JP2022105806A - Method for culturing - Google Patents

Method for culturing Download PDF

Info

Publication number
JP2022105806A
JP2022105806A JP2021000368A JP2021000368A JP2022105806A JP 2022105806 A JP2022105806 A JP 2022105806A JP 2021000368 A JP2021000368 A JP 2021000368A JP 2021000368 A JP2021000368 A JP 2021000368A JP 2022105806 A JP2022105806 A JP 2022105806A
Authority
JP
Japan
Prior art keywords
cells
medium
temperature
culture
responsive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021000368A
Other languages
Japanese (ja)
Inventor
伸哉 今富
Shinya Imatomi
聖也 平床
Seiya Hirayuka
裕美子 慈道
Yumiko Jido
友祐 根津
Yusuke Nezu
博之 伊藤
Hiroyuki Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2021000368A priority Critical patent/JP2022105806A/en
Publication of JP2022105806A publication Critical patent/JP2022105806A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To provide a culturing method using a temperature-responsive culture vessel, enabling a cooling system for the culture vessel to be made compact and automatic.SOLUTION: A method for an adherent cell includes the steps of (a) culturing an adherent cell in a temperature-responsive culture vessel, (b) recovering the medium from the culture vessel, (c) cooling the recovered medium, and (d) adding the cooled medium to the culture vessel.SELECTED DRAWING: None

Description

本発明は、温度応答性培養器材を用いた接着細胞の培養方法に関する。 The present invention relates to a method for culturing adherent cells using a temperature-responsive culture equipment.

細胞医薬品の製造には大量の細胞を必要とするため高効率な継代培養方法が求められる。細胞医薬品の多くの原料細胞は増殖に足場となる基材への接着を必要とするが、増殖した接着細胞を回収する際は、細胞を基材から剥離する必要がある。 Since a large amount of cells are required for the production of cell medicines, a highly efficient subculture method is required. Many raw material cells of cell medicines require adhesion to a base material that serves as a scaffold for proliferation, but when recovering the grown adherent cells, it is necessary to detach the cells from the substrate.

細胞を基材から剥離する方法としては、一般的に、トリプシンなどのタンパク質分解酵素で処理する方法と温度応答性培養器材を用いる方法がある。温度応答性培養器材を用いる場合は、冷却処理を行うことにより、当該器材表面の接着力を弱めて細胞を剥離させる(例えば、特許文献1、特許文献2)。このような冷却処理による細胞の回収は、タンパク質分解酵素による処理と比較して、低侵襲であり品質の高い細胞が得られる利点がある。 As a method for exfoliating cells from a substrate, there are generally a method of treating with a proteolytic enzyme such as trypsin and a method of using a temperature-responsive culture device. When a temperature-responsive culture device is used, the cells are exfoliated by weakening the adhesive force on the surface of the device by performing a cooling treatment (for example, Patent Document 1 and Patent Document 2). Recovery of cells by such a cooling treatment has an advantage that cells with low invasiveness and high quality can be obtained as compared with treatment with a proteolytic enzyme.

しかしながら、従来の方法における冷却処理は、温度応答性培養器材全体を冷却することや、当該培養器材の培地を冷却した培地に培地交換することによるものであり、大容積の冷却装置が必要である点や自動化が難しい点に改良の余地があった。 However, the cooling treatment in the conventional method is by cooling the entire temperature-responsive culture equipment or exchanging the medium of the culture equipment with a cooled medium, and a large-volume cooling device is required. There was room for improvement in terms of points and points that were difficult to automate.

特開2018-87316号公報JP-A-2018-87316 特開2020-152874号公報Japanese Unexamined Patent Publication No. 2020-152874

本発明は、このような状況に鑑みてなされたものであり、その目的は、温度応答性培養器材を用いた接着細胞の培養方法であって、当該培養器材の冷却システムを小型化かつ自動化することが可能な方法を提供することにある。 The present invention has been made in view of such a situation, and an object thereof is a method for culturing adherent cells using a temperature-responsive culture equipment, and the cooling system of the culture equipment is miniaturized and automated. Is to provide a possible way.

本発明者らは、鋭意研究を重ねた結果、接着細胞を培養している温度応答性培養器材から培地を回収し、冷却した上で当該培養器材に戻すことを特徴とする方法が、冷却システムの小型化および自動化に適しており、細胞の継代のための高効率な培養が可能であることを見出し、本発明を完成するに至った。 As a result of diligent research, the present inventors have collected a medium from a temperature-responsive culture device in which adherent cells are cultured, cooled the medium, and then returned the culture medium to the culture device. We have found that it is suitable for miniaturization and automation of cells and enables highly efficient culture for cell passage, and have completed the present invention.

すなわち本発明は以下の態様を包含する。 That is, the present invention includes the following aspects.

[1]接着細胞の培養方法であって、
(a)接着細胞を温度応答性培養器材で培養する工程、
(b)前記培養器材から培地を回収する工程、
(c)回収した培地を冷却する工程、および
(d)前記培養器材に冷却した培地を添加する工程、
を含む方法。
[1] A method for culturing adherent cells.
(A) A step of culturing adherent cells in a temperature-responsive culture device,
(B) A step of recovering the medium from the culture equipment,
(C) A step of cooling the recovered medium, and (d) a step of adding the cooled medium to the incubator.
How to include.

[2]工程(a)において接着細胞をサブコンフルエント以上に増殖させる、[1]に記載の方法。 [2] The method according to [1], wherein the adherent cells are proliferated above the subconfluent in step (a).

[3]工程(b)における培地の回収に送液ポンプを用いる、[1]または[2]に記載の方法。 [3] The method according to [1] or [2], wherein a liquid feed pump is used to recover the medium in the step (b).

