JP2022106028A - Method of manufacturing printed product and machine temperature control device - Google Patents

Method of manufacturing printed product and machine temperature control device Download PDF

Info

Publication number
JP2022106028A
JP2022106028A JP2021000697A JP2021000697A JP2022106028A JP 2022106028 A JP2022106028 A JP 2022106028A JP 2021000697 A JP2021000697 A JP 2021000697A JP 2021000697 A JP2021000697 A JP 2021000697A JP 2022106028 A JP2022106028 A JP 2022106028A
Authority
JP
Japan
Prior art keywords
printing
printed matter
air
equipment
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021000697A
Other languages
Japanese (ja)
Inventor
広樹 関口
Hiroki Sekiguchi
晴男 横田
Haruo Yokota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2021000697A priority Critical patent/JP2022106028A/en
Publication of JP2022106028A publication Critical patent/JP2022106028A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Printing Methods (AREA)

Abstract

To appropriately control a surface temperature of a printing plate in balancing ink viscosity and ink fluidity: this is because in order to obtain a printed product having an appropriate color density, it is important to control the amount of ink supplied to the printing plate, and it is generally preferable that the ink fluidity from an inkwell to the printing plate is high, however, ink cooling tends to increase ink viscosity.SOLUTION: Provided is a method of manufacturing a printed product, the method blowing air containing mist with a Sauter average particle size of 1.0 μm or more and 20 μm or less generated from a spray nozzle to a printing machine, and performing printing while controlling the surface temperature of the machine.SELECTED DRAWING: None

Description

本発明は、印刷物の製造方法および機材温度制御装置に関する。特に、オフセット印刷において好適に用いることができる印刷物の製造方法に関する。 The present invention relates to a method for manufacturing a printed matter and an equipment temperature control device. In particular, the present invention relates to a method for producing a printed matter that can be suitably used in offset printing.

紙、軟包装、飲料缶など幅広い用途の印刷に使われているオフセット印刷では、印刷機が設置される環境温度の他に、インキが練られる過程、インキ着けローラーと印刷版の摩擦、およびブランケット胴と印刷版の摩擦によりインキおよび該インキが転移される印刷版表面の温度が上昇することで、版面上に塗布されるインキの粘度が下がり、印刷版の非画線部に該インキが付着しやすくなり、地汚れと呼ばれる印刷品質の低下を招くことが知られている。このため、長時間の印刷や高速印刷において、印刷品質を維持するため、版面上に塗布されるインキの粘度を一定に保持することが重要である。 In offset printing, which is used for printing in a wide range of applications such as paper, flexible packaging, and beverage cans, in addition to the ambient temperature at which the printing machine is installed, the process of kneading ink, the friction between the inking roller and the printing plate, and the blanket The temperature of the ink and the surface of the printing plate to which the ink is transferred rises due to the friction between the cylinder and the printing plate, the viscosity of the ink applied on the plate surface decreases, and the ink adheres to the non-image area of the printing plate. It is known that it becomes easy to print and causes deterioration of print quality called ground stain. Therefore, in order to maintain print quality in long-time printing and high-speed printing, it is important to keep the viscosity of the ink applied on the plate surface constant.

そこで、インキの温度を制御する方法として、印刷機の揺動ローラー内部に温度制御された流体を循環させ、ローラーの表面温度を制御し、インキ温度を制御する方法が開示されている(例えば、特許文献1)。また、上昇する印刷版の版面温度を直接冷却する方法として、版胴内部に冷水を循環させ冷却する水冷式や版面に冷風を当てる空冷式の方法が開示されている(例えば、特許文献2、3)。 Therefore, as a method of controlling the temperature of the ink, a method of circulating a temperature-controlled fluid inside the rocking roller of the printing machine, controlling the surface temperature of the roller, and controlling the ink temperature is disclosed (for example,). Patent Document 1). Further, as a method of directly cooling the plate surface temperature of the rising printing plate, a water-cooled method of circulating cold water inside the plate cylinder to cool the plate surface and an air-cooled method of applying cold air to the plate surface are disclosed (for example, Patent Document 2 and 3. 3).

