JP2022104471A - Heating vessel - Google Patents

Heating vessel Download PDF

Info

Publication number
JP2022104471A
JP2022104471A JP2020220072A JP2020220072A JP2022104471A JP 2022104471 A JP2022104471 A JP 2022104471A JP 2020220072 A JP2020220072 A JP 2020220072A JP 2020220072 A JP2020220072 A JP 2020220072A JP 2022104471 A JP2022104471 A JP 2022104471A
Authority
JP
Japan
Prior art keywords
water
salt
steam
seawater
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020220072A
Other languages
Japanese (ja)
Inventor
崇人 八木
Takahito Yagi
宏樹 八木
Hiroki Yagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020220072A priority Critical patent/JP2022104471A/en
Publication of JP2022104471A publication Critical patent/JP2022104471A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

To provide plain water, electricity, and salt by using solar heat to solve the water shortage in the world in which plain water shortage remains high in many regions, though there is a large amount of water in the oceans, the amount of seawater and the areas where it is used for domestic and industrial purposes are small and not many.SOLUTION: Using a tower-type solar thermal power generation system, solar heat is collected from a heliostat (reflecting mirror) to a heat collection tower (tower), and then transferred to the ground by heat transfer and light transfer, and the heat is applied to a heating vessel. Water in the heating vessel, such as seawater, exceeds its boiling point and becomes vapor. The steam flows from the top of the heating vessel to the steam outlet pipe, where it cools and becomes fresh water/water. A rotating object (windmill, propeller, turbine, etc.) is installed in front of the steam outlet pipe to generate electricity from its rotation. When seawater is evaporated, a large amount of salt remains inside the heating vessel, which can be purified and salt can be mass-produced. After the initial installation, the three products of freshwater, electricity, and salt can be mass-produced with a remarkably low environmental impact.SELECTED DRAWING: Figure 3

Description

本発明は、太陽熱を利用した淡水化技術及びその過程で出来る蒸気圧を利用した発電技術であり、かつ副産物として塩も製造できる太陽熱利用による淡水化と同時発電及び塩製造(オプション)の目的化プラント(工場)の発明である。The present invention is a desalination technique using solar heat and a power generation technique using steam pressure produced in the process, and can also produce salt as a by-product. Desalination by solar heat and simultaneous power generation and salt production (option) It is an invention of a plant.

太陽熱発電には、タワー型(ヘリオスタット使用)、トラフ型、フレネル型、デッシュ型等がある。本発明は、ヘリオスタット(反射鏡)を使用するタワー型であり太陽熱利用による淡水化と同時発電及び塩製造である。Solar thermal power generation includes tower type (using heliostat), trough type, Fresnel type, dish type and the like. The present invention is a tower type using a heliostat (reflector), and is desalination by utilizing solar heat, simultaneous power generation, and salt production.

従来の太陽熱発電では、発電・蓄電が最終成果物として得られるプラントである(例えば、非特許文献1参照。)。本発明は、海水等水分を淡水化して水を得ること、その過程で発電を得ること、及び(必要に応じ)塩精製が可能なプラントである。In the conventional solar thermal power generation, it is a plant where power generation and storage can be obtained as a final product (see, for example, Non-Patent Document 1). The present invention is a plant capable of desalinating water such as seawater to obtain water, obtaining power generation in the process, and purifying salt (if necessary).

太陽熱の集熱には、タワーに熱集中して熱気を下部に送る従来方法(例えば、非特許文献1参照。)や、集熱上部に光を集中させ下部に反射で転送するビームダウン型太陽集光装置(例えば、特許文献1参照。)等がある。For the collection of solar heat, the conventional method of concentrating heat on the tower and sending the hot air to the lower part (for example, see Non-Patent Document 1), or the beam-down type sun that concentrates the light on the upper part of the heat collection and transfers it to the lower part by reflection. There is a light collector (see, for example, Patent Document 1) and the like.

