JP2022106532A - Alloy powder for deposition modeling, deposition model, and deposition modeling method - Google Patents

Alloy powder for deposition modeling, deposition model, and deposition modeling method Download PDF

Info

Publication number
JP2022106532A
JP2022106532A JP2021001605A JP2021001605A JP2022106532A JP 2022106532 A JP2022106532 A JP 2022106532A JP 2021001605 A JP2021001605 A JP 2021001605A JP 2021001605 A JP2021001605 A JP 2021001605A JP 2022106532 A JP2022106532 A JP 2022106532A
Authority
JP
Japan
Prior art keywords
mass
less
laminated
heat treatment
laminated model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021001605A
Other languages
Japanese (ja)
Inventor
正樹 種池
Masaki Taneike
秀次 谷川
Hidetsugu Tanigawa
仁 北村
Hitoshi Kitamura
泰成 竹田
Yasunari Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2021001605A priority Critical patent/JP2022106532A/en
Priority to PCT/JP2021/048738 priority patent/WO2022149539A1/en
Publication of JP2022106532A publication Critical patent/JP2022106532A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

To improve high-temperature creep ductility in deposition modeling of Ni-based alloys.SOLUTION: An alloy powder for deposition modeling according to one embodiment of the present invention is configured from a nickel-based alloy and contains 15.0 mass% or more and 25.0 mass% or less of cobalt, 10.0 mass% or more and 25.0 mass% or less of chromium, 0.0 mass% or more and 3.5 mass% or less of molybdenum, 0.5 mass% or more and 10.0 mass% or less of tungsten, 1.0 mass% or more and 4.0 mass% or less of aluminum, 0.0 mass% or more and 5.0 mass% or less of titanium, 0.0 mass% or more and 4.0 mass% or less of tantalum, 0.0 mass% or more and 2.0 mass% or less of niobium, 0.03 mass% or more and 0.2 mass% or less of carbon, 0.003 mass% or more and 0.05 mass% or less of boron, and 0.1 mass% or more and 0.3 mass% or less of zirconium.SELECTED DRAWING: Figure 2

Description

本開示は、積層造形用合金粉末、積層造形体及び積層造形方法に関する。 The present disclosure relates to alloy powders for additive manufacturing, additive manufacturing bodies, and additive manufacturing methods.

近年、金属を積層造形して三次元形状物を得る積層造形法が種々の金属製品の製造方法として利用されている。例えば、パウダーベッド法による積層造形法では、層状に敷設された金属粉末にレーザービームや電子ビーム等のエネルギービームを照射することによって、溶融固化を繰り返し積層することにより三次元形状物を形成する。
エネルギービームが照射される領域内では、金属粉末が急速に溶融され、その後、急速に冷却・凝固されることで、金属凝固層が形成される。このような過程が繰り返されることによって、立体的に造形された積層造形物が形成される。
In recent years, a layered manufacturing method for obtaining a three-dimensional shape by additive manufacturing of metals has been used as a method for manufacturing various metal products. For example, in the additive manufacturing method by the powder bed method, a three-dimensional shape is formed by repeatedly laminating by melting and solidifying by irradiating a metal powder laid in a layer with an energy beam such as a laser beam or an electron beam.
In the region irradiated with the energy beam, the metal powder is rapidly melted and then rapidly cooled and solidified to form a solidified metal layer. By repeating such a process, a three-dimensionally shaped laminated model is formed.

一方、Niを主成分とするNi基合金は、耐熱性が高く、高温強度が大きいことが知られており、鋳造法によるNi基合金からなる部材は、従来からガスタービン用のタービン部材等、高温強度が要求される耐熱部材の用途に広く使用されている。 On the other hand, it is known that Ni-based alloys containing Ni as a main component have high heat resistance and high high-temperature strength. It is widely used in heat-resistant materials that require high-temperature strength.

そして最近では、例えばタービン翼のような複雑形状のNi基合金からなる部品の製造方法として、複雑な製造工程を経ずに直接造形が可能な積層造形法を適用する試みがなされている(例えば特許文献1等)。 Recently, as a method for manufacturing a part made of a Ni-based alloy having a complicated shape such as a turbine blade, an attempt has been made to apply a layered manufacturing method that enables direct molding without going through a complicated manufacturing process (for example). Patent Document 1 etc.).

特開2018-168400号公報Japanese Unexamined Patent Publication No. 2018-168400

γ’相強化型のNi基合金では、結晶粒内の強度が比較的大きいため、相対的に結晶粒界の強度が低くなり、結晶粒界で破壊し易くなる傾向にある。そのため、高温クリープ延性が低下するおそれがある。クリープ延性が低下すると応力集中部を主体に脆性的に破断しやすくなり,設計上の許容応力が大幅に低下する。
積層造形法で製造したNi基合金の積層造形物では、エネルギービーム照射後の急速凝固のため、結晶粒が比較的微細となる。そのため、単位体積当たりの結晶粒界面積が従来の鋳造材よりも大きくなるので、積層造形物の強度に関して結晶粒界の影響が大きくなる。
In the γ'phase-reinforced Ni-based alloy, since the strength in the crystal grains is relatively high, the strength of the crystal grain boundaries is relatively low, and there is a tendency for the γ'phase-reinforced Ni-based alloy to be easily broken at the crystal grain boundaries. Therefore, the high temperature creep ductility may decrease. When the creep ductility is reduced, the stress-concentrated part is liable to break brittlely, and the allowable stress in design is significantly reduced.
In the additive manufacturing of Ni-based alloys produced by the additive manufacturing method, the crystal grains become relatively fine due to rapid solidification after irradiation with the energy beam. Therefore, since the crystal grain boundary area per unit volume is larger than that of the conventional cast material, the influence of the crystal grain boundary on the strength of the laminated model is large.

本開示の少なくとも一実施形態は、上述の事情に鑑みて、Ni基合金の積層造形物における高温クリープ延性を向上することを目的とする。 At least one embodiment of the present disclosure aims to improve high temperature creep ductility in a laminated model of a Ni-based alloy in view of the above circumstances.

(1)本開示の少なくとも一実施形態に係る積層造形用合金粉末は、
ニッケル基合金により構成される積層造形用合金粉末であって、
15.0質量%以上25.0質量%以下のコバルトと、
10.0質量%以上25.0質量%以下のクロムと、
0.0質量%以上3.5質量%以下のモリブデンと、
0.5質量%以上10.0質量%以下のタングステンと、
1.0質量%以上4.0質量%以下のアルミニウムと、
0.0質量%以上5.0質量%以下のチタンと、
0.0質量%以上4.0質量%以下のタンタルと、
0.0質量%以上2.0質量%以下のニオブと、
0.03質量%以上0.2質量%以下の炭素と、
0.003質量%以上0.05質量%以下のホウ素と、
0.1質量%以上0.3質量%以下のジルコニウムと、
を含有する。
(1) The alloy powder for laminated molding according to at least one embodiment of the present disclosure is
An alloy powder for laminated molding composed of a nickel-based alloy.
Cobalt of 15.0% by mass or more and 25.0% by mass or less,
With 10.0% by mass or more and 25.0% by mass or less of chromium,
With molybdenum of 0.0% by mass or more and 3.5% by mass or less,
Tungsten of 0.5% by mass or more and 10.0% by mass or less,
Aluminum of 1.0% by mass or more and 4.0% by mass or less,
With titanium of 0.0% by mass or more and 5.0% by mass or less,
With tantalum of 0.0% by mass or more and 4.0% by mass or less,
Niobium of 0.0% by mass or more and 2.0% by mass or less,
With carbon of 0.03% by mass or more and 0.2% by mass or less,
With boron of 0.003% by mass or more and 0.05% by mass or less,
Zirconium of 0.1% by mass or more and 0.3% by mass or less,
Contains.

(2)本開示の少なくとも一実施形態に係る積層造形体は、
ニッケル基合金により構成される積層造形体であって、
15.0質量%以上25.0質量%以下のコバルトと、
10.0質量%以上25.0質量%以下のクロムと、
0.0質量%以上3.5質量%以下のモリブデンと、
0.5質量%以上10.0質量%以下のタングステンと、
1.0質量%以上4.0質量%以下のアルミニウムと、
0.0質量%以上5.0質量%以下のチタンと、
0.0質量%以上4.0質量%以下のタンタルと、
0.0質量%以上2.0質量%以下のニオブと、
0.03質量%以上0.2質量%以下の炭素と、
0.003質量%以上0.05質量%以下のホウ素と、
0.1質量%以上0.3質量%以下のジルコニウムと、
を含有する。
(2) The laminated model according to at least one embodiment of the present disclosure is
It is a laminated model made of nickel-based alloy.
Cobalt of 15.0% by mass or more and 25.0% by mass or less,
With 10.0% by mass or more and 25.0% by mass or less of chromium,
With molybdenum of 0.0% by mass or more and 3.5% by mass or less,
Tungsten of 0.5% by mass or more and 10.0% by mass or less,
Aluminum of 1.0% by mass or more and 4.0% by mass or less,
With titanium of 0.0% by mass or more and 5.0% by mass or less,
With tantalum of 0.0% by mass or more and 4.0% by mass or less,
Niobium of 0.0% by mass or more and 2.0% by mass or less,
With carbon of 0.03% by mass or more and 0.2% by mass or less,
With boron of 0.003% by mass or more and 0.05% by mass or less,
Zirconium of 0.1% by mass or more and 0.3% by mass or less,
Contains.

(3)本開示の少なくとも一実施形態に係る積層造形方法は、上記(1)の構成の積層造形用合金粉末を用いて積層造形によって積層造形体を形成する工程を備える。 (3) The laminated modeling method according to at least one embodiment of the present disclosure includes a step of forming a laminated model by laminating modeling using the alloy powder for laminating modeling having the configuration of (1) above.

本開示の少なくとも一実施形態によれば、Ni基合金の積層造形物における高温クリープ延性を向上できる。 According to at least one embodiment of the present disclosure, high temperature creep ductility in a laminated model of a Ni-based alloy can be improved.

