JP2022106655A - Low-oxygen-concentration insecticidal method and apparatus for use in the same - Google Patents

Low-oxygen-concentration insecticidal method and apparatus for use in the same Download PDF

Info

Publication number
JP2022106655A
JP2022106655A JP2021198353A JP2021198353A JP2022106655A JP 2022106655 A JP2022106655 A JP 2022106655A JP 2021198353 A JP2021198353 A JP 2021198353A JP 2021198353 A JP2021198353 A JP 2021198353A JP 2022106655 A JP2022106655 A JP 2022106655A
Authority
JP
Japan
Prior art keywords
oxygen concentration
target substance
temperature
gas
insecticidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021198353A
Other languages
Japanese (ja)
Inventor
明大 宮ノ下
Akita Miyanoshita
裕明 北澤
Hiroaki Kitazawa
博章 山本
Hiroaki Yamamoto
林 寧
Lin Ning
野分 土方
Nowaki Hijikata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsumura and Co
National Agriculture and Food Research Organization
Original Assignee
Tsumura and Co
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsumura and Co, National Agriculture and Food Research Organization filed Critical Tsumura and Co
Priority to CN202210015844.8A priority Critical patent/CN114711204A/en
Publication of JP2022106655A publication Critical patent/JP2022106655A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Catching Or Destruction (AREA)

Abstract

To provide a low-oxygen-concentration insecticidal method and an insecticidal device, which enable insecticidal and ovicidal treatments for a plant or a crude drug in a large amount of 10 kg or more to be provided in a short period of time while maintaining the quality of the plant or the crude drug.SOLUTION: An insecticidal method includes: a low-oxygen-concentration gas substitution step of setting oxygen concentration to be 3% or less by substituting inert gas for atmospheric air in a sealed space in which an object substance, that is, a plant or a crude drug in an amount of 10 kg or more is stored; a gas temperature control step of controlling the temperature of low-oxygen-concentration gas; and a substance temperature control step of setting the temperature of the object substance to be 30°C or more. An apparatus is used for the insecticidal method.SELECTED DRAWING: Figure 1

Description

本発明は植物又は生薬における低酸素濃度殺虫法及びそれに用いる装置に関する。 The present invention relates to a hypoxic insecticide method for plants or crude drugs and an apparatus used therein.

薬剤を使用しない低酸素濃度殺虫処理による殺虫技術(低酸素濃度殺虫法)は、臭化メチルやリン化アルミニウムくん蒸の代替殺虫技術として知られている。低酸素濃度殺虫法では、生薬等の殺虫対象物に対し、一定期間低酸素環境負荷をかけることで、成虫のみならず幼虫や卵を殺虫する。 The insecticidal technique by low oxygen concentration insecticidal treatment without using chemicals (low oxygen concentration insecticidal method) is known as an alternative insecticidal technique for fumigation of methyl bromide and aluminum phosphide. In the low oxygen concentration insecticidal method, not only adults but also larvae and eggs are killed by applying a low oxygen environmental load to an insecticidal object such as a crude drug for a certain period of time.

低酸素濃度殺虫法について、非特許文献1には、害虫タバコシバンムシ、コクゾウがついた乾燥標本を、酸素濃度0.1%未満、30℃を維持する空間に3週間置いたところ、処理後約3か月経過しても、害虫の再発生がなかったことが記載されている。 Regarding the low oxygen concentration insecticidal method, Non-Patent Document 1 describes that a dry specimen with the pest insects Tobacco beetle and Kokuzo was placed in a space where the oxygen concentration was less than 0.1% and maintained at 30 ° C. for 3 weeks. It is stated that there was no recurrence of pests even after 3 months.

非特許文献2には、害虫コクゾウムシの卵、幼虫、蛹を含む約3gの被害玄米を、脱酸素剤による小密閉空間脱酸素環境に30℃で3か月置いたところ、羽化数はゼロであったことが記載されている。 In Non-Patent Document 2, about 3 g of damaged brown rice containing eggs, larvae, and pupae of the pest insect Maize weevil was placed in a small enclosed space deoxidizing environment with an oxygen scavenger at 30 ° C for 3 months, and the number of emergence was zero. It is stated that there was.

非特許文献3には、小麦全粒粉1gにタバコシバンムシ、コクヌストモドキ、ノシメマダラメイガのそれぞれ20卵を入れた小型容器、又はコクゾウムシを事前に2日間産卵させた(成虫500個体/玄米100g)玄米1gを入れた小型容器をアクリル製の円筒形容器の中に入れ密封したあと、内部を窒素ガスで置換し酸素濃度を0.1%とし、容器内の相対湿度が70%以上になるように調整した後、これらの容器を30℃の部屋に置き、各試験区の2、4、7、10、14日間曝露した後に開封し、コクゾウムシ以外の3種は孵化幼虫数、コクゾウムシは羽化成虫数で殺卵効果を評価したところ、試験に用いた4種において最も強い低酸素耐性を示した種は、タバコシバンムシであり、100%殺卵には14日間の処理が必要であり、コクゾウムシでは7日間、コクヌストモドキとノシメマダラメイガは2日間で100%殺卵が可能であったことが記載されている。 In Non-Patent Document 3, 1 g of whole wheat flour is contained in a small container containing 20 eggs each of red flour beetle, red flour beetle, and Indianmeal moth, or maize weevil is spawned for 2 days in advance (500 adults / 100 g brown rice) 1 g of brown rice. After putting the small container containing the weevil in an acrylic cylindrical container and sealing it, replace the inside with nitrogen gas to make the oxygen concentration 0.1% and adjust the relative humidity inside the container to 70% or more. After that, these containers were placed in a room at 30 ° C and opened after exposure for 2, 4, 7, 10 and 14 days in each test plot. When the egg-killing effect was evaluated, the species that showed the strongest hypoxia tolerance among the four species used in the test was the Indianmeal moth, which required 14 days of treatment for 100% egg-killing, and 7 days for the maize weevil. , Maize weevil and Indianmeal moth are described to have been able to kill 100% of their eggs in 2 days.

非特許文献4にも、非特許文献3と同一グループにより、非特許文献3とほぼ同一内容が開示されている。 Non-Patent Document 4 also discloses substantially the same contents as Non-Patent Document 3 by the same group as Non-Patent Document 3.

特許文献1には、真空処理と窒素圧入とを繰り返して、文化財等の被処理材に寄生する害虫を窒息させる方法と装置が記載されている。 Patent Document 1 describes a method and an apparatus for suffocating pests parasitizing a material to be treated such as cultural properties by repeating vacuum treatment and nitrogen press-fitting.

非特許文献1及び2に記載されているように、低酸素濃度殺虫処理の際に、雰囲気の温度を30℃に維持することは行われていたが、被処理物の温度に着目した報告はない。また、10kg以上の植物又は生薬の処理に適用した低酸素濃度殺虫法はこれまで報告されていない。 As described in Non-Patent Documents 1 and 2, the temperature of the atmosphere was maintained at 30 ° C. during the low oxygen concentration insecticidal treatment, but there is a report focusing on the temperature of the object to be treated. do not have. In addition, a hypoxic insecticide method applied to the treatment of plants of 10 kg or more or crude drugs has not been reported so far.

特開2017-127294号公報JP-A-2017-127294

木川りか他;窒素等不活性ガスによる文化財殺虫処理装置の試作と処理例;保存科学、38号、1-8頁(1999年)Rika Kikawa et al .; Prototype and treatment example of a cultural property insecticidal treatment device using an inert gas such as nitrogen; Conservation Science, No. 38, pp. 1-8 (1999) 小野寺裕子他;〔報告〕低酸素濃度殺虫法-25℃,27.5℃,30℃における処理期間の検討-;保存科学、54号、161-170頁(2015年)Yuko Onodera et al .; [Report] Insecticide with low oxygen concentration-Examination of treatment period at -25 ° C, 27.5 ° C, 30 ° C-; Conservation Science, No. 54, pp. 161-170 (2015) 宮ノ下明大他;CA処理による貯蔵食品害虫の殺卵効果;都市有害生物管理学会第41回大会講演要旨集、9頁Meiji University Miyanoshita et al .; Egg-killing effect of stored food pests by CA treatment; Abstracts of the 41st Annual Meeting of the Society for Urban Pest Management, p. 9 北澤裕明他;CA処理を用いた貯蔵生薬害虫の殺卵処理;日本包装学会第29回年次大会講演予稿集、52-53頁(発表番号e-06)Hiroaki Kitazawa et al .; Egg-killing treatment of stored crude drug pests using CA treatment; Proceedings of the 29th Annual Meeting of the Packaging Society of Japan, pp. 52-53 (Presentation No. e-06)

本発明は、10kg以上の大量の植物又は生薬における殺虫及び殺卵を、植物又は生薬の品質を保持しながらも短期間で行うことができる低酸素濃度殺虫法及び殺虫装置を提供することを目的とする。 An object of the present invention is to provide a low oxygen concentration insecticidal method and an insecticidal apparatus capable of killing insects and eggs in a large amount of plants or crude drugs of 10 kg or more in a short period of time while maintaining the quality of the plants or crude drugs. And.

本発明の要旨は以下のとおりである。
(1)10kg以上の植物又は生薬である対象物質が保管されている密閉空間の大気を不活性ガスで置換し、酸素濃度を3%以下にする、低酸素濃度気体への置換工程と、
前記低酸素濃度気体の温度を調整する気体温度調整工程と、
前記対象物質の温度を30℃以上にする物質温度調整工程と、
を含む殺虫方法。
(2)前記気体温度調整工程において、前記低酸素濃度気体の温度を35~40℃に調整する前記(1)に記載の殺虫方法。
(3)前記物質温度調整工程において、前記対象物質の周辺の前記低酸素濃度気体を集気し、前記対象物質に前記低酸素濃度気体を均一に供給する集気供給機構を用い、前記対象物質の温度を30℃以上にする前記(1)又は(2)に記載の殺虫方法。
(4)前記物質温度調整工程において、前記対象物質の周辺の排気を積極的に行うことにより、前記対象物質に前記低酸素濃度気体を均一に供給する排気機構を用い、前記対象物質の温度を30℃以上にする前記(1)又は(2)に記載の殺虫方法。
(5)前記集気供給機構又は前記排気機構が、前記対象物質に挿入し、前記低酸素濃度気体を所望の圧力で前記対象物質に供給する供給ノズルを用いる前記(3)又は(4)に記載の殺虫方法。
(6)前記供給ノズルが、前記低酸素濃度気体が前記対象物質へと供給されるための通気部を有し、前記通気部は前記対象物質が侵入しない程度の穴又はメッシュを用いる前記(5)に記載の殺虫方法。
(7)前記通気部が、前記供給ノズルの先端よりに設置される前記(6)に記載の殺虫方法。
(8)加熱手段を備えた送風機により、加熱された前記低酸素濃度気体を前記対象物質にあてる前記(1)~(7)のいずれかに記載の殺虫方法。
(9)加熱手段を備えた装置により、前記対象物質を加熱する前記(1)~(8)のいずれかに記載の殺虫方法。
(10)前記対象物質又は前記対象物質周辺の酸素濃度を測る酸素濃度測定工程を有し、 前記置換工程は、前記対象物質又は前記対象物質周辺の酸素濃度に基づき前記低酸素濃度気体の供給量を調節する前記(1)~(9)のいずれかに記載の殺虫方法。
(11)前記対象物質又は前記対象物質周辺の温度を測る温度測定工程を有し、
前記気体温度調整工程は、前記対象物質又は前記対象物質周辺の温度に基づき前記低酸素濃度気体の温度を調節する前記(1)~(10)のいずれかに記載の殺虫方法。
(12)前記置換工程は、前記酸素濃度測定工程により、前記不活性ガスの供給時間を調節する前記(10)又は(11)に記載の殺虫方法。
(13)前記気体温度調整工程は、前記温度測定工程により、前記低酸素濃度気体の温度を調節する(11)又は(12)に記載の殺虫方法。
(14)前記物質温度調整工程は、前記温度測定工程により、工程時間を調節する前記(11)~(13)のいずれかに記載の殺虫方法。
(15)前記置換工程は、前記密閉空間が密閉空間外に比べて陽圧になるよう、前記不活性ガスを流入する前記(1)~(14)のいずれかに記載の殺虫方法。
(16)前記置換工程は、前記密閉空間への前記不活性ガスの流入と前記低酸素濃度気体の排出とを積極的に行う前記(1)~(15)のいずれかに記載の殺虫方法。
(17)前記置換工程は、前記密閉空間に第一密閉空間と前記第一密閉空間の内側に第二密閉空間とを設け、前記第二密閉空間内に前記対象物質を保管し、
前記第二密閉空間内に前記不活性ガスを流入し、
前記第二密閉空間内の前記低酸素濃度気体の酸素濃度は、前記第一密閉空間内の酸素濃度に比べ、低く維持される前記(1)~(16)のいずれかに記載の殺虫方法。
(18)前記置換工程は、前記第二密閉空間内の圧力が前記第一密閉空間内の圧力に比べて陽圧になるよう、前記不活性ガスを流入する前記(17)に記載の殺虫方法。
(19)前記置換工程は、前記密閉空間内の酸素を吸着する酸素吸着工程を有する前記(1)~(18)のいずれかに記載の殺虫方法。
(20)前記物質温度調整工程は、3日~3週間継続される前記(1)~(19)のいずれかに記載の殺虫方法。
The gist of the present invention is as follows.
(1) A step of replacing the atmosphere in a closed space where 10 kg or more of a plant or a target substance as a crude drug is stored with an inert gas to reduce the oxygen concentration to 3% or less, and a step of replacing with a low oxygen concentration gas.
A gas temperature adjusting step for adjusting the temperature of the low oxygen concentration gas and
A substance temperature adjustment step of raising the temperature of the target substance to 30 ° C. or higher, and
Insecticidal methods including.
(2) The insecticidal method according to (1) above, wherein in the gas temperature adjusting step, the temperature of the low oxygen concentration gas is adjusted to 35 to 40 ° C.
(3) In the substance temperature adjusting step, the target substance is used by using an air collecting supply mechanism that collects the low oxygen concentration gas around the target substance and uniformly supplies the low oxygen concentration gas to the target substance. The insecticidal method according to (1) or (2) above, wherein the temperature of the above-mentioned is 30 ° C. or higher.
(4) In the substance temperature adjusting step, the temperature of the target substance is adjusted by using an exhaust mechanism that uniformly supplies the low oxygen concentration gas to the target substance by actively exhausting the periphery of the target substance. The insecticidal method according to (1) or (2) above, wherein the temperature is 30 ° C. or higher.
(5) In the above (3) or (4), the air collecting supply mechanism or the exhaust mechanism uses a supply nozzle that is inserted into the target substance and supplies the low oxygen concentration gas to the target substance at a desired pressure. The described insecticidal method.
(6) The supply nozzle has a ventilation portion for supplying the low oxygen concentration gas to the target substance, and the ventilation portion uses a hole or mesh to the extent that the target substance does not enter. ) The insecticidal method described in.
(7) The insecticidal method according to (6), wherein the vent is installed from the tip of the supply nozzle.
(8) The insecticidal method according to any one of (1) to (7) above, wherein the low oxygen concentration gas heated by a blower provided with a heating means is applied to the target substance.
(9) The insecticidal method according to any one of (1) to (8) above, wherein the target substance is heated by an apparatus provided with a heating means.
(10) It has an oxygen concentration measuring step for measuring the oxygen concentration of the target substance or the vicinity of the target substance, and the replacement step is a supply amount of the low oxygen concentration gas based on the oxygen concentration of the target substance or the vicinity of the target substance. The insecticidal method according to any one of (1) to (9) above.
(11) It has a temperature measuring step of measuring the temperature of the target substance or the vicinity of the target substance.
The insecticidal method according to any one of (1) to (10) above, wherein the gas temperature adjusting step adjusts the temperature of the low oxygen concentration gas based on the temperature of the target substance or the vicinity of the target substance.
(12) The insecticidal method according to (10) or (11), wherein the replacement step adjusts the supply time of the inert gas by the oxygen concentration measuring step.
(13) The insecticidal method according to (11) or (12), wherein the gas temperature adjusting step adjusts the temperature of the low oxygen concentration gas by the temperature measuring step.
(14) The insecticidal method according to any one of (11) to (13) above, wherein the substance temperature adjusting step adjusts the step time by the temperature measuring step.
(15) The insecticidal method according to any one of (1) to (14) above, wherein the replacement step is a method of inflowing the inert gas so that the closed space has a positive pressure as compared with the outside of the closed space.
(16) The insecticidal method according to any one of (1) to (15) above, wherein the replacement step positively inflows the inert gas into the closed space and discharges the low oxygen concentration gas.
(17) In the replacement step, a first closed space is provided in the closed space and a second closed space is provided inside the first closed space, and the target substance is stored in the second closed space.
The inert gas flows into the second enclosed space,
The insecticidal method according to any one of (1) to (16), wherein the oxygen concentration of the low oxygen concentration gas in the second closed space is maintained lower than the oxygen concentration in the first closed space.
(18) The insecticidal method according to (17), wherein in the replacement step, the inert gas is introduced so that the pressure in the second closed space becomes a positive pressure as compared with the pressure in the first closed space. ..
(19) The insecticidal method according to any one of (1) to (18) above, wherein the replacement step includes an oxygen adsorption step of adsorbing oxygen in the closed space.
(20) The insecticidal method according to any one of (1) to (19) above, wherein the substance temperature adjusting step is continued for 3 days to 3 weeks.