なお、オフセット印刷機に用いられる印刷版は、非画線部のインキ反発に水の薄膜(以下、湿し水とよぶ)またはシリコーン樹脂を用いている。湿し水を用いる方式は、水ありオフセット印刷と呼ばれ、印刷版の冷却は、湿し水の温度を制御することで行われている。一方、インキ反発にシリコーン樹脂を用いる方式は、水なしオフセット印刷と呼ばれ、長時間の印刷や高速印刷を行うと印刷版と接するインキ着けローラーやブランケットとの摩擦により印刷版が蓄熱しやすいため、版面上へ冷風を吹き付けたり、版胴を内部から冷却するなどして、版面温度を制御する方法が採られている。 The printing plate used in the offset printing press uses a thin film of water (hereinafter referred to as dampening water) or a silicone resin for ink repulsion in the non-image area. The method using dampening water is called offset printing with water, and the printing plate is cooled by controlling the temperature of the fountain solution. On the other hand, the method of using silicone resin for ink repulsion is called waterless offset printing, and when printing for a long time or high-speed printing, the printing plate tends to store heat due to friction with the inking roller or blanket that comes into contact with the printing plate. , A method of controlling the plate surface temperature by blowing cold air onto the plate surface or cooling the plate cylinder from the inside is adopted.

特開平11-105261号公報(特許請求の範囲)JP-A-11-105261 (Claims) 特開2002-347214号公報(特許請求の範囲)JP-A-2002-347214 (Claims) 特開昭64-72846号公報(特許請求の範囲)Japanese Patent Application Laid-Open No. 64-72846 (Claims)

しかしながら、適切な色濃度の印刷物を得るためには、印刷版へのインキ供給量を制御することが重要でありインキ壺から印刷版までのインキ流動性は高い方が一般的には好ましい。一方で、揺動ローラーでのインキ冷却は、インキ粘度が上昇する傾向にあるためインキ流動性との両立において、冷却には限界があった。 However, in order to obtain a printed matter having an appropriate color density, it is important to control the amount of ink supplied to the printing plate, and it is generally preferable that the ink fluidity from the ink fountain to the printing plate is high. On the other hand, when the ink is cooled by the rocking roller, the viscosity of the ink tends to increase, so that there is a limit to the cooling in terms of compatibility with the ink fluidity.

また、版胴を冷却する水冷式では、版胴表面を均一に冷却するには版胴内部に通す流体の流路が複雑になりやすく、製造コストおよび耐久性の観点から実用性に課題を有していた。また、版面に冷風を当てる空冷式では、供給される冷風と版面表層の空気層(気体境界層)が衝突するため、冷却効率が低い課題を有していた。 In addition, in the water-cooled type that cools the plate cylinder, the flow path of the fluid passing through the inside of the plate cylinder tends to be complicated in order to uniformly cool the plate cylinder surface, which poses a problem in practicality from the viewpoint of manufacturing cost and durability. Was. Further, in the air-cooled type in which cold air is applied to the plate surface, the supplied cold air collides with the air layer (gas boundary layer) on the surface layer of the plate surface, so that there is a problem that the cooling efficiency is low.

すなわち本発明は、印刷機材の表面温度を制御するため、噴霧ノズルから生成したザウター平均粒径1.0μm以上20μm以下の霧を含む空気を印刷機材へ送風し、該機材の表面温度を制御しながら印刷を行う、印刷物の製造方法である。また、前記空気を噴出する機材温度制御装置である。 That is, in the present invention, in order to control the surface temperature of the printing equipment, air containing a mist having a Sauter mean diameter of 1.0 μm or more and 20 μm or less generated from the spray nozzle is blown to the printing equipment to control the surface temperature of the equipment. It is a method of manufacturing printed matter that prints while printing. Further, it is an equipment temperature control device that ejects the air.

本発明の印刷物の製造方法によれば、従来の揺動ローラーおよび版胴を改造することなく、印刷機材表面の温度制御を容易に行うことができ、長時間の印刷や高速印刷においても地汚れを発生させることなく、品質の安定した印刷物を得ることができる。 According to the method for manufacturing a printed matter of the present invention, the temperature of the surface of the printing equipment can be easily controlled without modifying the conventional rocking roller and the plate cylinder, and the background stains even in long-time printing and high-speed printing. It is possible to obtain a printed matter with stable quality without causing the occurrence of.

本発明の印刷物の製造方法の一例である共通圧胴型オフセット印刷機の例を示す模式側面図である。It is a schematic side view which shows the example of the common impression cylinder type offset printing machine which is an example of the manufacturing method of the printed matter of this invention. 本発明の印刷物の製造方法の一例に用いられる、機材温度制御装置構造を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the equipment temperature control apparatus used as an example of the manufacturing method of the printed matter of this invention. 本発明の印刷物の製造方法の一例に用いられる別の、機材温度制御装置構造を説明するための模式図である。It is a schematic diagram for demonstrating another equipment temperature control apparatus structure used as an example of the manufacturing method of the printed matter of this invention. 本発明の印刷物の製造方法の一例に用いられるさらに別の、機材温度制御装置構造を説明するための模式図である。It is a schematic diagram for demonstrating yet another equipment temperature control apparatus structure used as an example of the manufacturing method of the printed matter of this invention. 本発明の印刷物の製造方法の一例に用いられるさらに別の、機材温度制御装置構造を説明するための模式図である。It is a schematic diagram for demonstrating yet another equipment temperature control apparatus structure used as an example of the manufacturing method of the printed matter of this invention. 本発明の印刷物の製造方法の一例に用いられる、気体供給部のエアナイフ構造の例を示す模式側面図である。It is a schematic side view which shows the example of the air knife structure of the gas supply part used as an example of the manufacturing method of the printed matter of this invention.