幾つかの実施形態に係る積層造形用合金粉末を用いて積層造形法で製造したNi基合金の積層造形物についての、熱処理後の組織を示した図である。It is a figure which showed the structure after the heat treatment about the laminated model of the Ni-based alloy manufactured by the additive manufacturing method using the alloy powder for laminated modeling which concerns on some embodiments. 幾つかの実施形態に係る積層造形用合金粉末の組成を示す表である。It is a table which shows the composition of the alloy powder for laminated molding which concerns on some embodiments. 幾つかの実施形態に係る積層造形用合金粉末を用いた実施例と比較例とについての成分、組成、及び高温クリープ試験の結果を表す表である。It is a table which shows the component, composition, and the result of the high temperature creep test about Example and comparative example using the alloy powder for laminated molding which concerns on some Embodiments. 幾つかの実施形態に係る積層造形用合金粉末を用いた積層造形物の製造手順を示すフローチャートである。It is a flowchart which shows the manufacturing procedure of the laminated model using the alloy powder for laminated model which concerns on some embodiments. 幾つかの実施形態に係る熱処理を行うステップにおける熱処理について説明するためのフローチャートである。It is a flowchart for demonstrating the heat treatment in the step which performs the heat treatment which concerns on some Embodiments.

以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present disclosure will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present disclosure, but are merely explanatory examples. do not have.
For example, expressions that represent relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" are exact. Not only does it represent such an arrangement, but it also represents a state of relative displacement with tolerances or angles and distances to the extent that the same function can be obtained.
For example, expressions such as "same", "equal", and "homogeneous" that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
For example, an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range in which the same effect can be obtained. The shape including the part and the like shall also be represented.
On the other hand, the expressions "equipped", "equipped", "equipped", "included", or "have" one component are not exclusive expressions that exclude the existence of other components.

γ’相(ガンマプライム相)強化型のニッケル基合金では、結晶粒内の強度が比較的大きいため、相対的に結晶粒界の強度が低くなり、結晶粒界で破壊し易くなる傾向にある。そのため、高温クリープ延性が低下するおそれがある。
積層造形法で製造したニッケル基合金の積層造形体では、エネルギービーム照射後の急速凝固のため、鋳造によって製造したニッケル基合金の従来の鋳造物と比べて結晶粒が微細となる。
γ’相強化型のニッケル基合金では、500℃より低い温度での強度特性は、結晶粒径が小さい方が強度が向上する傾向にある。しかし、結晶粒径が小さいと単位体積当たりの結晶粒界面積が従来の鋳造材よりも大きくなるので、積層造形体の強度に関して結晶粒界の影響が大きくなる。積層造形体の強度における結晶粒界の影響を抑制するために、熱処理によって結晶粒を粗大化させることが考えられるが、結晶粒径を大きくすると、500℃より低い温度での強度特性が低下するおそれがある。
In the γ'phase (gamma prime phase) reinforced nickel-based alloy, since the strength in the crystal grains is relatively high, the strength of the crystal grain boundaries is relatively low, and it tends to be easily broken at the crystal grain boundaries. .. Therefore, the high temperature creep ductility may decrease.
In the nickel-based alloy laminated model manufactured by the laminated molding method, the crystal grains are finer than those of the conventional casting of the nickel-based alloy produced by casting because of rapid solidification after irradiation with the energy beam.
In the γ'phase-reinforced nickel-based alloy, the strength characteristics at a temperature lower than 500 ° C. tend to be improved as the crystal grain size is smaller. However, if the crystal grain size is small, the grain boundary area per unit volume becomes larger than that of the conventional cast material, so that the influence of the crystal grain boundaries on the strength of the laminated model becomes large. In order to suppress the influence of the crystal grain boundaries on the strength of the laminated model, it is conceivable to coarsen the crystal grains by heat treatment, but if the crystal grain size is increased, the strength characteristics at a temperature lower than 500 ° C. deteriorate. There is a risk.

発明者らが鋭意検討した結果、ホウ素は、結晶粒界に存在することで粒界を強化して高温クリープ強度向上およびクリープ延性改善に効果があり0.003質量%以上添加することで粒界強化効果が大きくなることが判明した。一方、添加量が0.05質量%を越えれば、ホウ化物を生成し延性が低下するおそれがあることが判明した。
また、発明者らが鋭意検討した結果、ジルコニウムは、結晶粒界に存在することで粒界を強化して高温クリープ強度向上およびクリープ延性改善に効果があることが判明している。結晶粒が例えば2.0mm未満の細粒で、かつ、次式(A)を満たし、γ’相の体積率が15%以上の場合,ジルコニウムの添加量が0.1質量%よりも少ないと粒内強度に比較し粒界強度が相対的に低くなり延性が低下する。一方、ジルコニウムの添加量が0.3質量%を越えれば、結晶粒界部の局所的な融点を下げて強度低下を引き起こすおそれがある。
なお、上述した式(A)は次のように表される。アルミニウムの含有量についてのパラメータをAl質量%とし、チタンの含有量についてのパラメータをTi質量%とし、タンタルの含有量についてのパラメータをTa質量%とした場合に、式(A)は次の通りである。
Al+0.56×Ti+0.15×Ta>4.0・・・(A)
As a result of diligent studies by the inventors, boron is effective in improving high-temperature creep strength and creep ductility by strengthening grain boundaries by being present at grain boundaries, and by adding 0.003% by mass or more, grain boundaries. It was found that the strengthening effect was increased. On the other hand, it was found that if the addition amount exceeds 0.05% by mass, boride may be formed and the ductility may be lowered.
Further, as a result of diligent studies by the inventors, it has been found that zirconium is effective in improving high-temperature creep strength and creep ductility by strengthening grain boundaries by being present at grain boundaries. When the crystal grains are fine particles of less than 2.0 mm, satisfy the following formula (A), and the volume ratio of the γ'phase is 15% or more, the amount of zirconium added is less than 0.1% by mass. The grain boundary strength is relatively low as compared with the intragranular strength, and the ductility is lowered. On the other hand, if the amount of zirconium added exceeds 0.3% by mass, the local melting point at the grain boundary may be lowered to cause a decrease in strength.
The above-mentioned formula (A) is expressed as follows. When the parameter for the aluminum content is Al mass%, the parameter for the titanium content is Ti mass%, and the parameter for the tantalum content is Ta mass%, the formula (A) is as follows. Is.
Al + 0.56 x Ti + 0.15 x Ta> 4.0 ... (A)

これらの点を踏まえ、発明者らが鋭意検討した結果、ニッケル基合金により構成される積層造形用合金粉末において、各元素の組成を以下の組成にすると積層造形物1(図1参照)における結晶粒界を強化しクリープ強度およびクリープ延性を向上できることが判明した。
具体的には、ニッケル基合金により構成される積層造形用合金粉末において、15.0質量%以上25.0質量%以下のコバルトと、10.0質量%以上25.0質量%以下のクロムと、0.0質量%以上3.5質量%以下のモリブデンと、0.5質量%以上10.0質量%以下のタングステンと、1.0質量%以上4.0質量%以下のアルミニウムと、0.0質量%以上5.0質量%以下のチタンと、0.0質量%以上4.0質量%以下のタンタルと、0.0質量%以上2.0質量%以下のニオブと、0.03質量%以上0.2質量%以下の炭素と、0.003質量%以上0.05質量%以下のホウ素と、0.1質量%以上0.3質量%以下のジルコニウムとを含むとよいことが判明した。
また、積層造形物1は、上記の組成を有するとよいことが判明した。
Based on these points, as a result of diligent studies by the inventors, when the composition of each element is set to the following composition in the alloy powder for laminated molding composed of nickel-based alloy, the crystals in the laminated molding 1 (see FIG. 1) It has been found that the grain boundaries can be strengthened to improve creep strength and creep ductility.
Specifically, in the alloy powder for laminated molding composed of a nickel-based alloy, 15.0% by mass or more and 25.0% by mass or less of cobalt and 10.0% by mass or more and 25.0% by mass or less of chromium are used. , 0.0% by mass or more and 3.5% by mass or less of molybdenum, 0.5% by mass or more and 10.0% by mass or less of tungsten, 1.0% by mass or more and 4.0% by mass or less of aluminum, 0 0.03% by mass or more and 5.0% by mass or less of titanium, 0.0% by mass or more and 4.0% by mass or less of tantalum, 0.0% by mass or more and 2.0% by mass or less of niobium. It is preferable to contain carbon of mass% or more and 0.2 mass% or less, boron of 0.003 mass% or more and 0.05 mass% or less, and zirconium of 0.1 mass% or more and 0.3 mass% or less. found.
Further, it was found that the laminated model 1 should have the above composition.

上記組成による積層造形用合金粉末によれば、積層造形法で製造したNi基合金の積層造形物1の結晶粒が比較的微細となっても、粒界を強化できるので、高温クリープ強度向上およびクリープ延性改善を図れる。
同様に、上記の組成を有する積層造形物1によれば、積層造形物1の結晶粒が比較的微細となっても、粒界を強化できるので、高温クリープ強度向上およびクリープ延性改善を図れる。
また、上記組成による積層造形用合金粉末によれば、粒界強度を向上できるので、粒界強度を向上させなかった場合ほどに熱処理による結晶粒の粗大化を図る必要がなくなる。そのため、500℃より低い温度での強度特性を向上できるとともに、積層造形物1の熱処理温度を比較的低くすることができる。
なお、上述したように、ジルコニウムは、結晶粒界に存在することで粒界を強化して高温クリープ強度向上およびクリープ延性改善に効果があることが判明しているものの、後述するように、含有量が多すぎると結晶粒界部の局所的な融点を下げて強度低下を引き起こすおそれがある。しかし、上記組成による積層造形用合金粉末によれば、ジルコニウムの含有量を比較的多くすることで粒界強度を向上させているため、上述したように、積層造形物1の熱処理温度を比較的低くすることができ、上記の強度低下の問題が生じ難い。
According to the alloy powder for laminated molding having the above composition, even if the crystal grains of the laminated molded product 1 of the Ni-based alloy produced by the laminated molding method become relatively fine, the grain boundaries can be strengthened, so that the high temperature creep strength can be improved. The creep ductility can be improved.
Similarly, according to the laminated model 1 having the above composition, even if the crystal grains of the laminated model 1 are relatively fine, the grain boundaries can be strengthened, so that the high temperature creep strength and the creep ductility can be improved.
Further, according to the alloy powder for laminated molding having the above composition, the grain boundary strength can be improved, so that it is not necessary to coarsen the crystal grains by heat treatment as in the case where the grain boundary strength is not improved. Therefore, the strength characteristics at a temperature lower than 500 ° C. can be improved, and the heat treatment temperature of the laminated model 1 can be relatively lowered.
As described above, although it has been found that zirconium is effective in improving high-temperature creep strength and creep ductility by strengthening grain boundaries by being present at grain boundaries, it is contained as described later. If the amount is too large, the local melting point at the grain boundary may be lowered, causing a decrease in strength. However, according to the alloy powder for laminated molding having the above composition, the grain boundary strength is improved by relatively increasing the content of zirconium. Therefore, as described above, the heat treatment temperature of the laminated molding 1 is relatively high. It can be lowered, and the above-mentioned problem of strength reduction is unlikely to occur.

