22時間加温した。反応が完結したら、EtNを添加して反応を停止した。反応溶液をシリカゲルパッドでろ過(溶離液:ジクロロメタン(DCM):酢酸エチル=1:1)した。溶液を濃縮し、塩基性Alでろ過(溶離液:DCM:酢酸エチル=20:1)した。溶液を減圧留去し、残留物をEtOで7回洗浄(溶媒は遠心分離除去)すると、化合物(1-4)(45.2mg,収率27%)が茶色固体として得られた。
(Example 4)
<Compound (1-4): Synthesis of TEQ-OPently>
Compound 1d (98.5 mg, 0.2 mmol), 2,4,6-trimethoxypyridine (2,4,6-(OMe) 3 -pyridine, 169.2 mg, 1 mmol), and 1 were placed in a sealed tube under an argon atmosphere. , 2-dichloroethane (DCE, 3 mL) was added. At 0° C., trifluoromethanesulfonic anhydride (Tf 2 O, 105 μL, 0.64 mmol) was added dropwise to the reaction solution and stirred for an additional 15 minutes. 1-Ethynyl-4-(n-pentyloxy)benzene (376.5 mg, 2 mmol) was added and the reaction solution was warmed to 80° C. for 22 hours. Once the reaction was complete, Et 3 N was added to quench the reaction. The reaction solution was filtered through a silica gel pad (eluent: dichloromethane (DCM):ethyl acetate=1:1). The solution was concentrated and filtered over basic Al 2 O 3 (eluent: DCM:ethyl acetate=20:1). The solution was evaporated under reduced pressure and the residue was washed with Et 2 O seven times (the solvent was removed by centrifugation) to give compound (1-4) (45.2 mg, 27% yield) as a brown solid.

Figure 2022110398000026
Figure 2022110398000026

上記で得られた化合物(1-4)(TEQ-OPently)のH NMRスペクトルを示す。
H NMR(400MHz,CDCl)δ8.18(d,J=8.4Hz,2H),8.02(dd,J=8.4,1.2Hz,2H),7.82(dd,J=8.4,1.6Hz,2H),7.60-7.54(m,4H),7.51-7.43(m,12H),7.01-6.98(m.4H),4.01(t,J=6.4Hz,4H),1.86-1.79(m,4H),1.49-1.37(m,8H),0.94(t,J=7.2Hz,6H).
1 H NMR spectrum of compound (1-4) (TEQ-OPently) obtained above is shown.
1 H NMR (400 MHz, CDCl 3 ) δ 8.18 (d, J = 8.4 Hz, 2H), 8.02 (dd, J = 8.4, 1.2 Hz, 2H), 7.82 (dd, J = 8.4, 1.6Hz, 2H), 7.60-7.54 (m, 4H), 7.51-7.43 (m, 12H), 7.01-6.98 (m.4H) , 4.01 (t, J = 6.4 Hz, 4H), 1.86-1.79 (m, 4H), 1.49-1.37 (m, 8H), 0.94 (t, J = 7.2Hz, 6H).

(実施例5)
<化合物(2-1):TEQ-8Hの合成>
アルゴン雰囲気下の密閉チューブに化合物(1-1)(TEQ,36.0mg,0.05mmol)、フェニルボロン酸(PhB(OH),61.0mg,0.5mmol)、Hantzschエステル(126.6mg,0.5mmol)、DCE(5mL)を入れた。反応溶液を80℃で24時間撹拌した。反応が完結したら溶液を減圧留去し、残留物をシリカゲルクロマトグラフィー(溶離液:ヘキサン:酢酸エチル=10:1 to 4:1)で精製すると粗生成物が得られた。これを溶媒再循環型分取HPLC(溶離液:クロロホルム)で精製すると化合物(2-1)(20.9mg、収率57%)が黄色固体として得られた。
(Example 5)
<Compound (2-1): Synthesis of TEQ-8H>
Compound (1-1) (TEQ, 36.0 mg, 0.05 mmol), phenylboronic acid (PhB(OH) 2 , 61.0 mg, 0.5 mmol), Hantzsch ester (126.6 mg) were placed in a sealed tube under an argon atmosphere. , 0.5 mmol), DCE (5 mL) was added. The reaction solution was stirred at 80° C. for 24 hours. After the reaction was completed, the solution was evaporated under reduced pressure, and the residue was purified by silica gel chromatography (eluent: hexane:ethyl acetate=10:1 to 4:1) to obtain a crude product. This was purified by solvent recycling preparative HPLC (eluent: chloroform) to give compound (2-1) (20.9 mg, yield 57%) as a yellow solid.