[4]工程(c)における培地の冷却に水冷式冷却器を用いる、[1]~[3]のいずれかに記載の方法。 [4] The method according to any one of [1] to [3], wherein a water-cooled cooler is used to cool the medium in the step (c).

[5]工程(d)における冷却した培地の添加に送液ポンプを用いる、[1]~[4]のいずれかに記載の方法。 [5] The method according to any one of [1] to [4], wherein a liquid feed pump is used for adding the cooled medium in the step (d).

[6]閉鎖系である、[1]~[5]のいずれかに記載の方法。 [6] The method according to any one of [1] to [5], which is a closed system.

本発明の培養方法によれば、温度応答性培養器材の冷却を、当該培養器材から回収した必要最小限の培地の冷却により行うことができるため、小型の冷却装置を利用することが可能である。また、培地の回収と冷却を、ポンプと冷媒の導入により行うことができるため、自動化が容易である。このため、継代のための接着細胞の培養を高効率で行なうことができる。 According to the culture method of the present invention, the temperature-responsive culture equipment can be cooled by cooling the minimum necessary medium recovered from the culture equipment, so that a small cooling device can be used. .. Further, since the collection and cooling of the medium can be performed by introducing a pump and a refrigerant, automation is easy. Therefore, the adherent cells for passage can be cultured with high efficiency.

実施例に用いた培養システムを示す図である。It is a figure which shows the culture system used in an Example.

本発明の接着細胞の培養方法においては、まず、接着細胞を温度応答性培養器材で培養する(工程(a))。 In the method for culturing adherent cells of the present invention, first, the adherent cells are cultured in a temperature-responsive culture device (step (a)).

本発明において「接着細胞」とは、基材に付着しながら増殖する細胞を意味する。接着細胞としては、例えば、チャイニーズハムスター卵巣由来CHO細胞やマウス結合組織L929細胞、ヒト胎児肺由来正常二倍体線維芽細胞(TIG-3細胞)、ヒト胎児腎臓由来細胞(HEK293細胞)やヒト子宮頸癌由来HeLa細胞などの種々の培養細胞株に加え、例えば、生体内の各組織や臓器を構成する上皮細胞や内皮細胞;収縮性を示す骨格筋細胞、平滑筋細胞、心筋細胞;神経系を構成するニューロン細胞、グリア細胞、繊維芽細胞;生体の代謝に関与する肝実質細胞、肝非実質細胞、脂肪細胞;分化能を有する誘導多能性幹(iPS)細胞、胚性幹(ES)細胞、胚性生殖(EG)細胞、胚性癌(EC)細胞、間葉系幹細胞、肝幹細胞、膵幹細胞、皮膚幹細胞、筋幹細胞、生殖幹細胞等の各種幹細胞や各組織の前駆細胞、それら幹細胞や前駆細胞から分化誘導した細胞、などが挙げられる。また、これら以外でも、血液、リンパ液、髄液、喀痰、尿又は便に含まれる細胞(生細胞)や、体内或いは環境中に存在する微生物、ウイルス、原虫なども例示できる。 In the present invention, the "adherent cell" means a cell that proliferates while adhering to a substrate. Examples of the adherent cells include Chinese hamster ovary-derived CHO cells, mouse binding tissue L929 cells, human fetal lung-derived normal diploid fibroblast cells (TIG-3 cells), human fetal kidney-derived cells (HEK293 cells), and human offspring. In addition to various cultured cell lines such as HeLa cells derived from cervical cancer, for example, epithelial cells and endothelial cells constituting each tissue or organ in the living body; contractile skeletal muscle cells, smooth muscle cells, myocardial cells; nervous system Neuronal cells, glia cells, fibroblasts; hepatic parenchymal cells, non-hepatic parenchymal cells, fat cells involved in biological metabolism; induced pluripotent stem (iPS) cells with differentiation potential, embryonic stem (ES) ) Cells, embryonic reproductive (EG) cells, embryonic cancer (EC) cells, mesenchymal stem cells, hepatic stem cells, pancreatic stem cells, skin stem cells, muscle stem cells, reproductive stem cells and other stem cells and precursor cells of each tissue, they Examples thereof include cells induced to differentiate from stem cells and precursor cells. In addition to these, cells (living cells) contained in blood, lymph, cerebrospinal fluid, sputum, urine or stool, microorganisms, viruses, protozoans and the like existing in the body or environment can be exemplified.

本発明において「温度応答性培養器材」とは、高分子で被覆された培養器材であって、当該高分子の下限臨界溶解温度(LCST;Lower Critical Solution Temperature)よりも低い温度に冷却した場合に、当該高分子が溶解する培養器材を意味する。表面の高分子を溶解させることにより当該培養器材に接着している細胞を剥離させることができる。ここで「下限臨界溶解温度」とは、この温度よりも低い温度では高分子が水に溶解して透明の溶液になるが、この温度よりも高い温度では不溶化して白濁するか沈殿が生じ、相分離する温度である。 In the present invention, the "temperature-responsive culture equipment" is a culture equipment coated with a polymer, and when cooled to a temperature lower than the lower limit critical dissolution temperature (LCST; Lower Critical Solution Temple) of the polymer. , Means a culture device in which the polymer dissolves. By dissolving the polymer on the surface, the cells adhering to the culture equipment can be exfoliated. Here, the "lower limit critical dissolution temperature" means that at a temperature lower than this temperature, the polymer dissolves in water and becomes a transparent solution, but at a temperature higher than this temperature, it becomes insoluble and becomes cloudy or precipitates. The temperature at which phase separation occurs.