図1は、上記組成による積層造形用合金粉末を用いて積層造形法で製造したNi基合金の積層造形物1についての、熱処理後の組織を示した図である。図1に示す積層造形物1では、平均結晶粒径は0.3mmである。図1に示す積層造形物1によれば、積層造形法で製造することで、従来の鋳造材と比べて微細な結晶粒にすることができる。なお、従来の鋳造材における平均結晶粒径はmmオーダである。 FIG. 1 is a diagram showing the structure of a laminated model 1 of a Ni-based alloy manufactured by a layered manufacturing method using an alloy powder for layered manufacturing having the above composition after heat treatment. In the laminated model 1 shown in FIG. 1, the average crystal grain size is 0.3 mm. According to the additive manufacturing product 1 shown in FIG. 1, by manufacturing by the additive manufacturing method, it is possible to obtain finer crystal grains as compared with the conventional cast material. The average crystal grain size of the conventional cast material is on the order of mm.

図2は、幾つかの実施形態に係る積層造形用合金粉末の組成を示す表である。以下、図2を参照して、ニッケル基合金における析出物、及び、幾つかの実施形態に係る積層造形用合金粉末の各成分の組成について説明する。 FIG. 2 is a table showing the composition of the alloy powder for laminated molding according to some embodiments. Hereinafter, with reference to FIG. 2, the composition of the precipitate in the nickel-based alloy and each component of the alloy powder for laminated molding according to some embodiments will be described.

(γ’相について)
γ’相は、主にNi、Ti、Al、Taから構成される析出物である。γ’相は、熱処理時に結晶粒内に微細分散析出することで,材料の強化に寄与する。
(About γ'phase)
The γ'phase is a precipitate mainly composed of Ni, Ti, Al and Ta. The γ'phase contributes to the strengthening of the material by finely dispersing and precipitating in the crystal grains during the heat treatment.

(MC型炭化物について)
MC型炭化物におけるMは、主にTi、Ta、Nbで構成される。MC型炭化物は、積層造形後に析出する。
MC型炭化物は、従来の鋳造材では粗大な析出物としてまばらに析出するが、積層造形物では急冷凝固のため,微細なMC型炭化物が結晶粒内に分散して析出する。
微細なMC型炭化物が結晶粒内に分散して析出すると、炭素がMC型炭化物によって固定されるため,結晶粒界上にM23型炭化物が析出しにくくなり,M23型炭化物による結晶粒界の強化効果が低減してしまう。そのため、MC型炭化物の析出をできるだけ低減する必要がある。
但し,Ti、Ta、Nbはマトリクスの強化相であるγ’相の構成元素でもあるため、一定量の添加が必要である。
(About MC type carbide)
M in the MC type carbide is mainly composed of Ti, Ta, and Nb. The MC-type carbide is precipitated after the laminated molding.
The MC-type carbides are sparsely precipitated as coarse precipitates in the conventional cast material, but in the laminated model, fine MC-type carbides are dispersed and precipitated in the crystal grains due to quenching and solidification.
When fine MC-type carbides are dispersed and precipitated in the crystal grains, carbon is fixed by the MC-type carbides, so that M 23 C 6 -type carbides are less likely to precipitate on the crystal grain boundaries, and M 23 C 6 -type carbides are difficult to precipitate. The effect of strengthening the crystal grain boundaries is reduced. Therefore, it is necessary to reduce the precipitation of MC-type carbides as much as possible.
However, since Ti, Ta, and Nb are also constituent elements of the γ'phase, which is the strengthening phase of the matrix, it is necessary to add a certain amount.

(M23型炭化物について)
23型炭化物におけるMは、主にCr、Ni、Wで構成される。
23型炭化物は、時効熱処理後に結晶粒界に析出することで粒界強度を高め、クリープ変形時において粒界破壊を抑制するため、クリープ延性が向上し応力集中に対し脆性的な破壊を防止することができる。
(About M 23 C 6 type carbide)
M in M 23 C6 type carbide is mainly composed of Cr, Ni and W.
M 23 C6 type carbides increase grain boundary strength by precipitating at grain boundaries after aging heat treatment and suppress grain boundary rupture during creep deformation, resulting in improved creep ductility and brittle fracture against stress concentration. Can be prevented.

以下の説明では、各元素の含有量を百分率で表す場合、特に断りがない場合には、質量%で表されているものとする。 In the following description, when the content of each element is expressed as a percentage, unless otherwise specified, it is expressed as a mass%.

(Co:15.0%以上25.0%以下)
Coは、Ti、Al等を高温でマトリックスに固溶させる限度(固溶限)を大きくさせ、MC型炭化物の固溶を促進する効果を有するため、15.0%以上必要である。
なお、Co量が25.0%より多いと有害相が析出し脆化し高温強度が低下するため、25.0%以下にする必要がある。そこで、Coの含有量は、15.0%以上25.0%以下の範囲内とした。
(Co: 15.0% or more and 25.0% or less)
Co is required to be 15.0% or more because it has an effect of increasing the limit (solid solution limit) for dissolving Ti, Al and the like in the matrix at a high temperature and promoting the solid solution of MC-type carbides.
If the amount of Co is more than 25.0%, a harmful phase is precipitated and brittle, and the high temperature strength is lowered. Therefore, it is necessary to make it 25.0% or less. Therefore, the Co content was set within the range of 15.0% or more and 25.0% or less.

(Cr:10.0%以上25.0%以下)
Cr量が10%未満では、Crの添加による高温耐酸化性の向上が充分に図れなくなる。またM23型炭化物の析出量が低下し高温強度が低下するため10%以上の添加が必要。一方、Cr量が25%を越えれば有害相の析出を招き、強度低下、延性低下を引き起こすため好ましくない。そこで、Crの含有量は、10.0%以上25.0%以下の範囲内とした。
(Cr: 10.0% or more and 25.0% or less)
If the amount of Cr is less than 10%, the high temperature oxidation resistance cannot be sufficiently improved by adding Cr. In addition, the amount of M 23 C 6 type carbide precipitated decreases and the high temperature strength decreases, so it is necessary to add 10% or more. On the other hand, if the amount of Cr exceeds 25%, a harmful phase is precipitated, which causes a decrease in strength and a decrease in ductility, which is not preferable. Therefore, the Cr content was set within the range of 10.0% or more and 25.0% or less.

(Mo:0.0%以上3.5%以下)
Moは、マトリックスであるγ相に固溶して、固溶強化による強度向上に効果がある。但しMo量が3.5%より多ければ有害相が析出して強度低下、延性低下を引き起こす。そこで、Moの含有量は、0.0%以上3.5%以下の範囲内とした。
(Mo: 0.0% or more and 3.5% or less)
Mo dissolves in the γ phase, which is a matrix, and is effective in improving the strength by strengthening the solid solution. However, if the amount of Mo is more than 3.5%, a harmful phase is precipitated, which causes a decrease in strength and a decrease in ductility. Therefore, the Mo content was set within the range of 0.0% or more and 3.5% or less.

(W:0.5%以上10.0%以下)
Wは、マトリックスであるγ相に固溶して、固溶強化による強度向上に効果がある。またM23型炭化物の構成元素となり、M23型炭化物の粗大化を抑制する効果があるため,0.5%以上の添加が必要。但しW量が10.0%より多ければ有害相が析出して強度低下、延性低下を引き起こす。そこで、Wの含有量は、0.5%以上10.0%以下の範囲内とした。
(W: 0.5% or more and 10.0% or less)
W dissolves in the γ phase, which is a matrix, and is effective in improving the strength by strengthening the solid solution. In addition, it is a constituent element of M 23 C 6 type carbide and has the effect of suppressing the coarsening of M 23 C 6 type carbide, so it is necessary to add 0.5% or more. However, if the amount of W is more than 10.0%, a harmful phase is precipitated, which causes a decrease in strength and a decrease in ductility. Therefore, the W content was set within the range of 0.5% or more and 10.0% or less.

(Al:1.0%以上4.0%以下)
Alは、γ’相を生成する元素であり、γ’相析出粒子による析出強化によって合金の高温強度、とりわけ高温クリープ強度を高めるとともに、高温での耐酸化性、耐食性向上にも効果がある。Al量が1.0未満では、γ’相の析出量が少なくなって、析出粒子による析出強化が充分に図れなくなる。但しAl量が4.0%を越えれば、溶接性が低下し、積層造形時に割れが多発する。そこで、Alの含有量は、1.0%以上4.0%以下の範囲内とした。
(Al: 1.0% or more and 4.0% or less)
Al is an element that produces a γ'phase, and is effective in enhancing the high temperature strength of the alloy, particularly the high temperature creep strength, and also in improving the oxidation resistance and corrosion resistance at high temperatures by strengthening the precipitation by the γ'phase precipitation particles. If the amount of Al is less than 1.0, the amount of precipitation of the γ'phase becomes small, and the precipitation strengthening by the precipitated particles cannot be sufficiently achieved. However, if the amount of Al exceeds 4.0%, the weldability is lowered and cracks frequently occur during laminated molding. Therefore, the Al content was set within the range of 1.0% or more and 4.0% or less.

(Ti:0.0%以上5.0%以下)
Tiは、γ’相を生成する元素であり、γ’相析出粒子による析出強化によって合金の高温強度、とりわけ高温クリープ強度を高めるとともに、高温での耐酸化性、耐食性向上にも効果がある。Ti量が5.0%を越えれば、溶接性が低下し,積層造形時に割れが多発する。さらにMC型炭化物の析出量が多くなり炭素が固定化されてしまうため、Ti量は5.0%に抑制する必要がある。そこで、Tiの含有量は、0.0%以上5.0%以下の範囲内とした。
(Ti: 0.0% or more and 5.0% or less)
Ti is an element that produces a γ'phase, and is effective in increasing the high temperature strength of the alloy, especially the high temperature creep strength, and also in improving the oxidation resistance and corrosion resistance at high temperatures by strengthening the precipitation by the γ'phase precipitation particles. If the amount of Ti exceeds 5.0%, the weldability is lowered and cracks frequently occur during laminated molding. Further, since the amount of MC-type carbide precipitated increases and carbon is immobilized, the amount of Ti needs to be suppressed to 5.0%. Therefore, the Ti content was set within the range of 0.0% or more and 5.0% or less.