Figure 2022110398000027
Figure 2022110398000027

Figure 2022110398000028
Figure 2022110398000028

上記で得られた化合物(2-1)(TEQ-8H)のH NMRスペクトルを示す。
H NMR(400MHz,CDCl):δ7.81(dd,J=8.4,1.2Hz,2H),7.75-7.73(m,2H),7.41(s,2H),7.39-7.35(m,6H),7.12-7.09(m,4H),7.00-6.96(m,4H),6.72(t,J=7.6,2H),6.03(s,2H),5.98(dd,J=12.0,2.8Hz,2H),3.85(s,6H),3.33-3.25(m,2H),3.02-2.96(m,2H),2.64-2.54(m,2H),2.12-2.09(m,2H).
1 H NMR spectrum of the compound (2-1) (TEQ-8H) obtained above is shown.
1 H NMR (400 MHz, CDCl 3 ): δ 7.81 (dd, J=8.4, 1.2 Hz, 2H), 7.75-7.73 (m, 2H), 7.41 (s, 2H) , 7.39-7.35 (m, 6H), 7.12-7.09 (m, 4H), 7.00-6.96 (m, 4H), 6.72 (t, J=7. 6, 2H), 6.03 (s, 2H), 5.98 (dd, J = 12.0, 2.8 Hz, 2H), 3.85 (s, 6H), 3.33-3.25 ( m, 2H), 3.02-2.96 (m, 2H), 2.64-2.54 (m, 2H), 2.12-2.09 (m, 2H).

(実施例6)
<化合物(3-1):TEQ-Cu-(OTf)の合成>
アルゴン雰囲気下のシュレンクチューブに、化合物(1-1)(TEQ,144.2mg,0.2mmol)、Cu(OTf)(72.3mg,0.2mmol)、DCM(20mL)を入れた。反応溶液を室温で19時間撹拌した。反応が完結したら、反応溶液をセライトろ過(溶離液:DCM)した。溶液を減圧留去し、残留物をアセトン/トルエン(1:3)に溶解した。この溶液を2日間、室温静置すると、化合物(3-1)(192.6mg,収率89%)が濃緑色固体として得られた。
(Example 6)
<Compound (3-1): Synthesis of TEQ-Cu-(OTf) 2 >
Compound (1-1) (TEQ, 144.2 mg, 0.2 mmol), Cu(OTf) 2 (72.3 mg, 0.2 mmol), and DCM (20 mL) were placed in a Schlenk tube under an argon atmosphere. The reaction solution was stirred at room temperature for 19 hours. After the reaction was completed, the reaction solution was filtered through celite (eluent: DCM). The solution was evaporated under reduced pressure and the residue dissolved in acetone/toluene (1:3). This solution was allowed to stand at room temperature for 2 days to give compound (3-1) (192.6 mg, yield 89%) as a dark green solid.