以下、本発明の印刷物の製造方法を例に挙げて、好適な実施の形態を詳細に説明する。ただし、本発明は、以下の実施の形態に限定して解釈されるものではなく、本発明の要旨を逸脱しない限り、目的や用途に応じて種々に変更して実施することができる。 Hereinafter, preferred embodiments will be described in detail by taking the method for producing a printed matter of the present invention as an example. However, the present invention is not construed as being limited to the following embodiments, and can be variously modified and implemented according to an object and an application as long as the gist of the present invention is not deviated.

本発明の印刷物の製造方法は、少なくとも噴霧ノズル11から生成したザウター平均粒径1.0μm以上20μm以下の霧を含む空気を印刷機材へ送風し、該機材の表面温度を制御しながら印刷物を製造する。本発明の印刷物の製造方法は、主に水なしオフセット印刷における印刷版上のインキ粘度変化を最小限に抑制するために、機材温度制御部4は、該印刷版や該印刷版と接するブランケットに対向する位置に設置され、該制御部からは、前記空気が送風されることで、印刷機材の表面温度を制御することができる。 In the method for producing a printed matter of the present invention, air containing at least a mist having a Sauter mean diameter of 1.0 μm or more and 20 μm or less generated from a spray nozzle 11 is blown to a printing device, and the printed matter is manufactured while controlling the surface temperature of the device. do. In the method for producing printed matter of the present invention, mainly in order to minimize the change in ink viscosity on the printing plate in waterless offset printing, the equipment temperature control unit 4 is attached to the printing plate or a blanket in contact with the printing plate. It is installed at a position facing each other, and the air is blown from the control unit to control the surface temperature of the printing equipment.

本発明の印刷物の製造方法および機材温度制御装置を、図面を参照しつつ説明する。但し、本発明は、図面に示した例に限定して解釈されるものではない。 The method for manufacturing a printed matter and the equipment temperature control device of the present invention will be described with reference to the drawings. However, the present invention is not limited to the examples shown in the drawings.