特開2015-49034号 公報JP-A-2015-49034

書籍「図解新エネルギー早わかり」、中経出版、早稲田聡著、2011年、p.83Book "Illustrated New Energy Quick Understanding", Chukei Publishing, Satoshi Waseda, 2011, p. 83

従来のタワー型太陽熱発電には、次のような欠点があった。
(イ)電気は量産できるが、淡水及び水は生産しない。
一方、従来の淡水化技術には、次のような欠点があった。
(ロ)水・淡水は精製できるが電気は製造しない。
(ハ)従来の逆浸透圧法(RO)や薬液投入淡水化では、大量の精度の高い淡水を得にくい。
技術進展しているものの世界では淡水の不足する地域が依然として多い。
本発明では、海水等水分という莫大にある資源を低コストで淡水化量産し、かつその工程において、環境負荷の著しく低い方法で電力及び塩を量産できることにある。
The conventional tower-type solar thermal power generation has the following drawbacks.
(B) Electricity can be mass-produced, but fresh water and water are not produced.
On the other hand, the conventional desalination technique has the following drawbacks.
(B) Water and fresh water can be purified, but electricity is not produced.
(C) It is difficult to obtain a large amount of highly accurate fresh water by the conventional reverse osmosis method (RO) or desalination by adding a chemical solution.
Despite technological progress, there are still many areas in the world where freshwater is scarce.
The present invention is to be able to mass-produce an enormous amount of water such as seawater by desalination at low cost, and to mass-produce electric power and salt by a method having a significantly low environmental load in the process.

太陽光・太陽熱を集熱し、海水等水分の淡水化および同時に蒸気圧から電力を得て、副産物として塩を精製する。
集めた熱を加熱容器に集中し、送水管から出される一定量の海水等水分が、加熱容器内部で太陽照射時間中、沸騰されることで、蒸気を大量発生させ、蒸気流出管へ蒸気を導く。蒸気流出管の先で、蒸気は冷え、淡水となった水分を貯蔵することが出来る。
蒸気流出管の加熱容器出口部分に、発電用回転物(風車、プロペラ、タービン等)を設置して、その回転から発電し、電力を得る。水分等は気化・蒸発する際にその体積が約1700倍となることから必要十分な回転が得られる。
加熱容器内部には、海水を使用して蒸発させた場合、塩分を主体とした残留物が残るので、精製し多量の塩を生産できる。(海水の平均塩分濃度は約3.5%である。)
上記一連の工程により、環境負荷の低い形で多量の良質な淡水、電力及び塩の量産が可能となる。なお、塩を精製しない場合、生態系及び環境変化を懸念して残留物は、海域に戻すことなく保管・貯蔵が必要となる。
It collects sunlight and solar heat, desalinates water such as seawater, and at the same time obtains power from vapor pressure to purify salt as a by-product.
The collected heat is concentrated in the heating container, and a certain amount of water such as seawater discharged from the water supply pipe is boiled inside the heating container during the sun irradiation time, generating a large amount of steam and sending steam to the steam outflow pipe. Guide. At the end of the steam outflow pipe, the steam cools and can store fresh water.
A rotating object for power generation (wind turbine, propeller, turbine, etc.) is installed at the outlet of the heating container of the steam outflow pipe, and power is generated from the rotation to obtain electric power. Since the volume of water and the like increases by about 1700 times when vaporized and evaporated, necessary and sufficient rotation can be obtained.
When evaporated using seawater inside the heating container, a residue mainly composed of salt remains, so that it can be refined to produce a large amount of salt. (The average salinity of seawater is about 3.5%.)
Through the above series of steps, it is possible to mass-produce a large amount of high-quality fresh water, electric power and salt with a low environmental load. If the salt is not refined, it is necessary to store and store the residue without returning it to the sea area due to concerns about changes in the ecosystem and environment.

本発明を実施することによる効果は、淡水と電力及び塩を同時に得ることで、その波及効果は大きい。具体的に列挙すると、該当地域での良質な飲料水/上水道の確保/生活用水の確保/工業用農業用水の確保/農畜産物の増産/緑化地域の拡大/電力供給/塩供給等が挙げられる。The effect of carrying out the present invention is that fresh water, electric power and salt are obtained at the same time, and the ripple effect is large. Specifically, high-quality drinking water in the relevant area / securing water supply / securing domestic water / securing industrial agricultural water / increasing production of agricultural and livestock products / expanding green areas / power supply / salt supply, etc. Be done.