(Ta:0.0%以上4.0%以下)
Taは、γ’相を生成する元素であり、γ’相析出粒子による析出強化によって合金の高温強度、とりわけ高温クリープ強度を高める。一方,高温安定なMC型炭化物を結晶粒内に生成する元素であり、4.0%を超えて添加すると炭素を固定化してしまうため,析出物最適化熱処理を実施しても粒界析出物のM23型炭化物が生成しなくなり,結晶粒界の強度が低下し脆性的な破壊が生じやすくなる。そこで、Taの含有量は、0.0%以上4.0%以下の範囲内とした。
(Ta: 0.0% or more and 4.0% or less)
Ta is an element that produces a γ'phase, and enhances the high temperature strength of the alloy, especially the high temperature creep strength, by strengthening the precipitation by the γ'phase precipitation particles. On the other hand, it is an element that produces MC-type carbide that is stable at high temperature in the crystal grains, and if it is added in excess of 4.0%, carbon will be immobilized. M 23 C 6 type carbides are no longer produced, the strength of grain boundaries is reduced, and brittle fracture is likely to occur. Therefore, the Ta content was set within the range of 0.0% or more and 4.0% or less.

(Al、Ti、及びTaの含有量について)
発明者らが鋭意検討した結果、アルミニウムの含有量についてのパラメータをAl質量%とし、チタンの含有量についてのパラメータをTi質量%とし、タンタルの含有量についてのパラメータをTa質量%とした場合に、Al+0.56×Ti+0.15×Taで算出される値が4.0質量%を超えると、γ’相強化が有効に作用し高温クリープ強度が向上することが判明した。そこで、Al、Ti、及びTaの含有量は、上述した式(A)を満たすとよい。
(About the content of Al, Ti, and Ta)
As a result of diligent studies by the inventors, when the parameter for the aluminum content is Al mass%, the parameter for the titanium content is Ti mass%, and the parameter for the tantalum content is Ta mass%. , Al + 0.56 × Ti + 0.15 × Ta When the value calculated exceeds 4.0% by mass, it was found that the γ'phase strengthening works effectively and the high temperature creep strength is improved. Therefore, the contents of Al, Ti, and Ta may satisfy the above-mentioned formula (A).

(Nb:0.0%以上2.0%以下)
Nbは、γ’相を生成する元素であり、γ’相析出粒子による析出強化によって合金の高温強度、とりわけ高温クリープ強度を高める。一方,高温安定なMC型炭化物を結晶粒内に生成する元素であり、2.0%を超えて添加すると炭素を固定化してしまうため,析出物最適化熱処理を実施しても粒界析出物のM23型炭化物が生成しなくなり,結晶粒界の強度が低下し脆性的な破壊が生じやすくなる。そこで、Nbの含有量は、0.0%以上2.0%以下の範囲内とした。
(Nb: 0.0% or more and 2.0% or less)
Nb is an element that produces a γ'phase, and the high temperature strength of the alloy, particularly the high temperature creep strength, is enhanced by the precipitation strengthening by the γ'phase precipitation particles. On the other hand, it is an element that produces MC-type carbide that is stable at high temperature in the crystal grains, and if it is added in excess of 2.0%, carbon will be immobilized. M 23 C 6 type carbides are no longer produced, the strength of grain boundaries is reduced, and brittle fracture is likely to occur. Therefore, the content of Nb was set within the range of 0.0% or more and 2.0% or less.

(C:0.03%以上0.2%以下)
Cは、炭化物を生成し,適切な熱処理で粒界に析出させることで粒界を強化し、クリープ延性を改善することができる。Cの含有量が0.03%よりも少ないと炭化物が少なくなりすぎ強化効果が期待できない。一方、Cの含有量が0.2%よりも多いと,結晶粒内に析出するMC型炭化物が多くなり,粒内強度が大きくなりすぎるため相対的に結晶粒界の強度が低下し,脆性的な破壊が生じやすくなる。そこで、Cの含有量は、0.03%以上0.2%以下の範囲内とした。
(C: 0.03% or more and 0.2% or less)
C can strengthen the grain boundaries and improve creep ductility by forming carbides and precipitating them at the grain boundaries by an appropriate heat treatment. If the C content is less than 0.03%, the amount of carbide is too small and the strengthening effect cannot be expected. On the other hand, when the C content is more than 0.2%, the amount of MC-type carbides precipitated in the crystal grains increases, and the intra-grain strength becomes too large, so that the strength of the grain boundaries relatively decreases and brittleness occurs. Destruction is likely to occur. Therefore, the content of C was set within the range of 0.03% or more and 0.2% or less.

(B:0.003%以上0.05%以下)
Bは、結晶粒界に存在することで粒界を強化して高温クリープ強度向上およびクリープ延性改善に効果があり、0.003%以上添加することで粒界強化効果が大きくなる。また、Bの含有量が0.01%以上であればその効果がより大きくなる。一方、Bの含有量が0.05%を越えれば、ホウ化物を生成し延性が低下するおそれがある。そこで、Bの含有量は、0.003%以上0.05%以下の範囲内とした。なお、Bの含有量は、上記範囲内でも、特に、0.01%以上が望ましい。
(B: 0.003% or more and 0.05% or less)
When B is present at the grain boundaries, it strengthens the grain boundaries and is effective in improving the high-temperature creep strength and creep ductility. When 0.003% or more is added, the grain boundary strengthening effect is increased. Further, when the content of B is 0.01% or more, the effect becomes larger. On the other hand, if the B content exceeds 0.05%, boride may be formed and the ductility may decrease. Therefore, the content of B was set within the range of 0.003% or more and 0.05% or less. Even within the above range, the content of B is particularly preferably 0.01% or more.

(Zr:0.1%以上0.3%以下)
Zrは、結晶粒界に存在することで粒界を強化して高温クリープ強度向上およびクリープ延性改善に効果がある。結晶粒が1.0mm以下の細粒で、かつ、Al+0.56×Ti+0.15×Taが4.0%以上でγ’相の体積率が15%以上の場合、Zrの含有量が0.1%よりも少ないと粒内強度に比較し粒界強度が相対的に低くなり延性が低下する。一方、Zrの含有量が0.3%を越えれば、結晶粒界部の局所的な融点を下げて強度低下を引き起こすおそれがある。そこで、Zrの含有量は、0.1%以上0.3%以下の範囲内とした。
(Zr: 0.1% or more and 0.3% or less)
When Zr is present at the grain boundaries, it strengthens the grain boundaries and is effective in improving high-temperature creep strength and creep ductility. When the crystal grains are fine grains of 1.0 mm or less, Al + 0.56 × Ti + 0.15 × Ta is 4.0% or more, and the volume ratio of the γ'phase is 15% or more, the Zr content is 0. If it is less than 1%, the intergranular strength is relatively low as compared with the intragranular strength, and the ductility is lowered. On the other hand, if the Zr content exceeds 0.3%, the local melting point at the grain boundary may be lowered to cause a decrease in strength. Therefore, the Zr content was set within the range of 0.1% or more and 0.3% or less.

以上の各元素の残部は、Ni及び不可避的不純物とする。なお、この種のNi基合金には不可避的不純物として、Fe、Si、Mn、Cu、P、S、N等が含まれることがあるが、これらは、Fe、Si、Mn、Cuについてはそれぞれ0.5%以下、P、S、Nについてはそれぞれ0.01%以下とすることが望ましい。 The rest of each of the above elements is Ni and unavoidable impurities. In addition, this kind of Ni-based alloy may contain Fe, Si, Mn, Cu, P, S, N and the like as unavoidable impurities, but these are for Fe, Si, Mn and Cu, respectively. It is desirable that it is 0.5% or less, and 0.01% or less for P, S, and N, respectively.

(結晶粒径について)
幾つかの実施形態に係る積層造形用合金粉末を用いて、積層造形物1を積層造形法で製造する場合には、局所的に急冷凝固で組織が形成されるため、結晶粒径を2.0mm未満にすることができる。なお、500℃より低い温度での強度特性については、結晶粒径が小さい方が強度が向上する傾向であるため、結晶粒径は2.0mm未満であることが望ましい。一方、700℃より高い温度での強度特性、特にクリープ強度については、結晶粒径が小さいと寿命が低下するため、0.3mm以上の結晶粒径が必要であることが望ましい。
そこで、幾つかの実施形態に係る積層造形用合金粉末を用いた積層造形物1では、結晶の平均粒径が0.1mm以上2.0mm未満であるとよい。
これにより、積層造形物1の強度向上を図れる。なお、積層造形物1における結晶の平均粒径を0.3mm以上2.0mm未満とすることで、比較的高い温度での強度特性、特にクリープ強度について向上させることができる。また平均粒径が1.0mm未満とすることで比較的低い温度での強度を向上させることができる。
(About crystal grain size)
When the additive manufacturing product 1 is manufactured by the additive manufacturing method using the alloy powder for additive manufacturing according to some embodiments, the structure is locally formed by quenching and solidification, so that the crystal grain size is changed to 2. It can be less than 0 mm. Regarding the strength characteristics at a temperature lower than 500 ° C., the smaller the crystal grain size, the higher the strength tends to be. Therefore, the crystal grain size is preferably less than 2.0 mm. On the other hand, regarding the strength characteristics at a temperature higher than 700 ° C., particularly the creep strength, it is desirable that the crystal particle size is 0.3 mm or more because the life is shortened if the crystal particle size is small.
Therefore, in the laminated model 1 using the alloy powder for layered modeling according to some embodiments, the average particle size of the crystals is preferably 0.1 mm or more and less than 2.0 mm.
As a result, the strength of the laminated model 1 can be improved. By setting the average particle size of the crystals in the laminated model 1 to 0.3 mm or more and less than 2.0 mm, it is possible to improve the strength characteristics at a relatively high temperature, particularly the creep strength. Further, when the average particle size is less than 1.0 mm, the strength at a relatively low temperature can be improved.

(γ’相の体積率について)
幾つかの実施形態に係る積層造形用合金粉末を用いた積層造形物1では、γ’相の体積率が15%以上であるとよい。
これにより、積層造形物1の高温クリープ強度向上およびクリープ延性改善を図れる。
(About the volume fraction of the γ'phase)
In the laminated model 1 using the alloy powder for layered modeling according to some embodiments, the volume fraction of the γ'phase is preferably 15% or more.
As a result, the high-temperature creep strength and creep ductility of the laminated model 1 can be improved.