図1は、本発明の印刷物の製造方法の一例を示す。このオフセット印刷機の例では、大型のローラーを共通圧胴1として設け、その廻りに各色に対応する印刷ユニット10を配置している。この例は、6色印刷機の例を示し、印刷ユニット10が6基配されている。なお、この例では、インキの付与は、インキ壺7からインキが供給され、揺動ローラー8およびインキ着けローラー9を経て、印刷版がセットされた版胴3にインキが供給され、印刷版上にインキが付与される。なお、本発明において「印刷機版胴」(以下、単に「版胴」ということがある)には印刷版がセットされた態様が含まれる。また、圧胴に沿うように基材(被印刷物)が巻き付けられ、前記基材表面にブランケット胴2が当接している。ブランケット胴2には印刷版がセットされた版胴3が当接しており、本発明における機材温度制御部4は、版胴の回転方向に対してインキ着けローラー9の手前の位置にあり、前記版胴3に対向して配置されている。本発明の印刷物の製造方法では、印刷終了後のインキを乾燥させたり、硬化させたりすることができるように活性エネルギー線を照射する工程を含むことができ、この例では活性エネルギー線照射装置6が具備されている。具体的な印刷物の製造方法としては、まず活性エネルギー線硬化型平版インキを基材上に塗布し、次いで活性エネルギー線を照射して硬化させることによりインキ硬化膜を有する印刷物を得る。前記基材としては、アート紙、コート紙、キャスト紙、合成紙、新聞用紙、アルミ蒸着紙、金属、ポリプロピレン、ポリエチレン、ナイロン、ポリエチレンテレフタラートなどが挙げられるが、これらに限定されない。オフセット印刷の方式としては水あり、水なしとあるが、どちらの方式も用いることができる。前記基材上に塗布されたインキ硬化膜の厚みは0.1~50μmであることが好ましい。前記活性エネルギー線としては、硬化反応に必要な励起エネルギーを有するものであれば特に限定されないが、例えば、紫外線や電子線などが好ましく用いられる。電子線により硬化させる場合は、100~500eVのエネルギー線を有する電子線装置が好ましく用いられる。紫外線により硬化させる場合は、高圧水銀灯、キセノンランプ、メタルハライドランプ、LED等の紫外線照射装置が好ましく用いられるが、例えばメタルハライドランプを用いる場合、80~150W/cmの照度を有するランプによって、コンベアーによる搬送速度が50~150m/minで硬化させることが生産性の面から好ましい。 FIG. 1 shows an example of a method for producing a printed matter of the present invention. In the example of this offset printing machine, a large roller is provided as a common impression cylinder 1, and a printing unit 10 corresponding to each color is arranged around the large roller. This example shows an example of a 6-color printing machine, and 6 printing units 10 are arranged. In this example, the ink is applied from the ink jar 7, the ink is supplied to the plate cylinder 3 in which the printing plate is set, via the rocking roller 8 and the ink-applying roller 9, and the ink is applied on the printing plate. Ink is applied to. In the present invention, the "printing machine plate cylinder" (hereinafter, may be simply referred to as "plate cylinder") includes a mode in which a printing plate is set. Further, a base material (printed matter) is wound along the impression cylinder, and the blanket cylinder 2 is in contact with the surface of the base material. The plate cylinder 3 in which the printing plate is set is in contact with the blanket cylinder 2, and the equipment temperature control unit 4 in the present invention is located in front of the inking roller 9 with respect to the rotation direction of the plate cylinder. It is arranged so as to face the plate cylinder 3. The method for producing a printed matter of the present invention can include a step of irradiating an active energy ray so that the ink after printing can be dried or cured. In this example, the active energy ray irradiating device 6 Is provided. As a specific method for producing a printed matter, a printed matter having an ink curing film is obtained by first applying an active energy ray-curable slab ink on a substrate and then irradiating the substrate with an active energy ray to cure the ink. Examples of the base material include, but are not limited to, art paper, coated paper, cast paper, synthetic paper, newspaper, aluminum vapor-deposited paper, metal, polypropylene, polyethylene, nylon, polyethylene terephthalate, and the like. There are two methods of offset printing, one with water and the other without water, but either method can be used. The thickness of the ink curing film applied on the substrate is preferably 0.1 to 50 μm. The active energy ray is not particularly limited as long as it has the excitation energy required for the curing reaction, but for example, ultraviolet rays or electron beams are preferably used. When curing with an electron beam, an electron beam device having an energy ray of 100 to 500 eV is preferably used. When curing with ultraviolet rays, an ultraviolet irradiation device such as a high-pressure mercury lamp, a xenon lamp, a metal halide lamp, or an LED is preferably used. For example, when a metal halide lamp is used, it is conveyed by a conveyor by a lamp having an illuminance of 80 to 150 W / cm. Curing at a speed of 50 to 150 m / min is preferable from the viewpoint of productivity.

図2は、本発明の印刷物の製造方法の一例に用いられる、機材温度制御装置の構造を説明するための模式側面図である。この例では、水量制御部16と減圧弁15により制御された水が、送水管14を通り噴霧ノズルに送られ、該ノズルから霧状に噴霧される。該噴霧ノズルから生成した霧は、送風機13から送られる空気と混合され、送風管12を通り、機材温度制御部4に供給され、版胴3に向けて送風される。該送風に含まれる霧が、機材に接触すると、霧は瞬時に蒸発するため、その気化熱により機材表面の温度を効率的に冷却することができる。機材温度制御部4から送風される霧の粒子径は、液浸法を用いて測定されたザウター平均粒子径(D32)で評価した場合、1.0μm以上20μm以下であることが好ましく、3.0μm以上10μm以下であることがより好ましい。前記霧の粒子径が、前記範囲内にあれば、前記霧が空気中を搬送される間に蒸発し、あるいは、機材表面に接触して、瞬時に蒸発する。そのため機材表面を濡らすことがなく、冷却効率を上げることができる。前記液浸法による霧の粒子径の測定方法としては、シリコンオイルを厚めに塗布したプレートガラス上で霧を受け止め、拡大写真を撮影し、写真からサイズ毎に粒子数をカウントする。そして、計測した液滴の体積の総和と表面積の総和の比を、式1から求めてザウター平均を算出した値(D32)を、霧の粒子径とする。 FIG. 2 is a schematic side view for explaining the structure of the equipment temperature control device used in an example of the method for manufacturing a printed matter of the present invention. In this example, the water controlled by the water amount control unit 16 and the pressure reducing valve 15 is sent to the spray nozzle through the water pipe 14, and is sprayed in a mist form from the nozzle. The mist generated from the spray nozzle is mixed with the air sent from the blower 13, is supplied to the equipment temperature control unit 4 through the blower pipe 12, and is blown toward the plate cylinder 3. When the fog contained in the blast comes into contact with the equipment, the fog evaporates instantly, so that the temperature of the surface of the equipment can be efficiently cooled by the heat of vaporization. The particle size of the mist blown from the equipment temperature control unit 4 is preferably 1.0 μm or more and 20 μm or less when evaluated by the Sauter average particle size (D 32 ) measured by the immersion method. More preferably, it is 0.0 μm or more and 10 μm or less. If the particle size of the mist is within the range, the mist evaporates while being conveyed in the air, or comes into contact with the surface of the equipment and evaporates instantly. Therefore, the cooling efficiency can be improved without getting the surface of the equipment wet. As a method for measuring the particle size of the mist by the immersion method, the mist is received on a plate glass coated with a thick layer of silicon oil, an enlarged photograph is taken, and the number of particles is counted for each size from the photograph. Then, the ratio of the total volume of the measured droplets to the total surface area is obtained from Equation 1 and the value (D 32 ) obtained by calculating the Sauter average is used as the particle diameter of the fog.