LCSTの特性を持つ高分子(以下、「温度応答性高分子」と称する)の繰返し単位とその水に対するLCSTの例は、以下の通りである。 Examples of the repeating unit of a polymer having the characteristics of LCST (hereinafter referred to as “temperature-responsive polymer”) and its water are as follows.

N-エチルアクリルアミド(LCST=72℃)、N-シクロプロピルアクリルアミド(LCST=46℃)、N-イソプロピルアクリルアミド(LCST=32℃)、N-n-プロピルメタクリルアミド(LCST=22℃)、N-テトラヒドロフルフリルアクリルアミド(LCST=28℃)、N-エトキシエチルアクリルアミド(LCST=35℃)、N,N-ジエチルアクリルアミド(LCST=32℃)、N-シクロプロピルメタクリルアミド(LCST=59℃)、N-イソプロピルメタクリルアミド(LCST=44℃)、N-n-プロピルメタクリルアミド(LCST=28℃)、N-テトラヒドロフルフリルメタクリルアミド(LCST=35℃)、N-メチル-N-エチルアクリルアミド(LCST=56℃)、N-メチル-N-イソプロピルアクリルアミド(LCST=23℃)、N-メチル-N-n-プロピルアクリルアミド(LCST=20℃)、またはN,N-ジメチルアミノエチルメタクリレート(LCST=47℃)。 N-ethylacrylamide (LCST = 72 ° C), N-cyclopropylacrylamide (LCST = 46 ° C), N-isopropylacrylamide (LCST = 32 ° C), Nn-propylmethacrylamide (LCST = 22 ° C), N- Tetrahydrofurfurylacrylamide (LCST = 28 ° C), N-ethoxyethylacrylamide (LCST = 35 ° C), N, N-diethylacrylamide (LCST = 32 ° C), N-cyclopropylmethacrylamide (LCST = 59 ° C), N -Isopropylmethacrylamide (LCST = 44 ° C.), Nn-propylmethacrylamide (LCST = 28 ° C.), N-tetrahydrofurfurylmethacrylamide (LCST = 35 ° C.), N-methyl-N-ethylacrylamide (LCST =) 56 ° C.), N-methyl-N-isopropylacrylamide (LCST = 23 ° C.), N-methyl-Nn-propylacrylamide (LCST = 20 ° C.), or N, N-dimethylaminoethyl methacrylate (LCST = 47 ° C.) ).

温度応答性培養器材は、基材表面に温度応答性高分子が共有結合で連結されていてもよく、共有結合以外の相互作用で温度応答性高分子が被覆されていてもよい。前者の例としては、UpCell(セルシード社)が挙げられ、後者の例としては、特許第6638706号や特許第5846584号に記載のブロック共重合体を被覆した細胞培養器材が挙げられる。培養器材の形状に特に制限はなく、例えば、シャーレ状、フラスコ状、プレート状、袋状、粒子状などが挙げられる。 In the temperature-responsive culture equipment, the temperature-responsive polymer may be covalently linked to the surface of the substrate, or the temperature-responsive polymer may be coated by an interaction other than the covalent bond. Examples of the former include UpCell (CellSeed), and examples of the latter include cell culture equipment coated with the block copolymer described in Japanese Patent No. 6638706 and Japanese Patent No. 5846584. The shape of the incubator is not particularly limited, and examples thereof include a petri dish, a flask, a plate, a bag, and particles.

培養器材表面は、さらに細胞外マトリックスで被覆されていてもよい。細胞外マトリックスの種類は特に制限はなく、例えば、コラーゲン、アテロコラーゲン、ヒアルロン酸、エラスチン、プロテオグリカン、グルコサミノグリカン、フィブロネクチン、ラミニン、ビトロネクチン、ゼラチン、ラミニン、コラーゲンIV、ヘパラン硫酸プロテオグリカン、エンタクチン/ニドジェン1,2などを主成分として含有するマトリゲルを用いてもよく、これらを1種類のみでもよく、2種類以上の組み合わせてあってもよい。また、これら細胞外マトリックスのセグメントであってもよい。 The surface of the culture equipment may be further coated with an extracellular matrix. The type of extracellular matrix is not particularly limited, and for example, collagen, atelocollagen, hyaluronic acid, elastin, proteoglycan, glucosaminoglycan, fibronectin, laminin, vitronectin, gelatin, laminin, collagen IV, heparan sulfate proteoglycan, entactin / nidogen 1 A matrix gel containing 1, 2 or the like as a main component may be used, or only one type of these may be used, or two or more types may be combined. It may also be a segment of these extracellular matrices.

本工程における接着細胞の培養は、培養器材に接着させたまま細胞を増殖させるために、表面処理した高分子のLCSTよりも高い温度で行う。本工程において接着細胞はサブコンフルエント以上に増殖させることが好ましい。これにより、本発明の培養方法で回収した細胞を新たな培養器材に移し、再び培養する継代培養を行う場合に、培養効率を向上させることができる。ここで「サブコンフルエント」とは、培養容器の接着面の60~90%が細胞で占められ、まだ細胞が成長できる余地がある状態をいう。従って、本発明における「サブコンフルエント以上」とは、接着細胞が培養容器の接着面の60%以上を占める状態を意味する。 The adherent cells in this step are cultured at a temperature higher than that of the surface-treated polymer LCST in order to proliferate the cells while adhering to the culture equipment. In this step, it is preferable to proliferate the adherent cells above the subconfluent. As a result, the culture efficiency can be improved when the cells collected by the culture method of the present invention are transferred to a new culture equipment and subcultured in which the cells are cultured again. Here, the "subconfluent" refers to a state in which 60 to 90% of the adhesive surface of the culture vessel is occupied by cells, and there is still room for cells to grow. Therefore, "subconfluent or higher" in the present invention means a state in which adherent cells occupy 60% or more of the adherent surface of the culture vessel.