(21)(a)密閉空間を有する処理庫と、
(b)密閉空間の大気を不活性ガスで置換し、酸素濃度を3%以下にするための酸素濃度調整手段と、
(c)密閉空間の気体の温度を調整するための気体温度調整手段と、
(d)前記処理庫内に設けられ、10kg以上の植物又は生薬である対象物質を収納しうる通気性の対象物質収納容器と、
(e)(i)前記対象物質の周辺の低酸素濃度気体を集気し、前記対象物質に前記低酸素濃度気体を均一に供給する集気供給機構、
(ii)前記対象物質の周辺の排気を積極的に行うことにより、前記対象物質に前記低酸素濃度気体を均一に供給する排気機構、
(iii)低酸素濃度気体を加熱して前記対象物質にあてるための、加熱手段を備えた送風機、及び
(iv)前記対象物質を加熱するための、加熱手段を備えた装置
から選ばれる少なくとも1つの手段と、
を有する殺虫装置。
(22)前記集気供給機構が、前記対象物質に挿入し、前記低酸素濃度気体を所望の圧力で前記対象物質に供給する供給ノズルを有する前記(21)に記載の殺虫装置。
(23)前記供給ノズルが、前記低酸素濃度気体が前記対象物質へと供給されるための通気部を有し、前記通気部は前記対象物質が侵入しない程度の穴又はメッシュを用いる前記(22)に記載の殺虫装置。
(24)前記通気部が、前記供給ノズルの先端よりに設置される前記(23)に記載の殺虫装置。
(25)前記対象物質又は前記対象物質周辺の酸素濃度を測る酸素濃度測定手段を有する前記(21)~(24)のいずれかに記載の殺虫装置。
(26)前記対象物質又は前記対象物質周辺の温度を測る温度測定手段を有する前記(21)~(25)のいずれかに記載の殺虫装置。
(27)前記酸素濃度調整手段が、前記酸素濃度測定手段により、前記不活性ガスの置換時間を調節する手段を有する前記(25)又は(26)に記載の殺虫装置。
(28)前記気体温度調整手段が、前記温度測定手段により、前記低酸素濃度気体の温度を調節する手段を有する前記(26)又は(27)に記載の殺虫装置。
(29)前記酸素濃度調整手段が、前記密閉空間が密閉空間外に比べて陽圧になるよう、前記不活性ガスを流入する手段を有する前記(21)~(28)のいずれかに記載の殺虫装置。
(30)前記酸素濃度調整手段が、前記密閉空間への前記不活性ガスの流入と前記低酸素濃度気体の排出とを積極的に行う手段を有する前記(21)~(29)のいずれかに記載の殺虫装置。
(31)前記酸素濃度調整手段が、前記密閉空間に、第一密閉空間と前記第一密閉空間の内側に第二密閉空間とを設け、前記第二密閉空間内に前記対象物質を保管し、
前記第二密閉空間内に前記不活性ガスを流入し、
前記第二密閉空間内の前記低酸素濃度気体の酸素濃度は、前記第一密閉空間内の酸素濃度に比べ、低く維持される手段を有する前記(21)~(30)のいずれかに記載の殺虫装置。
(32)前記酸素濃度調整手段が、前記第二密閉空間内の圧力が前記第一密閉空間内の圧力に比べて陽圧になるよう、前記不活性ガスを流入する手段を有する前記(31)に記載の殺虫装置。
(33)前記酸素濃度調整手段が、前記密閉空間内の酸素を吸着する手段を有する前記(21)~(32)のいずれかに記載の殺虫装置。
(34)前記対象物質の温度を30℃以上に3日~3週間維持する手段を有する前記(21)~(33)のいずれかに記載の殺虫装置。
(21) (a) A processing chamber having a closed space and
(B) An oxygen concentration adjusting means for substituting the atmosphere of the closed space with an inert gas to reduce the oxygen concentration to 3% or less.
(C) Gas temperature adjusting means for adjusting the temperature of gas in a closed space,
(D) A breathable target substance storage container provided in the processing chamber and capable of storing a target substance of 10 kg or more of a plant or a crude drug.
(E) (i) An air collecting supply mechanism that collects the low oxygen concentration gas around the target substance and uniformly supplies the low oxygen concentration gas to the target substance.
(ii) An exhaust mechanism that uniformly supplies the low oxygen concentration gas to the target substance by actively exhausting the vicinity of the target substance.
(iii) A blower equipped with a heating means for heating a low oxygen concentration gas and hitting the target substance, and
(iv) At least one means selected from an apparatus equipped with a heating means for heating the target substance, and
Insecticide device with.
(22) The insecticidal apparatus according to (21), wherein the air collecting supply mechanism has a supply nozzle that is inserted into the target substance and supplies the low oxygen concentration gas to the target substance at a desired pressure.
(23) The supply nozzle has a ventilation portion for supplying the low oxygen concentration gas to the target substance, and the ventilation portion uses a hole or mesh to the extent that the target substance does not enter. ) The insecticidal device described in.
(24) The insecticidal device according to (23), wherein the vent is installed from the tip of the supply nozzle.
(25) The insecticidal apparatus according to any one of (21) to (24) above, which has an oxygen concentration measuring means for measuring the oxygen concentration of the target substance or the vicinity of the target substance.
(26) The insecticidal apparatus according to any one of (21) to (25) above, which has a temperature measuring means for measuring the temperature of the target substance or the vicinity of the target substance.
(27) The insecticidal apparatus according to (25) or (26), wherein the oxygen concentration adjusting means has a means for adjusting the replacement time of the inert gas by the oxygen concentration measuring means.
(28) The insecticidal apparatus according to (26) or (27), wherein the gas temperature adjusting means has a means for adjusting the temperature of the low oxygen concentration gas by the temperature measuring means.
(29) The above-mentioned (21) to (28), wherein the oxygen concentration adjusting means has a means for inflowing the inert gas so that the closed space has a positive pressure as compared with the outside of the closed space. Insecticide.
(30) Any of the above (21) to (29), wherein the oxygen concentration adjusting means has a means for positively inflowing the inert gas into the closed space and discharging the low oxygen concentration gas. The insecticidal device described.
(31) The oxygen concentration adjusting means provides a first closed space and a second closed space inside the first closed space in the closed space, and stores the target substance in the second closed space.
The inert gas flows into the second enclosed space,
The oxygen concentration of the low oxygen concentration gas in the second closed space is described in any one of (21) to (30), which has a means for maintaining the oxygen concentration in the first closed space lower than the oxygen concentration in the first closed space. Insecticide.
(32) The oxygen concentration adjusting means has a means for inflowing the inert gas so that the pressure in the second closed space becomes a positive pressure as compared with the pressure in the first closed space (31). The insecticidal device described in.
(33) The insecticidal apparatus according to any one of (21) to (32), wherein the oxygen concentration adjusting means has a means for adsorbing oxygen in the enclosed space.
(34) The insecticidal apparatus according to any one of (21) to (33) above, which has a means for maintaining the temperature of the target substance at 30 ° C. or higher for 3 days to 3 weeks.

本発明によれば、10kg以上の大量の植物又は生薬における殺虫及び殺卵を、植物又は生薬の品質を保持しながらも短期間で行うことができる。 According to the present invention, insecticide and egg killing in a large amount of plants or crude drugs of 10 kg or more can be carried out in a short period of time while maintaining the quality of the plants or crude drugs.

図1は、対象物質の周辺の低酸素濃度気体を集気し、前記対象物質に前記低酸素濃度気体を均一に供給する集気供給機構の先端に位置する供給ノズルの通気部を前記対象物質に挿入し、前記低酸素濃度気体を前記対象物質に供給するときの状態を示す図である。In FIG. 1, the target substance has a ventilation portion of a supply nozzle located at the tip of an air collection supply mechanism that collects low oxygen concentration gas around the target substance and uniformly supplies the low oxygen concentration gas to the target substance. It is a figure which shows the state when the low oxygen concentration gas is supplied to the target substance by being inserted into. 図2は、対象物質の周辺の排気を積極的に行うことにより、前記対象物質に前記低酸素濃度気体を均一に供給する排気機構の先端に位置する供給ノズルの通気部を前記対象物質に挿入し、前記低酸素濃度気体を前記対象物質に供給するときの状態を示す図である。In FIG. 2, the ventilation portion of the supply nozzle located at the tip of the exhaust mechanism that uniformly supplies the low oxygen concentration gas to the target substance by actively exhausting the periphery of the target substance is inserted into the target substance. It is a figure which shows the state at the time of supplying the said low oxygen concentration gas to the said target substance. 図3は、供給ノズルの具体的な機構を示す図である。FIG. 3 is a diagram showing a specific mechanism of the supply nozzle. 図4は、対象物質を加熱する加熱手段を対象物質に挿入し、対象物質を加熱して温度調節を行い、低酸素濃度気体は対象物質収納容器の壁面や上部開口部より侵入することで酸素濃度調節を行うときの状態を示す図である。In FIG. 4, a heating means for heating the target substance is inserted into the target substance, the target substance is heated to control the temperature, and the low oxygen concentration gas invades through the wall surface or the upper opening of the target substance storage container to obtain oxygen. It is a figure which shows the state at the time of performing concentration adjustment. 図5は、精油含量測定試験の結果を示す図である。FIG. 5 is a diagram showing the results of the essential oil content measurement test. 図6は、切り干し大根の官能評価結果を示す図である。FIG. 6 is a diagram showing the sensory evaluation results of dried daikon radish. 図7は、乾燥ネギの官能試験結果を示す図である。FIG. 7 is a diagram showing the results of a sensory test of dried green onions. 図8は、実施例6の試験結果を示す図である。FIG. 8 is a diagram showing the test results of Example 6. 図9は、実施例7の試験結果を示す図である。FIG. 9 is a diagram showing the test results of Example 7. 図10は、実施例8の試験結果を示す図である。FIG. 10 is a diagram showing the test results of Example 8.

本発明の対象物質としては、害虫により加害される植物又は生薬であれば、特に制限はなく、例えば農産物や食品、具体的には、米、麦、トウモロコシ等の穀類、大豆、小豆等の豆類、栗等の果樹果実類、キャッサバ、甘薯等のイモ類、シイタケ、カツオブシ等の乾物類、菊、蘭、小松菜等の花卉、野菜類、絹、綿等の繊維類、コショー、チョージ等の香辛料、生薬等の薬効性草木類、輸入木材等の木材類、これらの加工品(例えば米粉、小麦粉、キャッサバ粉、菓子、ビスケット、マカロニ、粉末飲料、紙袋等)や前記穀類、豆類等の種子等が挙げられる。 The target substance of the present invention is not particularly limited as long as it is a plant or a raw medicine that is harmed by pests. , Fruits such as chestnuts, potatoes such as cassava and sweet potatoes, dried foods such as shiitake and corn, flowers such as chrysanthemums, orchids and komatsuna, vegetables, fibers such as silk and cotton, spices such as kosho and choji. , Medicinal plants such as raw medicine, wood such as imported wood, processed products (for example, rice flour, wheat flour, cassaba flour, confectionery, biscuits, macaroni, powdered beverages, paper bags, etc.) and seeds of the grains, beans, etc. Can be mentioned.

本発明の対象となる害虫は、対象物質である植物又は生薬の種類により異なり、特に制限はないが、例えばコクゾウムシ、コクヌストモドキ、メイガ(例えば、ノシメマダラメイガ)、タバコシバンムシ、ヒラタチャタテ、クリシギゾウムシ等の他、ダニ、ハエやハチ、アリやシロアリ等が挙げられる。 The target pests of the present invention vary depending on the type of plant or raw medicine that is the target substance, and are not particularly limited. In addition to these, ticks, flies and bees, ants and termites can be mentioned.

本発明の殺虫方法は、有害昆虫(卵、幼虫、さなぎ、成虫)やダニ等の害虫が潜んでいるか、又はそのおそれのある植物又は生薬である対象物質10kg以上、好ましくは2000kg以下、より好ましくは80~1000kgを対象物質収納容器、例えばフレキシブルコンテナバッグ、トレー、ポリプロピレン袋、ポリエチレン袋、ベールや麻袋に入れ、密閉空間を有する処理庫(例えば、生薬保管庫)内で、前記密閉空間の大気を不活性ガス(例えば、窒素ガス、アルゴンガス)で置換し、酸素濃度を3%以下にする、低酸素濃度気体への置換工程と、
前記低酸素濃度気体の温度を調整する気体温度調整工程と、
前記対象物質の温度を30℃以上にする物質温度調整工程と、
を含む。
In the insecticidal method of the present invention, a target substance of 10 kg or more, preferably 2000 kg or less, which is a plant or a crude drug in which harmful insects (eggs, larvae, sardines, adults) and pests such as mites are lurking or may be lurking, is more preferable. Put 80 to 1000 kg in a target substance storage container, for example, a flexible container bag, a tray, a polypropylene bag, a polyethylene bag, a veil or a hemp bag, and in a processing chamber having a closed space (for example, a crude drug storage), the atmosphere in the closed space. With an inert gas (for example, nitrogen gas, argon gas) to reduce the oxygen concentration to 3% or less, and a replacement step with a low oxygen concentration gas.
A gas temperature adjusting step for adjusting the temperature of the low oxygen concentration gas and
A substance temperature adjustment step of raising the temperature of the target substance to 30 ° C. or higher, and
including.

本発明に用いる対象物質収納容器は、通気性があることが好ましい。理由として、生薬の湿度がこもり、品質劣化をしてしまうことを防止する点がある。また、本発明において対象物質収納容器内の非低酸素濃度気体を排気する際に、低酸素濃度気体が対象物質収納容器外から対象物質収納容器の壁を通し、対象物質に到達しやすくなる点がある。更に、対象物質収納容器内に低酸素濃度気体を送気した際に、対象物質収納容器内に存在する非低酸素濃度気体が対象物質収納容器の壁を通し、対象物質収納容器外に排出しやすくなる点が挙げられる。ここで、「通気性」とは、対象物質収納容器の壁を通し、対象物質収納容器内外の気体が行き来することをいう。対象物質収納容器の材質としては、好ましくはポリプロピレンやポリエチレン、麻、綿、紙などが挙げられる。また、対象物質収納容器の材質自体に通気性はなくとも、織や孔などの加工を施すことにより、通気性が良ければ材質はこれらに限定されない。一方、対象物質収納容器に通気性がない、あるいは通気性が低い場合においては、本発明の物質温度調整工程において、低酸素濃度気体を物質収納容器内に強制的に送気あるいは排気することで、対象物質周辺の温度と湿度を調整することができる。 The target substance storage container used in the present invention is preferably breathable. The reason is that the humidity of the crude drug is prevented from being trapped and the quality is deteriorated. Further, in the present invention, when the non-low oxygen concentration gas in the target substance storage container is exhausted, the low oxygen concentration gas easily reaches the target substance from outside the target substance storage container through the wall of the target substance storage container. There is. Furthermore, when a low oxygen concentration gas is sent into the target substance storage container, the non-low oxygen concentration gas existing in the target substance storage container passes through the wall of the target substance storage container and is discharged to the outside of the target substance storage container. There is a point that makes it easier. Here, "breathability" means that gas inside and outside the target substance storage container moves back and forth through the wall of the target substance storage container. The material of the target substance storage container is preferably polypropylene, polyethylene, linen, cotton, paper or the like. Further, even if the material of the target substance storage container itself is not breathable, the material is not limited to these as long as the material itself has good breathability by processing such as weaving and holes. On the other hand, when the target substance storage container is not breathable or has low breathability, a low oxygen concentration gas is forcibly sent or exhausted into the substance storage container in the substance temperature adjustment step of the present invention. , The temperature and humidity around the target substance can be adjusted.

図1~4は、それぞれ本発明の一実施形態を示すものであり、これらを用いて本発明を説明する。
前記低酸素濃度気体への置換工程では、酸素濃度調整部6と処理庫1の間に存在するバルブを開き、酸素濃度調整部6から不活性ガス(窒素ガス等)を処理庫1内に圧入する。
FIGS. 1 to 4 show one embodiment of the present invention, respectively, and the present invention will be described with reference to these.
In the step of replacing with a low oxygen concentration gas, the valve existing between the oxygen concentration adjusting unit 6 and the processing chamber 1 is opened, and an inert gas (nitrogen gas or the like) is press-fitted into the processing chamber 1 from the oxygen concentration adjusting unit 6. do.

本発明による殺虫及び殺卵効果を達成するためには、処理庫1内の酸素濃度を3%以下にすることが必要であり、通常2%以下、好ましくは1%以下、より好ましくは0.6%以下、更に好ましくは0.1%以下にする。
前記気体温度調整工程では、気体温度調整部7で雰囲気気体(窒素ガス等)の温度を調整する。気体温度調整部7は例えばボイラーである。
In order to achieve the insecticidal and egg-killing effects according to the present invention, it is necessary to reduce the oxygen concentration in the processing chamber 1 to 3% or less, usually 2% or less, preferably 1% or less, and more preferably 0. It is 6% or less, more preferably 0.1% or less.
In the gas temperature adjusting step, the gas temperature adjusting unit 7 adjusts the temperature of the atmospheric gas (nitrogen gas or the like). The gas temperature adjusting unit 7 is, for example, a boiler.

雰囲気気体の低酸素濃度気体の温度は、対象物質8の温度に応じて適宜変更することができるが、通常30℃以上、好ましくは35~40℃である。
前記物質温度調整工程では、対象物質8の温度を30℃以上、好ましくは30~40℃にする。
The temperature of the low oxygen concentration gas of the atmospheric gas can be appropriately changed according to the temperature of the target substance 8, but is usually 30 ° C. or higher, preferably 35 to 40 ° C.
In the substance temperature adjusting step, the temperature of the target substance 8 is set to 30 ° C. or higher, preferably 30 to 40 ° C.

従来行われているように、雰囲気気体の低酸素濃度気体の温度を30℃に維持するだけでは、10kg以上の大量の対象物質全体の温度を30℃以上にするのは困難であり、短期間で十分な殺虫及び殺卵効果を得るのは困難である。 It is difficult to raise the temperature of the entire target substance of 10 kg or more to 30 ° C or higher simply by maintaining the temperature of the low oxygen concentration gas of the atmospheric gas at 30 ° C, as is conventionally performed, and for a short period of time. It is difficult to obtain sufficient insecticidal and egg-killing effects.