D32=Σ(n×d3i /Σ(n×d2i (式1)
n:粒子数、d:粒子径。
D 32 = Σ (n × d 3 ) i / Σ (n × d 2 ) i (Equation 1)
n: number of particles, d: particle diameter.

この例においては、噴霧ノズル11から噴霧される霧の量は、噴霧ノズル6個、送水圧力6MPaの場合、0.5L/時間以上40L/時間以下が好ましく、1.0L/時間以上30L/時間以下がより好ましく、2.0L/時間以上20L/時間以下が特に好ましい。前記範囲内にすることで、機材冷却効率向上と送風管内での霧の凝集防止を両立することができる。 In this example, the amount of mist sprayed from the spray nozzle 11 is preferably 0.5 L / hour or more and 40 L / hour or less, and 1.0 L / hour or more and 30 L / hour in the case of 6 spray nozzles and a water supply pressure of 6 MPa. The following is more preferable, and 2.0 L / hour or more and 20 L / hour or less are particularly preferable. By keeping it within the above range, it is possible to achieve both improvement of equipment cooling efficiency and prevention of fog aggregation in the blower pipe.

また、送風機13は、送風する空気の温度、湿度を所定の値に制御することができ、前記温度は、5℃以上30℃以下が好ましく、10℃以上25℃以下がより好ましい。好ましい機材表面の温度は、使用するインキの種類などの要因により適宜変動するが、前記範囲内で調整することにより、印刷品位が良好な印刷物を得ることができる。前記温度は、噴霧ノズル11から生成された霧を混合する工程と、機材温度制御部4を接続する送風管12で測定することが好ましい。さらに、前記湿度は、相対湿度が10%RH以上60%RH以下であることが好ましく、30%RH以上50%RH以下がより好ましい。前記範囲内にすることで、機材表面に接触した霧を効率的に蒸発させることができる。前記相体湿度は、送風機13と噴霧ノズルで生成した霧を混合する工程との間で、測定することが好ましい。 Further, the blower 13 can control the temperature and humidity of the air to be blown to predetermined values, and the temperature is preferably 5 ° C. or higher and 30 ° C. or lower, and more preferably 10 ° C. or higher and 25 ° C. or lower. The preferred surface temperature of the equipment varies depending on factors such as the type of ink used, but by adjusting the temperature within the above range, a printed matter having good print quality can be obtained. The temperature is preferably measured by the step of mixing the mist generated from the spray nozzle 11 and the blower pipe 12 connecting the equipment temperature control unit 4. Further, the relative humidity is preferably 10% RH or more and 60% RH or less, and more preferably 30% RH or more and 50% RH or less. Within the above range, the mist in contact with the surface of the equipment can be efficiently evaporated. The phase humidity is preferably measured between the blower 13 and the step of mixing the mist generated by the spray nozzle.

図3は、本発明の印刷物の製造方法の一例に用いられる、機材温度制御装置の構造を説明するための模式側面図である。この例では、機材温度制御部4は、前記制御部に進入した印刷版表層の空気層(気体境界層)を剥離するため吸気管17を配した気体吸引口を有する気体境界層剥離部と、前記気体境界層剥離部へ前記空気を給気する気体供給部を備えている。吸気管17は、図示せず排気ポンプまたは排気ファンなどの強制排気手段(排気圧力付与手段)に接続される。吸気管17の他端は、印刷版に対向して開口した気体吸引口につながっており、印刷版の幅方向に沿ってスリット形状を有している。好ましくは、印刷版の幅寸法と同等またはそれを超える開口幅を有する。前記機材温度制御部と前記印刷版との隙間のクリアランスが、0.1mm以上2.0mm以下であることが好ましく、0.5mm以上1.5mm以下がより好ましい。前記範囲内とすることで、前記気体境界層を、幅方向に対して均一かつ効率的に剥離することができる。 FIG. 3 is a schematic side view for explaining the structure of the equipment temperature control device used in an example of the method for manufacturing a printed matter of the present invention. In this example, the equipment temperature control unit 4 has a gas boundary layer peeling unit having a gas suction port in which an intake pipe 17 is arranged to separate the air layer (gas boundary layer) on the surface layer of the printing plate that has entered the control unit. A gas supply unit for supplying the air to the gas boundary layer peeling unit is provided. The intake pipe 17 is connected to a forced exhaust means (exhaust pressure applying means) such as an exhaust pump or an exhaust fan (not shown). The other end of the intake pipe 17 is connected to a gas suction port opened facing the printed plate, and has a slit shape along the width direction of the printed plate. Preferably, it has an opening width equal to or greater than the width dimension of the printed matter. The clearance between the equipment temperature control unit and the printing plate is preferably 0.1 mm or more and 2.0 mm or less, and more preferably 0.5 mm or more and 1.5 mm or less. Within the above range, the gas boundary layer can be uniformly and efficiently peeled off in the width direction.