(実施例について)
以下、幾つかの実施形態に係る積層造形用合金粉末を用いた実施例について、比較例を参照しながら説明する。
図3は、幾つかの実施形態に係る積層造形用合金粉末を用いた実施例と比較例とについての成分、組成、及び高温クリープ試験の結果を表す表である。
図3に示した実施例1乃至4及び比較例1乃至3では、各成分組成のニッケル基合金の粉末(粒径10~45μm)を、ガスアトマイズ法にて製造した。そしてそのニッケル基合金粉末を用いて、金属積層造形装置(レーザ方式、パウダーベッド)により、SUS316からなるベースプレート上に積層造形した。積層造形条件は、1層当たりの平均凝固層厚みを45μm、積層数2300層として、最大厚み約100mmの積層造形体とした。
(About examples)
Hereinafter, examples using the alloy powder for laminated modeling according to some embodiments will be described with reference to comparative examples.
FIG. 3 is a table showing the components, compositions, and high-temperature creep test results for Examples and Comparative Examples using the alloy powder for laminated molding according to some embodiments.
In Examples 1 to 4 and Comparative Examples 1 to 3 shown in FIG. 3, a nickel-based alloy powder (particle size 10 to 45 μm) having each component composition was produced by a gas atomizing method. Then, using the nickel-based alloy powder, laminated molding was performed on a base plate made of SUS316 by a metal laminated molding device (laser method, powder bed). As for the laminated molding conditions, the average solidification layer thickness per layer was 45 μm, the number of laminated layers was 2300, and the maximum thickness was about 100 mm.

積層造形後、応力除去熱処理(1200℃で2時間加熱)を実施し、積層造形体をベースプレートから切り離した。その後、溶体化熱処理として1250℃に2時間加熱した後、安定化熱処理として1000℃に4時間加熱し、さらに時効熱処理として850℃で8時間の加熱を行った。
時効熱処理後の各積層造形体について、クリープ破断試験用の丸棒状の平滑試験片を切出し、JISZ 2272の高温クリープ試験法に準拠して温度760℃、負荷力490MPaとして高温クリープ破断試験に供した。
After the laminated molding, a stress relieving heat treatment (heating at 1200 ° C. for 2 hours) was performed to separate the laminated model from the base plate. Then, after heating to 1250 ° C. for 2 hours as a solution heat treatment, heating to 1000 ° C. for 4 hours as a stabilizing heat treatment, and further heating at 850 ° C. for 8 hours as an aging heat treatment.
For each laminated model after the aging heat treatment, a round bar-shaped smoothing test piece for a creep rupture test was cut out and subjected to a high temperature creep rupture test at a temperature of 760 ° C. and a load force of 490 MPa in accordance with the high temperature creep test method of JISZ 2272. ..

上記の760℃での高温クリープ試験によって得られたクリープ破断伸びの値を調べた結果は、図3の表に示すとおりである。
図3に示した実施例1乃至4では、いずれの積層造形体もクリープ破断伸びは3%以上となっている。図3に示した比較例1乃至3では、クリープ破断伸びは3%未満で小さい。
クリープ破断伸びが3%より小さくなると応力集中部を主体に脆性的に破断しやすくなり、設計上の許容応力が大幅に低下するため、クリープ破断伸びは3%以上にする必要がある。その点、図3に示した実施例1乃至4では、いずれの積層造形体もクリープ破断伸びは3%以上となっているので、比較例1乃至3と比べ、許容応力を大きくすることができる。
The results of examining the values of creep rupture elongation obtained by the above-mentioned high-temperature creep test at 760 ° C. are as shown in the table of FIG.
In Examples 1 to 4 shown in FIG. 3, the creep rupture elongation of each of the laminated shaped bodies is 3% or more. In Comparative Examples 1 to 3 shown in FIG. 3, the creep rupture elongation is less than 3%, which is small.
If the creep rupture elongation is smaller than 3%, it is likely to break brittlely mainly in the stress concentration portion, and the allowable design stress is significantly reduced. Therefore, the creep rupture elongation needs to be 3% or more. In that respect, in Examples 1 to 4 shown in FIG. 3, since the creep rupture elongation of each of the laminated shaped bodies is 3% or more, the allowable stress can be increased as compared with Comparative Examples 1 to 3. ..

(積層造形物1の製造方法について)
図4は、幾つかの実施形態に係る積層造形用合金粉末を用いた積層造形物(積層造形体)1の製造手順を示すフローチャートである。
図4に示すように、幾つかの実施形態に係る積層造形用合金粉末を用いた積層造形物1の製造手順は、積層造形するステップS10と、熱処理を行うステップS20とを含む。
(About the manufacturing method of laminated model 1)
FIG. 4 is a flowchart showing a manufacturing procedure of a laminated model (laminated model) 1 using the alloy powder for layered modeling according to some embodiments.
As shown in FIG. 4, the procedure for manufacturing the laminated model 1 using the alloy powder for layered modeling according to some embodiments includes a step S10 for laminating modeling and a step S20 for performing heat treatment.

(積層造形するステップS10)
幾つかの実施形態に係る積層造形用合金粉末を用いた積層造形物1の製造手順では、積層造形するステップS10は、幾つかの実施形態に係る積層造形用合金粉末を用いて積層造形によって積層造形体を形成する工程である。すなわち、幾つかの実施形態に係る積層造形方法は、幾つかの実施形態に係る積層造形用合金粉末を用いて積層造形によって積層造形体を形成する工程を備える。
(Step S10 for laminated modeling)
In the manufacturing procedure of the laminated molding 1 using the alloy powder for laminated molding according to some embodiments, the step S10 for laminating molding is laminated by the laminated molding using the alloy powder for laminated molding according to some embodiments. This is the process of forming a model. That is, the laminated modeling method according to some embodiments includes a step of forming a laminated model by laminating modeling using the alloy powder for laminating modeling according to some embodiments.

幾つかの実施形態に係る積層造形するステップS10では、不図示の三次元積層造形装置により、積層造形物1を積層造形する。なお、不図示の三次元積層造形装置は、原料粉末である上述した積層造形用合金粉末にエネルギービームを照射して積層造形を行うことにより三次元形状の積層造形物1を製造することができる。不図示の三次元積層造形装置は、例えばパウダーベッド法による積層造形を行う装置であってもよく、例えばLMD(Laser Metal Deposition)方式による積層造形を行う装置であってもよい。 In step S10 for laminating and modeling according to some embodiments, the laminated model 1 is laminated and modeled by a three-dimensional laminated modeling device (not shown). The three-dimensional laminated modeling apparatus (not shown) can manufacture the three-dimensional laminated model 1 by irradiating the above-mentioned alloy powder for laminated modeling, which is the raw material powder, with an energy beam to perform the laminated modeling. .. The three-dimensional laminated molding apparatus (not shown) may be, for example, an apparatus that performs laminated molding by a powder bed method, or may be, for example, an apparatus that performs laminated molding by an LMD (Laser Metal Deposition) method.

幾つかの実施形態に係る積層造形方法によれば、上記工程(積層造形するステップS10)を経ることで得られる積層造形体(積層造形物1)において、結晶粒が比較的微細となっても、粒界を強化できるので、高温クリープ強度向上およびクリープ延性改善を図れる。 According to the laminated modeling method according to some embodiments, even if the crystal grains become relatively fine in the laminated model (laminated model 1) obtained by going through the above step (step S10 for layering). Since the grain boundaries can be strengthened, high temperature creep strength can be improved and creep ductility can be improved.

(熱処理を行うステップS20)
幾つかの実施形態に係る積層造形用合金粉末を用いた積層造形物1の製造手順では、熱処理を行うステップS20は、幾つかの実施形態に係る積層造形用合金粉末を用いて積層造形された積層造形体に対して熱処理を行う工程である。すなわち、幾つかの実施形態に係る熱処理を行うステップS20では、積層造形するステップS10で積層造形された積層造形物1に対して熱処理を行う工程である。
(Step S20 for heat treatment)
In the manufacturing procedure of the laminated molding 1 using the alloy powder for laminated molding according to some embodiments, the step S20 to perform the heat treatment is laminated using the alloy powder for laminated molding according to some embodiments. This is a step of heat-treating a laminated model. That is, in step S20 for performing the heat treatment according to some embodiments, it is a step of performing heat treatment on the laminated model 1 which has been laminated and modeled in step S10 for laminating modeling.

図5は、幾つかの実施形態に係る熱処理を行うステップS20における熱処理について説明するためのフローチャートである。幾つかの実施形態に係る熱処理を行うステップS20は、例えば、第1熱処理を行うステップS21と、第2熱処理を行うステップS22と、第3熱処理を行うステップS23と、第4熱処理を行うステップS24とを含んでいる。 FIG. 5 is a flowchart for explaining the heat treatment in step S20 in which the heat treatment according to some embodiments is performed. The steps S20 for performing the heat treatment according to some embodiments are, for example, a step S21 for performing the first heat treatment, a step S22 for performing the second heat treatment, a step S23 for performing the third heat treatment, and a step S24 for performing the fourth heat treatment. And include.

例えば第1熱処理を行うステップS21は、幾つかの実施形態に係る積層造形用合金粉末を用いて積層造形された積層造形物1が造形時の残留応力で変形しないよう、応力を除去するための応力除去熱処理を行うステップである。
例えば一実施形態に係る第1熱処理を行うステップS21では、積層造形物1を1200℃に加熱して2時間保持してもよい。
これにより、幾つかの実施形態に係る積層造形用合金粉末を用いて積層造形された積層造形物1が造形時の残留応力で変形するのを抑制できる。
For example, step S21 in which the first heat treatment is performed is for removing stress so that the laminated model 1 formed by using the alloy powder for layered modeling according to some embodiments is not deformed by the residual stress at the time of modeling. This is a step of performing stress relief heat treatment.
For example, in step S21 in which the first heat treatment according to one embodiment is performed, the laminated model 1 may be heated to 1200 ° C. and held for 2 hours.
As a result, it is possible to suppress deformation of the laminated model 1 formed by using the alloy powder for laminated modeling according to some embodiments due to residual stress during modeling.

例えば第2熱処理を行うステップS22は、積層造形物1の溶体化熱処理を行うステップである。幾つかの実施形態に係る第2熱処理を行うステップS22では、積層造形物1を1150℃以上1270℃以下の温度で0.5時間以上10時間以下の間保持する溶体化熱処理を行うとよい。
例えば一実施形態に係る第2熱処理を行うステップS22では、積層造形物1を1250℃に加熱して2時間保持してもよい。
これにより、結晶粒の粗大化が進行するため、結晶の平均粒径を0.1mm以上にすることができる。なお、第2熱処理における加熱温度は、1270℃よりも高い温度であると、結晶の平均粒径が2.0mmよりも大きくなるだけでなく、融点に近い温度のため部分溶融が生じるおそれがあることから、1270℃以下にするとよい。
For example, step S22 of performing the second heat treatment is a step of performing solution heat treatment of the laminated model 1. In step S22 in which the second heat treatment according to some embodiments is performed, it is preferable to perform a solution heat treatment in which the laminated model 1 is held at a temperature of 1150 ° C. or higher and 1270 ° C. or lower for 0.5 hours or longer and 10 hours or shorter.
For example, in step S22 in which the second heat treatment according to one embodiment is performed, the laminated model 1 may be heated to 1250 ° C. and held for 2 hours.
As a result, the coarsening of the crystal grains progresses, so that the average particle size of the crystals can be made 0.1 mm or more. If the heating temperature in the second heat treatment is higher than 1270 ° C., not only the average particle size of the crystals becomes larger than 2.0 mm, but also the temperature is close to the melting point, so that partial melting may occur. Therefore, the temperature should be 1270 ° C. or lower.