対象物質の温度を30℃以上にする手段としては特に制限はなく、例えば、
(1)前記気体温度調整工程において、前記低酸素濃度気体の温度を35~40℃に調整する、
(2)前記物質温度調整工程において、前記対象物質の周辺の前記低酸素濃度気体を集気し、前記対象物質に前記低酸素濃度気体を均一に供給する集気供給機構を用い、前記対象物質の温度を30℃以上にする、
(3)前記物質温度調整工程において、前記対象物質の周辺の排気を積極的に行うことにより、前記対象物質に前記低酸素濃度気体を均一に供給する排気機構を用い、前記対象物質の温度を30℃以上にする、
(4)加熱手段を備えた送風機により、加熱された前記低酸素濃度気体を前記対象物質にあてる、
(5)加熱手段を備えた装置により、前記対象物質を加熱する、
等の手段が挙げられ、必要に応じて、これらの2つ以上の手段を組み合わせることができる。
There is no particular limitation as a means for raising the temperature of the target substance to 30 ° C. or higher, for example.
(1) In the gas temperature adjusting step, the temperature of the low oxygen concentration gas is adjusted to 35 to 40 ° C.
(2) In the substance temperature adjusting step, the target substance is used by using an air collecting supply mechanism that collects the low oxygen concentration gas around the target substance and uniformly supplies the low oxygen concentration gas to the target substance. To raise the temperature to 30 ° C or higher,
(3) In the substance temperature adjusting step, the temperature of the target substance is adjusted by using an exhaust mechanism that uniformly supplies the low oxygen concentration gas to the target substance by actively exhausting the periphery of the target substance. Bring to 30 ° C or higher,
(4) The low oxygen concentration gas heated by a blower provided with a heating means is applied to the target substance.
(5) The target substance is heated by an apparatus equipped with a heating means.
Etc., and if necessary, these two or more means can be combined.

前記手段(2)における実施形態を図1及び3に示す。集気供給機構3が、対象物質8に挿入し、前記低酸素濃度気体を所望の圧力で対象物質8に供給する供給ノズル4を用いる。また、供給ノズル4の実施形態を図3に示す。供給ノズル4は、前記低酸素濃度気体が対象物質8へと供給されるための通気部42を有し、通気部42は対象物質8が侵入しない程度の穴又はメッシュを用いることが好ましい。前記通気部は、前記供給ノズルの先端よりに設置することが好ましく、対象物質収納容器2の下部に設置することが好ましい。 The embodiment in the means (2) is shown in FIGS. 1 and 3. The air collecting supply mechanism 3 uses a supply nozzle 4 that is inserted into the target substance 8 and supplies the low oxygen concentration gas to the target substance 8 at a desired pressure. Further, an embodiment of the supply nozzle 4 is shown in FIG. The supply nozzle 4 preferably has a ventilation portion 42 for supplying the low oxygen concentration gas to the target substance 8, and the ventilation portion 42 preferably uses a hole or a mesh to the extent that the target substance 8 does not enter. The ventilation portion is preferably installed from the tip of the supply nozzle, and is preferably installed at the lower part of the target substance storage container 2.

前記手段(3)における実施形態を図2及び3に示す。排気機構9として、例えば排風機を用いて、排気機構9の先端に位置する供給ノズル4の通気部を対象物質8に挿入し、前記低酸素濃度気体を対象物質8に供給する。前記手段(3)においても、通気部42は、対象物質8が侵入しない程度の穴又はメッシュを用いることが好ましく、供給ノズル4の先端よりに設置されることが好ましい。 The embodiment in the means (3) is shown in FIGS. 2 and 3. As the exhaust mechanism 9, for example, using an exhaust mechanism, the ventilation portion of the supply nozzle 4 located at the tip of the exhaust mechanism 9 is inserted into the target substance 8, and the low oxygen concentration gas is supplied to the target substance 8. Also in the means (3), it is preferable to use a hole or mesh such that the target substance 8 does not enter the ventilation portion 42, and it is preferable that the ventilation portion 42 is installed from the tip of the supply nozzle 4.

送風機能と排風機能を備える送排風機を用いれば、前記手段(2)の集気供給機構3及び(3)の排気機構9に同一装置を用いることができ、適宜切り替えることができる。 If a blower / exhauster having a blower function and an exhaust function is used, the same device can be used for the air collection supply mechanism 3 of the means (2) and the exhaust mechanism 9 of the (3), and can be switched as appropriate.

前記手段(4)において、加熱手段を備えた送風機としては、例えばドライヤー(ブロアー)、シロッコファン、ダクトファンが挙げられる。ドライヤーのように、加圧しながら送風できる送風機においては、送風量や送風口の大きさを調整することで、送風される気体の温度調節が可能である。 In the means (4), examples of the blower provided with the heating means include a dryer (blower), a sirocco fan, and a duct fan. In a blower that can blow air while pressurizing, such as a dryer, the temperature of the blown gas can be adjusted by adjusting the amount of air blown and the size of the air outlet.

前記手段(5)における実施形態を図4に示す。加熱手段10を備えた装置としては、例えばシース管ヒーター、ヒートパイプ、ペルチェ素子が挙げられ、これらは、対象物質8に挿入して用いることができる。 The embodiment of the means (5) is shown in FIG. Examples of the device provided with the heating means 10 include a sheath tube heater, a heat pipe, and a Pelche element, which can be used by being inserted into the target substance 8.

前記手段(1)~(5)において、対象物質を攪拌できる装置を用いることで、短時間で対象物質を所望の温度にすることが可能である。また、攪拌できる装置を用いる場合、図1及び2における集気供給機構3や排気機構9、供給ノズル4のような、積極的な気体調整機構を有さずとも、対象物質収納容器2の通気性を利用することで、対象物質8に対し、低酸素濃度気体を供給することが可能である。 By using the device capable of stirring the target substance in the means (1) to (5), it is possible to bring the target substance to a desired temperature in a short time. Further, when a device capable of stirring is used, the target substance storage container 2 is ventilated without having an active gas adjusting mechanism such as the air collecting supply mechanism 3, the exhaust mechanism 9, and the supply nozzle 4 in FIGS. 1 and 2. By utilizing the properties, it is possible to supply a low oxygen concentration gas to the target substance 8.

前記手段(1)~(5)において、処理庫1あるいは対象物質収納容器2内の酸素濃度や気体温度あるいは対象物質温度を検知し、酸素濃度調整部6や気体温度調整部7、集気供給機構3、加熱手段を備えた送風機、加熱手段10を制御する制御部5を有することで、より効率的に対象物質収納容器2に低酸素濃度気体を供給することができる。対象物質8の温度等が高温となる場合においては、例えば30℃以下の低酸素濃度気体を供給し、対象物質を所望の温度とすることもできる。前記手段(3)において、対象物質収納容器2内の温度は、排風の温度と近似していることから、供給ノズル4に温度センサーを配置してもよい。 In the means (1) to (5), the oxygen concentration, the gas temperature, or the target substance temperature in the processing chamber 1 or the target substance storage container 2 is detected, and the oxygen concentration adjusting unit 6, the gas temperature adjusting unit 7, and the air collecting supply are supplied. By having the mechanism 3, the blower provided with the heating means, and the control unit 5 for controlling the heating means 10, it is possible to more efficiently supply the low oxygen concentration gas to the target substance storage container 2. When the temperature of the target substance 8 becomes high, for example, a gas having a low oxygen concentration of 30 ° C. or lower can be supplied to set the target substance to a desired temperature. In the means (3), since the temperature inside the target substance storage container 2 is close to the temperature of the exhaust air, a temperature sensor may be arranged in the supply nozzle 4.

対象物質が保管されている密閉空間の酸素濃度を3%以下にする手段としては特に制限はなく、例えば、
(1)前記密閉空間が密閉空間外に比べて陽圧になるよう、前記不活性ガスを流入する、(2)前記密閉空間への前記不活性ガスの流入と前記低酸素濃度気体の排出とを積極的に行う、
(3)前記密閉空間に第一密閉空間と前記第一密閉空間の内側に第二密閉空間とを設け、前記第二密閉空間内に前記対象物質を保管し、前記第二密閉空間内に前記不活性ガスを流入し、前記第二密閉空間内の前記低酸素濃度気体の酸素濃度を、前記第一密閉空間内の酸素濃度に比べ、低く維持する、
(4)前記第二密閉空間内の圧力が前記第一密閉空間内の圧力に比べて陽圧になるよう、前記不活性ガスを流入する、
(5)前記密閉空間内の酸素を吸着する酸素吸着工程を設ける、
等の手段が挙げられ、必要に応じて、これらの2つ以上の手段を組み合わせることができる。
There is no particular limitation as a means for reducing the oxygen concentration in the enclosed space where the target substance is stored to 3% or less, for example.
(1) The inert gas flows in so that the closed space has a positive pressure as compared with the outside of the closed space. (2) The inflow of the inert gas into the closed space and the discharge of the low oxygen concentration gas. Actively do,
(3) A first closed space is provided in the closed space and a second closed space is provided inside the first closed space, the target substance is stored in the second closed space, and the target substance is stored in the second closed space. An inert gas is introduced to keep the oxygen concentration of the low oxygen concentration gas in the second closed space lower than the oxygen concentration in the first closed space.
(4) The inert gas is introduced so that the pressure in the second closed space becomes a positive pressure as compared with the pressure in the first closed space.
(5) An oxygen adsorption step for adsorbing oxygen in the enclosed space is provided.
Etc., and if necessary, these two or more means can be combined.

前記手段(1)における実施形態について図1を用いて説明する。酸素濃度調整部6と処理庫1の間に存在するバルブを開き、酸素濃度調整部6から不活性ガス(窒素ガス等)を処理庫1内に圧入する。制御部5により処理庫1の内部の圧力が、処理庫1の外部に比べ、陽圧になるよう、酸素濃度調整部6からの不活性ガスの流入量を調整する。これにより、処理庫1の中に処理庫1の外部からの高酸素濃度の気体の流入を防ぎ、処理庫1内の酸素濃度を低酸素濃度に保つことができる。 The embodiment of the means (1) will be described with reference to FIG. The valve existing between the oxygen concentration adjusting unit 6 and the processing chamber 1 is opened, and the inert gas (nitrogen gas or the like) is press-fitted into the processing chamber 1 from the oxygen concentration adjusting unit 6. The control unit 5 adjusts the inflow amount of the inert gas from the oxygen concentration adjusting unit 6 so that the pressure inside the processing chamber 1 becomes a positive pressure as compared with the outside of the processing chamber 1. As a result, it is possible to prevent the inflow of a gas having a high oxygen concentration from the outside of the processing chamber 1 into the processing chamber 1 and keep the oxygen concentration in the processing chamber 1 at a low oxygen concentration.

前記手段(2)における実施形態について図1を用いて説明する。酸素濃度調整部6と処理庫1の間に存在するバルブを開き、酸素濃度調整部6から不活性ガス(窒素ガス等)を処理庫1内に圧入する。制御部5により処理庫1に積極的に流入させ、更に図示しない排出機構を処理庫1に設け、排出機構より処理庫1内の気体を積極的に排出する。これにより、処理庫1の中に処理庫1の外部からの高酸素濃度の気体が流入した場合に処理庫1内の酸素濃度が上昇するが、処理庫1の内の気体を強制的に排除し、不活性ガスを流入させることで、処理庫1内の酸素濃度を低酸素濃度に保つことができる。 The embodiment of the means (2) will be described with reference to FIG. The valve existing between the oxygen concentration adjusting unit 6 and the processing chamber 1 is opened, and the inert gas (nitrogen gas or the like) is press-fitted into the processing chamber 1 from the oxygen concentration adjusting unit 6. The control unit 5 positively causes the gas to flow into the processing chamber 1, and a discharge mechanism (not shown) is provided in the processing chamber 1, and the gas in the processing chamber 1 is positively discharged from the discharge mechanism. As a result, when a gas having a high oxygen concentration from the outside of the processing chamber 1 flows into the processing chamber 1, the oxygen concentration in the processing chamber 1 rises, but the gas in the processing chamber 1 is forcibly eliminated. Then, by inflowing the inert gas, the oxygen concentration in the processing chamber 1 can be kept at a low oxygen concentration.

前記手段(3)における実施形態について図1を用いて説明する。処理庫1の内部に、図示しない第二の処理庫を設ける。酸素濃度調整部6から不活性ガス(窒素ガス等)を処理庫1内に圧入する。処理庫1内の酸素濃度は、処理庫1外に比べ低く保ち、第二の処理庫内(前記第二密閉空間)の酸素濃度は、処理庫1と第二の処理庫との間(前記第一密閉空間)の酸素濃度に比べ、低く保つ。これにより、処理庫1と第二の処理庫との間の空間(前記第一密閉空間)のおかげで、第二の処理庫は、処理庫1外の気体の流入をより妨げられ、第二の処理庫内(前記第二密閉空間)の酸素濃度をより一定に保てる。よって、第二の処理庫内(前記第二密閉空間)に流入する不活性ガスの流量を少なくすることが可能になる。 The embodiment of the means (3) will be described with reference to FIG. A second processing chamber (not shown) is provided inside the processing chamber 1. An inert gas (nitrogen gas or the like) is press-fitted into the processing chamber 1 from the oxygen concentration adjusting unit 6. The oxygen concentration inside the processing chamber 1 is kept lower than that outside the processing chamber 1, and the oxygen concentration inside the second processing chamber (the second enclosed space) is between the processing chamber 1 and the second processing chamber (the above). Keep it low compared to the oxygen concentration in the first enclosed space). As a result, thanks to the space between the processing chamber 1 and the second processing chamber (the first sealed space), the second processing chamber is more hindered from the inflow of gas outside the processing chamber 1, and the second The oxygen concentration in the processing chamber (the second closed space) can be kept more constant. Therefore, it is possible to reduce the flow rate of the inert gas flowing into the second processing chamber (the second closed space).

前記手段(4)における実施形態について図1を用いて説明する。前記手段(3)と基本的手段は同じである。更に、処理庫1内の圧力は、処理庫1外に比べ陽圧に保ち、第二の処理庫内(前記第二密閉空間)の圧力は、処理庫1と第二の処理庫との間(前記第一密閉空間)の圧力に比べ、陽圧に保つ。これにより、処理庫1と第二の処理庫との間の空間(前記第一密閉空間)のおかげで、第二の処理庫は、処理庫1外の気体の流入をより妨げられ、第二の処理庫内(前記第二密閉空間)の酸素濃度をより一定に保てる。それにより、第二の処理庫内(前記第二密閉空間)に流入する不活性ガスの流量を少なくすることが可能になる。 The embodiment of the means (4) will be described with reference to FIG. The basic means are the same as the means (3). Further, the pressure inside the processing chamber 1 is maintained at a positive pressure as compared with the outside of the processing chamber 1, and the pressure inside the second processing chamber (the second enclosed space) is between the processing chamber 1 and the second processing chamber. Keep the pressure positive compared to the pressure in (the first enclosed space). As a result, thanks to the space between the processing chamber 1 and the second processing chamber (the first sealed space), the second processing chamber is more hindered from the inflow of gas outside the processing chamber 1, and the second The oxygen concentration in the processing chamber (the second closed space) can be kept more constant. As a result, the flow rate of the inert gas flowing into the second processing chamber (the second closed space) can be reduced.

前記手段(5)における実施形態について図1を用いて説明する。処理庫1内に、図示しない酸素吸着部を有する。酸素吸着部は、処理庫1内部の酸素を吸着する。酸素吸着部は、例えば、エージレス、活性炭、ピロガロール等の脱酸素剤が考えられるが、これに限ったものではない。これにより、処理庫1内の酸素濃度を低酸素濃度に保つことができる。よって、第二の処理庫内(前記第二密閉空間)に流入する不活性ガスの流量を少なくすることが可能になる。 The embodiment of the means (5) will be described with reference to FIG. The processing chamber 1 has an oxygen adsorbing portion (not shown). The oxygen adsorbing unit adsorbs oxygen inside the processing chamber 1. The oxygen adsorbing portion may be, for example, an oxygen scavenger such as ageless, activated carbon, or pyrogallol, but is not limited thereto. As a result, the oxygen concentration in the processing chamber 1 can be maintained at a low oxygen concentration. Therefore, it is possible to reduce the flow rate of the inert gas flowing into the second processing chamber (the second closed space).

前記物質温度調整工程は、通常2日~28日間、好ましくは3日~3週間、更に好ましくは3~17日間継続される。 The substance temperature adjusting step is usually continued for 2 days to 28 days, preferably 3 days to 3 weeks, and more preferably 3 to 17 days.

以下、本発明を実施例により詳細に説明するが、本発明はこれにより限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

(実施例1)
温度変化及び酸素濃度変化及び処理期間が、殺虫効果へ与える影響について試験を行った。
(処理昆虫)
コクゾウムシ(成虫)、タバコシバンムシ(成虫)、コクヌストモドキ(成虫)、ヒラタチャタテ(成虫)、ノシメマダラメイガ(幼虫)を対象とした。これらの害虫について、文化財害虫辞典(独立行政法人文化財研究所及び輸入農産物の防虫・くん蒸ハンドブック(サイエンスフォーラム)、図説貯蔵食品の害虫(全国農村教育協会)、貯穀害虫・天敵図鑑(農研機構ホームページ)には、次のように記載されている。コクゾウムシは口吻で穀粒に穴を穿った後に卵を挿入するように生む。孵化した幼虫は、穀粒の中で成長し、蛹となる。蛹は羽化し、茶色の成虫が種皮を食い破って脱出してくる。タバコシバンムシは乾燥動植物質を食物として、表面に産卵し孵化した幼虫は食物中に穿孔し蛹となる。成虫に成長して食物から穿孔して脱出する。これらのタバコシバンムシ及びコクゾウムシの対象物に対し深く穿孔する特徴から、殺虫が困難となることが予想される。コクヌストモドキは穀類の粉などに食入し飼料工場や製粉工場の床面にて観察されることが多く、穀粉やその加工品での混入事例が多いが、薬草、香辛料、動物標本を加害することもある。
(Example 1)
Tests were conducted on the effects of temperature changes, oxygen concentration changes, and treatment periods on the insecticidal effect.
(Processed insects)
The subjects were maize weevil (adult), tobacco beetle (adult), red flour beetle (adult), hiratachatate (adult), and Indianmeal moth (larva). Regarding these pests, the Cultural Property Pest Dictionary (Independent Administrative Institution Cultural Property Research Institute and Handbook of Insect Repellent / Fumigation of Imported Agricultural Products (Science Forum), Pests of Illustrated Stored Foods (National Rural Education Association), Grain Pests / Natural Enemy Picture Book (Agricultural Research Institute) According to the mechanism homepage), the pest insect lays by piercing the grain with a kiss and then inserting an egg. The hatched larva grows in the grain and grows with a pest. The frogs emerge and the brown adult worms break through the seed coat and escape. The tobacco beetle feeds on dried animal and vegetable matter, and the larvae that lay eggs on the surface and hatch become worms. It grows and pierces from food to escape. It is expected that pest insects will be difficult to kill due to the characteristic of deeply piercing the objects of these tobacco beetles and worms. It is often observed on the floor of feed factories and flour mills, and is often mixed with cereal flour and its processed products, but it may also harm herbs, spices, and animal specimens.