Figure 2022110398000029
Figure 2022110398000029

(実施例7)
<化合物(3-2):TEQ-Cu-(BFの合成>
アルゴン雰囲気下のシュレンクチューブに、化合物(1-1)(TEQ,36.0mg,0.05mmol)、テトラフルオロほう酸銅(II)水和物(Cu(BF-xHO,15.5mg,0.05mmol,19質量%~22質量%Cu)、DCM(10mL)、アセトン(1mL)を入れた。反応溶液を室温で43時間撹拌した。反応が完結したら、アセトンを添加して沈殿物を溶解し、反応溶液をセライトろ過(溶離液:DCM)した。溶液を減圧留去し、残留物をアセトン/トルエン(1:1)に溶解した。この溶液を2日間、室温静置すると、化合物(3-2)(26.6mg,収率56%)が濃緑色固体として得られた。
(Example 7)
<Compound (3-2): Synthesis of TEQ-Cu-(BF 4 ) 2 >
Compound (1-1) (TEQ, 36.0 mg, 0.05 mmol), copper(II) tetrafluoroborate hydrate (Cu(BF 4 ) 2 -xH 2 O, 15.0 mg, 36.0 mg, 0.05 mmol) were placed in a Schlenk tube under an argon atmosphere. 5 mg, 0.05 mmol, 19 wt%-22 wt% Cu), DCM (10 mL), acetone (1 mL) were charged. The reaction solution was stirred at room temperature for 43 hours. After the reaction was completed, acetone was added to dissolve the precipitate, and the reaction solution was filtered through celite (eluent: DCM). The solution was evaporated under reduced pressure and the residue dissolved in acetone/toluene (1:1). This solution was allowed to stand at room temperature for 2 days to give compound (3-2) (26.6 mg, yield 56%) as a dark green solid.

Figure 2022110398000030
Figure 2022110398000030

(実施例8)
<化合物1D:銅3,7-ジアザ-1(2,8),5(8,2)-ジキノリーナ-2,6(1,2)-ジベンザシクロオクタファン-4,8-ジオンの合成>
アルゴン雰囲気下のシュレンクチューブに、化合物1d(49.3mg,0.1mmol)、Cu(OTf)(36.2mg,0.1mmol)、酢酸カリウム(KOAc,19.6mg,0.2mmol)、DCM(3mL)を入れた。反応溶液を室温で24時間撹拌した。反応が完結したら、少量のMeOHを添加して沈殿物を溶解し、反応溶液をセライトろ過(溶離液:DCM)した溶液を減圧留去し、残留物をアセトン/MeOH(1:1)に溶解した。この溶液を2日間、室温静置すると、化合物1D(38.7mg,収率70%)が濃緑色固体として得られた。
(Example 8)
<Compound 1D: Synthesis of copper 3,7-diaza-1(2,8),5(8,2)-diquinolina-2,6(1,2)-dibenzcyclooctaphane-4,8-dione>
Compound 1d (49.3 mg, 0.1 mmol), Cu(OTf) 2 (36.2 mg, 0.1 mmol), potassium acetate (KOAc, 19.6 mg, 0.2 mmol), DCM were added to a Schlenk tube under an argon atmosphere. (3 mL) was added. The reaction solution was stirred at room temperature for 24 hours. After the reaction was completed, a small amount of MeOH was added to dissolve the precipitate, the reaction solution was filtered through celite (eluent: DCM), the solution was distilled off under reduced pressure, and the residue was dissolved in acetone/MeOH (1:1). did. The solution was allowed to stand at room temperature for 2 days to give compound 1D (38.7 mg, 70% yield) as a dark green solid.

Figure 2022110398000031
Figure 2022110398000031

(実施例9)
<紫外線-可視光スペクトルの測定>
以下の手順により、得られた化合物について、紫外線-可視光(UV-Vis)スペクトルを測定した。
(Example 9)
<Measurement of ultraviolet-visible light spectrum>
An ultraviolet-visible (UV-Vis) spectrum was measured for the obtained compound by the following procedure.