図4は、本発明の印刷物の製造方法のさらに別の一例における、機材温度制御装置構造を説明するための模式側面図である。この例では、機材温度制御部4は、前記制御部に進入した印刷版表層の空気層(気体境界層)を剥離するための吸気管17を配した気体吸引口を有する気体境界層剥離部と、前記気体境界層剥離部へ前記空気を給気する気体供給部と、給気された前記空気を吸引するための吸気管18を配した吸気部を備えている。機材温度制御部4から送風された前記空気は、霧を含むため、印刷機の駆動部や各種ローラーの金属部分に接触すると錆びを発生させる可能性があり、気体供給部のあとに前記空気を吸引し回収することが好ましい。また、気体境界層剥離部に接続する吸気管17と吸気部に接続する吸気管18の吸気量は、機材表面温度および印刷速度に応じて個別に適宜調整することができる。 FIG. 4 is a schematic side view for explaining an equipment temperature control device structure in still another example of the method for manufacturing a printed matter of the present invention. In this example, the equipment temperature control unit 4 is a gas boundary layer peeling unit having a gas suction port in which an intake pipe 17 for peeling the air layer (gas boundary layer) of the printing plate surface layer that has entered the control unit is arranged. A gas supply unit for supplying the air to the gas boundary layer peeling unit and an intake unit having an intake pipe 18 for sucking the supplied air are provided. Since the air blown from the equipment temperature control unit 4 contains mist, it may cause rust when it comes into contact with the drive unit of the printing machine or the metal parts of various rollers, and the air is introduced after the gas supply unit. It is preferable to suck and collect. Further, the intake amounts of the intake pipe 17 connected to the gas boundary layer peeling portion and the intake pipe 18 connected to the intake portion can be individually and appropriately adjusted according to the surface temperature of the equipment and the printing speed.

図5は、本発明の印刷物の製造方法のさらに別の一例を示す。このオフセット印刷機の例では、本発明における機材温度制御部4は、版胴に当接しているブランケット胴2に対向して配置されている。これは、長時間の印刷や高速印刷を行うと、ブランケット胴表面は、当接している圧胴および版胴との摩擦熱の蓄熱や、温度調節されている前記圧胴からの熱伝達が起こる可能性があり、印刷版表面の温度を上昇させる要因となり得る。このため、機材温度制御部4をブランケット胴2の対向する位置に配置し、前記空気を送風することで、ブランケット胴の表面温度を制御することができ、長時間の印刷や高速印刷においても地汚れを発生させることなく、品質の安定した印刷物を得ることができる。 FIG. 5 shows still another example of the method for producing a printed matter of the present invention. In the example of this offset printing machine, the equipment temperature control unit 4 in the present invention is arranged so as to face the blanket cylinder 2 in contact with the plate cylinder. This is because when printing for a long time or high-speed printing is performed, the surface of the blanket cylinder undergoes the storage of frictional heat between the impression cylinder and the plate cylinder in contact with the blanket cylinder and the heat transfer from the temperature-controlled impression cylinder. It may be a factor that raises the temperature of the surface of the printing plate. Therefore, the surface temperature of the blanket cylinder can be controlled by arranging the equipment temperature control unit 4 at a position facing the blanket cylinder 2 and blowing the air, so that the surface temperature of the blanket cylinder can be controlled even in long-time printing or high-speed printing. It is possible to obtain a printed matter with stable quality without causing stains.