ヒラタチャタテはカツオブシ、乾麺、チーズ、ビスケット、穀物粉などを幅広く食害し、一般家屋や食品工場だけでなく医薬品工場にも普通にみられる。穀物粉などの貯蔵食品だけではなく、動物・植物標本などにも加害する。書籍の糊や食品等に発生したカビを食べ、多湿な環境を好む。単為生殖を行い、大量増殖例が報告されている。 Hirata chatate eats a wide range of dried bonito, dried noodles, cheese, biscuits, grain flour, etc., and is commonly found not only in ordinary houses and food factories but also in pharmaceutical factories. It harms not only stored foods such as grain flour but also animal and plant specimens. Eat mold on book glue and food, and prefer a humid environment. Parthenogenesis has been reported in cases of mass proliferation.

ノシメマダラメイガは、玄米、乾燥果実及び香辛料など多くの食品を加害する貯蔵食品害虫であり、混入異物として昆虫では頻度の高い種類であることが知られている(Williams、1964 Ann.Appl.Biol.、53、459-475;Maillis、1997、Handbook of Pest Control)。強い大顎を持ち、容器や包装材などへの穿孔力に優れ梱包内への侵入が可能であることから、梱包内への侵入が可能である。特に幼虫は胚部を外部より食害してゆくことが知られており、穀物や種子生薬への加害が可能である。また、ノシメマダラメイガの幼虫は生薬のトウニン及びタイソウに穿孔して成長し成虫として脱出することが、宮ノ下ら(日本応用動物昆虫学会第51回大会、2007)により報告されていることから、殺虫が困難となることが予想される。 Indianmeal moth is a stored food pest that damages many foods such as brown rice, dried fruits and spices, and is known to be a common type of foreign matter in insects (Williams, 1964 Ann. Appl. Biol). , 53, 459-475; Milelis, 1997, Handbook of Pest Control). It has a strong mandible, has excellent piercing force into containers and packaging materials, and can penetrate into the packaging, so it can penetrate into the packaging. In particular, larvae are known to feed on the embryo from the outside, and can harm grains and seed crude drugs. Insecticide was reported by Miyanoshita et al. (51st Annual Meeting of the Japanese Society of Applied Animal Insects, 2007) that the larvae of Indianmeal moth pierce the crude drugs Tounin and Taisou, grow and escape as adults. Is expected to be difficult.

(処理条件)
(1)酸素濃度3.0%以下、温度30℃、(2)酸素濃度0.6%以下、温度30℃、(3)酸素濃度0.3%以下、温度30℃、(4)酸素濃度0.1%以下、温度30℃に置き、各期間において、殺虫率を求めた。なお、いずれの条件においても、湿度は70%とし、湿度が殺虫率に影響しないように配慮した。
(試験作業手順)
各虫を恒温室内で飼育し、発育ステージを合わせ各20頭×4反復ずつ餌入り飼育ケースに分け、低酸素チャンバー内に配置した。よって、各試験における虫の母数は80とした。飼育ケースには各供試虫の好む餌を同封した。低酸素チャンバー内には湿度維持のため10mL蒸留水をいれたバイアル瓶を置いた。低酸素チャンバーに窒素ガスあるいは窒素ガス及び酸素ガスの混合ガスを充てんし、目的の酸素濃度条件にして密封した。密封した低酸素チャンバーを試験実施温度に設定した恒温室に静置した。
(死亡判定)
各処理条件で処理後、一日後に歩行しない個体を死亡とした。
(殺虫率の算出)
死亡個体数÷80×100として算出した。
(Processing conditions)
(1) Oxygen concentration 3.0% or less, temperature 30 ° C., (2) Oxygen concentration 0.6% or less, temperature 30 ° C., (3) Oxygen concentration 0.3% or less, temperature 30 ° C., (4) Oxygen concentration The insecticidal rate was determined in each period by placing the product at a temperature of 0.1% or less and a temperature of 30 ° C. Under all conditions, the humidity was set to 70% so that the humidity did not affect the insecticidal rate.
(Test work procedure)
Each insect was bred in a constant temperature chamber, and each insect was divided into feeding cases with 20 animals x 4 repetitions at the same development stage, and placed in a hypoxic chamber. Therefore, the population parameter of insects in each test was set to 80. The breeding case was enclosed with the food preferred by each test insect. A vial containing 10 mL of distilled water was placed in the hypoxic chamber to maintain humidity. The low oxygen chamber was filled with nitrogen gas or a mixed gas of nitrogen gas and oxygen gas, and sealed under the desired oxygen concentration conditions. The sealed hypoxic chamber was allowed to stand in a homeothermic chamber set to the test temperature.
(Death judgment)
Individuals who did not walk one day after treatment under each treatment condition were considered dead.
(Calculation of insecticidal rate)
It was calculated as the number of dead individuals ÷ 80 × 100.

(試験結果)
表1に、(1)酸素濃度3.0%以下、温度30℃条件の殺虫率の結果を示す。コクゾウムシ、ノシメマダラメイガは5日目、コクヌストモドキは17日目に殺虫率が100%となった。5~17日の処理で十分な殺虫効果が認められた。
(Test results)
Table 1 shows the results of (1) the insecticidal rate under the conditions of an oxygen concentration of 3.0% or less and a temperature of 30 ° C. The insecticidal rate of Maize weevil and Indianmeal moth was 100% on the 5th day, and that of the red flour beetle was 100% on the 17th day. A sufficient insecticidal effect was observed after 5 to 17 days of treatment.

Figure 2022106655000002
Figure 2022106655000002

表2に、(2)酸素濃度0.6%以下、温度30℃条件の殺虫率の結果を示す。コクヌストモドキ、ヒラタチャタテは2日目、コクゾウムシは4日目、タバコシバンムシは10日目に殺虫率が100%となった。よって、2~10日の間で100%殺虫が実現しており、十分な殺虫効果が認められた。 Table 2 shows the results of (2) the insecticidal rate under the conditions of an oxygen concentration of 0.6% or less and a temperature of 30 ° C. The insecticidal rate was 100% on the 2nd day for the red flour beetle and the flathead beetle, the 4th day for the maize weevil, and the 10th day for the tobacco beetle. Therefore, 100% insecticidal activity was realized within 2 to 10 days, and a sufficient insecticidal effect was confirmed.

Figure 2022106655000003
Figure 2022106655000003

表3に、(3)酸素濃度0.3%以下、温度30℃条件の殺虫率の結果を示す。また、表4に、(4)酸素濃度0.1%以下、温度30℃条件の殺虫率の結果を示す。コクゾウムシとタバコシバンムシは3日目に殺虫率が100%となった。よって、3日間で100%殺虫が実現しており、十分な殺虫効果が認められた。 Table 3 shows the results of (3) the insecticidal rate under the conditions of an oxygen concentration of 0.3% or less and a temperature of 30 ° C. Table 4 shows the results of (4) the insecticidal rate under the conditions of an oxygen concentration of 0.1% or less and a temperature of 30 ° C. The insecticidal rate of maize weevil and tobacco beetle reached 100% on the third day. Therefore, 100% insecticidal activity was realized in 3 days, and a sufficient insecticidal effect was confirmed.

Figure 2022106655000004
Figure 2022106655000004

Figure 2022106655000005
Figure 2022106655000005

処理条件(1)~(4)により、同一温度条件下では、酸素濃度が低いほど、殺虫効果が高い傾向にあることが分かった。酸素濃度は、3.0%以下にすることが必要であり、酸素濃度の調整精度を踏まえて通常2%以下、好ましくは1%以下、より好ましくは0.6%以下、更に好ましくは0.1%以下とすることがよい。 From the treatment conditions (1) to (4), it was found that under the same temperature condition, the lower the oxygen concentration, the higher the insecticidal effect. The oxygen concentration needs to be 3.0% or less, and is usually 2% or less, preferably 1% or less, more preferably 0.6% or less, still more preferably 0. It should be 1% or less.

(実施例2)
温度変化及び酸素濃度変化及び処理期間が、殺卵効果へ与える影響について試験を行った。
(処理昆虫)
コクゾウムシ(卵)、タバコシバンムシ(卵)、コクヌストモドキ(卵)、ノシメマダラメイガ(卵)を対象とした。
(処理条件)
(1)酸素濃度3.0%以下、温度30℃、(2)酸素濃度0.6%以下、温度30℃、(3)酸素濃度0.3%以下、温度30℃、(4)酸素濃度0.1%以下、温度30℃に置き、各期間において、殺卵率を求めた。殺卵率は無処理区(酸素濃度21.0%,温度30℃)の成虫孵化数を母数として算出した。なお、いずれの条件においても、湿度は70%とし、湿度が殺卵率に影響しないように配慮した。
(Example 2)
Tests were conducted on the effects of temperature changes, oxygen concentration changes, and treatment periods on the egg-killing effect.
(Processed insects)
The subjects were maize weevil (egg), tobacco beetle (egg), red flour beetle (egg), and Indianmeal moth (egg).
(Processing conditions)
(1) Oxygen concentration 3.0% or less, temperature 30 ° C., (2) Oxygen concentration 0.6% or less, temperature 30 ° C., (3) Oxygen concentration 0.3% or less, temperature 30 ° C., (4) Oxygen concentration The egg killing rate was determined in each period by placing the product at a temperature of 0.1% or less and a temperature of 30 ° C. The egg killing rate was calculated using the number of hatched adults in the untreated plot (oxygen concentration 21.0%, temperature 30 ° C.) as the population parameter. Under all conditions, the humidity was set to 70% so that the humidity did not affect the egg killing rate.

(試験作業手順)
各試験に供試したタバコシバンムシ、コクヌストモドキ、ノシメマダラメイガの卵の数は80とした。コクゾウムシは、玄米の中に産卵するため、以下のように卵の数を調整した。コクゾウムシは玄米100gあたり500頭の親成虫を3日間飼育し玄米に産卵させ、この産卵させた玄米8gを各試験に供した。本飼育により玄米8gあたりおよそ80頭の成虫孵化数が観察されることが経験的にわかっている。
以上の卵及び産卵させた玄米を、低酸素チャンバー内に保管した。低酸素チャンバー内には湿度維持のため10mL蒸留水をいれたバイアル瓶を置いた。低酸素チャンバーに窒素ガスあるいは窒素ガス及び酸素ガスの混合ガスを充てんし、目的の酸素濃度条件にして密封した。密封した低酸素チャンバーを試験実施温度に設定した恒温室に静置した。
(生存判定)
各処理条件で処理後、酸素濃度21.0%で孵化最適温度に放置し、孵化した個体を生存とした。
(殺卵率の算出)
(1-処理区の幼虫孵化数/無処理区の幼虫孵化数)×100として算出した。
(Test work procedure)
The number of eggs of Tobacco beetle, Red flour beetle, and Indianmeal moth used in each test was 80. Since the maize weevil lays eggs in brown rice, the number of eggs was adjusted as follows. For maize weevil, 500 adult worms per 100 g of brown rice were bred for 3 days and spawned on brown rice, and 8 g of the spawned brown rice was used for each test. It is empirically known that about 80 adult hatches are observed per 8 g of brown rice by this breeding.
The above eggs and spawned brown rice were stored in a hypoxic chamber. A vial containing 10 mL of distilled water was placed in the hypoxic chamber to maintain humidity. The low oxygen chamber was filled with nitrogen gas or a mixed gas of nitrogen gas and oxygen gas, and sealed under the desired oxygen concentration conditions. The sealed hypoxic chamber was allowed to stand in a homeothermic chamber set to the test temperature.
(Survival judgment)
After treatment under each treatment condition, the hatched individuals were allowed to survive at an oxygen concentration of 21.0% at the optimum hatching temperature.
(Calculation of egg killing rate)
It was calculated as (1-the number of larvae hatched in the treated group / the number of larvae hatched in the untreated group) × 100.

(試験結果)
表5に、(1)酸素濃度3.0%以下、温度30℃条件の殺卵率の結果を示す。コクゾウムシ、タバコシバンムシ、コクヌストモドキ、ノシメマダラメイガのいずれにおいても、14日間で殺卵率が100%となっており、十分な殺卵効果が認められた。
(Test results)
Table 5 shows the results of (1) egg killing rate under the conditions of (1) oxygen concentration of 3.0% or less and temperature of 30 ° C. In all of the maize weevil, the tobacco beetle, the red flour beetle, and the Indianmeal moth, the egg killing rate was 100% in 14 days, and a sufficient egg killing effect was confirmed.

Figure 2022106655000006
Figure 2022106655000006

表6に、(2)酸素濃度0.6%以下、温度30℃条件の殺卵率の結果を示す。コクヌストモドキ、ノシメマダラメイガが2日間、コクゾウムシが7日間、タバコシバンムシが10日間で殺卵率が100%となっており、十分な殺卵効果が認められた。 Table 6 shows the results of (2) the egg killing rate under the conditions of (2) oxygen concentration of 0.6% or less and temperature of 30 ° C. The egg-killing rate was 100% for the red flour beetle and the Indian-meal moth for 2 days, the maize weevil for 7 days, and the tobacco beetle for 10 days, indicating a sufficient egg-killing effect.

Figure 2022106655000007
Figure 2022106655000007

表7に、(3)酸素濃度0.3%以下、温度30℃条件の殺卵率の結果を示す。コクゾウムシは4日目、タバコシバンムシは6日目に殺卵率が100%となり十分な殺卵効果が認められた。 Table 7 shows the results of (3) the egg killing rate under the conditions of an oxygen concentration of 0.3% or less and a temperature of 30 ° C. The egg-killing rate of maize weevil was 100% on the 4th day, and that of tobacco beetle was 100% on the 6th day, indicating a sufficient egg-killing effect.

Figure 2022106655000008
Figure 2022106655000008

表8に、(4)酸素濃度0.1%以下、温度30℃条件の殺卵率の結果を示す。生薬の殺虫・殺卵処理では「完全殺虫」(殺虫・殺卵率100%)を短期間で行うことが重要であるが、コクゾウムシとタバコシバンムシは4日目に殺卵率が100%となり十分な殺卵効果が認められた。 Table 8 shows the results of (4) the egg killing rate under the conditions of an oxygen concentration of 0.1% or less and a temperature of 30 ° C. It is important to perform "complete insecticide" (insecticide / egg killing rate 100%) in a short period of time in the insecticidal / egg killing process of crude drugs, but the egg killing rate of maize weevil and tobacco beetle is 100% on the 4th day, which is sufficient. A good egg-killing effect was observed.

Figure 2022106655000009
Figure 2022106655000009

処理条件(1)~(4)により、同一温度条件下では、酸素濃度が低いほど、殺卵効果が高い傾向にあることが分かった。酸素濃度は、3.0%以下、酸素濃度の調整精度を踏まえて通常2%以下、好ましくは0.6%以下、より好ましくは0.1%以下とすることがよい。 From the treatment conditions (1) to (4), it was found that under the same temperature condition, the lower the oxygen concentration, the higher the egg-killing effect. The oxygen concentration is usually 3.0% or less, usually 2% or less, preferably 0.6% or less, and more preferably 0.1% or less in consideration of the adjustment accuracy of the oxygen concentration.

(実施例3)
温度変化及び処理期間が、殺虫・殺卵効果へ与える影響について試験を行った。
(処理昆虫)
コクゾウムシ(成虫・卵)、タバコシバンムシ(成虫・卵)を対象とした。
(処理条件)
(1)温度25℃、(2)温度28℃、(3)温度30℃とし、各期間において、殺虫率、殺卵率を求めた。なお、いずれの条件においても、酸素濃度は0.1%、湿度は70%とし、酸素濃度及び湿度が殺虫率、殺卵率に影響しないように配慮した。
(試験作業手順)、(生存判定)、(殺虫率の算出)、(殺卵率の算出)については、実施例1及び実施例2と同様とした。
(試験結果)
表9に、(1)温度25℃、(2)温度28℃、(3)温度30℃の殺虫率、殺卵率の結果を示す。タバコシバンムシとコクゾウムシの両方について、成虫の殺虫は、25℃では4日、28℃、30℃では3日かかった。卵の殺卵は、25℃では7日、28℃では5日、30℃では4日かかった。
(Example 3)
Tests were conducted on the effects of temperature changes and treatment periods on insecticidal and egg-killing effects.
(Processed insects)
The subjects were maize weevil (adult / egg) and tobacco beetle (adult / egg).
(Processing conditions)
The temperature was set to (1) 25 ° C., (2) temperature 28 ° C., and (3) temperature 30 ° C., and the insecticidal rate and egg killing rate were determined in each period. Under all conditions, the oxygen concentration was 0.1% and the humidity was 70% so that the oxygen concentration and humidity did not affect the insecticidal rate and the egg killing rate.
(Test work procedure), (survival determination), (calculation of insecticidal rate), and (calculation of egg killing rate) were the same as in Example 1 and Example 2.
(Test results)
Table 9 shows the results of the insecticidal rate and the egg killing rate at (1) temperature 25 ° C., (2) temperature 28 ° C., and (3) temperature 30 ° C. For both tobacco beetles and maize weevil, adult killing took 4 days at 25 ° C and 3 days at 28 ° C and 30 ° C. Egg killing took 7 days at 25 ° C, 5 days at 28 ° C, and 4 days at 30 ° C.