接着細胞の培地は、当該細胞が培養器材に接着して増殖するのに適したものであれば特に制限はない。培地は、一般的には、基礎培地と血清からなるが、抗生物質などの他の要素が含まれていてもよい。基礎培地の種類は特に制限はなく、例えば、MEM、αMEM、DMEM、EMEM、GMEM、DMEM/Ham’sF-12、Ham’sF-12、Ham’sF-10、Medium199、RPMI1640などを用いることができる。血清の種類は特に限定はなく、例えば、牛胎児血清、児牛血清、成牛血清、ウマ血清、ヒツジ血清、ヤギ血清、ブタ血清、ニワトリ血清、ウサギ血清、ヒト血清が使用されるが、入手の容易さから一般的に牛胎児血清がよく用いられる。培地中の血清濃度は特に制限はなく、例えば、1~30vol%である。また、培地は、未処理又は未精製の血清をいずれも含まず、精製された血液由来成分又は動物組織由来成分(増殖因子など)を含有する無血清培地であってもよい。 The medium of the adherent cells is not particularly limited as long as the cells are suitable for adhering to the culture equipment and proliferating. The medium generally consists of basal medium and serum, but may contain other elements such as antibiotics. The type of basal medium is not particularly limited, and for example, MEM, αMEM, DMEM, EMEM, GMEM, DMEM / Ham'sF-12, Ham'sF-12, Ham'sF-10, Medium199, RPMI1640 and the like can be used. can. The type of serum is not particularly limited, and for example, bovine fetal serum, calf serum, adult bovine serum, horse serum, sheep serum, goat serum, pig serum, chicken serum, rabbit serum, and human serum are used, but are available. Generally, bovine fetal serum is often used because of its ease of use. The serum concentration in the medium is not particularly limited, and is, for example, 1 to 30 vol%. Further, the medium may be a serum-free medium containing no untreated or unpurified serum and containing purified blood-derived components or animal tissue-derived components (growth factors, etc.).

本発明の培養方法においては、次いで、前記培養器材から培地を回収する(工程(b))。 In the culture method of the present invention, the medium is then recovered from the culture equipment (step (b)).

培養器材から培地を回収する方法は特に制限はないが、効率的な継代培養を行うため、送液ポンプを用いて機械化されていることが好ましい。送液量は特に制限はないが、後述の工程(c)で培地を効率的に冷却するために、0.1~100.0mL/分が好ましい。送液ポンプの種類は特に制限はないが、送液量の調整し易さやプラスチックチューブが適用できることからチューブポンプが好ましい。チューブの材質は特に制限はないが、培地中に還元性のある糖を含むため、プラスチック製であることが好ましい。チューブの内径は特に制限はなく、例えば、0.1~30.0mmである。 The method for recovering the medium from the culture equipment is not particularly limited, but it is preferably mechanized using a liquid feed pump in order to carry out efficient subculture. The amount of liquid to be fed is not particularly limited, but is preferably 0.1 to 100.0 mL / min in order to efficiently cool the medium in the step (c) described later. The type of liquid feed pump is not particularly limited, but a tube pump is preferable because it is easy to adjust the liquid feed amount and a plastic tube can be applied. The material of the tube is not particularly limited, but it is preferably made of plastic because the medium contains reducing sugar. The inner diameter of the tube is not particularly limited, and is, for example, 0.1 to 30.0 mm.

本発明の培養方法においては、次いで、回収した培地を冷却する(工程(c))。 In the culture method of the present invention, the recovered medium is then cooled (step (c)).

培養器材の冷却方法としては、従来から、培養器材を冷所で冷却する方法が利用されてきたが、冷却器の体積が大型になり、自動化により効率的な継代培養を行うことが困難である。また、培養器材から培地を抜き取り、冷却した培地を新たに添加する方法も知られているが、冷却した培地を別途用意する必要があり、作業性が低いため、この方法でも効率的な継代培養が困難である。一方、本発明の方法は、接着細胞を培養している温度応答性培養器材から培地を回収し、冷却した上で当該培養器材に戻すことを特徴としていることから、大型の冷却システムは不要で自動化に適しており、細胞の継代のための高効率な培養が可能である。 As a method for cooling the culture equipment, a method of cooling the culture equipment in a cold place has been conventionally used, but the volume of the cooler becomes large and it is difficult to perform efficient subculture by automation. be. In addition, a method of extracting the medium from the culture equipment and adding a new cooled medium is also known, but since it is necessary to prepare a cooled medium separately and the workability is low, this method is also an efficient passage. Culturing is difficult. On the other hand, the method of the present invention is characterized in that the medium is recovered from the temperature-responsive culture equipment in which the adherent cells are cultured, cooled, and then returned to the culture equipment, so that a large cooling system is not required. It is suitable for automation and enables highly efficient culture for cell passage.