図6は、本発明の印刷物の製造方法の一例における、気体供給部のエアナイフ構造の3つの例を説明するための模式側面図である。前記気体供給部の端部は、印刷物の幅方向に沿ってスリット形状を有し、印刷物の幅寸法と同等またはそれを超える開口幅を有し、前記空気を幅方向に切れ目なく均一に噴出することができるエアナイフ構造の噴射口を有することで、機材上の境界層剥離部に対して効率的に、前記空気を供給することができる。前記エアナイフ構造は、例えば、噴出口に連結する送風管の内径を1段または2段にわたり絞って前記噴出口に近づくほど狭くなるよう設け、前記空気の噴出圧力をあげ、機材の冷却効率を向上させることもできる。また、噴出口に連結する送風管内に、半球状の流路を設けることで、噴出される空気の幅方向の圧力調整が効率化するため、前記機材を均一性に冷却できるため好ましい。 FIG. 6 is a schematic side view for explaining three examples of the air knife structure of the gas supply unit in an example of the method for manufacturing a printed matter of the present invention. The end of the gas supply unit has a slit shape along the width direction of the printed matter, has an opening width equal to or greater than the width dimension of the printed matter, and ejects the air uniformly in the width direction without a break. By having an injection port having an air knife structure capable of being capable, the air can be efficiently supplied to the boundary layer peeling portion on the equipment. The air knife structure is provided, for example, by narrowing the inner diameter of the blower pipe connected to the spout over one or two steps so that it becomes narrower as it approaches the spout to increase the air spout pressure and improve the cooling efficiency of the equipment. You can also let it. Further, it is preferable to provide a hemispherical flow path in the blower pipe connected to the ejection port because the pressure adjustment in the width direction of the ejected air becomes efficient and the equipment can be uniformly cooled.

本発明の印刷物の製造方法では、印刷時間や気温の影響を受け経時的に変化する印刷機材の表面温度に適宜対応するため、前記印刷機材の表面温度を測定可能な温度センサーと、該温度センサーからの信号を演算処理する機構と、演算処理結果に応じて前記空気を加温または冷却する機構を連動させて、前記空気の温度を調節しながら印刷することが好ましい。 In the method for manufacturing a printed matter of the present invention, a temperature sensor capable of measuring the surface temperature of the printing equipment and the temperature sensor are used in order to appropriately cope with the surface temperature of the printing equipment which changes with time due to the influence of the printing time and the temperature. It is preferable to print while adjusting the temperature of the air by interlocking the mechanism for arithmetically processing the signal from the printer and the mechanism for heating or cooling the air according to the arithmetic processing result.

1 圧胴
2 ブランケット胴
3 版胴
4 機材温度制御部
5 基材(被印刷物)
6 活性エネルギー線照射装置
7 インキ壺
8 揺動ローラー
9 インキ着けローラー
10 印刷ユニット
11 噴霧ノズル
12 送風管
13 送風機
14 送水管
15 減圧弁
16 水量制御部
17 気体境界層剥離部に接続する吸気管
18 吸気部に接続する吸気管
1 Impressor 2 Blanket cylinder 3 Plate cylinder 4 Equipment temperature control unit 5 Base material (printed matter)
6 Active energy ray irradiation device 7 Ink pot 8 Swing roller 9 Ink application roller
10 printing unit
11 Spray nozzle
12 Blower
13 Blower
14 Water pipe
15 pressure reducing valve
16 Water volume control unit
17 Intake pipe connected to the gas boundary layer peeling part
18 Intake pipe connected to the intake section

Claims (11)