Figure 2022106655000010
Figure 2022106655000010

処理条件(1)~(3)より、同一酸素濃度条件下では、温度が高いほど殺虫・殺卵効果が高いことが分かった。酸素濃度0.1%以下では、(1)~(3)のいずれの温度でも殺卵効果は高かったが、温度は25℃以上、好ましくは28℃以上、より好ましくは30℃以上とすることがよい。 From the treatment conditions (1) to (3), it was found that the higher the temperature, the higher the insecticidal / egg-killing effect under the same oxygen concentration condition. When the oxygen concentration was 0.1% or less, the egg-killing effect was high at any of the temperatures (1) to (3), but the temperature was 25 ° C. or higher, preferably 28 ° C. or higher, and more preferably 30 ° C. or higher. Is good.

(実施例4)
温度変化及び酸素濃度変化及び処理期間が、生薬成分に与える影響について試験を行った。
(試験材料)
乾燥させた薄荷を用いた。銘柄は「ほくと」である。薄荷は、シソ科ハッカ属であり、地上部分を乾燥させ、漢方処方に多く用いられる代表的な生薬である。温度が伝わりやすい葉状であり、更に生薬の効能として重要であり、温度による減少が予測される精油成分を多量に含むため、試験材料として選定した。
(処理条件)
(1)無処理、(2)温度30℃、(3)温度40℃、(4)温度50℃、(5)温度70℃の条件下に、それぞれ2週間及び4週間保管した。(2)~(5)は、酸素濃度0.5%以下であった。なお、(1)無処理とは、温度20℃以下・酸素濃度無調整の条件下で保管したものである。
(Example 4)
Tests were conducted on the effects of temperature changes, oxygen concentration changes, and treatment periods on crude drug components.
(Test material)
A dried mint was used. The brand is "Hokuto". Mentha belongs to the genus Mentha of the Labiatae family, and is a typical crude drug that dries the above-ground part and is often used in Chinese medicine prescriptions. It was selected as a test material because it has a leaf-like shape that allows temperature to be easily transmitted, is important for the efficacy of crude drugs, and contains a large amount of essential oil components that are expected to decrease with temperature.
(Processing conditions)
It was stored for 2 weeks and 4 weeks under the conditions of (1) no treatment, (2) temperature 30 ° C., (3) temperature 40 ° C., (4) temperature 50 ° C., and (5) temperature 70 ° C., respectively. In (2) to (5), the oxygen concentration was 0.5% or less. In addition, (1) untreated means that it was stored under the conditions of a temperature of 20 ° C. or lower and no adjustment of oxygen concentration.

(低酸素濃度処理)
処理条件(2)~(5)において各処理条件ごとに、薄荷を袋に詰め、窒素置換用に窒素ガスチューブを袋最下部に設置した。窒素ガスを一定量流入させて各袋内の酸素濃度を0.5%以下に保ちながら、各温度設定のインキュベーターに装入した。その後、インキュベーターに条件期間置き、温度と湿度を一定に保った。処理条件(1)については、アルミパウチに薄荷を保管し、20℃以下に置いた。条件期間保管後、精油含量測定試験を実施した。
(精油含量測定試験方法)
日局生薬試験法ならびに医薬品各条ハッカに準じて薄荷を刻み、測定試験を実施した。
(Low oxygen concentration treatment)
In the treatment conditions (2) to (5), a light load was packed in a bag for each treatment condition, and a nitrogen gas tube was installed at the bottom of the bag for nitrogen replacement. A certain amount of nitrogen gas was introduced to keep the oxygen concentration in each bag at 0.5% or less, and the gas was charged into the incubator at each temperature setting. After that, it was placed in an incubator for a conditional period to keep the temperature and humidity constant. Regarding the treatment condition (1), a light load was stored in an aluminum pouch and placed at 20 ° C. or lower. After storage for a condition period, an essential oil content measurement test was carried out.
(Essential oil content measurement test method)
The measurement test was carried out by carving a light load according to the Japanese Pharmacopoeia Crude Drug Testing Method and each article of mint.

(試験結果)
図5に、精油含量測定試験の結果を示す。縦軸は、試験材料50g当たりの精油含量(ml)であり、横軸は、処理条件で設定した温度である。白い棒グラフは保管期間が2週間の結果であり、黒い棒グラフは保管期間が4週間の結果である。保管期間を比較すると、保管期間が長い方が、精油含量が減少する傾向が見られるが、処理温度が低いほど、精油含量の減少量の差が小さくなった。処理温度を比較すると、処理温度が高いほど、精油含量の減少量が大きくなった。処理条件(1)無処理の精油含量と比較し、(2)温度30℃、(3)温度40℃においては、保管期間2週間及び4週間の精油含量は90%以上となり、温度の影響は小さいことが分かった。処理条件(4)温度50℃、(5)温度70℃での精油含量は、いずれも(1)無処理と比較すると、90%以下となっており、温度が精油含量に影響していることが分かった。よって、低酸素濃度下では、温度40℃以下、4週間以下の保管期間の条件下において、精油含量への影響は少ないことが確認された。なお、刻み薄荷の精油含量の基準として、1.0ml/50g以上が好ましい。今回の試験により、処理条件(4)温度50℃の処理条件もこの基準を上まわっている。しかし、実際には、サンプルのばらつきにより、必ずしも薄荷が高い精油含量を有しているとは限らない。この場合、温度50℃以上の処理を行うと、精油含量の基準を下回る可能性が高くなる。つまり、精油含量を損なわず、安定的に低酸素濃度処理を行える条件としては、温度40℃以下、4週間以下の保管期間の条件下とすることが望ましい。
(Test results)
FIG. 5 shows the results of the essential oil content measurement test. The vertical axis is the essential oil content (ml) per 50 g of the test material, and the horizontal axis is the temperature set by the treatment conditions. The white bar graph is the result of the storage period of 2 weeks, and the black bar graph is the result of the storage period of 4 weeks. Comparing the storage periods, the longer the storage period, the smaller the essential oil content tended to be, but the lower the treatment temperature, the smaller the difference in the amount of decrease in the essential oil content. Comparing the treatment temperatures, the higher the treatment temperature, the greater the decrease in the essential oil content. Treatment conditions (1) Compared with the untreated essential oil content, at (2) temperature 30 ° C and (3) temperature 40 ° C, the essential oil content for the storage period of 2 weeks and 4 weeks is 90% or more, and the effect of temperature is It turned out to be small. Treatment conditions The essential oil content at (4) temperature 50 ° C and (5) temperature 70 ° C is 90% or less compared to (1) untreated, and the temperature affects the essential oil content. I found out. Therefore, it was confirmed that under the condition of the storage period of 40 ° C. or lower and 4 weeks or less under the low oxygen concentration, the influence on the essential oil content was small. As a standard for the essential oil content of mint, 1.0 ml / 50 g or more is preferable. According to this test, the processing conditions (4) the processing conditions at a temperature of 50 ° C. also exceed this standard. However, in reality, mint does not always have a high essential oil content due to sample variability. In this case, if the treatment is performed at a temperature of 50 ° C. or higher, there is a high possibility that the essential oil content will be lower than the standard. That is, as a condition for stable low oxygen concentration treatment without impairing the essential oil content, it is desirable that the storage period is 40 ° C. or lower and 4 weeks or lower.

(実施例5)
温度変化及び酸素濃度変化及び処理期間が、生薬成分に与える影響について試験を行った。
(試験材料)
センキュウの根茎3ロットを用いた。センキュウは、セリ科センキュウのひげ根を除いた根茎を、湯通しした後、乾燥したものであり、漢方処方に多く用いられる代表的な生薬である。温度による減少が予測される精油や成分変化指標とすべき成分(フェルラ酸)を含むため試験材料として選定した。
(処理条件)
(1)無処理、(2)酸素濃度0.5%以下、温度35℃、2週間保管、(3)酸素硬度0.5%以下、温度35℃、4週間保管を処理条件とした。なお、(1)無処理とは、一般的に生薬の品質が保たれるとされる保管条件である、温度15℃以下・酸素濃度無調整の条件下で保管したものであり、(2)及び(3)のそれぞれの保管期間と合わせた。
(Example 5)
Tests were conducted on the effects of temperature changes, oxygen concentration changes, and treatment periods on crude drug components.
(Test material)
Three lots of rhizomes of Senkyu were used. Senkyu is a typical crude drug often used in Chinese herbal prescriptions, which is obtained by blanching the rhizome of Umbelliferae, excluding the beard root, and then drying it. It was selected as a test material because it contains essential oils that are expected to decrease with temperature and a component (ferulic acid) that should be used as a component change index.
(Processing conditions)
The treatment conditions were (1) no treatment, (2) oxygen concentration of 0.5% or less, temperature of 35 ° C. for 2 weeks, and (3) oxygen hardness of 0.5% or less, temperature of 35 ° C. for 4 weeks. In addition, (1) untreated means that the crude drug was stored under the storage condition that the quality of the crude drug is generally maintained, that is, the temperature is 15 ° C. or lower and the oxygen concentration is not adjusted. (2) And each storage period of (3) was combined.

(低酸素濃度処理)
ジップ付きラミネート袋に生薬を詰め、窒素置換を行いラミネート袋内の酸素濃度を各処理条件の値にした。封をして1日置いた後、再度酸素濃度を測定し、ラミネート袋からの気体漏れがないことを確認した。その後、インキュベーターに条件期間置き、温度と湿度を一定に保った。更に、条件期間保管後に、ラミネート袋内の酸素濃度と温度に変化がないことを確認した。なお、湿度はいずれの条件においても、60%以下とした。条件期間保管後、品質評価試験を実施した。
(品質評価項目)
TLC、pH、水分活性、乾燥減量、希エタノール、精油含量、成分定量(フェルラ酸)を計測した。これらの項目は、生薬の品質評価で一般的に用いられる項目である。
(Low oxygen concentration treatment)
Crude drugs were packed in a laminated bag with a zipper, nitrogen substitution was performed, and the oxygen concentration in the laminated bag was set to the value of each treatment condition. After sealing and leaving for 1 day, the oxygen concentration was measured again, and it was confirmed that there was no gas leakage from the laminated bag. After that, it was placed in an incubator for a conditional period to keep the temperature and humidity constant. Furthermore, it was confirmed that there was no change in the oxygen concentration and temperature in the laminated bag after storage for a conditional period. The humidity was set to 60% or less under any condition. After storage for a condition period, a quality evaluation test was conducted.
(Quality evaluation items)
TLC, pH, water activity, dry weight loss, dilute ethanol, essential oil content, and component quantification (ferulic acid) were measured. These items are items generally used in the quality evaluation of crude drugs.

(試験結果)
表10に、センキュウ品質試験結果を示す。「性状」項目にあるとおり、いずれのロット、品質評価項目においても、(1)無処理と、(2)酸素濃度0.5%以下、温度35℃、2週間保管条件下とを比較した場合、両処理条件の間に差異は見られなかった。また、同様に、(1)無処理と、(3)酸素濃度0.5%以下、温度35℃、4週間保管条件下とを比較した場合、両処理条件の間に差異は見られなかった。よって、低酸素濃度、温度35℃、4週間以下の保管期間の条件下においては、生薬成分への影響はないことが確認された。
(Test results)
Table 10 shows the results of the Senkyu quality test. As described in the "property" item, in all lots and quality evaluation items, (1) no treatment and (2) oxygen concentration of 0.5% or less, temperature of 35 ° C, and storage conditions for 2 weeks are compared. , No difference was found between the two treatment conditions. Similarly, when (1) no treatment was compared with (3) oxygen concentration of 0.5% or less, temperature of 35 ° C., and storage conditions for 4 weeks, no difference was observed between the two treatment conditions. .. Therefore, it was confirmed that there was no effect on the crude drug components under the conditions of low oxygen concentration, temperature of 35 ° C., and storage period of 4 weeks or less.

Figure 2022106655000011
Figure 2022106655000011

(実施例6)
温度変化及び酸素濃度変化及び処理期間が、食品の味に与える影響について試験を行った。
(試験材料)
市販品の切り干し大根及び乾燥ネギを用いた。切り干し大根は甘味が強く、歯ごたえが特徴的であり、また乾燥ネギは、香りや辛みが特徴的な食品である。いずれも官能評価において、味の変化がわかりやすいと考え試験材料に選定した。
(処理条件)
切り干し大根及び乾燥ネギを、(1)無処理、(2)低酸素濃度処理の2つの条件で、それぞれ4週間以上保管した。なお、(1)無処理とは、一般的な生薬保管状態である、15℃の条件とし、(2)低酸素濃度処理とは、酸素濃度0.5%以下、温度35℃の条件とした。
(Example 6)
Tests were conducted on the effects of temperature changes, oxygen concentration changes, and treatment periods on the taste of food.
(Test material)
Commercially available dried daikon and dried green onions were used. Kiriboshi daikon has a strong sweetness and is characterized by its chewy texture, and dried green onion is a food with a characteristic aroma and spiciness. All of them were selected as test materials because the change in taste was easy to understand in the sensory evaluation.
(Processing conditions)
Kiriboshi daikon and dried green onions were stored for 4 weeks or more under the two conditions of (1) no treatment and (2) hypoxia treatment. In addition, (1) no treatment was a condition of 15 ° C., which is a general crude drug storage state, and (2) low oxygen concentration treatment was a condition of an oxygen concentration of 0.5% or less and a temperature of 35 ° C. ..

(低酸素濃度処理)
ジップ付きラミネート袋に切り干し大根又は乾燥ネギを詰め、窒素置換を行いラミネート袋内の酸素濃度を各処理条件の値にした。封をして1日置いた後、再度酸素濃度を測定し、ラミネート袋からの気体漏れがないことを確認した。その後、インキュベーターに条件期間置き、温度と湿度を一定に保った。更に、条件期間保管後に、ラミネート袋内の酸素濃度と温度に変化がないことを確認した。条件期間保管後、品質評価試験を実施した。なお、検体は、切り干し大根及び乾燥ネギにおいて、4検体ずつ用意し、1検体当たり300gずつ低酸素用包装に充填した。
(処理期間モニタリング)
(1)無処理及び(2)低酸素濃度処理の検体が含まれる包装において、4週間以上の処理期間で、包装内部の酸素濃度と温度の推移をモニタリングし、酸素濃度については0.5%以下、温度については設定よりプラスマイナス2℃範囲内に維持されたことを確認した。
(Low oxygen concentration treatment)
A laminated bag with a zipper was filled with dried daikon radish or dried green onions, and nitrogen was substituted to adjust the oxygen concentration in the laminated bag to the value of each treatment condition. After sealing and leaving for 1 day, the oxygen concentration was measured again, and it was confirmed that there was no gas leakage from the laminated bag. After that, it was placed in an incubator for a conditional period to keep the temperature and humidity constant. Furthermore, it was confirmed that there was no change in the oxygen concentration and temperature in the laminated bag after storage for a conditional period. After storage for a condition period, a quality evaluation test was conducted. As samples, four samples of dried daikon radish and dried green onion were prepared, and 300 g of each sample was packed in a hypoxic packaging.
(Processing period monitoring)
For packages containing (1) untreated and (2) hypoxic-treated samples, monitor the changes in oxygen concentration and temperature inside the package for a treatment period of 4 weeks or more, and the oxygen concentration is 0.5%. Below, it was confirmed that the temperature was maintained within the range of plus or minus 2 ° C from the setting.

(官能評価方法)
処理後、切り干し大根及び乾燥ネギにおいて、それぞれの2つの処理条件のごとに、4検体から3検体を評価に使用(1検体は予備)した。各3検体より80gずつ抜き出し集め240gとして官能評価用サンプルとした(n=1)。
(Sensory evaluation method)
After the treatment, 4 to 3 samples were used for evaluation (1 sample was a reserve) for the dried daikon radish and the dried green onion under each of the 2 treatment conditions. 80 g of each of the three samples was extracted and collected as 240 g, which was used as a sample for sensory evaluation (n = 1).

切り干し大根は、水で洗い20分浸漬してから官能評価を行い、乾燥ネギは熱湯で2分浸漬してから官能評価を行った。 The dried daikon was washed with water and soaked for 20 minutes and then subjected to sensory evaluation, and the dried green onions were soaked in boiling water for 2 minutes and then subjected to sensory evaluation.

官能評価は10名のパネラにより、実施された。
(官能評価項目)
(1)無処理下の試験材料を基準品として対照試料と定め、(2)低酸素濃度処理下の試験材料の比較評価を行った(2点比較法)。干し大根は、「香りの良さ」、食感の「歯ごたえの強さ」、「甘味の強さ」、「総合的なおいしさ」の計4項目について評価した。乾燥ネギは、「香りの良さ」、食感の「硬さ」、味の「甘味の強さ」「辛味の強さ」、「総合的なおいしさ」の計5項目について評価した。
The sensory evaluation was performed by 10 panelists.
(Sensory evaluation item)
(1) The test material under no treatment was defined as a control sample as a reference product, and (2) the test material under low oxygen concentration treatment was comparatively evaluated (two-point comparison method). The dried radish was evaluated for a total of four items: "good aroma", "strength of texture", "strength of sweetness", and "overall deliciousness". The dried green onions were evaluated for a total of five items: "good aroma", "hardness" of texture, "strength of sweetness", "strength of pungent taste", and "overall deliciousness".

(官能評価結果)
図6に、切り干し大根の官能評価結果を示す。図7に、乾燥ネギの官能試験結果を示す。10名のパネラの評価値の平均値を示している。縦軸は評価値を示し、評価値「3」は、無処理と同じであることを示している。また、横軸は、評価項目である。
(Sensory evaluation result)
FIG. 6 shows the sensory evaluation results of dried daikon radish. FIG. 7 shows the results of the sensory test of dried green onions. The average value of the evaluation values of 10 panelas is shown. The vertical axis indicates the evaluation value, and the evaluation value "3" indicates that it is the same as no processing. The horizontal axis is an evaluation item.