回収した培地の冷却方法は特に制限はないが、熱伝導率が高い水冷式冷却器で冷却することが好ましい。メンテナンスを容易にするために簡素な冷却システムでもよく、例えば、工程(b)の培地の回収に、送液ポンプ(例えば、チューブポンプ)を用いる場合には、当該チューブを冷却槽に浸漬してもよい。一方、冷却効率をさらに向上させるために、例えば、グラハム冷却器やジムロート冷却器のように、コイル状のチューブを用いてもよい。後の工程(d)において培養器材に添加される培地の温度が、温度応答性培養器材の表面を被覆している高分子のLCSTより低い温度である必要があることから、冷却温度は、通常、当該LCSTよりも2℃以上低い温度、好ましくは5℃以上低い温度である。培地の主成分は水であるため、冷却温度の下限は培地が凍らない温度(典型的には、0℃)である。冷却水の種類に特に制限はなく、例えば、水、エチレングリコールなどの不凍水を用いることができる。 The method for cooling the recovered medium is not particularly limited, but it is preferable to cool the collected medium with a water-cooled cooler having high thermal conductivity. A simple cooling system may be used to facilitate maintenance. For example, when a liquid feed pump (for example, a tube pump) is used for collecting the medium in step (b), the tube is immersed in a cooling tank. May be good. On the other hand, in order to further improve the cooling efficiency, a coiled tube may be used, for example, a Graham condenser or a Dimroth condenser. Since the temperature of the medium added to the culture equipment in the subsequent step (d) needs to be lower than the LCST of the polymer covering the surface of the temperature-responsive culture equipment, the cooling temperature is usually set. , The temperature is 2 ° C. or higher, preferably 5 ° C. or higher lower than the LCST. Since the main component of the medium is water, the lower limit of the cooling temperature is the temperature at which the medium does not freeze (typically 0 ° C.). The type of cooling water is not particularly limited, and for example, water, antifreeze water such as ethylene glycol can be used.

本発明の培養方法においては、次いで、前記培養器材に冷却した培地を添加する(工程(d))。 In the culture method of the present invention, a cooled medium is then added to the culture equipment (step (d)).

本工程は、培地を回収した培養器材に、冷却された状態で培地を戻す工程ということもできる。培養器材への培地の添加の方法に特に制限はない。送液ポンプ(例えば、チューブポンプ)を用いる場合には、上記の培地の回収(工程(b))および培地の冷却(工程(c))と本工程とを連続的に行うことができる。すなわち、送液ポンプに設置されたチューブの一方の端を培養器材に浸漬させて培地を回収し、それを冷却した上で、チューブの他方の端から冷却した培地を培養器材に戻すという操作を循環させることができる(図1を参照のこと)。この培地の循環を停止させた後、チューブ内に培地が残存することがあるが、回収した培地の全量を前期培養器材に添加する場合は、例えば、当該チューブの端を気層中に上げ、チューブ内の培地を培養器材に排出することができる。あるいは、当該チューブの端を新鮮な培地などの液相に繋げ、チューブ内の培地を培養器材に排出してもよい。これにより温度応答性培養器材が、その表面を被覆している高分子のLCSTより低い温度に冷却され、時間の経過にともなって細胞が当該培養器材の表面から剥離する。剥離するまでの時間は、当該高分子の種類や被覆量により変動しうるが、例えば、5~60分である。接着細胞の培養器材からの剥離には、このような自然剥離を待つ方法以外に、例えば、器材全体に物理的な衝撃を与える方法(例えば、タッピングや振盪)や細胞に局所的に衝撃を与える方法(例えば、セルスクレーパーを用いた方法やピペッティング)を用いることができ、これにより接着細胞の剥離まで時間を短縮することができる。 This step can also be said to be a step of returning the medium to the culture equipment from which the medium has been collected in a cooled state. There is no particular limitation on the method of adding the medium to the incubator. When a liquid feed pump (for example, a tube pump) is used, the above-mentioned recovery of the medium (step (b)) and cooling of the medium (step (c)) can be continuously performed. That is, the operation of immersing one end of the tube installed in the liquid feed pump in the culture equipment to collect the medium, cooling it, and then returning the cooled medium from the other end of the tube to the culture equipment. It can be circulated (see Figure 1). After stopping the circulation of this medium, the medium may remain in the tube, but when adding the entire amount of the recovered medium to the early culture equipment, for example, raise the end of the tube into the air layer. The medium in the tube can be discharged to the culture equipment. Alternatively, the end of the tube may be connected to a liquid phase such as fresh medium and the medium in the tube may be discharged to the culture medium. As a result, the temperature-responsive culture equipment is cooled to a temperature lower than the LCST of the polymer covering the surface thereof, and the cells are detached from the surface of the culture equipment over time. The time until peeling may vary depending on the type of the polymer and the coating amount, but is, for example, 5 to 60 minutes. For detachment of adherent cells from the culture equipment, in addition to the method of waiting for such natural detachment, for example, a method of giving a physical impact to the entire equipment (for example, tapping or shaking) or a method of giving a local impact to the cells. A method (eg, a cell scraper method or pipetting) can be used, which can reduce the time to detachment of adherent cells.

剥離した細胞の回収は、ピペットなどを用いて手動で行ってもよいし、ポンプなどを用いて機械的に行ってもよい。ピペットを用いる場合、ピペットによる培地の出し入れ操作で細胞懸濁液を形成させると効率的に細胞を回収することができる。細胞懸濁液形成の際は、泡立ちを抑えるため、緩やかに操作することが好ましい。 The detached cells may be collected manually using a pipette or the like, or mechanically using a pump or the like. When a pipette is used, cells can be efficiently collected by forming a cell suspension by operating the medium in and out of the pipette. When forming the cell suspension, it is preferable to operate gently in order to suppress foaming.

こうして回収した細胞は、新たな培養器材に移して培養することにより、継代することができる。従って、本発明は、温度応答性培養器材から剥離した細胞を回収する工程(工程(e))および回収した細胞を新たな温度応答性培養器材に移して培養する工程(工程(f))をさらに含む、接着細胞の継代培養方法をも提供する。 The cells thus collected can be subcultured by transferring to a new culture equipment and culturing. Therefore, the present invention comprises a step of recovering cells exfoliated from the temperature-responsive culture equipment (step (e)) and a step of transferring the recovered cells to a new temperature-responsive culture equipment and culturing them (step (f)). Further provided are methods for subculturing adherent cells, including.