測定に用いた各溶液は以下の通り調製した。
(1)TFA溶液(25mL,5mmol/L)の調製
25mLメスフラスコにトリフルオロ酢酸(TFA,9.3μL,0.125mmol)を入れ、標線までジクロロメタンを加えた。
(2)化合物(1-1)溶液(10mL,0.2mmol/L)の調製
10mLメスフラスコに化合物(1-1)(TEQ,1.44mg,0.002mmol)を入れ、標線までジクロロメタンを加えた。
(3)化合物(1-1)+4等量TFA溶液(10mL,0.02mmol/L)の調製
10mLメスフラスコに化合物(1-1)溶液(1mL,0.2mmol/L)とTFA溶液(0.16mL,5mmol/L)を入れ、標線までジクロロメタンを加えた。
(4)化合物(1-1)溶液(10mL,0.02mmol/L)
10mLメスフラスコに化合物(1-1)溶液(1mL,0.2mmol/L)を入れ、標線までジクロロメタンを加えた。
(5)化合物(1-2)溶液(10mL,0.2mmol/L)
(6)化合物(1-2)溶液(10mL,0.02mmol/L)
(7)化合物(1-3)溶液(10mL,0.2mmol/L)
(8)化合物(1-3)溶液(10mL,0.02mmol/L)
溶液(5)~(8)については、前記(2)及び(4)において化合物(1-1)を化合物(1-2)又は化合物(1-3)に代えたこと以外は、前記(2)及び(4)と同様にして各溶液を調製した。
Each solution used for the measurement was prepared as follows.
(1) Preparation of TFA solution (25 mL, 5 mmol/L) Trifluoroacetic acid (TFA, 9.3 μL, 0.125 mmol) was placed in a 25 mL volumetric flask, and dichloromethane was added up to the marked line.
(2) Preparation of compound (1-1) solution (10 mL, 0.2 mmol / L) Compound (1-1) (TEQ, 1.44 mg, 0.002 mmol) was placed in a 10 mL volumetric flask, and dichloromethane was added to the marked line. added.
(3) Preparation of compound (1-1) + 4 equivalents of TFA solution (10 mL, 0.02 mmol/L) Compound (1-1) solution (1 mL, 0.2 mmol/L) and TFA solution (0 .16 mL, 5 mmol/L) was added, and dichloromethane was added up to the marked line.
(4) Compound (1-1) solution (10 mL, 0.02 mmol/L)
A compound (1-1) solution (1 mL, 0.2 mmol/L) was placed in a 10 mL volumetric flask, and dichloromethane was added up to the marked line.
(5) compound (1-2) solution (10 mL, 0.2 mmol / L)
(6) Compound (1-2) solution (10 mL, 0.02 mmol/L)
(7) compound (1-3) solution (10 mL, 0.2 mmol / L)
(8) compound (1-3) solution (10 mL, 0.02 mmol / L)
For solutions (5) to (8), except that compound (1-1) was replaced with compound (1-2) or compound (1-3) in (2) and (4) above, (2 ) and (4) to prepare each solution.

紫外線-可視光スペクトルは、紫外線-可視光スペクトル測定装置(装置名:V-670、日本分光株式会社製)を用い、空気雰囲気下にて室温にて測定を行った。
化合物(1-1)、化合物(1-2)、及び化合物(1-3)について、0.02mmol/L溶液を用いて測定した紫外線-可視光スペクトルを図2に示し、0.2mmol/L溶液を用いて測定した紫外線-可視光スペクトルを図3に示す。
The ultraviolet-visible spectrum was measured at room temperature in an air atmosphere using an ultraviolet-visible spectrum measuring device (device name: V-670, manufactured by JASCO Corporation).
Compound (1-1), compound (1-2), and compound (1-3), ultraviolet-visible spectrum measured using a 0.02 mmol / L solution is shown in FIG. 2, 0.2 mmol / L FIG. 3 shows the UV-visible spectrum measured using the solution.

溶液(3):化合物(1-1)(0.02mmol/L)+4等量TFA溶液の紫外線-可視光スペクトルから求めた酸性条件下での化合物(1-1)の吸収波長λabsは、370nmであり、モル吸収係数εは、28,700L/(cm*mol)であった(図2)。
また、溶液(2):化合物(1-1)(0.2mmol/L)の紫外線-可視光スペクトルから求めた化合物(1-1)の吸収波長λabsは、385.5nmであり、モル吸収係数εは、3,540L/(cm*mol)であった。
Solution (3): compound (1-1) (0.02 mmol/L) + 4 equivalents of TFA solution. 370 nm and the molar absorption coefficient ε was 28,700 L/(cm*mol) (Fig. 2).
Further, solution (2): compound (1-1) (0.2 mmol/L). The absorption wavelength λ abs of compound (1-1) obtained from the ultraviolet-visible spectrum is 385.5 nm, and the molar absorption The factor ε was 3,540 L/(cm*mol).