図6より、切り干し大根は、「香りのよさ」は2.5、「歯ごたえの強さ」は2.7、「甘味の強さ」は2.4、「総合的なおいしさ」は2.5となった。 From Fig. 6, the dried daikon radish has a "good aroma" of 2.5, a "strength of chewyness" of 2.7, a "strength of sweetness" of 2.4, and a "general taste" of 2. It became 5.

図7より、乾燥ネギは、「香りの良さ」は2.4、「硬さ」は2.9、「甘味の強さ」は3.1、「辛味の強さ」は2.4、「総合的なおいしさ」は2.2となった。 From FIG. 7, for dried green onions, "good aroma" is 2.4, "hardness" is 2.9, "intensity of sweetness" is 3.1, "intensity of pungency" is 2.4, and " "Overall taste" was 2.2.

切り干し大根、乾燥ネギともに、処理条件(1)無処理と(2)低酸素濃度処理との官能評価結果を比較した場合、いずれの評価項目においても有意な差は認められなかった。よって、酸素濃度0.5%以下、温度35℃、4週間以下の条件が食品の味には影響しないことが確認された。食品製品に対する低酸素濃度殺虫の利用方法として、製品の梱包直前に、低酸素濃度殺虫を行うことで、味を損なうことなく殺虫を行うことが可能となることが示唆された。 When the sensory evaluation results of the treatment conditions (1) untreated and (2) low oxygen concentration treatment were compared for both the dried daikon and the dried green onion, no significant difference was observed in any of the evaluation items. Therefore, it was confirmed that the conditions of an oxygen concentration of 0.5% or less and a temperature of 35 ° C. for 4 weeks or less do not affect the taste of food. It was suggested that as a method of using low oxygen concentration insects for food products, it is possible to kill insects without spoiling the taste by performing low oxygen concentration insects immediately before packing the products.

(実施例7)
処理庫の雰囲気気体を対象物質に送風するための送風機を用いて、対象物質を殺虫温度まで加熱する時間について確認する試験を行った。
(処理条件)
殺虫処理を行う対象物質である、食品あるいは生薬あるいはその原料は、通常、品質保持のため15℃以下の処理庫で保存されている。15℃を初期温度と呼ぶ。殺虫温度下限は、実施例1~5の殺虫試験、殺卵試験、品質試験、食品官能試験より30℃である。対象物質を殺虫温度とするためには、初期温度より、約15℃昇温させる。これをΔt15℃と呼ぶ。また、処理庫の雰囲気温度は、対象物質を効率的に昇温させる必要があるため、殺虫温度下限より更に5℃高くし、35℃付近とする。これをΔt20℃と呼ぶ。なお、Δt20℃は、実施例1~6より、対象物質の品質低下を防ぎながら、かつ殺虫に効果的な温度である。
(Example 7)
A test was conducted to confirm the time required to heat the target substance to the insecticidal temperature using a blower for blowing the atmospheric gas in the treatment chamber to the target substance.
(Processing conditions)
Foods, crude drugs, or their raw materials, which are the target substances for insecticidal treatment, are usually stored in a processing chamber at 15 ° C. or lower to maintain quality. 15 ° C is called the initial temperature. The lower limit of the insecticidal temperature is 30 ° C. from the insecticidal test, the egg killing test, the quality test, and the food sensory test of Examples 1 to 5. In order to set the target substance to the insecticidal temperature, the temperature is raised by about 15 ° C. from the initial temperature. This is called Δt15 ° C. Further, since it is necessary to raise the temperature of the target substance efficiently, the atmospheric temperature of the treatment chamber is further increased by 5 ° C. from the lower limit of the insecticidal temperature to be around 35 ° C. This is called Δt20 ° C. From Examples 1 to 6, Δt20 ° C. is a temperature that is effective in killing insects while preventing quality deterioration of the target substance.

粳米の処理庫は、乾燥機を用いた。 A dryer was used as the processing chamber for Japonica rice.

15℃以下で保存され、初期温度15℃以下となっている80kgの粳米を対象物質とし、処理庫をΔt20℃の雰囲気温度まで上昇させた後、以下の処理条件を設定した。(1)加熱手段を伴う送風、(2)加熱手段を伴わない送風、比較として(3)加熱手段及び送風を行わない無処理を処理条件として試験を行った。 The target substance was 80 kg of japonica rice stored at 15 ° C. or lower and having an initial temperature of 15 ° C. or lower, and after raising the treatment chamber to an atmospheric temperature of Δt20 ° C., the following treatment conditions were set. The test was conducted under the treatment conditions of (1) blowing with heating means, (2) blowing without heating means, and (3) heating means and no treatment without blowing for comparison.

(試験作業手順)
80kgの粳米は乾燥トレー4個に分け、積層して収納した。各乾燥トレーの底面は編み目状になっており、通気性がある。また、最上段の乾燥トレーの上部は解放されている。各乾燥トレー内の粳米の中心部分の内側に、温度計測器を設置した。
(Test work procedure)
80 kg of Japonica rice was divided into four drying trays and stacked and stored. The bottom of each drying tray is stitched and breathable. In addition, the upper part of the uppermost drying tray is open. A temperature measuring instrument was installed inside the central part of the rice cake in each drying tray.

(1)加熱手段を伴う送風の方法として、乾燥トレーの2段目と3段目の間に熱風が出るブロアーを挟み込み、送風を行った。(2)加熱手段を伴わない送風の方法として、最下段の乾燥トレーの下側に送風機を設置し、送風を行った。(3)無処理の方法として、処理庫に乾燥トレーを積層した。 (1) As a method of blowing air with a heating means, a blower that emits hot air is sandwiched between the second and third stages of the drying tray, and the air is blown. (2) As a method of blowing air without heating means, a blower was installed under the drying tray at the bottom to blow air. (3) As a non-treatment method, drying trays were laminated in the treatment chamber.

処理庫及び粳米を初期温度15℃とした後、処理庫内の雰囲気温度をΔt20℃に昇温させ、粳米の温度の計測を開始した。各処理条件において、各温度計測箇所の計測値が全て殺虫温度であるΔ15℃に到達した到達時間を計測した。また、計測開始から30時間経過してもΔ15℃に到達しなかった処理条件においては、最大182時間まで計測し、それでもΔ15℃に到達しなかった場合は、線形近似によるシミュレーションにて、Δ15℃の到達時間を算出した。 After the initial temperature of the processing chamber and the rice was set to 15 ° C., the atmospheric temperature in the processing chamber was raised to Δt20 ° C., and the measurement of the temperature of the rice was started. Under each treatment condition, the arrival time at which all the measured values at each temperature measurement point reached the insecticidal temperature of Δ15 ° C. was measured. In addition, under the processing conditions that did not reach Δ15 ° C even after 30 hours from the start of measurement, the measurement was performed for up to 182 hours, and if it still did not reach Δ15 ° C, the simulation by linear approximation was performed to Δ15 ° C. The arrival time of was calculated.

(試験結果)
試験結果を図8に示す。縦軸には温度Δt(℃)を示し、横軸は経過時間(時)を示している。(1)加熱手段を伴う送風、(2)加熱手段を伴わない送風、(3)加熱手段及び送風を行わない無処理の結果をそれぞれ、丸、三角、四角で示している。
(Test results)
The test results are shown in FIG. The vertical axis shows the temperature Δt (° C.), and the horizontal axis shows the elapsed time (hours). The results of (1) blowing with heating means, (2) blowing without heating means, and (3) without heating means and blowing are shown by circles, triangles, and squares, respectively.

(1)加熱手段を伴う送風を行い、各乾燥トレー内の粳米の温度が全て、殺虫温度であるΔ15℃に到達した時間は、約6時間であった。また、(2)加熱手段を伴わない送風を行った結果は、約22時間であった。更に、(3)加熱手段及び送風を行わない無処理の結果は、182時間後の到達温度がΔ10.8℃であった。シミュレーションにより、Δ15℃の到達時間は、20日後と推測された。 (1) It took about 6 hours for all the temperatures of the rice in each drying tray to reach the insecticidal temperature of Δ15 ° C. by blowing air with a heating means. In addition, (2) the result of blowing air without heating means was about 22 hours. Further, as a result of (3) no treatment without heating means and blowing, the reached temperature after 182 hours was Δ10.8 ° C. By simulation, the arrival time at Δ15 ° C. was estimated to be 20 days later.

また、(1)加熱手段を伴う送風及び(2)加熱手段を伴わない送風においては、Δ15℃到達後も、対象物質の品質が保証される40℃以下を概ね保持した。 Further, in (1) ventilation with heating means and (2) ventilation without heating means, the quality of the target substance was generally maintained at 40 ° C. or lower even after reaching Δ15 ° C.

以上の結果から、処理庫の雰囲気温度をΔ20℃に設定し、対象物質に対して送風を行うことで、対象物質を殺虫温度の30℃~40℃に素早く昇温させ、維持するのに適した方法であることが確認された。更に、加熱手段を伴う送風は、無処理に対し、殺虫処理時間短縮に効果的であることが確認された。 From the above results, it is suitable to quickly raise and maintain the target substance at the insecticidal temperature of 30 ° C to 40 ° C by setting the atmospheric temperature of the processing chamber to Δ20 ° C and blowing air to the target substance. It was confirmed that this method was used. Furthermore, it was confirmed that blowing air with a heating means is effective in shortening the insecticidal treatment time as opposed to no treatment.

なお、処理庫の雰囲気温度はΔ20℃に限定されない。例えば、雰囲気温度をΔ20℃以上に設定し、対象物質に対して送風を行い、対象物質の温度が殺虫温度に達した後に、雰囲気温度を下げる、又は送風を停止する、又はその両方の処理を行うことで、更に殺虫処理時間短縮も見込まれる。また、雰囲気温度をΔ20℃以下に設定し、対象物質に対してヒーター等の加熱を伴う送風あるいは、圧力を用いた加熱を伴う送風を行うことで、雰囲気温度を上昇させて対象物質に供給することもできる。 The atmospheric temperature of the processing chamber is not limited to Δ20 ° C. For example, set the atmospheric temperature to Δ20 ° C. or higher, blow air to the target substance, and after the temperature of the target substance reaches the insecticidal temperature, lower the atmospheric temperature, stop the blowing, or both. By doing so, it is expected that the insecticidal treatment time will be further shortened. Further, by setting the atmospheric temperature to Δ20 ° C. or lower and blowing air with heating such as a heater or blowing air with heating using pressure, the atmospheric temperature is raised and supplied to the target substance. You can also do it.

(実施例8)
処理庫の雰囲気気体を対象物質に供給するための供給ノズルが、対象物質を殺虫温度まで上昇させる時間的効果について、確認する温度上昇確認試験を行った。
(処理条件)
殺虫処理を行う対象物質である、食品あるいは生薬あるいはその原料は、通常、品質保持のため15℃以下の処理庫で保存されている。15℃を初期温度と呼ぶ。殺虫温度下限は、実施例1~6の殺虫試験、殺卵試験、品質試験、食品官能試験より30℃である。対象物質を殺虫温度とするためには、初期温度より、約15℃昇温させる。これをΔt15℃と呼ぶ。また、処理庫の雰囲気温度は、対象物質を効率的に昇温させる必要があるため、殺虫温度下限より更に5℃高くし、35℃付近とする。これをΔt20℃と呼ぶ。なお、Δt20℃は、実施例1~6より、対象物質の品質低下を防ぎながら、かつ殺虫に効果的な温度である。
(Example 8)
A temperature rise confirmation test was conducted to confirm the temporal effect of the supply nozzle for supplying the atmospheric gas of the treatment chamber to the target substance to raise the target substance to the insecticidal temperature.
(Processing conditions)
Foods, crude drugs, or their raw materials, which are the target substances for insecticidal treatment, are usually stored in a processing chamber at 15 ° C. or lower to maintain quality. 15 ° C is called the initial temperature. The lower limit of the insecticidal temperature is 30 ° C. from the insecticidal test, the egg killing test, the quality test, and the food sensory test of Examples 1 to 6. In order to set the target substance to the insecticidal temperature, the temperature is raised by about 15 ° C. from the initial temperature. This is called Δt15 ° C. Further, since it is necessary to raise the temperature of the target substance efficiently, the atmospheric temperature of the treatment chamber is further increased by 5 ° C. from the lower limit of the insecticidal temperature to be around 35 ° C. This is called Δt20 ° C. From Examples 1 to 6, Δt20 ° C. is a temperature that is effective in killing insects while preventing quality deterioration of the target substance.

今回、対象物質の初期の温度が25℃付近であったため、対象物質の殺虫温度Δt15℃を40℃、処理庫の雰囲気温度Δt20℃を45℃に設定した。 Since the initial temperature of the target substance was around 25 ° C. this time, the insecticidal temperature Δt15 ° C. of the target substance was set to 40 ° C., and the atmospheric temperature Δt20 ° C. of the treatment chamber was set to 45 ° C.

小麦0.8t(かさ密度;0.76kg/L)を対象物質とし、(1)対象物質へ送風、(2)対象物質から排風、比較として(3)送風及び排風を行わない無処理を処理条件として、試験を行った。
(装置)
(1)対象物質へ送風については図1、及び(2)対象物質から排風については図2で示す。(3)送風及び排風を行わない無処理については、図1において集気供給機構及び供給ノズルがないものとなる。
Using 0.8t of wheat (bulk density; 0.76kg / L) as the target substance, (1) blowing air to the target substance, (2) exhausting air from the target substance, for comparison (3) untreated without blowing and exhausting air Was used as a treatment condition, and a test was conducted.
(Device)
(1) The air blown to the target substance is shown in FIG. 1, and (2) the exhaust air from the target substance is shown in FIG. (3) For no treatment that does not blow or exhaust air, there is no air collection supply mechanism and supply nozzle in FIG.

対象物質8の小麦0.8tを、対象物質収納容器2であるフレキシブルコンテナに収納した。図示しない温度計測器は、対象物質収納容器2の底面より1/4の位置に、底面1辺の両端に2か所、底面より1/2の位置に、先の1/4の位置に設置した辺に対向する辺の両端に2か所、先の4か所の中央に1か所、上面中央に1か所の計6か所に配置した。 0.8 tons of wheat of the target substance 8 was stored in the flexible container which is the target substance storage container 2. Temperature measuring instruments (not shown) are installed at 1/4 of the bottom surface of the target substance storage container 2, 2 locations at both ends of one side of the bottom surface, 1/2 position from the bottom surface, and 1/4 position above. Two places were placed at both ends of the side facing the side, one place was placed in the center of the previous four places, and one place was placed in the center of the upper surface, for a total of six places.

供給ノズル4に設けられた通気部42は、供給ノズル4の先端よりに設置することが好ましい。また、通気部42は、対象物質収納容器2の下部に位置するように配置した。この通気部42の配置場所は、対象物質8を効率的に昇温させる試験により明確になった。(試験作業手順)
処理庫1内の雰囲気温度Δt20℃に到達した後、約1.5回換気/分の換気スピードで集気及び排気を行い、対象物質8の温度を計測した。97時間の計測を行い、各処理条件において、各温度計測値が全て、殺虫温度であるΔt15℃に到達した時間を計測した。また、Δt15℃に到達しなかった処理条件においては、線形近似によるシミュレーションにて、Δt15℃の到達時間を算出した。
The ventilation portion 42 provided in the supply nozzle 4 is preferably installed from the tip of the supply nozzle 4. Further, the ventilation portion 42 is arranged so as to be located at the lower part of the target substance storage container 2. The location of the ventilation portion 42 was clarified by a test in which the target substance 8 was efficiently heated. (Test work procedure)
After reaching the atmospheric temperature Δt20 ° C. in the processing chamber 1, air was collected and exhausted at a ventilation speed of about 1.5 times ventilation / minute, and the temperature of the target substance 8 was measured. The measurement was performed for 97 hours, and under each treatment condition, the time when all the measured values of each temperature reached the insecticidal temperature of Δt15 ° C. was measured. Further, under the processing conditions in which Δt15 ° C. was not reached, the arrival time of Δt15 ° C. was calculated by a simulation by linear approximation.

(試験結果)
図9に、試験結果を示す。縦軸には温度Δt(℃)を示し、横軸は経過時間(時)を示している。(1)対象物質へ送風、(2)対象物質から排風、(3)送風及び排風を行わない無処理の結果をそれぞれ、丸、三角、四角で示している。
(Test results)
FIG. 9 shows the test results. The vertical axis shows the temperature Δt (° C.), and the horizontal axis shows the elapsed time (hours). The results of (1) blowing air to the target substance, (2) exhausting air from the target substance, and (3) not blowing and exhausting air are shown by circles, triangles, and squares, respectively.

(1)対象物質へ送風を行い、各温度計測箇所が全て、殺虫温度であるΔ15℃に到達するのに要した時間は、約96時間であった。また、(2)対象物質から排風を行った結果は、シミュレーションにより、130時間程度であると推測された。更に、(3)送風及び排風を行わない無処理の結果は、シミュレーションにより、250時間以上を要すると推測された。 (1) It took about 96 hours for all the temperature measurement points to reach the insecticidal temperature of Δ15 ° C. by blowing air to the target substance. In addition, (2) the result of exhausting air from the target substance was estimated to be about 130 hours by simulation. Furthermore, (3) the result of no treatment without blowing and exhausting was estimated to take 250 hours or more by simulation.

送風あるいは排風を行う方法は、無処理に比べ処理時間を大幅に短縮できることが確認された。 It was confirmed that the treatment time can be significantly shortened by the method of blowing or exhausting the air as compared with the case of no treatment.

今回使用したフレキシブルコンテナは、1インチ当たり、縦横共に15本の糸が織り込まれており、通気性がよい。これにより、(1)対象物質へ送風を行う際には、当初フレキシブルコンテナ内にあった、初期温度の低温気体がフレキシブルコンテナを通過して処理庫内へ排出され、低温気体に置換される。また、(2)対象物質から排風を行う際には、フレキシブルコンテナを通して、処理庫内の殺虫温度の雰囲気気体がフレキシブルコンテナ内に侵入することで、初期温度の低温気体に置換される。このように、対象物質を収納する収納容器に通気性があることで、収納容器内をより早く殺虫温度気体に置換することが可能である。 The flexible container used this time has 15 threads woven in both length and width per inch, and has good breathability. As a result, (1) when blowing air to the target substance, the low-temperature gas having an initial temperature, which was initially in the flexible container, passes through the flexible container and is discharged into the processing chamber, and is replaced with the low-temperature gas. Further, (2) when the target substance is exhausted, the atmospheric gas at the insecticidal temperature in the processing chamber invades the flexible container through the flexible container, so that the gas is replaced with the low temperature gas at the initial temperature. In this way, since the storage container for storing the target substance is breathable, it is possible to replace the inside of the storage container with the insecticidal temperature gas more quickly.