例えば第3熱処理を行うステップS23は、積層造形物1の安定化熱処理を行うステップである。幾つかの実施形態に係る第3熱処理を行うステップS23では、積層造形物1を900℃以上1150℃以下の温度で0.5時間以上10時間以下の間保持する安定化熱処理を行うとよい。
例えば一実施形態に係る第3熱処理を行うステップS23では、積層造形物1を1000℃に加熱して4時間保持してもよい。
これにより、結晶粒内に析出強化効果のあるγ’相が析出し、材料強度を向上することができる。
For example, step S23 for performing the third heat treatment is a step for performing a stabilized heat treatment for the laminated model 1. In step S23 in which the third heat treatment according to some embodiments is performed, it is preferable to perform a stabilized heat treatment in which the laminated model 1 is held at a temperature of 900 ° C. or higher and 1150 ° C. or lower for 0.5 hours or longer and 10 hours or shorter.
For example, in step S23 in which the third heat treatment according to one embodiment is performed, the laminated model 1 may be heated to 1000 ° C. and held for 4 hours.
As a result, the γ'phase having a precipitation strengthening effect is precipitated in the crystal grains, and the material strength can be improved.

例えば第4熱処理を行うステップS24は、積層造形物1の時効熱処理を行うステップである。幾つかの実施形態に係る第4熱処理を行うステップS24では、積層造形物1を750℃以上900℃以下の温度で0.5時間以上30時間以下の間保持する時効熱処理を行うとよい。
例えば一実施形態に係る第4熱処理を行うステップS24では、積層造形物1を850℃に加熱して8時間保持してもよい。
これにより、結晶粒内に第3熱処理によるものよりも微細なγ’相が析出し、材料強度を向上することができる。また結晶粒界にM23型炭化物析出することで粒界強度を向上することができるため、クリープ延性の改善効果がある。
For example, the step S24 of performing the fourth heat treatment is a step of performing the aging heat treatment of the laminated model 1. In step S24 in which the fourth heat treatment according to some embodiments is performed, it is preferable to perform an aging heat treatment in which the laminated model 1 is held at a temperature of 750 ° C. or higher and 900 ° C. or lower for 0.5 hours or longer and 30 hours or shorter.
For example, in step S24 in which the fourth heat treatment according to one embodiment is performed, the laminated model 1 may be heated to 850 ° C. and held for 8 hours.
As a result, finer γ'phases are precipitated in the crystal grains than those obtained by the third heat treatment, and the material strength can be improved. Further, since the grain boundary strength can be improved by precipitating M 23 C 6 type carbides at the crystal grain boundaries, there is an effect of improving creep ductility.

幾つかの実施形態に係る積層造形方法によれば、上述した熱処理する工程(熱処理を行うステップS20)を経ることで、高温クリープ強度が向上するとともにクリープ延性改善が図られた積層造形物1を得られる。 According to the laminated molding method according to some embodiments, the laminated molding 1 in which the high temperature creep strength is improved and the creep ductility is improved by passing through the above-mentioned heat treatment step (heat treatment step S20) is obtained. can get.

本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present disclosure is not limited to the above-described embodiment, and includes a modified form of the above-described embodiment and a combination of these embodiments as appropriate.

上記各実施形態に記載の内容は、例えば以下のように把握される。
(1)本開示の少なくとも一実施形態に係る積層造形用合金粉末は、ニッケル基合金により構成される積層造形用合金粉末であって、15.0質量%以上25.0質量%以下のコバルトと、10.0質量%以上25.0質量%以下のクロムと、0.0質量%以上3.5質量%以下のモリブデンと、0.5質量%以上10.0質量%以下のタングステンと、1.0質量%以上4.0質量%以下のアルミニウムと、0.0質量%以上5.0質量%以下のチタンと、0.0質量%以上4.0質量%以下のタンタルと、0.0質量%以上2.0質量%以下のニオブと、0.03質量%以上0.2質量%以下の炭素と、0.003質量%以上0.05質量%以下のホウ素と、0.1質量%以上0.3質量%以下のジルコニウムと、を含有する。
The contents described in each of the above embodiments are grasped as follows, for example.
(1) The alloy powder for laminated molding according to at least one embodiment of the present disclosure is an alloy powder for laminated molding composed of a nickel-based alloy, and is composed of 15.0% by mass or more and 25.0% by mass or less of cobalt. , 10.0% by mass or more and 25.0% by mass or less of chromium, 0.0% by mass or more and 3.5% by mass or less of molybdenum, 0.5% by mass or more and 10.0% by mass or less of tungsten, 1 0.0% by mass or more and 4.0% by mass or less of aluminum, 0.0% by mass or more and 5.0% by mass or less of titanium, 0.0% by mass or more and 4.0% by mass or less of tantalum, 0.0 Niobium of mass% or more and 2.0 mass% or less, carbon of 0.03 mass% or more and 0.2 mass% or less, boron of 0.003 mass% or more and 0.05 mass% or less, 0.1 mass% Contains zirconium of 0.3% by mass or more and less than 0.3% by mass.

上述したように、発明者らが鋭意検討した結果、ホウ素は、結晶粒界に存在することで粒界を強化して高温クリープ強度向上およびクリープ延性改善に効果があり0.003質量%以上添加することで粒界強化効果が大きくなることが判明した。一方、添加量が0.03質量%を越えれば、ホウ化物を生成し延性が低下するおそれがあることが判明した。
また、上述したように、発明者らが鋭意検討した結果、ジルコニウムは、結晶粒界に存在することで粒界を強化して高温クリープ強度向上およびクリープ延性改善に効果があることが判明している。結晶粒が例えば2.0mm以下の細粒で、かつ、次式(A)を満たし、γ’相の体積率が15%以上の場合,ジルコニウムの添加量が0.1質量%よりも少ないと粒内強度に比較し粒界強度が相対的に低くなり延性が低下する。一方、ジルコニウムの添加量が0.3質量%を越えれば、結晶粒界部の局所的な融点を下げて強度低下を引き起こすおそれがある。
なお、上述した式(A)は次のように表される。アルミニウムの含有量についてのパラメータをAl質量%とし、チタンの含有量についてのパラメータをTi質量%とし、タンタルの含有量についてのパラメータをTa質量%とした場合に、式(A)は次の通りである。
Al+0.56×Ti+0.15×Ta>4.0・・・(A)
As described above, as a result of diligent studies by the inventors, boron is effective in improving high-temperature creep strength and creep ductility by strengthening grain boundaries by being present at grain boundaries, and is added in an amount of 0.003% by mass or more. It was found that the effect of strengthening the grain boundaries was increased by doing so. On the other hand, it was found that if the addition amount exceeds 0.03% by mass, boride may be formed and the ductility may be lowered.
Further, as described above, as a result of diligent studies by the inventors, it was found that zirconium is effective in improving high temperature creep strength and creep ductility by strengthening grain boundaries by being present at grain boundaries. There is. When the crystal grains are fine particles of, for example, 2.0 mm or less, satisfy the following formula (A), and the volume ratio of the γ'phase is 15% or more, the amount of zirconium added is less than 0.1% by mass. The grain boundary strength is relatively low as compared with the intragranular strength, and the ductility is lowered. On the other hand, if the amount of zirconium added exceeds 0.3% by mass, the local melting point at the grain boundary may be lowered to cause a decrease in strength.
The above-mentioned formula (A) is expressed as follows. When the parameter for the aluminum content is Al mass%, the parameter for the titanium content is Ti mass%, and the parameter for the tantalum content is Ta mass%, the formula (A) is as follows. Is.
Al + 0.56 x Ti + 0.15 x Ta> 4.0 ... (A)

上記(1)の構成によれば、積層造形法で製造したNi基合金の積層造形物1の結晶粒が比較的微細となっても、粒界を強化できるので、高温クリープ強度向上およびクリープ延性改善を図れる。 According to the configuration of (1) above, even if the crystal grains of the laminated model 1 of the Ni-based alloy produced by the laminated modeling method become relatively fine, the grain boundaries can be strengthened, so that the high temperature creep strength is improved and the creep ductility is improved. You can improve it.

(2)幾つかの実施形態では、上記(1)の構成において、0.01質量%以上0.05質量%以下のホウ素を含有する。 (2) In some embodiments, in the configuration of (1) above, 0.01% by mass or more and 0.05% by mass or less of boron is contained.

上述したように、発明者らが鋭意検討した結果、ホウ素の添加量は、0.01質量%以上0.05質量%以下であると粒界強化効果がさらに良好となることが判明した。
したがって、上記(2)の構成によれば、高温クリープ強度さらに向上できるともに、クリープ延性をさらに改善できる。
As described above, as a result of diligent studies by the inventors, it was found that the grain boundary strengthening effect is further improved when the amount of boron added is 0.01% by mass or more and 0.05% by mass or less.
Therefore, according to the configuration of (2) above, the high temperature creep strength can be further improved and the creep ductility can be further improved.

(3)幾つかの実施形態では、上記(1)又は(2)の構成において、アルミニウムの含有量についてのパラメータをAl質量%とし、チタンの含有量についてのパラメータをTi質量%とし、タンタルの含有量についてのパラメータをTa質量%とした場合に、
次式(A):
Al+0.56×Ti+0.15×Ta>4.0
で表される関係式を満たす。
(3) In some embodiments, in the configuration of (1) or (2) above, the parameter for aluminum content is Al mass%, the parameter for titanium content is Ti mass%, and tantalum. When the parameter for the content is Ta mass%,
Equation (A):
Al + 0.56 x Ti + 0.15 x Ta> 4.0
Satisfy the relational expression represented by.

上述したように、式(A)を満たすことで、上記(1)及び(2)の構成における積層造形用合金粉末を用いて積層造形法で製造したNi基合金の積層造形物1の高温クリープ強度向上およびクリープ延性改善を図れる。 As described above, by satisfying the formula (A), the high-temperature creep of the laminated molded product 1 of the Ni-based alloy produced by the laminated molding method using the alloy powder for laminated molding in the configurations (1) and (2) above. Strength can be improved and creep ductility can be improved.