本発明の培養方法は、培養器材に、本来混入するべきでない物質が混入すること(いわゆる、コンタミネーション)を防止するため、閉鎖系であることが好ましい。本発明の培養方法は、従来の温度応答性培養器材を用いた培養方法と比較して、機械的な操作に適しているため、閉鎖系のシステムとして構築し易いという利点がある。 The culture method of the present invention is preferably a closed system in order to prevent substances that should not be originally mixed (so-called contamination) from being mixed in the culture equipment. Since the culture method of the present invention is suitable for mechanical operation as compared with the culture method using the conventional temperature-responsive culture equipment, there is an advantage that it is easy to construct as a closed system.

以下に本発明を実施例により説明するが、本発明はこれら実施例により制限されるものではない。なお、断りのない限り、試薬は市販品を用いた。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples. Unless otherwise noted, commercially available reagents were used.

[材料と方法]
(1)温度応答性ブロック共重合体の組成
温度応答性ブロック共重合体の組成は、核磁気共鳴測定装置(日本電子製、商品名JNM-ECZ400S/LI)を用いたプロトン核磁気共鳴分光(H-NMR)スペクトル分析より求めた。
[Materials and methods]
(1) Composition of temperature-responsive block copolymer The composition of the temperature-responsive block copolymer is proton nuclear magnetic resonance spectroscopy (manufactured by JEOL Ltd., trade name: JNM-ECZ400S / LI). 1 H-NMR) Obtained from spectral analysis.

(2)温度応答性ブロック共重合体の分子量と分子量分布
重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)は、ゲル・パーミエーション・クロマトグラフィー(GPC)によって測定した。GPC装置は、HLC-8320GPC(東ソー(株)製)を用い、カラムは、TSKgel Super AWM-H(東ソー(株)製)を2本用いた。カラム温度を40℃に設定し、溶離液は10mMトリフルオロ酢酸ナトリウムを含む2,2,2-トリフルオロエタノールを用いて測定した。測定試料は1.0mg/mLで調製して測定した。分子量の検量線は、分子量既知のポリメタクリル酸メチル(ポリマーラボラトリーズ製)を用いた。
(2) Molecular weight and molecular weight distribution of temperature-responsive block copolymers Weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) are measured by gel permeation chromatography (GPC). did. As the GPC apparatus, HLC-8320GPC (manufactured by Tosoh Corporation) was used, and as the column, two TSKgel Super AWM-H (manufactured by Tosoh Corporation) were used. The column temperature was set to 40 ° C. and the eluent was measured using 2,2,2-trifluoroethanol containing 10 mM sodium trifluoroacetate. The measurement sample was prepared at 1.0 mg / mL and measured. For the calibration curve of the molecular weight, polymethyl methacrylate (manufactured by Polymer Laboratories) having a known molecular weight was used.

(3)温度応答性ブロック共重合体の合成
100mL2口フラスコに2-メトキシエチルアクリレート(MEA)0.65g(5mmol)を加え、さらにシアノメチルドデシルトリチオカーボネートを31.8mg(100μmol)とアゾビスイソブチロニトリル1.6mg(10μmol)とtert-ブタノール10mLを加え、アルゴンガス置換後、62℃で24時間加熱撹拌した。
(3) Synthesis of temperature-responsive block copolymer Add 0.65 g (5 mmol) of 2-methoxyethyl acrylate (MEA) to a 100 mL two-necked flask, and add 31.8 mg (100 μmol) of cyanomethyldodecyltrithiocarbonate and azobis. 1.6 mg (10 μmol) of isobutyronitrile and 10 mL of tert-butanol were added, and after substitution with argon gas, the mixture was heated and stirred at 62 ° C. for 24 hours.

1回目の加熱撹拌後、さらにn-ブチルアクリレート(BA)3.85g(30mmol)を加え、さらにアゾビスイソブチロニトリル1.6mg(10μmol)とtert-ブタノール5mLを加え、アルゴンガス置換後、62℃で48時間加熱撹拌した。 After the first heating and stirring, 3.85 g (30 mmol) of n-butyl acrylate (BA) was further added, 1.6 mg (10 μmol) of azobisisobutyronitrile and 5 mL of tert-butanol were further added, and after substitution with argon gas, The mixture was heated and stirred at 62 ° C. for 48 hours.

2回目の加熱撹拌後、さらにN-イソプロピルアクリルアミド(IPAAm,LCST=32℃)7.36g(65mmol)を加え、さらにアゾビスイソブチロニトリル1.6mg(10μmol)とtert-ブタノール35mLを加え、アルゴンガス置換後、62℃で48時間加熱撹拌した。 After the second heating and stirring, 7.36 g (65 mmol) of N-isopropylacrylamide (IPAAm, LCST = 32 ° C.) was further added, and 1.6 mg (10 μmol) of azobisisobutyronitrile and 35 mL of tert-butanol were further added. After substitution with argon gas, the mixture was heated and stirred at 62 ° C. for 48 hours.

3回目の加熱撹拌後、反応液を水で再沈精製し、減圧乾燥することで淡黄色固体を得た。得られた黄色固体をクロロホルムに溶解し、硫酸マグネシウムを加え1時間撹拌し、ろ液を回収した。回収したろ液をヘプタンで再沈精製することで温度応答性ブロック共重合体poly(MEA-BA-IPAAm)を7.82g得た。得られたブロック共重合体の組成はMEA/BA/IPAAm=5/30/65(mol%)、Mn=11.0×10、およびMw/Mn=1.5であった。 After the third heating and stirring, the reaction solution was reprecipitated and purified with water, and dried under reduced pressure to obtain a pale yellow solid. The obtained yellow solid was dissolved in chloroform, magnesium sulfate was added, and the mixture was stirred for 1 hour, and the filtrate was recovered. The recovered filtrate was reprecipitated and purified with heptane to obtain 7.82 g of a temperature-responsive block copolymer poly (MEA-BA-IPAAm). The composition of the obtained block copolymer was MEA / BA / IPAAm = 5/30/65 (mol%), Mn = 11.0 × 10 4 , and Mw / Mn = 1.5.