(実施例10)
<蛍光発光スペクトルの測定>
蛍光発光スペクトルは、蛍光発光スペクトル測定装置(装置名:V-670、日本分光株式会社製)を用い、励起波長385.5nm、空気雰囲気下にて室温にて測定を行った。
化合物(1-1)0.02mmol/LのDCM溶液(TFAを添加しない場合、no TFA)、及び前記化合物(1-1)0.02mmol/LのDCM溶液にTFAを0.1等量、0.2等量、0.4等量、0.6等量、0.8等量、1.0等量、1.5等量、2.0等量、3.0等量、4.0等量、6.0等量、及び8.0等量を添加した溶液(0.1~8.0 equiv TFA)を用いて、測定した蛍光発光スペクトルを図4A及びBに示す。
(Example 10)
<Measurement of fluorescence emission spectrum>
The fluorescence emission spectrum was measured using a fluorescence emission spectrum measurement device (device name: V-670, manufactured by JASCO Corporation) at an excitation wavelength of 385.5 nm at room temperature in an air atmosphere.
Compound (1-1) 0.02 mmol / L DCM solution (no TFA when TFA is not added), and 0.1 equivalent of TFA to the DCM solution of compound (1-1) 0.02 mmol / L, 0.2 eq, 0.4 eq, 0.6 eq, 0.8 eq, 1.0 eq, 1.5 eq, 2.0 eq, 3.0 eq, 4. eq. Fluorescence emission spectra measured using 0, 6.0, and 8.0 equiv added solutions (0.1-8.0 equiv TFA) are shown in FIGS. 4A and B. FIG.

蛍光発光スペクトルから、化合物(1-1)のTFAを添加しない場合の発光波長λemは、435nmであり、発光量子収率Φは、0.07であった。また、化合物(1-1)に4.0等量のTFAを添加した場合の酸性条件下における発光波長λemは、461nmであり、発光量子収率Φは、0.63であった。
したがって、化合物(1-1)は蛍光を発光することができ、酸性条件下において蛍光強度が増強することが分かった。
From the fluorescence emission spectrum, the emission wavelength λ em of compound (1-1) without addition of TFA was 435 nm, and the emission quantum yield Φ F was 0.07. Further, when 4.0 equivalents of TFA was added to compound (1-1), the emission wavelength λ em under acidic conditions was 461 nm, and the emission quantum yield Φ F was 0.63.
Therefore, it was found that compound (1-1) was capable of emitting fluorescence, and the fluorescence intensity was enhanced under acidic conditions.

図4A及びBに基づき求めた、発光波長461nmにおける蛍光とTFA量の関係を図5及び図6に示す。TFAを添加しない場合から1.0等量のTFAを添加した場合では、化合物(1-1)の蛍光強度がTFA量に比例することが分かった(決定係数:R=0.9945)。 5 and 6 show the relationship between the fluorescence at an emission wavelength of 461 nm and the amount of TFA obtained based on FIGS. 4A and 4B. It was found that the fluorescence intensity of compound (1-1) was proportional to the amount of TFA from the case of not adding TFA to the case of adding 1.0 equivalent of TFA (coefficient of determination: R 2 =0.9945).

(実施例11)
<蛍光発光スペクトルの測定>
以下の溶液を用いたこと以外は、実施例8と同様にして蛍光発光スペクトルの測定を行った。測定した蛍光発光スペクトルを図7に示す。
化合物(1-1)(0.02mmol/L)+4.0等量TFA溶液、励起波長λex:385.5nm
化合物(1-2)(0.02mmol/L)+4.0等量TFA溶液、励起波長λex:360nm
下記構造式で表される非環状ピリジン4量体(TetraPy)(0.02mmol/L)+4.0等量TFA溶液、励起波長λex:360nm
(Example 11)
<Measurement of fluorescence emission spectrum>
A fluorescence emission spectrum was measured in the same manner as in Example 8, except that the following solutions were used. FIG. 7 shows the measured fluorescence emission spectrum.
Compound (1-1) (0.02 mmol/L) + 4.0 equivalent TFA solution, excitation wavelength λ ex : 385.5 nm
Compound (1-2) (0.02 mmol/L) + 4.0 equivalent TFA solution, excitation wavelength λ ex : 360 nm
Acyclic pyridine tetramer (TetraPy) (0.02 mmol/L) + 4.0 equivalents TFA solution represented by the following structural formula, excitation wavelength λ ex : 360 nm