噴霧ノズルから生成したザウター平均粒径1.0μm以上20μm以下の霧を含む空気を印刷機材へ送風し、該機材の表面温度を制御しながら印刷を行う、印刷物の製造方法。 A method for producing printed matter, in which air containing a mist having an average diameter of 1.0 μm or more and 20 μm or less generated from a spray nozzle is blown to a printing device, and printing is performed while controlling the surface temperature of the device. 印刷機材に対向する位置に配された機材温度制御部に備わる気体吸引口を使い、前記印刷機材の気体境界層を剥離した後、前記空気を前記気体境界剥離部へ供給して、該機材の表面温度を制御する請求項1記載の印刷物の製造方法。 After peeling off the gas boundary layer of the printing equipment using the gas suction port provided in the equipment temperature control unit arranged at a position facing the printing equipment, the air is supplied to the gas boundary peeling unit to supply the equipment. The method for manufacturing a printed matter according to claim 1, wherein the surface temperature is controlled. 前記空気の相対湿度が、10%RH以上60%RH以下である請求項1または2記載の印刷物の製造方法。 The method for producing a printed matter according to claim 1 or 2, wherein the relative humidity of the air is 10% RH or more and 60% RH or less. 前記空気の温度が、5℃以上30℃以下である請求項1~3のいずれかに記載の印刷物の製造方法。 The method for producing a printed matter according to any one of claims 1 to 3, wherein the temperature of the air is 5 ° C. or higher and 30 ° C. or lower. 前記温度制御部と印刷機材との隙間のクリアランスが、0.1mm以上2.0mm以下である請求項2~4のいずれかに記載の印刷物の製造方法。 The method for manufacturing a printed matter according to any one of claims 2 to 4, wherein the clearance between the temperature control unit and the printing equipment is 0.1 mm or more and 2.0 mm or less. 前記温度制御部に備わるエアナイフ構造の噴射口から前記空気を供給する請求項2~5のいずれかに記載の印刷物の製造方法。 The method for manufacturing a printed matter according to any one of claims 2 to 5, wherein the air is supplied from an injection port of an air knife structure provided in the temperature control unit. さらに、印刷機材へ送風された前記空気を、前記温度制御部に備わる吸気部にて吸気する請求項2~6のいずれかに記載の印刷物の製造方法。 The method for manufacturing a printed matter according to any one of claims 2 to 6, wherein the air blown to the printing equipment is taken in by an intake unit provided in the temperature control unit. 前記印刷機材の表面温度を測定可能な温度センサーと、該温度センサーからの信号を演算処理する機構、演算処理結果に応じて加温または冷却する機構を連動させて、前記空気の温度を調節しながら印刷を行う、請求項1~7のいずれかに記載の印刷物の製造方法。 The temperature of the air is adjusted by interlocking a temperature sensor capable of measuring the surface temperature of the printing equipment, a mechanism for calculating a signal from the temperature sensor, and a mechanism for heating or cooling according to the calculation processing result. The method for manufacturing a printed matter according to any one of claims 1 to 7, wherein printing is performed while printing. 印刷機材が、印刷版またはブランケットである請求項1~8のいずれかに記載の印刷物の製造方法。 The method for manufacturing a printed matter according to any one of claims 1 to 8, wherein the printing equipment is a printing plate or a blanket. さらに、活性エネルギー線を照射する工程を含む、請求項1~9のいずれかに記載の印刷物の製造方法。 The method for producing a printed matter according to any one of claims 1 to 9, further comprising a step of irradiating with active energy rays. 請求項1~10のいずれかに記載の印刷物の製造方法に使われる機材温度制御装置であって、前記空気を噴出する機材温度制御装置。 An equipment temperature control device used in the method for manufacturing a printed matter according to any one of claims 1 to 10, wherein the equipment temperature control device ejects the air.
JP2021000697A 2021-01-06 2021-01-06 Method of manufacturing printed product and machine temperature control device Pending JP2022106028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021000697A JP2022106028A (en) 2021-01-06 2021-01-06 Method of manufacturing printed product and machine temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021000697A JP2022106028A (en) 2021-01-06 2021-01-06 Method of manufacturing printed product and machine temperature control device

Publications (1)

Publication Number Publication Date
JP2022106028A true JP2022106028A (en) 2022-07-19

Family

ID=82449010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021000697A Pending JP2022106028A (en) 2021-01-06 2021-01-06 Method of manufacturing printed product and machine temperature control device

Country Status (1)

Country Link
JP (1) JP2022106028A (en)

Similar Documents

Publication Publication Date Title
EP2554383B1 (en) Method for direct application of dampening fluid for a variable data lithographic apparatus
EP2554382B1 (en) Direct application of dampening fluid for a variable data lithographic apparatus
EP2554384B1 (en) System for direct application of dampening fluid for a variable data lithographic apparatus
US7703394B2 (en) Apparatus and method for the application of a liquid and printing unit and machine having the apparatus
US8746870B2 (en) Matting agent coating device and inkjet recording device
CA2227698C (en) Apparatus and method for drying a discontinuous or continuous substrate fed along a feed path of an offset press
US8950322B2 (en) Evaporative systems and methods for dampening fluid control in a digital lithographic system
JPH05278933A (en) Device for delivering printed sheet on sheet pile
JP4460915B2 (en) Double-sided sheet-fed printing machine
JP5602103B2 (en) Active energy ray irradiation apparatus and method, and image forming apparatus
EP2353863B1 (en) Printing/coating method and apparatus
JP2022106028A (en) Method of manufacturing printed product and machine temperature control device
JP2019073027A (en) Printer
JPH0768741A (en) Method and device for transferring ink in printing device of offset press
US3628454A (en) Offset mister air die
US9019329B2 (en) Systems for dampening fluid removal, vapor control and recovery for ink-based digital printing
JP2007083555A (en) Ink drying apparatus and ink drying method
JP3129158B2 (en) Waterless offset printing press
JP4486492B2 (en) Sheet-fed duplex printing machine
US20240034079A1 (en) System and Method for Cooling Paper within a Printer Assembly
JP2012030364A (en) Printing machine
JP2023088536A (en) Offset printing system and temperature control device
JP2006231683A (en) Equipment and method for drying blanket
JP2016203572A (en) Ink jet printer
JPS63165143A (en) Automatic dampening arrangement of planographic press