(4)温度応答性培養器材の調製
0.3wt%の温度応答性ブロック共重合体/2-ブタノール溶液からなるコート剤を調製した。φ100mmIWAKI組織培養用ディッシュにコート剤を270μL滴下し、3000rpm、1分の条件でスピンコートすることで温度応答性培養器材1を得た。温度応答性培養器材1の水中における気泡の接触角を温度1℃刻みで確認し、LCSTを解析したところ、温度応答性培養器材1のLCSTは30℃であった。
(4) Preparation of temperature-responsive culture equipment A coating agent consisting of 0.3 wt% temperature-responsive block copolymer / 2-butanol solution was prepared. A temperature-responsive culture equipment 1 was obtained by dropping 270 μL of a coating agent onto a φ100 mm IWAKI tissue culture dish and spin-coating under the conditions of 3000 rpm for 1 minute. When the contact angle of air bubbles in the water of the temperature-responsive culture equipment 1 was confirmed in increments of 1 ° C. and the LCST was analyzed, the LCST of the temperature-responsive culture equipment 1 was 30 ° C.

[実施例1]
温度応答性培養器材1に、骨髄由来ヒト間葉系幹細胞(ロンザジャパン(株)製、Product Code:PT-2501、Lot Number:0000603525)を1.0×10個/ディッシュで播種し、培地を10mL加え、37℃、CO濃度5%で培養した。培地には、ウシ胎児血清(コロンビア産)を10vol%含むダルベッコ・フォート変法イーグル最小必須培地(10vol%FBS/DMEM)を用いた。5日間培養し、サブコンフルエントまで細胞増殖したことを確認した。
[Example 1]
Bone marrow-derived human mesenchymal stem cells (Product Code: PT-2501, Lot Number: 0000603525) seeded in a temperature-responsive culture device 1 at 1.0 × 10 5 cells / dish and used as a medium. Was added, and the cells were cultured at 37 ° C. and a CO 2 concentration of 5%. As the medium, Dulbecco Fort's modified Eagle's minimum essential medium (10vol% FBS / DMEM) containing 10 vol% of fetal bovine serum (from Colombia) was used. The cells were cultured for 5 days, and it was confirmed that the cells had grown to the subconfluent.

マイクロチューブポンプ(東京理化器械製、MP-2000)に内径1.15mmで長さ100cmのシリコンチューブを設置した。シリコンチューブ中央部の一部(30cm)を、低温サーキュレーターで5℃に冷却した水槽に浸漬した。シリコンチューブの両端をサブコンフルエントまで細胞増殖を確認した温度応答性培養器材1の培地に浸し、3mL/分でチューブポンプを4分間稼働した。本システム(図1を参照のこと)においては、100cmのシリコンチューブの容積は約1mLであり、培地10mLのうち1mLがシリコンチューブ内で冷却されながら循環している。このため、ポンプ動作中は培養器材1には培地が9mL存在している。4分間の稼働後は、シリコンチューブ内に1mLの培地が残存しているため、シリコンチューブの送液入口側を気層中に上げ、シリコンチューブ内に残存する培地を温度応答性培養器材1に排出した。さらに温度応答性培養器材1を10分間静置すると細胞の剥離が進行した。ピペッティングで剥離した細胞の細胞懸濁液を調製した。回収した細胞数を血球計算盤で計測したところ4.1×10個であった。 A silicon tube with an inner diameter of 1.15 mm and a length of 100 cm was installed in a microtube pump (MP-2000 manufactured by Tokyo Rika Kikai). A part (30 cm) of the central part of the silicon tube was immersed in a water tank cooled to 5 ° C. with a low temperature circulator. Both ends of the silicon tube were immersed in the medium of the temperature-responsive culture device 1 in which cell proliferation was confirmed to the subconfluent, and the tube pump was operated at 3 mL / min for 4 minutes. In this system (see FIG. 1), the volume of a 100 cm silicone tube is about 1 mL, and 1 mL of 10 mL of medium circulates in the silicone tube while being cooled. Therefore, 9 mL of the medium is present in the incubator 1 during the pump operation. After 4 minutes of operation, 1 mL of medium remains in the silicon tube, so raise the liquid feed inlet side of the silicon tube into the air layer, and use the medium remaining in the silicon tube as the temperature-responsive culture equipment 1. Discharged. Further, when the temperature-responsive culture equipment 1 was allowed to stand for 10 minutes, cell detachment proceeded. A cell suspension of cells exfoliated by pipetting was prepared. The number of collected cells was measured with a hemocytometer and found to be 4.1 × 105 .

細胞懸濁液を新しい4枚の温度応答性培養器材1に1.0×10個/ディッシュで播種し、培地を8mLずつ加え、37℃、CO濃度5%で培養した。5日間培養し、サブコンフルエントまで細胞増殖した。以上より継代培養が可能であることを確認した。 The cell suspension was seeded on four new temperature-responsive culture equipment 1 at 1.0 × 10 5 cells / dish, 8 mL of the medium was added, and the cells were cultured at 37 ° C. and a CO 2 concentration of 5%. Incubate for 5 days and cell proliferation to subconfluent. From the above, it was confirmed that subculture is possible.