Figure 2022110398000032
Figure 2022110398000032

化合物(1-1)に4.0等量のTFAを添加した場合の酸性条件下における発光波長λemは、461nmであり、発光量子収率Φは、0.63であった。
化合物(1-2)に4.0等量のTFAを添加した場合の酸性条件下における発光波長λemは、461nmであり、発光量子収率Φは、0.24であった。
TetraPyに4.0等量のTFAを添加した場合の酸性条件下における発光波長λemは、461nmであり、発光量子収率Φは、0.45であった。なお、TetraPyの吸光が弱いため蛍光が極めて弱いが、発光量子収率は中程度であった。
したがって、化合物(1-1)、及び化合物(1-2)は蛍光を発光することができ、酸性条件下において蛍光強度が増強することが分かった。
The emission wavelength λ em under acidic conditions when 4.0 equivalents of TFA was added to compound (1-1) was 461 nm, and the emission quantum yield Φ F was 0.63.
The emission wavelength λ em under acidic conditions when 4.0 equivalents of TFA was added to compound (1-2) was 461 nm, and the emission quantum yield Φ F was 0.24.
The emission wavelength λ em under acidic conditions when 4.0 equivalents of TFA was added to TetraPy was 461 nm, and the emission quantum yield Φ F was 0.45. Note that the fluorescence was extremely weak due to the weak absorption of TetraPy, but the emission quantum yield was moderate.
Therefore, it was found that compound (1-1) and compound (1-2) can emit fluorescence, and the fluorescence intensity is enhanced under acidic conditions.

本発明の前記一般式(1)、及び前記一般式(2)のいずれかで表される化合物は、金属錯体を形成することができ、銅(II)イオンを選択的に取り込むため、環境中の重金属を除去する除去剤、及びCu2+定量試薬として利用可能である。また、本発明の前記一般式(1)、及び前記一般式(2)のいずれかで表される化合物は、蛍光を発光することができ、発光素子として利用可能である。 The compound represented by either the general formula (1) or the general formula (2) of the present invention can form a metal complex and selectively incorporates copper (II) ions, so it is It can be used as a remover to remove heavy metals from , and as a Cu 2+ quantitative reagent. In addition, the compound represented by either the general formula (1) or the general formula (2) of the present invention can emit fluorescence and can be used as a light-emitting element.