(4)本開示の少なくとも一実施形態に係る積層造形体は、ニッケル基合金により構成される積層造形体であって、15.0質量%以上25.0質量%以下のコバルトと、10.0質量%以上25.0質量%以下のクロムと、0.0質量%以上3.5質量%以下のモリブデンと、0.5質量%以上10.0質量%以下のタングステンと、1.0質量%以上4.0質量%以下のアルミニウムと、0.0質量%以上5.0質量%以下のチタンと、0.0質量%以上4.0質量%以下のタンタルと、0.0質量%以上2.0質量%以下のニオブと、0.03質量%以上0.2質量%以下の炭素と、0.003質量%以上0.05質量%以下のホウ素と、0.1質量%以上0.3質量%以下のジルコニウムと、を含有する。 (4) The laminated model according to at least one embodiment of the present disclosure is a laminated model composed of a nickel-based alloy, which comprises 15.0% by mass or more and 25.0% by mass or less of cobalt and 10.0 by mass. Chromium of mass% or more and 25.0 mass% or less, molybdenum of 0.0 mass% or more and 3.5 mass% or less, tungsten of 0.5 mass% or more and 10.0 mass% or less, 1.0 mass% Aluminum of 4.0% by mass or more, titanium of 0.0% by mass or more and 5.0% by mass or less, tantalum of 0.0% by mass or more and 4.0% by mass or less, and 0.0% by mass or more 2 Niob of 0.0% by mass or less, carbon of 0.03% by mass or more and 0.2% by mass or less, boron of 0.003% by mass or more and 0.05% by mass or less, and 0.1% by mass or more and 0.3. Contains zirconium of mass% or less.

上記(4)の構成によれば、上記(1)の構成と同様に、積層造形体の結晶粒が比較的微細となっても、粒界を強化できるので、高温クリープ強度向上およびクリープ延性改善を図れる。 According to the configuration of (4) above, as in the configuration of (1) above, even if the crystal grains of the laminated model are relatively fine, the grain boundaries can be strengthened, so that the high temperature creep strength is improved and the creep ductility is improved. Can be planned.

(5)幾つかの実施形態では、上記(4)の構成において、0.01質量%以上0.05質量%以下のホウ素を含有する。 (5) In some embodiments, in the configuration of (4) above, 0.01% by mass or more and 0.05% by mass or less of boron is contained.

上記(5)の構成によれば、上記(2)の構成と同様に、積層造形体の高温クリープ強度さらに向上できるともに、クリープ延性をさらに改善できる。 According to the configuration of (5) above, similarly to the configuration of (2) above, the high temperature creep strength of the laminated model can be further improved, and the creep ductility can be further improved.

(6)幾つかの実施形態では、上記(4)又は(5)の構成において、アルミニウムの含有量についてのパラメータをAl質量%とし、チタンの含有量についてのパラメータをTi質量%とし、タンタルの含有量についてのパラメータをTa質量%とした場合に、
次式(A):
Al+0.56×Ti+0.15×Ta>4.0
で表される関係式を満たす。
(6) In some embodiments, in the configuration of (4) or (5) above, the parameter for aluminum content is Al mass%, the parameter for titanium content is Ti mass%, and tantalum. When the parameter for the content is Ta mass%,
Equation (A):
Al + 0.56 x Ti + 0.15 x Ta> 4.0
Satisfy the relational expression represented by.

上記(6)の構成によれば、上述したように、式(A)を満たすことで、上記(4)及び(5)の構成における積層造形体の高温クリープ強度向上およびクリープ延性改善を図れる。 According to the configuration of the above (6), as described above, by satisfying the formula (A), the high temperature creep strength and the creep ductility of the laminated model in the configurations of the above (4) and (5) can be improved.

(7)幾つかの実施形態では、上記(4)乃至(6)の何れかの構成において、結晶の平均粒径が0.1mm以上1.0mm未満である。 (7) In some embodiments, in any of the configurations (4) to (6) above, the average particle size of the crystals is 0.1 mm or more and less than 1.0 mm.

上記(7)の構成によれば、上述したように、結晶の平均粒径を0.1mm以上2.0mm未満とすることで、上記(4)乃至(6)の何れかの構成における積層造形体の強度向上を図れる。 According to the configuration of (7) above, as described above, by setting the average particle size of the crystals to 0.1 mm or more and less than 2.0 mm, the laminated molding in any of the configurations (4) to (6) above. You can improve your body strength.

(8)幾つかの実施形態では、上記(4)乃至(7)の何れかの構成において、ガンマプライム相の体積率が15%以上である。 (8) In some embodiments, the volume fraction of the gamma prime phase is 15% or more in any of the configurations (4) to (7) above.

上記(8)の構成によれば、上述したように、ガンマプライム相の体積率を15%以上とすることで、上記(4)乃至(7)の何れかの構成における積層造形体の高温クリープ強度向上およびクリープ延性改善を図れる。 According to the configuration of (8) above, as described above, by setting the volume fraction of the gamma prime phase to 15% or more, high-temperature creep of the laminated model in any of the configurations (4) to (7) above. Strength can be improved and creep ductility can be improved.

(9)本開示の少なくとも一実施形態に係る積層造形方法は、上記(1)乃至(3)の何れか構成の積層造形用合金粉末を用いて積層造形によって積層造形体(積層造形物1)を形成する工程(積層造形するステップS10)を備える。 (9) The laminated molding method according to at least one embodiment of the present disclosure is a laminated molding body (laminated model 1) by laminating molding using an alloy powder for laminating molding having any of the above configurations (1) to (3). (Step S10 for laminating modeling) is provided.

上記(9)の方法によれば、上記工程を経ることで得られる積層造形体(積層造形物1)において、結晶粒が比較的微細となっても、粒界を強化できるので、高温クリープ強度向上およびクリープ延性改善を図れる。 According to the method (9) above, in the laminated model (laminated model 1) obtained through the above steps, even if the crystal grains are relatively fine, the grain boundaries can be strengthened, so that the high temperature creep strength can be obtained. It can be improved and creep ductility can be improved.

(10)幾つかの実施形態では、上記(9)の方法において、積層造形体(積層造形物1)を形成する工程(積層造形するステップS10)で形成された積層造形体(積層造形物1)に熱処理を行う工程(熱処理を行うステップS20)をさらに備えていてもよい。 (10) In some embodiments, in the method of (9) above, the laminated model (laminated model 1) formed in the step of forming the laminated model (laminated model 1) (step S10 for layering). ) May further include a step of performing the heat treatment (step S20 of performing the heat treatment).

上記(10)の方法によれば、高温クリープ強度が向上するとともにクリープ延性改善が図られた積層造形体(積層造形物1)を得られる。 According to the method (10) above, a laminated model (laminated model 1) having improved high-temperature creep strength and improved creep ductility can be obtained.

(11)幾つかの実施形態では、上記(10)の方法において、熱処理を行う工程(熱処理を行うステップS20)は、積層造形体(積層造形物1)を1150℃以上1270℃以下の温度で0.5時間以上10時間以下の間保持する溶体化熱処理を行う工程(第2熱処理を行うステップS22)を含んでいてもよい。 (11) In some embodiments, in the method of (10) above, in the step of performing the heat treatment (step S20 of performing the heat treatment), the laminated model (laminated model 1) is placed at a temperature of 1150 ° C. or higher and 1270 ° C. or lower. The step of performing the solution heat treatment (step S22 of performing the second heat treatment) of holding for 0.5 hours or more and 10 hours or less may be included.

上記(11)の方法によれば、結晶粒の粗大化が進行するため、結晶の平均粒径を0.1mm以上にすることができる。 According to the method (11) above, the coarsening of the crystal grains progresses, so that the average particle size of the crystals can be made 0.1 mm or more.

(12)幾つかの実施形態では、上記(10)又は(11)の方法において、熱処理を行う工程(熱処理を行うステップS20)は、積層造形体(積層造形物1)を900℃以上1150℃以下の温度で0.5時間以上10時間以下の間保持する安定化熱処理を行う工程(第3熱処理を行うステップS23)を含んでいてもよい。 (12) In some embodiments, in the method (10) or (11) above, in the step of performing the heat treatment (step S20 of performing the heat treatment), the laminated model (laminated model 1) is heated to 900 ° C. or higher and 1150 ° C. The step of performing the stabilization heat treatment (step S23 of performing the third heat treatment) of holding at the following temperature for 0.5 hours or more and 10 hours or less may be included.

上記(12)の方法によれば、結晶粒内に析出強化効果のあるγ’相が析出し、材料強度を向上することができる。 According to the method (12) above, the γ'phase having a precipitation strengthening effect is precipitated in the crystal grains, and the material strength can be improved.

(13)幾つかの実施形態では、上記(10)乃至(12)の何れかの方法において、熱処理を行う工程(熱処理を行うステップS20)は、積層造形体(積層造形物1)を750℃以上900℃以下の温度で0.5時間以上30時間以下の間保持する時効熱処理を行う工程(第4熱処理を行うステップS24)を含んでいてもよい。 (13) In some embodiments, in any of the methods (10) to (12) above, in the step of performing the heat treatment (step S20 of performing the heat treatment), the laminated model (laminated model 1) is heated to 750 ° C. The step of performing the aging heat treatment (step S24 for performing the fourth heat treatment) of holding at a temperature of 900 ° C. or lower for 0.5 hours or more and 30 hours or less may be included.

上記(13)の方法によれば、結晶粒内に上記(12)の方法によるものよりも微細なγ’相が析出し、材料強度を向上することができる。また結晶粒界にM23型炭化物析出することで粒界強度を向上することができるため、クリープ延性の改善効果がある。 According to the method (13) above, finer γ'phases are precipitated in the crystal grains than those according to the method (12) above, and the material strength can be improved. Further, since the grain boundary strength can be improved by precipitating M 23 C 6 type carbides at the crystal grain boundaries, there is an effect of improving creep ductility.