(実施例9)
処理庫の雰囲気気体を対象物質に供給するための供給ノズルが、対象物質を殺虫濃度である低酸素濃度気体に置換するのに奏する時間的効果について、確認する低酸素濃度置換確認試験を行った。
(処理条件)
(1)対象物質内へ送風、(2)対象物質から排風、(3)送風及び排風を行わない無処理を処理条件とした。図1に、(1)対象物質内へ送風の装置構成を示す。また、図2に、(2)対象物質から排風の装置構成を示す。(1)及び(2)の比較として、(3)送風及び排風を行わない無処理を設定した。(3)の装置構成は、図1において集気供給機構及び供給ノズルがないものである。
(装置)
(1)対象物質へ送風については図1、及び(2)対象物質から排風については図2で示す。(3)送風及び排風を行わない無処理については、図1において集気供給機構及び供給ノズルがないものとなる。
(Example 9)
A low oxygen concentration replacement confirmation test was conducted to confirm the temporal effect of the supply nozzle for supplying the atmospheric gas of the treatment chamber to the target substance to replace the target substance with the low oxygen concentration gas having an insecticidal concentration. ..
(Processing conditions)
The treatment conditions were (1) blowing air into the target substance, (2) exhausting air from the target substance, and (3) no treatment without blowing and exhausting air. FIG. 1 shows (1) a device configuration for blowing air into the target substance. Further, FIG. 2 shows (2) a device configuration for exhausting air from the target substance. As a comparison of (1) and (2), (3) no treatment without blowing and exhausting was set. The apparatus configuration of (3) does not have the air collecting supply mechanism and the supply nozzle in FIG.
(Device)
(1) The air blown to the target substance is shown in FIG. 1, and (2) the exhaust air from the target substance is shown in FIG. (3) For no treatment that does not blow or exhaust air, there is no air collection supply mechanism and supply nozzle in FIG.

対象物質8の小麦800kgを、対象物質収納容器2であるフレキシブルコンテナに収納した。図示しない酸素濃度計測箇所は、(1)対象物質内へ送風及び(2)対象物質から排風については対象物質収納容器2の底部、(3)送風及び排風を行わない無処理の場合については、対象物質収納容器2内中央とした。この計測箇所は、実施例8の温度上昇確認試験の際に、各処理条件において、最も温度上昇が鈍かった計測箇所である。よって、低酸素濃度気体への置換がもっとも遅い位置であると定め、酸素濃度計測箇所に設定した。
供給ノズル4の配置場所は、実施例8の温度上昇確認試験と同一である。
800 kg of wheat of the target substance 8 was stored in the flexible container which is the target substance storage container 2. Oxygen concentration measurement points (not shown) are (1) blowing into the target substance and (2) the bottom of the target substance storage container 2 for exhaust from the target substance, and (3) the case of no treatment without blowing and exhausting. Was the center of the target substance storage container 2. This measurement point is the measurement point where the temperature rise was the slowest under each processing condition in the temperature rise confirmation test of Example 8. Therefore, it was determined that the replacement with a low oxygen concentration gas was the slowest position, and it was set at the oxygen concentration measurement point.
The location of the supply nozzle 4 is the same as that of the temperature rise confirmation test of Example 8.

(試験作業手順)
処理庫1を、低酸素濃度気体で置換し、0.2%とした。図1の集気供給機構及び図2の排気機構として、フレキシブルコンテナの容積を基準として約1.5回換気/分の換気スピードで集気及び排気を行った。各酸素濃度測定箇所が、殺虫濃度上限の3.0%となるまでに要した時間を測定した。
(Test work procedure)
The processing chamber 1 was replaced with a gas having a low oxygen concentration to obtain 0.2%. As the air collecting supply mechanism of FIG. 1 and the exhaust mechanism of FIG. 2, air was collected and exhausted at a ventilation speed of about 1.5 times ventilation / minute based on the volume of the flexible container. The time required for each oxygen concentration measurement point to reach 3.0% of the upper limit of the insecticidal concentration was measured.

(試験結果)
図10に、試験結果を示す。縦軸には酸素濃度(%)を示し、横軸は経過時間(分)を示している。(1)対象物質内へ送風、(2)対象物質から排風、(3)送風及び排風を行わない無処理の結果をそれぞれ、丸、三角、四角で示している。
(Test results)
FIG. 10 shows the test results. The vertical axis shows the oxygen concentration (%), and the horizontal axis shows the elapsed time (minutes). The results of (1) blowing into the target substance, (2) exhausting from the target substance, and (3) not blowing and exhausting are shown by circles, triangles, and squares, respectively.

各酸素濃度測定箇所が、殺虫濃度上限の3.0%となるまでに要した時間は、(1)対象物質へ送風は60分、(2)対象物質から排風は77分、(3)送風及び排風を行わない無処理は190分を要した。 The time required for each oxygen concentration measurement point to reach 3.0% of the upper limit of the insecticidal concentration was (1) 60 minutes for blowing air to the target substance, (2) 77 minutes for exhausting air from the target substance, and (3). No treatment without blowing and exhausting took 190 minutes.

送風あるいは排風を行う方法は、無処理に比べ処理時間を大幅に短縮できることが確認された。 It was confirmed that the treatment time can be significantly shortened by the method of blowing or exhausting the air as compared with the case of no treatment.

今回使用したフレキシブルコンテナは、1インチ当たり、縦横共に15本の糸が織り込まれており、通気性がよい。これにより、(1)対象物質へ送風を行う際には、当初フレキシブルコンテナ内にあった初期気体が、フレキシブルコンテナを通過して処理庫内へ排出され、低酸素濃度気体と置換される。また、(2)対象物質から排風を行う際には、フレキシブルコンテナを通して、処理庫内の殺虫濃度の低酸素濃度気体がフレキシブルコンテナ内に侵入することで、初期気体と置換される。このように、対象物質を収納する収納容器に通気性があることで、収納容器内をより早く低酸素濃度気体に置換することが可能である。 The flexible container used this time has 15 threads woven in both length and width per inch, and has good breathability. As a result, (1) when blowing air to the target substance, the initial gas originally in the flexible container is discharged into the processing chamber through the flexible container and replaced with the low oxygen concentration gas. Further, (2) when exhausting air from the target substance, a low oxygen concentration gas having an insecticidal concentration in the processing chamber invades the flexible container through the flexible container, thereby replacing the initial gas. As described above, since the storage container for storing the target substance is breathable, it is possible to quickly replace the inside of the storage container with a gas having a low oxygen concentration.

実施例8の温度置換時間と、実施例9の酸素置換時間とを比較した場合、温度置換時間は対象物質へ送風を行ったとしても、96時間を要した。一方、酸素置換時間は無処理であっても、190分で置換が完了した。よって、温度置換時間は酸素置換時間に比べ時間を要することが分かった。よって、温度上昇においては対象物質にヒーター等を設置し、積極的に昇温させる必要がある。一方、低酸素濃度置換においては、雰囲気気体が低酸素濃度気体の場合、対象物質収納容器内に送風や排風等で積極的に置換動作を行わなくとも、通気性のある対象物質収納容器を通し、低酸素濃度気体が侵入することで、低酸素濃度気体に置換することができる。つまり、温度上昇に関する機構を積極的に設け、酸素濃度置換に関する機構は設けない、あるいは簡素な装置とすることもできる。 Comparing the temperature replacement time of Example 8 with the oxygen replacement time of Example 9, the temperature replacement time required 96 hours even if the target substance was blown. On the other hand, even if the oxygen replacement time was untreated, the replacement was completed in 190 minutes. Therefore, it was found that the temperature replacement time takes longer than the oxygen replacement time. Therefore, when the temperature rises, it is necessary to install a heater or the like on the target substance and positively raise the temperature. On the other hand, in the case of low oxygen concentration replacement, when the atmospheric gas is a low oxygen concentration gas, a breathable target substance storage container is provided even if the replacement operation is not actively performed by blowing air or exhausting air into the target substance storage container. By invading the low oxygen concentration gas through the gas, it can be replaced with the low oxygen concentration gas. That is, a mechanism related to temperature rise may be positively provided, and a mechanism related to oxygen concentration substitution may not be provided, or a simple device may be used.

(実施例10)
実施例8及び9に準じて、温度上昇確認試験及び低酸素濃度置換確認試験に関する以下の実験を行った。
(装置及び条件)
処理庫;ダイキンアプライドシステムズ製低酸素殺虫装置
処理庫容積;約6m
処理庫の酸素濃度;0.1%
処理庫内の温度(雰囲気温度);35℃
排気加速装置;高須産業製 ターボダクトファンT-100型
排気加速装置排気量;実測0.72m/分
対象物質の初期温度;15℃
(Example 10)
The following experiments relating to the temperature rise confirmation test and the hypoxia concentration substitution confirmation test were carried out according to Examples 8 and 9.
(Device and conditions)
Treatment cabinet; Daikin Applied Systems low oxygen insecticide treatment cabinet Volume: Approximately 6m 3
Oxygen concentration in the processing chamber; 0.1%
Temperature inside the processing chamber (atmospheric temperature); 35 ° C
Exhaust accelerator; Turbo duct fan T-100 type made by Takasu Sangyo Exhaust displacement; Actual measurement 0.72m 3 / min Initial temperature of target substance; 15 ℃

センキュウ0.2t(かさ密度;0.49kg/L)を対象物質とし、(1)対象物質から排風(高須産業製 ターボダクトファンT-100型使用)、比較として(2)排風を行わない無処理を処理条件として、試験を行った。
対象物質8のセンキュウ0.2kgを、対象物質収納容器2であるフレキシブルコンテナに収納した。
図示しない温度計測器は、対象物質収納容器2の前面左上、前面右上、前面左下、前面右下、対象物質収納容器2の中央の計6か所に配置した。
図示しない酸素濃度計測箇所は、対象物質収納容器2の中央の計1か所に配置した。
供給ノズル4の配置場所は、実施例8及び9と同一である。
The target substance is Senkyu 0.2t (bulk density; 0.49kg / L), (1) exhaust air from the target substance (using Takasu Sangyo turbo duct fan T-100 type), and (2) exhaust air for comparison. The test was conducted under the condition of no treatment.
0.2 kg of Senkyu of the target substance 8 was stored in the flexible container which is the target substance storage container 2.
Temperature measuring instruments (not shown) were arranged at a total of 6 locations: the upper left of the front surface of the target substance storage container 2, the upper right of the front surface, the lower left of the front surface, the lower right of the front surface, and the center of the target substance storage container 2.
The oxygen concentration measurement points (not shown) were arranged at a total of one place in the center of the target substance storage container 2.
The arrangement location of the supply nozzle 4 is the same as that of Examples 8 and 9.

(温度試験作業手順)
処理庫1内の雰囲気温度35℃に到達した後、約1.9回換気/分の換気スピードで集気及び排気を行い、対象物質8の温度を計測した。各温度計測値が全て、殺虫温度である30℃に到達した時間を計測した。
(酸素濃度試験作業手順)
処理庫1を、低酸素濃度気体で置換し、0.1%とした。図1の集気供給機構及び図2の排気機構として、フレキシブルコンテナの容積を基準として約0.76回換気/分の換気スピードで集気及び排気を行った。各酸素濃度測定箇所が、酸素濃度0.1%となるまでに要した時間を測定した。
(Temperature test work procedure)
After reaching the atmospheric temperature of 35 ° C. in the processing chamber 1, air was collected and exhausted at a ventilation speed of about 1.9 times ventilation / minute, and the temperature of the target substance 8 was measured. The time when all the temperature measurement values reached the insecticidal temperature of 30 ° C. was measured.
(Oxygen concentration test work procedure)
The processing chamber 1 was replaced with a gas having a low oxygen concentration to obtain 0.1%. As the air collecting supply mechanism of FIG. 1 and the exhaust mechanism of FIG. 2, air was collected and exhausted at a ventilation speed of about 0.76 times ventilation / minute based on the volume of the flexible container. The time required for each oxygen concentration measurement point to reach an oxygen concentration of 0.1% was measured.

(試験結果)
(1)対象物質から排風した場合、(2)排風を行わない無処理と比べ、対象物質収納容器2のコールドポイント比較にて、保管温度の15℃から殺虫条件の温度(30℃)への昇温時間を58時間から17時間へ40時間削減する効果を得た。梱包中心部の酸素濃度を0.1%に低下させる時間は2時間程度の差異であった。
(Test results)
(1) When the target substance is exhausted, (2) Compared to the untreated product without exhaust air, the cold point comparison of the target substance storage container 2 shows that the storage temperature is 15 ° C to the insecticidal temperature (30 ° C). The effect of reducing the temperature rise time from 58 hours to 17 hours by 40 hours was obtained. The time required to reduce the oxygen concentration in the center of the package to 0.1% was a difference of about 2 hours.

(実施例11)
実施例8及び9に準じて、温度上昇確認試験及び低酸素濃度置換確認試験に関する以下の実験を行った。
(装置及び条件)
処理庫;ダイキンアプライドシステムズ製低酸素殺虫装置
処理庫容積;約6m
処理庫の酸素濃度;0.6%
処理庫内の温度(雰囲気温度);35℃
排気加速装置;高須産業製 ターボダクトファンT-100型
排気加速装置排気量;実測0.72m/分
対象物質の初期温度;15℃
(Example 11)
The following experiments relating to the temperature rise confirmation test and the hypoxia concentration substitution confirmation test were carried out according to Examples 8 and 9.
(Device and conditions)
Treatment cabinet; Daikin Applied Systems low oxygen insecticide treatment cabinet Volume: Approximately 6m 3
Oxygen concentration in the processing chamber; 0.6%
Temperature inside the processing chamber (atmospheric temperature); 35 ° C
Exhaust accelerator; Turbo duct fan T-100 type made by Takasu Sangyo Exhaust displacement; Actual measurement 0.72m 3 / min Initial temperature of target substance; 15 ℃

半夏0.2t(かさ密度;0.76kg/L)を対象物質とし、(1)対象物質から排風(高須産業製 ターボダクトファンT-100型使用)、比較として(2)排風を行わない無処理を処理条件として、試験を行った。
対象物質8のセンキュウ0.2tを、対象物質収納容器2であるフレキシブルコンテナに収納した。
図示しない温度計測器は、対象物質収納容器2の前面左上、前面右上、前面左下、前面右下、対象物質収納容器2の中央の計6か所に配置した。
図示しない酸素濃度計測箇所は、対象物質収納容器2の中央の計1か所に配置した。
供給ノズル4の配置場所は、実施例8及び9と同一である。
Half-summer 0.2t (bulk density; 0.76kg / L) is the target substance, (1) exhaust air from the target substance (using Takasu Sangyo turbo duct fan T-100 type), and (2) exhaust air for comparison. The test was conducted under the condition of no treatment to be performed.
0.2t of Senkyu of the target substance 8 was stored in the flexible container which is the target substance storage container 2.
Temperature measuring instruments (not shown) were arranged at a total of 6 locations: the upper left of the front surface of the target substance storage container 2, the upper right of the front surface, the lower left of the front surface, the lower right of the front surface, and the center of the target substance storage container 2.
The oxygen concentration measurement points (not shown) were arranged at a total of one place in the center of the target substance storage container 2.
The arrangement location of the supply nozzle 4 is the same as that of Examples 8 and 9.

(試験作業手順)
処理庫1を、低酸素濃度気体で置換し、0.6%とした。図1の集気供給機構及び図2の排気機構として、フレキシブルコンテナの容積を基準として約2.9回換気/分の換気スピードで集気及び排気を行った。各酸素濃度測定箇所が、酸素濃度0.6%となるまでに要した時間を測定した。
(Test work procedure)
The processing chamber 1 was replaced with a gas having a low oxygen concentration to obtain 0.6%. As the air collecting supply mechanism of FIG. 1 and the exhaust mechanism of FIG. 2, air was collected and exhausted at a ventilation speed of about 2.9 times ventilation / minute based on the volume of the flexible container. The time required for each oxygen concentration measurement point to reach an oxygen concentration of 0.6% was measured.

(試験結果)
(1)対象物質から排風した場合、(2)排風を行わない無処理と比べ、対象物質収納容器2のコールドポイント比較にて、保管温度の15℃から殺虫条件の温度(30℃)への昇温時間を78時間から13.5時間へ60時間以上削減する効果を得た。梱包中心部の酸素濃度を0.6%に低下させる時間は差異がなかった。
(Test results)
(1) When the target substance is exhausted, (2) Compared to the untreated product without exhaust air, the cold point comparison of the target substance storage container 2 shows that the storage temperature is 15 ° C to the insecticidal temperature (30 ° C). The effect of reducing the temperature rise time from 78 hours to 13.5 hours by 60 hours or more was obtained. There was no difference in the time it took to reduce the oxygen concentration in the center of the package to 0.6%.