本発明の態様は、例えば、以下の通りである。
<1> 下記一般式(1)及び下記一般式(2)のいずれかで表されることを特徴とする化合物である。

Figure 2022110398000033
Figure 2022110398000034
ただし、前記一般式(1)~(2)中、Arは、アリール基を表す。
<2> 下記一般式(3)及び下記一般式(4)のいずれかで表されることを特徴とする化合物である。
Figure 2022110398000035
ただし、前記一般式(3)中、Arは、アリール基を表し、Bはアニオンを表す。
Figure 2022110398000036
ただし、前記一般式(4)中、Arは、アリール基を表し、Mは、金属を表す。
中、Bはアニオンを表す。
<3> 前記アリール基が、下記一般式(a)である前記<1>から<2>のいずれかに記載の化合物である。
Figure 2022110398000037
ただし、前記一般式(a)中、Rは、水素、アルキル基、及びトリフルオロメチルスルホニル基のいずれかを表し、*は、結合手を表す。
<4> 下記構造式1d及び下記構造式1Dのいずれかで表されることを特徴とする化合物である。
Figure 2022110398000038
<5> 前記<1>から<3>のいずれかに記載の化合物の製造方法であって、
下記構造式1dで表される化合物と下記一般式(b)で表される化合物とを反応させる工程を有することを特徴とする化合物の製造方法である。
Figure 2022110398000039
Figure 2022110398000040
ただし、前記一般式(b)中、Rは、アルキル基を表す。 Aspects of the present invention are, for example, as follows.
<1> A compound characterized by being represented by either the following general formula (1) or the following general formula (2).
Figure 2022110398000033
Figure 2022110398000034
However, in the general formulas (1) and (2), Ar represents an aryl group.
<2> A compound characterized by being represented by either the following general formula (3) or the following general formula (4).
Figure 2022110398000035
However, in the general formula (3), Ar represents an aryl group, and B- represents an anion.
Figure 2022110398000036
However, in said general formula (4), Ar represents an aryl group and M represents a metal.
In the middle, B - represents an anion.
<3> The compound according to any one of <1> to <2>, wherein the aryl group is represented by the following general formula (a).
Figure 2022110398000037
However, in said general formula (a), R represents hydrogen, an alkyl group, or a trifluoromethylsulfonyl group, and * represents a bond.
<4> A compound characterized by being represented by either the following structural formula 1d or the following structural formula 1D.
Figure 2022110398000038
<5> A method for producing the compound according to any one of <1> to <3>,
A method for producing a compound, comprising a step of reacting a compound represented by the following structural formula 1d with a compound represented by the following general formula (b).
Figure 2022110398000039
Figure 2022110398000040
However, in said general formula (b), R1 represents an alkyl group.

Claims (5)

下記一般式(1)及び下記一般式(2)のいずれかで表されることを特徴とする化合物。
Figure 2022110398000041
Figure 2022110398000042
ただし、前記一般式(1)~(2)中、Arは、アリール基を表す。
A compound characterized by being represented by either the following general formula (1) or the following general formula (2).
Figure 2022110398000041
Figure 2022110398000042
However, in the general formulas (1) and (2), Ar represents an aryl group.
下記一般式(3)及び下記一般式(4)のいずれかで表されることを特徴とする化合物。
Figure 2022110398000043
ただし、前記一般式(3)中、Arは、アリール基を表し、Bはアニオンを表す。
Figure 2022110398000044
ただし、前記一般式(4)中、Arは、アリール基を表し、Mは、金属を表す。
A compound characterized by being represented by either the following general formula (3) or the following general formula (4).
Figure 2022110398000043
However, in the general formula (3), Ar represents an aryl group, and B- represents an anion.
Figure 2022110398000044
However, in said general formula (4), Ar represents an aryl group and M represents a metal.
前記アリール基が、下記一般式(a)である請求項1から2のいずれかに記載の化合物。
Figure 2022110398000045
ただし、前記一般式(a)中、Rは、水素、アルキル基、及びトリフルオロメチルスルホニル基のいずれかを表し、*は、結合手を表す。
3. The compound according to any one of claims 1 and 2, wherein the aryl group has the following general formula (a).
Figure 2022110398000045
However, in said general formula (a), R represents hydrogen, an alkyl group, or a trifluoromethylsulfonyl group, and * represents a bond.
下記構造式1d及び下記構造式1Dのいずれかで表されることを特徴とする化合物。
Figure 2022110398000046
A compound represented by any one of the following structural formula 1d and the following structural formula 1D.
Figure 2022110398000046
請求項1から3のいずれかに記載の化合物の製造方法であって、
下記構造式1dで表される化合物と下記一般式(b)で表される化合物とを反応させる工程を有することを特徴とする化合物の製造方法。
Figure 2022110398000047
Figure 2022110398000048
ただし、前記一般式(b)中、Rは、アルキル基を表す。
A method for producing the compound according to any one of claims 1 to 3,
A method for producing a compound, comprising a step of reacting a compound represented by the following structural formula 1d with a compound represented by the following general formula (b).
Figure 2022110398000047
Figure 2022110398000048
However, in said general formula (b), R1 represents an alkyl group.
JP2021005788A 2021-01-18 2021-01-18 Compound, and method for producing the same Pending JP2022110398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021005788A JP2022110398A (en) 2021-01-18 2021-01-18 Compound, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021005788A JP2022110398A (en) 2021-01-18 2021-01-18 Compound, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2022110398A true JP2022110398A (en) 2022-07-29