1 積層造形物(積層造形体) 1 Laminated model (laminated model)

Claims (13)

ニッケル基合金により構成される積層造形用合金粉末であって、
15.0質量%以上25.0質量%以下のコバルトと、
10.0質量%以上25.0質量%以下のクロムと、
0.0質量%以上3.5質量%以下のモリブデンと、
0.5質量%以上10.0質量%以下のタングステンと、
1.0質量%以上4.0質量%以下のアルミニウムと、
0.0質量%以上5.0質量%以下のチタンと、
0.0質量%以上4.0質量%以下のタンタルと、
0.0質量%以上2.0質量%以下のニオブと、
0.03質量%以上0.2質量%以下の炭素と、
0.003質量%以上0.05質量%以下のホウ素と、
0.1質量%以上0.3質量%以下のジルコニウムと、
を含有する
積層造形用合金粉末。
An alloy powder for laminated molding composed of a nickel-based alloy.
Cobalt of 15.0% by mass or more and 25.0% by mass or less,
With 10.0% by mass or more and 25.0% by mass or less of chromium,
With molybdenum of 0.0% by mass or more and 3.5% by mass or less,
Tungsten of 0.5% by mass or more and 10.0% by mass or less,
Aluminum of 1.0% by mass or more and 4.0% by mass or less,
With titanium of 0.0% by mass or more and 5.0% by mass or less,
With tantalum of 0.0% by mass or more and 4.0% by mass or less,
Niobium of 0.0% by mass or more and 2.0% by mass or less,
With carbon of 0.03% by mass or more and 0.2% by mass or less,
With boron of 0.003% by mass or more and 0.05% by mass or less,
Zirconium of 0.1% by mass or more and 0.3% by mass or less,
Alloy powder for laminated modeling containing.
0.01質量%以上0.05質量%以下のホウ素
を含有する
請求項1に記載の積層造形用合金粉末。
The alloy powder for laminated molding according to claim 1, which contains 0.01% by mass or more and 0.05% by mass or less of boron.
アルミニウムの含有量についてのパラメータをAl質量%とし、
チタンの含有量についてのパラメータをTi質量%とし、
タンタルの含有量についてのパラメータをTa質量%とした場合に、
次式(A):
Al+0.56×Ti+0.15×Ta>4.0
で表される関係式を満たす
請求項1又は2に記載の積層造形用合金粉末。
The parameter for aluminum content is Al mass%.
The parameter for titanium content is Ti mass%.
When the parameter for the tantalum content is Ta mass%,
Equation (A):
Al + 0.56 x Ti + 0.15 x Ta> 4.0
The alloy powder for laminated molding according to claim 1 or 2, which satisfies the relational expression represented by.
ニッケル基合金により構成される積層造形体であって、
15.0質量%以上25.0質量%以下のコバルトと、
10.0質量%以上25.0質量%以下のクロムと、
0.0質量%以上3.5質量%以下のモリブデンと、
0.5質量%以上10.0質量%以下のタングステンと、
1.0質量%以上4.0質量%以下のアルミニウムと、
0.0質量%以上5.0質量%以下のチタンと、
0.0質量%以上4.0質量%以下のタンタルと、
0.0質量%以上2.0質量%以下のニオブと、
0.03質量%以上0.2質量%以下の炭素と、
0.003質量%以上0.05質量%以下のホウ素と、
0.1質量%以上0.3質量%以下のジルコニウムと、
を含有する
積層造形体。
It is a laminated model made of nickel-based alloy.
Cobalt of 15.0% by mass or more and 25.0% by mass or less,
With 10.0% by mass or more and 25.0% by mass or less of chromium,
With molybdenum of 0.0% by mass or more and 3.5% by mass or less,
Tungsten of 0.5% by mass or more and 10.0% by mass or less,
Aluminum of 1.0% by mass or more and 4.0% by mass or less,
With titanium of 0.0% by mass or more and 5.0% by mass or less,
With tantalum of 0.0% by mass or more and 4.0% by mass or less,
Niobium of 0.0% by mass or more and 2.0% by mass or less,
With carbon of 0.03% by mass or more and 0.2% by mass or less,
With boron of 0.003% by mass or more and 0.05% by mass or less,
Zirconium of 0.1% by mass or more and 0.3% by mass or less,
Laminated model containing.
0.01質量%以上0.05質量%以下のホウ素
を含有する
請求項4に記載の積層造形体。
The laminated model according to claim 4, which contains 0.01% by mass or more and 0.05% by mass or less of boron.
アルミニウムの含有量についてのパラメータをAl質量%とし、
チタンの含有量についてのパラメータをTi質量%とし、
タンタルの含有量についてのパラメータをTa質量%とした場合に、
次式(A):
Al+0.56×Ti+0.15×Ta>4.0
で表される関係式を満たす
請求項4又は5に記載の積層造形体。
The parameter for aluminum content is Al mass%.
The parameter for titanium content is Ti mass%.
When the parameter for the tantalum content is Ta mass%,
Equation (A):
Al + 0.56 x Ti + 0.15 x Ta> 4.0
The laminated model according to claim 4 or 5, which satisfies the relational expression represented by.
結晶の平均粒径が0.1mm以上2.0mm未満である
請求項4乃至6の何れか一項に記載の積層造形体。
The laminated model according to any one of claims 4 to 6, wherein the average particle size of the crystals is 0.1 mm or more and less than 2.0 mm.
ガンマプライム相の体積率が15%以上である
請求項4乃至7の何れか一項に記載の積層造形体。
The laminated model according to any one of claims 4 to 7, wherein the volume fraction of the gamma prime phase is 15% or more.
請求項1乃至3の何れか一項に記載の積層造形用合金粉末を用いて積層造形によって積層造形体を形成する工程
を備える
積層造形方法。
A laminated modeling method comprising a step of forming a laminated model by laminating modeling using the alloy powder for laminating modeling according to any one of claims 1 to 3.
前記積層造形体を形成する工程で形成された前記積層造形体に熱処理を行う工程
をさらに備える
請求項9に記載の積層造形方法。
The laminated modeling method according to claim 9, further comprising a step of heat-treating the laminated model formed in the step of forming the laminated model.
前記熱処理を行う工程は、前記積層造形体を1150℃以上1270℃以下の温度で0.5時間以上10時間以下の間保持する溶体化熱処理を行う工程
を含む
請求項10に記載の積層造形方法。
The laminated molding method according to claim 10, wherein the step of performing the heat treatment includes a step of performing a solution heat treatment in which the laminated model is held at a temperature of 1150 ° C. or higher and 1270 ° C. or lower for 0.5 hours or more and 10 hours or less. ..
前記熱処理を行う工程は、前記積層造形体を900℃以上1150℃以下の温度で0.5時間以上10時間以下の間保持する安定化熱処理を行う工程
を含む
請求項10又は11に記載の積層造形方法。
The lamination according to claim 10 or 11, wherein the step of performing the heat treatment includes a step of performing a stabilization heat treatment in which the laminated model is held at a temperature of 900 ° C. or higher and 1150 ° C. or lower for 0.5 hours or more and 10 hours or less. Modeling method.
前記熱処理を行う工程は、前記積層造形体を750℃以上900℃以下の温度で0.5時間以上30時間以下の間保持する時効熱処理を行う工程
を含む
請求項10乃至12の何れか一項に記載の積層造形方法。
The step of performing the heat treatment is any one of claims 10 to 12, which includes a step of performing an aging heat treatment in which the laminated model is held at a temperature of 750 ° C. or higher and 900 ° C. or lower for 0.5 hours or more and 30 hours or less. The laminated molding method described in.
JP2021001605A 2021-01-07 2021-01-07 Alloy powder for deposition modeling, deposition model, and deposition modeling method Pending JP2022106532A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021001605A JP2022106532A (en) 2021-01-07 2021-01-07 Alloy powder for deposition modeling, deposition model, and deposition modeling method
PCT/JP2021/048738 WO2022149539A1 (en) 2021-01-07 2021-12-28 Alloy powder for deposition modeling, deposition model, and deposition modeling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021001605A JP2022106532A (en) 2021-01-07 2021-01-07 Alloy powder for deposition modeling, deposition model, and deposition modeling method

Publications (1)

Publication Number Publication Date
JP2022106532A true JP2022106532A (en) 2022-07-20

Family

ID=82357973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021001605A Pending JP2022106532A (en) 2021-01-07 2021-01-07 Alloy powder for deposition modeling, deposition model, and deposition modeling method

Country Status (2)

Country Link
JP (1) JP2022106532A (en)
WO (1) WO2022149539A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1367661A (en) * 1971-04-07 1974-09-18 Int Nickel Ltd Nickel-chromium-cobalt alloys
US20180238173A1 (en) * 2017-02-22 2018-08-23 General Electric Company Method of manufacturing turbine airfoil and tip component thereof
GB2565063B (en) * 2017-07-28 2020-05-27 Oxmet Tech Limited A nickel-based alloy

Also Published As

Publication number Publication date
WO2022149539A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
JP6931545B2 (en) Heat treatment method for Ni-based alloy laminated model, manufacturing method for Ni-based alloy laminated model, Ni-based alloy powder for laminated model, and Ni-based alloy laminated model
JP6499546B2 (en) Ni-based superalloy powder for additive manufacturing
US20200016658A1 (en) Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
JP7218225B2 (en) Alloy powder for additive manufacturing, additive manufacturing article and additive manufacturing method
JP6270563B2 (en) Precipitation hardening type stainless steel powder that can obtain high strength after sintering-aging treatment, its production method, and its compact
WO2020121367A1 (en) Cobalt-based alloy laminate molded body, cobalt-based alloy product, and manufacturing method of these
JP6305136B2 (en) Precipitation hardening type stainless steel powder and sintered body thereof
WO2015137507A1 (en) Precipitation-hardening stainless steel powder and sintered compact thereof
WO2021185767A1 (en) A powder for additive manufacturing, use thereof, and an additive manufacturing method
EP3042973B1 (en) A nickel alloy
JPH0312134B2 (en)
WO2022149539A1 (en) Alloy powder for deposition modeling, deposition model, and deposition modeling method
KR102490974B1 (en) Co-based alloy structure and manufacturing method thereof
WO2020110498A1 (en) Powder for laminate formation use, laminated article, and method for producing laminated article
JP2021025078A (en) Iron based alloy powder, iron based alloy casting material, iron based alloy addition production body and iron based alloy member
WO2023074613A1 (en) Ni alloy powder suited to additive manufacturing and additively manufactured article obtained using same
Kuwabara et al. Microstructure Modification of Additively Manufactured CoCrFeNiTi-Based Multi-Principal Element Alloy
JP7339412B2 (en) Ni-based alloy powder for additive manufacturing and additive manufacturing
EP4353855A1 (en) Tial alloy, tial alloy powder, tial alloy component, and method for producing same
WO2023274544A1 (en) A powder for additive manufacturing, use thereof, and an additive manufacturing method
CN118119722A (en) Ni-based alloy powder suitable for additive manufacturing and additive manufactured body obtained by using same
KR20210061287A (en) Resettable alloys and manufacturing method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230707