加熱容器(断面図・容器下方集熱時)Heating container (cross-sectional view, when collecting heat below the container) 加熱容器(断面図・容器上方集熱時)Heating container (cross-sectional view, when heat is collected above the container) システム全体図Overall system view

以下、本発明を実施するための形態について説明する。
内容が分かり易いよう成果物のできる工程順に記載する。
(イ)プラントの設置場所
晴天日が多く、海や自然水分の近い場所及び淡水や電力を必要とする地域が良く、気象データや太陽熱発電の設置・検討箇所から慎重に選定できる。
(ロ)海水等水分の貯水タンクへの汲み上げ
(ハ)貯水タンクから送水タンクへの送水
貯水タンクには沈殿物・浮遊物も入るので、中間層の比較的綺麗な海水等水分を送水タンクに送る。
(ニ)送水タンクから送水管へ海水等水分を圧力等で送る。
(ホ)送水管中の海水等水分を、加熱容器に入る前段階で加温する。
具体的には、太陽光発電トラフ型に見られる集光ミラーを用いたり、後述する蒸発蒸気の熱を利用(2つの管の近接等)したりして加温する。加熱容器に入る前に加温することで蒸発効率を上げる行為であるが、ヘリオスタットからの十分な集熱があれば、この工程は必ずしも必要としない。
(ヘ)(加熱容器の前に)ヘリオスタット・反射鏡について
太陽光を受け反射するヘリオスタットには、太陽追随型稼働装置が必要である。集熱量は、ヘリオスタットの枚数及び面積に比例して増減する。
(ト)ヘリオスタットからの集光集熱先について
従来型のタワーに集熱しそこから熱気を加熱容器に送る方法、並びにビームダウン型太陽集光装置(例えば、特許文献1参照。)を用いて送る方法等がある。
(チ)加熱容器について
加熱容器自体は、疲労やアクシデント及び交換用に備え複数個用意する。
前項(ト)にある集熱方式の違いによって大きく形状は2種類となる。
熱気を受ける場合は、〔図1〕加熱容器(断面図・容器下方集熱時)のようになり、ビームダウン型を用いる場合は、〔図2〕加熱容器(断面図・容器上方集熱時)のようになる。
(リ)加熱容器の特徴について
加熱容器は、加熱する部分(主に下部)と蒸気滞留部分(主に上部)とに分けて使用した方が次の点で合理的である。下部は集熱及び加熱を主目的とし、上部はその沸騰した蒸気が流れ出ていくことが主目的となる。下部には塩分を主体とする残留物が残るので清掃及び取り出しやすい方が良い。上部は蒸気の流れとなるので視認性があった方が良く、発電用回転物(風車、プロペラ、タービン等)の動作確認も出来る。
発生した蒸気が流出する蒸気流出管は、1本にして蒸気流出圧力を高め発電効率を上げる。
(ヌ)発電について
加熱容器上部の発電用回転物(風車、プロペラ、タービン等)が蒸気によって回転することにより、発電・蓄電する。
(ル)淡水について
蒸気流出管を流れていく蒸気は、常温に近づくにつれ淡水・お湯となって蒸気流出管を流れ、淡水タンクへと溜まっていく。
(ヲ)加熱容器内の残留物について
太陽照射時間後に塩分主体の残留物を取り除き、塩精製工程か残留物貯留工程に入る。
(ワ)清掃後の加熱容器について
複数個用意した過熱容器は、翌日使用の準備に事前に加温しておく。それは太陽照射開始から蒸気の発生効率を上げるためである。なお、加温方法については、幾通りの方法があるのでここでは明記しない。
一方で、太陽照射時間後も化石燃料等による加熱で蒸気発生は可能であるが、環境配慮型の一連の工場なので、ここでは考慮しない。
上述の発明を実施するための形態により、最終成果物の淡水・電力・塩が効率的に生産出来る。
Hereinafter, embodiments for carrying out the present invention will be described.
The contents are listed in the order of the processes in which the deliverables are made so that the contents are easy to understand.
(B) Plant installation location It is good for places where there are many sunny days, near the sea and natural moisture, and areas where fresh water and electric power are required, and it can be carefully selected from meteorological data and solar thermal power generation installation / examination locations.
(B) Pumping water such as seawater to the water storage tank (c) Water supply from the water storage tank to the water supply tank Since sediments and suspended matter also enter the water storage tank, relatively clean water such as seawater in the middle layer can be transferred to the water supply tank. send.
(D) Moisture such as seawater is sent from the water supply tank to the water pipe by pressure.
(E) Moisture such as seawater in the water pipe is heated before entering the heating container.
Specifically, it is heated by using a condensing mirror found in a photovoltaic trough type or by using the heat of evaporative steam (such as the proximity of two tubes), which will be described later. It is an act of increasing the evaporation efficiency by heating before entering the heating container, but this step is not always necessary if there is sufficient heat collection from the heliostat.
(F) About the heliostat / reflector (in front of the heating container) The heliostat that receives and reflects sunlight requires a sun-following operating device. The amount of heat collected increases or decreases in proportion to the number and area of heliostats.
(G) Condensing heat from the heliostat A method of collecting heat in a conventional tower and sending hot air from there to a heating container, and a beam-down solar condensing device (see, for example, Patent Document 1) are used. There are ways to send it.
(H) Heating container Prepare multiple heating containers for fatigue, accidents, and replacement.
There are two types of shapes due to the difference in the heat collection method described in the previous section (g).
When receiving hot air, it looks like [Fig. 1] heating container (cross-sectional view / when collecting heat below the container), and when using the beam-down type, [Fig. 2] heating container (cross-sectional view / when collecting heat above the container). )become that way.
(I) Characteristics of the heating container It is rational to use the heating container separately in the heating part (mainly the lower part) and the steam retention part (mainly the upper part) in the following points. The main purpose of the lower part is to collect heat and heat, and the main purpose of the upper part is to let the boiling steam flow out. It is better that it is easy to clean and take out because the residue mainly composed of salt remains in the lower part. Since the upper part is a flow of steam, it is better to have visibility, and you can also check the operation of rotating objects for power generation (windmills, propellers, turbines, etc.).
The steam outflow pipe from which the generated steam flows out is made into one to increase the steam outflow pressure and increase the power generation efficiency.
(N) Power generation Power generation and storage are performed by rotating power generation rotating objects (wind turbines, propellers, turbines, etc.) at the top of the heating container with steam.
(L) About fresh water The steam flowing through the steam outflow pipe becomes fresh water and hot water as it approaches room temperature, flows through the steam outflow pipe, and accumulates in the freshwater tank.
(W) About the residue in the heating container After the sun irradiation time, the salt-based residue is removed, and the salt refining step or the residue storage step is started.
(W) About the heating container after cleaning Multiple superheated containers should be heated in advance in preparation for use the next day. This is to increase the efficiency of steam generation from the start of solar irradiation. As for the heating method, there are many methods, so it is not specified here.
On the other hand, steam can be generated by heating with fossil fuels even after the sun irradiation time, but since it is a series of environmentally friendly factories, it is not considered here.
According to the embodiment for carrying out the above-mentioned invention, fresh water, electric power, and salt of the final product can be efficiently produced.