Family

ID=82570068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021005788A Pending JP2022110398A (en) 2021-01-18 2021-01-18 Compound, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2022110398A (en)

Similar Documents

Publication Publication Date Title
Cai et al. A series of 2D lanthanide (III) coordination polymers constructed from 2-(pyridin-3-yl)-1H-imidazole-4, 5-dicarboxylate
Mikata et al. Quinoline-based fluorescent zinc sensors with enhanced fluorescence intensity, Zn/Cd selectivity and metal binding affinity by conformational restriction
Ye et al. A novel method for the synthesis of regiospecifically sulfonated porphyrin monomers and dimers
Tang et al. Synthesis, luminescence properties of a novel aromatic carboxylic acid (L) and corresponding Eu (III) and Tb (III) compounds as well as the binding characteristics of L with bovine serum albumin (BSA)
Lü et al. Multinuclear NIR luminescent 1, 4-BDC bridged Schiff-base complexes of Nd (III)
Kowalik et al. Lead (II) coordination polymers with imidazole-4-and pyrazole-3-carboxylate isomeric linkers: Structural diversity and luminescence properties
Yam et al. Synthesis, structure, and ion-binding properties of luminescent gold (I) alkynylcalix [4] crown-5 complexes
Jing et al. Ln-incorporated coordination complexes as fluorescence sensor for selective detection nitroaromatic compounds
Arıcı et al. Cobalt (II) and zinc (II)-coordination polymers constructed from ether-linked tetracarboxylic acid and isomeric bis (imidazole) linkers: luminescence-based Fe (III) detection in aqueous media
CN105936636A (en) Preparation methods and application of long chain-containing phenazine derivative gel factor and metal gel thereof
Zhang et al. Synthesis and characterization of highly fluorescent europium functionalized β-diketonate complexes
Shi et al. Synthesis and crystal structure of metal-organic frameworks [Ln2 (pydc-3, 5) 3 (H2O) 9] n3nH2O (Ln= Sm, Eu, Gd, Dy; pydc-3, 5= pyridine-3, 5-dicarboxylate) along with the photoluminescent property of its europium one
US20090281290A1 (en) Pyridine-bis (oxazoline)(&#34;pybox&#34;) moiety as a chelator and sensitizer for lanthanide Ion (Ln (III)) luminescence
CN105949168A (en) Method for synthesizing isochromanone compound
da Silva et al. Copper-based 2D-coordination polymer as catalyst for allylation of aldehydes
Lin et al. Synthesis of alkynylated photo-luminescent Zn (II) and Mg (II) Schiff base complexes
Bao et al. Synthesis and fluorescence properties of Tb (III) complex with a novel aromatic carboxylic acid (L) as well as spectroscopic studies on the interaction between Tb (III) complex and bovine serum albumin
CN110746423B (en) Synthesis of aryl imidazophenanthroline fluorescent dye and identification of metal ions
JP2022110398A (en) Compound, and method for producing the same
He et al. Synthesis, characterization and photoluminescence properties of monoporphyrinate lanthanide complexes
Yamamoto et al. Luminescent rhenium (I)–gold (I) hetero organometallics linked by ethynylphenanthrolines
JP2017519755A (en) Method for producing borated arylene
Yu et al. Synthesis and characteristics of a novel 3-D organic amine oxalate:(enH2) 1.5 [Bi3 (C2O4) 6 (CO2CONHCH2CH2NH3)]· 6.5 H2O
Song et al. Synthesis and spectroscopic properties of lanthanide nitrate complexes with a new amide-based quinoxaline-2, 3-dione ligand
JP5407332B2 (en) Method for producing quarterpyridine derivative and its intermediate

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20231110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231208