1 処理庫
2 対象物質収納容器
3 集気供給機構
4 供給ノズル
5 制御部
6 酸素濃度調整部
7 気体温度調整部
8 対象物質
9 排気機構
10 加熱手段
41 非通気部
42 通気部
1 Processing chamber 2 Target substance storage container 3 Air collection supply mechanism 4 Supply nozzle 5 Control unit 6 Oxygen concentration adjustment unit 7 Gas temperature adjustment unit 8 Target substance 9 Exhaust mechanism 10 Heating means 41 Non-ventilation unit 42 Ventilation unit

Claims (34)

10kg以上の植物又は生薬である対象物質が保管されている密閉空間の大気を不活性ガスで置換し、酸素濃度を3%以下にする、低酸素濃度気体への置換工程と、
前記低酸素濃度気体の温度を調整する気体温度調整工程と、
前記対象物質の温度を30℃以上にする物質温度調整工程と、
を含む殺虫方法。
A step of replacing the atmosphere in a closed space where 10 kg or more of a plant or a target substance, which is a crude drug, is stored with an inert gas to reduce the oxygen concentration to 3% or less, and a replacement step with a low oxygen concentration gas.
A gas temperature adjusting step for adjusting the temperature of the low oxygen concentration gas and
A substance temperature adjustment step of raising the temperature of the target substance to 30 ° C. or higher, and
Insecticidal methods including.
前記気体温度調整工程において、前記低酸素濃度気体の温度を35~40℃に調整する請求項1に記載の殺虫方法。 The insecticidal method according to claim 1, wherein in the gas temperature adjusting step, the temperature of the low oxygen concentration gas is adjusted to 35 to 40 ° C. 前記物質温度調整工程において、前記対象物質の周辺の前記低酸素濃度気体を集気し、前記対象物質に前記低酸素濃度気体を均一に供給する集気供給機構を用い、前記対象物質の温度を30℃以上にする請求項1又は2に記載の殺虫方法。 In the substance temperature adjusting step, the temperature of the target substance is adjusted by using an air collecting supply mechanism that collects the low oxygen concentration gas around the target substance and uniformly supplies the low oxygen concentration gas to the target substance. The insecticidal method according to claim 1 or 2, wherein the temperature is 30 ° C. or higher. 前記物質温度調整工程において、前記対象物質の周辺の排気を積極的に行うことにより、前記対象物質に前記低酸素濃度気体を均一に供給する排気機構を用い、前記対象物質の温度を30℃以上にする請求項1又は2に記載の殺虫方法。 In the substance temperature adjusting step, the temperature of the target substance is set to 30 ° C. or higher by using an exhaust mechanism that uniformly supplies the low oxygen concentration gas to the target substance by actively exhausting the periphery of the target substance. The insecticidal method according to claim 1 or 2. 前記集気供給機構又は前記排気機構が、前記対象物質に挿入し、前記低酸素濃度気体を所望の圧力で前記対象物質に供給する供給ノズルを用いる請求項3又は4に記載の殺虫方法。 The insecticidal method according to claim 3 or 4, wherein the air collecting supply mechanism or the exhaust mechanism uses a supply nozzle that is inserted into the target substance and supplies the low oxygen concentration gas to the target substance at a desired pressure. 前記供給ノズルが、前記低酸素濃度気体が前記対象物質へと供給されるための通気部を有し、前記通気部は前記対象物質が侵入しない程度の穴又はメッシュを用いる請求項5に記載の殺虫方法。 The fifth aspect of claim 5, wherein the supply nozzle has a ventilation portion for supplying the low oxygen concentration gas to the target substance, and the ventilation portion uses a hole or a mesh to the extent that the target substance does not enter. How to kill insects. 前記通気部が、前記供給ノズルの先端よりに設置される請求項6に記載の殺虫方法。 The insecticidal method according to claim 6, wherein the ventilation portion is installed from the tip of the supply nozzle. 加熱手段を備えた送風機により、加熱された前記低酸素濃度気体を前記対象物質にあてる請求項1~7のいずれか1項に記載の殺虫方法。 The insecticidal method according to any one of claims 1 to 7, wherein the low oxygen concentration gas heated by a blower provided with a heating means is applied to the target substance. 加熱手段を備えた装置により、前記対象物質を加熱する請求項1~8のいずれか1項に記載の殺虫方法。 The insecticidal method according to any one of claims 1 to 8, wherein the target substance is heated by an apparatus provided with a heating means. 前記対象物質又は前記対象物質周辺の酸素濃度を測る酸素濃度測定工程を有し、
前記置換工程は、前記対象物質又は前記対象物質周辺の酸素濃度に基づき前記低酸素濃度気体の供給量を調節する請求項1~9のいずれか1項に記載の殺虫方法。
It has an oxygen concentration measuring step for measuring the oxygen concentration of the target substance or the vicinity of the target substance.
The insecticidal method according to any one of claims 1 to 9, wherein the replacement step adjusts the supply amount of the low oxygen concentration gas based on the oxygen concentration of the target substance or the vicinity of the target substance.
前記対象物質又は前記対象物質周辺の温度を測る温度測定工程を有し、
前記気体温度調整工程は、前記対象物質又は前記対象物質周辺の温度に基づき前記低酸素濃度気体の温度を調節する請求項1~10のいずれか1項に記載の殺虫方法。
It has a temperature measuring step of measuring the temperature of the target substance or the vicinity of the target substance, and has a temperature measuring step.
The insecticidal method according to any one of claims 1 to 10, wherein the gas temperature adjusting step adjusts the temperature of the low oxygen concentration gas based on the temperature of the target substance or the vicinity of the target substance.
前記置換工程は、前記酸素濃度測定工程により、前記不活性ガスの供給時間を調節する請求項10又は11に記載の殺虫方法。 The insecticidal method according to claim 10 or 11, wherein the replacement step adjusts the supply time of the inert gas by the oxygen concentration measuring step. 前記気体温度調整工程は、前記温度測定工程により、前記低酸素濃度気体の温度を調節する請求項11又は12に記載の殺虫方法。 The insecticidal method according to claim 11 or 12, wherein the gas temperature adjusting step adjusts the temperature of the low oxygen concentration gas by the temperature measuring step. 前記物質温度調整工程は、前記温度測定工程により、工程時間を調節する請求項11~13のいずれか1項に記載の殺虫方法。 The insecticidal method according to any one of claims 11 to 13, wherein the substance temperature adjusting step adjusts the step time by the temperature measuring step. 前記置換工程は、前記密閉空間が密閉空間外に比べて陽圧になるよう、前記不活性ガスを流入する請求項1~14のいずれか1項に記載の殺虫方法。 The insecticidal method according to any one of claims 1 to 14, wherein the replacement step is performed by inflowing the inert gas so that the closed space has a positive pressure as compared with the outside of the closed space. 前記置換工程は、前記密閉空間への前記不活性ガスの流入と前記低酸素濃度気体の排出とを積極的に行う請求項1~15のいずれか1項に記載の殺虫方法。 The insecticidal method according to any one of claims 1 to 15, wherein the replacement step positively inflows the inert gas into the closed space and discharges the low oxygen concentration gas. 前記置換工程は、前記密閉空間に第一密閉空間と前記第一密閉空間の内側に第二密閉空間とを設け、前記第二密閉空間内に前記対象物質を保管し、
前記第二密閉空間内に前記不活性ガスを流入し、
前記第二密閉空間内の前記低酸素濃度気体の酸素濃度は、前記第一密閉空間内の酸素濃度に比べ、低く維持される請求項1~16のいずれか1項に記載の殺虫方法。
In the replacement step, a first closed space is provided in the closed space and a second closed space is provided inside the first closed space, and the target substance is stored in the second closed space.
The inert gas flows into the second enclosed space,
The insecticidal method according to any one of claims 1 to 16, wherein the oxygen concentration of the low oxygen concentration gas in the second closed space is maintained lower than the oxygen concentration in the first closed space.
前記置換工程は、前記第二密閉空間内の圧力が前記第一密閉空間内の圧力に比べて陽圧になるよう、前記不活性ガスを流入する請求項17に記載の殺虫方法。 The insecticidal method according to claim 17, wherein in the replacement step, the inert gas is introduced so that the pressure in the second closed space becomes a positive pressure as compared with the pressure in the first closed space. 前記置換工程は、前記密閉空間内の酸素を吸着する酸素吸着工程を有する請求項1~18のいずれか1項に記載の殺虫方法。 The insecticidal method according to any one of claims 1 to 18, wherein the replacement step includes an oxygen adsorption step of adsorbing oxygen in the enclosed space. 前記物質温度調整工程は、3日~3週間継続される請求項1~19のいずれか1項に記載の殺虫方法。 The insecticidal method according to any one of claims 1 to 19, wherein the substance temperature adjusting step is continued for 3 days to 3 weeks. (a)密閉空間を有する処理庫と、
(b)密閉空間の大気を不活性ガスで置換し、酸素濃度を3%以下にするための酸素濃度調整手段と、
(c)密閉空間の気体の温度を調整するための気体温度調整手段と、
(d)前記処理庫内に設けられ、10kg以上の植物又は生薬である対象物質を収納しうる通気性の対象物質収納容器と、
(e)(i)前記対象物質の周辺の低酸素濃度気体を集気し、前記対象物質に前記低酸素濃度気体を均一に供給する集気供給機構、
(ii)前記対象物質の周辺の排気を積極的に行うことにより、前記対象物質に前記低酸素濃度気体を均一に供給する排気機構、
(iii)低酸素濃度気体を加熱して前記対象物質にあてるための、加熱手段を備えた送風機、及び
(iv)前記対象物質を加熱するための、加熱手段を備えた装置
から選ばれる少なくとも1つの手段と、
を有する殺虫装置。
(A) A processing chamber having a closed space and
(B) An oxygen concentration adjusting means for substituting the atmosphere of the closed space with an inert gas to reduce the oxygen concentration to 3% or less.
(C) Gas temperature adjusting means for adjusting the temperature of gas in a closed space,
(D) A breathable target substance storage container provided in the processing chamber and capable of storing a target substance of 10 kg or more of a plant or a crude drug.
(E) (i) An air collecting supply mechanism that collects the low oxygen concentration gas around the target substance and uniformly supplies the low oxygen concentration gas to the target substance.
(ii) An exhaust mechanism that uniformly supplies the low oxygen concentration gas to the target substance by actively exhausting the vicinity of the target substance.
(iii) A blower equipped with a heating means for heating a low oxygen concentration gas and hitting the target substance, and
(iv) At least one means selected from an apparatus equipped with a heating means for heating the target substance, and
Insecticide device with.
前記集気供給機構が、前記対象物質に挿入し、前記低酸素濃度気体を所望の圧力で前記対象物質に供給する供給ノズルを有する請求項21に記載の殺虫装置。 The insecticidal apparatus according to claim 21, wherein the air collecting supply mechanism has a supply nozzle that is inserted into the target substance and supplies the low oxygen concentration gas to the target substance at a desired pressure. 前記供給ノズルが、前記低酸素濃度気体が前記対象物質へと供給されるための通気部を有し、前記通気部は前記対象物質が侵入しない程度の穴又はメッシュを用いる請求項22に記載の殺虫装置。 22. Insecticide. 前記通気部が、前記供給ノズルの先端よりに設置される請求項23に記載の殺虫装置。 The insecticidal device according to claim 23, wherein the ventilation portion is installed from the tip of the supply nozzle. 前記対象物質又は前記対象物質周辺の酸素濃度を測る酸素濃度測定手段を有する請求項21~24のいずれか1項に記載の殺虫装置。 The insecticidal apparatus according to any one of claims 21 to 24, further comprising an oxygen concentration measuring means for measuring the oxygen concentration of the target substance or the vicinity of the target substance. 前記対象物質又は前記対象物質周辺の温度を測る温度測定手段を有する請求項21~25のいずれか1項に記載の殺虫装置。 The insecticidal apparatus according to any one of claims 21 to 25, which has a temperature measuring means for measuring the temperature of the target substance or the vicinity of the target substance. 前記酸素濃度調整手段が、前記酸素濃度測定手段により、前記不活性ガスの置換時間を調節する手段を有する請求項25又は26に記載の殺虫装置。 The insecticidal apparatus according to claim 25 or 26, wherein the oxygen concentration adjusting means has a means for adjusting the replacement time of the inert gas by the oxygen concentration measuring means. 前記気体温度調整手段が、前記温度測定手段により、前記低酸素濃度気体の温度を調節する手段を有する請求項26又は27に記載の殺虫装置。 The insecticidal apparatus according to claim 26 or 27, wherein the gas temperature adjusting means has a means for adjusting the temperature of the low oxygen concentration gas by the temperature measuring means. 前記酸素濃度調整手段が、前記密閉空間が密閉空間外に比べて陽圧になるよう、前記不活性ガスを流入する手段を有する請求項21~28のいずれか1項に記載の殺虫装置。 The insecticidal apparatus according to any one of claims 21 to 28, wherein the oxygen concentration adjusting means has a means for inflowing the inert gas so that the closed space has a positive pressure as compared with the outside of the closed space. 前記酸素濃度調整手段が、前記密閉空間への前記不活性ガスの流入と前記低酸素濃度気体の排出とを積極的に行う手段を有する請求項21~29のいずれか1項に記載の殺虫装置。 The insecticidal apparatus according to any one of claims 21 to 29, wherein the oxygen concentration adjusting means positively comprises inflow of the inert gas into the enclosed space and discharge of the low oxygen concentration gas. .. 前記酸素濃度調整手段が、前記密閉空間に、第一密閉空間と前記第一密閉空間の内側に第二密閉空間とを設け、前記第二密閉空間内に前記対象物質を保管し、
前記第二密閉空間内に前記不活性ガスを流入し、
前記第二密閉空間内の前記低酸素濃度気体の酸素濃度は、前記第一密閉空間内の酸素濃度に比べ、低く維持される手段を有する請求項21~30のいずれか1項に記載の殺虫装置。
The oxygen concentration adjusting means provides a first closed space and a second closed space inside the first closed space in the closed space, and stores the target substance in the second closed space.
The inert gas flows into the second enclosed space,
The insecticide according to any one of claims 21 to 30, which has a means for keeping the oxygen concentration of the low oxygen concentration gas in the second closed space lower than the oxygen concentration in the first closed space. Device.
前記酸素濃度調整手段が、前記第二密閉空間内の圧力が前記第一密閉空間内の圧力に比べて陽圧になるよう、前記不活性ガスを流入する手段を有する請求項31に記載の殺虫装置。 31. The insecticide according to claim 31, wherein the oxygen concentration adjusting means has a means for inflowing the inert gas so that the pressure in the second closed space becomes a positive pressure as compared with the pressure in the first closed space. Device. 前記酸素濃度調整手段が、前記密閉空間内の酸素を吸着する手段を有する請求項21~32のいずれか1項に記載の殺虫装置。 The insecticidal apparatus according to any one of claims 21 to 32, wherein the oxygen concentration adjusting means has a means for adsorbing oxygen in the enclosed space. 前記対象物質の温度を30℃以上に3日~3週間維持する手段を有する請求項21~33のいずれか1項に記載の殺虫装置。 The insecticidal apparatus according to any one of claims 21 to 33, which has a means for maintaining the temperature of the target substance at 30 ° C. or higher for 3 days to 3 weeks.
JP2021198353A 2021-01-07 2021-12-07 Low-oxygen-concentration insecticidal method and apparatus for use in the same Pending JP2022106655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210015844.8A CN114711204A (en) 2021-01-07 2022-01-07 Low oxygen concentration insecticidal method and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021001591 2021-01-07
JP2021001591 2021-01-07

Publications (1)

Publication Number Publication Date
JP2022106655A true JP2022106655A (en) 2022-07-20

Family

ID=82457295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021198353A Pending JP2022106655A (en) 2021-01-07 2021-12-07 Low-oxygen-concentration insecticidal method and apparatus for use in the same

Country Status (1)

Country Link
JP (1) JP2022106655A (en)

Similar Documents

Publication Publication Date Title
Njoroge et al. Triple bag hermetic storage delivers a lethal punch to Prostephanus truncatus (Horn)(Coleoptera: Bostrichidae) in stored maize
Freitas et al. Hermetic storage for control of common bean weevil, Acanthoscelides obtectus (Say)
Kumar et al. Vacuum hermetic fumigation: A review
Mutungi et al. Triple-layer plastic bags protect dry common beans (Phaseolus vulgaris) against damage by Acanthoscelides obtectus (Coleoptera: Chrysomelidae) during storage
El-Naggar et al. Disinfestation of stored wheat grain and flour using gamma rays and microwave heating
Hossain et al. Basil oil fumigation increases radiation sensitivity in adult Sitophilus oryzae (Coleoptera: Curculionidae)
García-Lara et al. Portable hermetic storage bag resistant to Prostephanus truncatus, Rhyzopertha dominica, and Callosobruchus maculatus
Divya et al. Modified atmosphere storage technique for the management of pulse beetle, Callosobruchus chinensis in Horse gram
Niakousari et al. Fumigation characteristics of ozone in postharvest treatment of kabkab dates (Phoenix dactylifera L.) against selected insect infestation
Vadivambal et al. Determination of mortality of different life stages of Tribolium castaneum (Coleoptera: Tenebrionidae) in stored barley using microwaves
Hallman Phytosanitary measures to prevent the introduction of invasive species
Navarro et al. Insect pest management of oilseed crops, tree nuts and dried fruits
Yakubu Non-chemical on-farm hermetic maize storage in East Africa
JP5322045B2 (en) Pest control method and pest control apparatus using carbon dioxide
JP2022106655A (en) Low-oxygen-concentration insecticidal method and apparatus for use in the same
Damarh et al. An alternative method instead of methyl bromide for insect disinfestation of dried figs: Controlled atmosphere
Finkelman et al. Use of heat for disinfestation and control of insects in dates: laboratory and field trials
Kumar et al. Fumigant toxicity of essential oils and their combinations on population buildup of three stored product coleoptera in stored wheat and effect on quality of wheat
Arlene-Christina et al. Movement of Cryptolestes ferrugineus out of wheat kernels and their mortalities under elevated temperatures
CN114711204A (en) Low oxygen concentration insecticidal method and apparatus therefor
WO2017072563A1 (en) Device for stored products protection and uses thereof
Chapman Insects infesting stored food products
Divagar Control of three stored-product insect species in wheat using superheated steam and hot air
Ahmed et al. Effects of modified atmospheres and ozone on Sitophilus oryzae (L.)(Coleoptera: Curculionidae), Tribolium castaneum (Herbst.)(Coleoptera: Tenebrionidae): Quality of wheat flour and safety of wheat grains to rats
Swathi et al. Effect of sub-optimal moisture levels on the quality of groundnut (Arachis hypogaea L.) during storage in triple-layer hermetic storage bags

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240401