以上説明したように、本発明によれば、大規模な冷却装置を用いる必要がなく、自動化も可能な、温度応答性培養器材を用いた接着細胞の培養方法を提供することができる。本発明を利用することにより、ヒト細胞を含む動物細胞、植物細胞、微生物細胞を含む幅広い細胞を効率的に継代培養することが可能となることから、本発明は、細胞を用いた基礎研究での利用の他、医療(例えば、再生医療)、農業(例えば、有用農作物の生産)、工業(例えば、微生物を用いた物質生産)を含む幅広い産業での利用が可能である。 As described above, according to the present invention, it is possible to provide a method for culturing adherent cells using a temperature-responsive incubator, which does not require the use of a large-scale cooling device and can be automated. By utilizing the present invention, a wide range of cells including animal cells including human cells, plant cells, and microbial cells can be efficiently subcultured. Therefore, the present invention is a basic study using cells. It can be used in a wide range of industries including medical treatment (for example, regenerative medicine), agriculture (for example, production of useful agricultural products), and industry (for example, substance production using microorganisms).

Claims (6)

接着細胞の培養方法であって、
(a)接着細胞を温度応答性培養器材で培養する工程、
(b)前記培養器材から培地を回収する工程、
(c)回収した培地を冷却する工程、および
(d)前記培養器材に冷却した培地を添加する工程、
を含む方法。
It is a method of culturing adherent cells.
(A) A step of culturing adherent cells in a temperature-responsive culture device,
(B) A step of recovering the medium from the culture equipment,
(C) A step of cooling the recovered medium, and (d) a step of adding the cooled medium to the incubator.
How to include.
工程(a)において接着細胞をサブコンフルエント以上に増殖させる、請求項1に記載の方法。 The method according to claim 1, wherein the adherent cells are proliferated above the subconfluent in the step (a). 工程(b)における培地の回収に送液ポンプを用いる、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein a liquid feed pump is used to recover the medium in the step (b). 工程(c)における培地の冷却に水冷式冷却器を用いる、請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein a water-cooled cooler is used to cool the medium in the step (c). 工程(d)における冷却した培地の添加に送液ポンプを用いる、請求項1~4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein a liquid feed pump is used for adding the cooled medium in the step (d). 閉鎖系である、請求項1~5のいずれかに記載の方法。
The method according to any one of claims 1 to 5, which is a closed system.
JP2021000368A 2021-01-05 2021-01-05 Method for culturing Pending JP2022105806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021000368A JP2022105806A (en) 2021-01-05 2021-01-05 Method for culturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021000368A JP2022105806A (en) 2021-01-05 2021-01-05 Method for culturing

Publications (1)

Publication Number Publication Date
JP2022105806A true JP2022105806A (en) 2022-07-15

Family

ID=82365592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021000368A Pending JP2022105806A (en) 2021-01-05 2021-01-05 Method for culturing

Country Status (1)

Country Link
JP (1) JP2022105806A (en)

Similar Documents

Publication Publication Date Title
Masters Animal cell culture: a practical approach
Mizukami et al. Stirred tank bioreactor culture combined with serum‐/xenogeneic‐free culture medium enables an efficient expansion of umbilical cord‐derived mesenchymal stem/stromal cells
JP5670053B2 (en) In vitro expansion of postpartum-derived cells using microcarriers
Gabbay et al. Osteogenic Potentiation of Human Adipose–Derived Stem Cells in a 3-Dimensional Matrix
WO2018025767A1 (en) Block copolymer and surface treatment agent using same
TWI720333B (en) Preparation method of pluripotent stem cell, preparation method of pluripotent stem cell using the preparation method, ameliorating agent, and differentiation induction method of the pluripotent stem cell
Yuan et al. Aggregation of culture expanded human mesenchymal stem cells in microcarrier-based bioreactor
JP2010508851A5 (en)
Carmelo et al. Scalable ex vivo expansion of human mesenchymal stem/stromal cells in microcarrier-based stirred culture systems
Jorgenson et al. Production of adult human synovial fluid‐derived mesenchymal stem cells in stirred‐suspension culture
Fernandes-Platzgummer et al. Clinical-grade manufacturing of therapeutic human mesenchymal stem/stromal cells in microcarrier-based culture systems
CN111334469A (en) PBMC (peripheral blood mononuclear cell) in-vitro 3D (three-dimensional) methylcellulose agarose hydrogel culture medium and preparation method thereof
CN111484970B (en) Serum-free and feeder-layer-free embryo and pluripotent stem cell culture medium with low protein content
Chen et al. Facile bead-to-bead cell-transfer method for serial subculture and large-scale expansion of human mesenchymal stem cells in bioreactors
Li et al. Agarose-based spheroid culture enhanced stemness and promoted odontogenic differentiation potential of human dental follicle cells in vitro
Shi et al. The effect of extended passaging on the phenotype and osteogenic potential of human umbilical cord mesenchymal stem cells
Kino-Oka et al. Automating the expansion process of human skeletal muscle myoblasts with suppression of myotube formation
JP2005533512A (en) Method for producing extracellular matrix and its use for tumor cell culture
Darge et al. Preparation of thermosensitive PNIPAm‐based copolymer coated cytodex 3 microcarriers for efficient nonenzymatic cell harvesting during 3D culturing
JP2021114995A (en) Cell with low tissue-factor activity, and method for producing the same
CN116286624B (en) Application of water-soluble chitosan in stem cell in-vitro culture
JP2022105806A (en) Method for culturing
JP2020110140A (en) Cell culture method
JP7480485B2 (en) Cell Isolation Methods
Thiel et al. Efficient transfection of primary cells relevant for cardiovascular research by nucleofection®

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231208