ヘリオスタットによるタワー型太陽熱発電は現存し活躍しつつも、本発明による加熱容器を使用した三つの成果物(淡水・電力・塩)生産方式はまだ無い。Although the tower-type solar thermal power generation by the heliostat still exists and is active, there is not yet a three-product (fresh water, electric power, salt) production method using the heating container according to the present invention.

太陽光と太陽熱を集め、数百度の高温を作成することがタワー型太陽熱発電で可能なため、その加熱対象を海水等水分に焦点をあて、淡水と電力及び塩の三成果物を得る方法なので、充分に利用可能性があり実現可能性も極めて高い。
なお、太陽熱では数系統の太陽熱発電が実現稼動しており、蒸気においては歴史的に蒸気機関が産業革命を起こした経緯もあり、本発明による産業上の利用可能性は高いものである。
Since it is possible to collect sunlight and solar heat and create a high temperature of several hundred degrees with tower-type solar thermal power generation, it is a method to focus on water such as seawater and obtain three deliverables of fresh water, electric power and salt. It is fully available and highly feasible.
It should be noted that, in the case of solar heat, several systems of solar thermal power generation have been realized and operated, and in the case of steam, the steam engine has historically caused an industrial revolution, and the industrial applicability of the present invention is high.

1 加熱容器・下部(加熱部)
2 加熱容器・上部
3 海水等水分
4 送水管
5 発電用回転物(風車、プロペラ、タービン等)
6 回転軸(電力発生用)
7 蒸気流出管
11 海 他自然水
12 汲み上げ
13 貯水タンク
14 送水タンク
15 送水管
16 トラフ型加温
17 加熱容器(下部・上部)
18 発電用回転物
19 蒸気流出管
20 淡水タンク
21 各ヘリオスタット
22 (集熱)タワー
23 反射太陽光
24 熱転送(光転送)
1 Heating container / lower part (heating part)
2 Heating container / upper part 3 Moisture such as seawater 4 Water pipe 5 Rotating object for power generation (windmill, propeller, turbine, etc.)
6 Rotating shaft (for power generation)
7 Steam outflow pipe 11 Sea and other natural water 12 Pumping 13 Water storage tank 14 Water supply tank 15 Water pipe 16 Trough type heating 17 Heating container (bottom / top)
18 Rotating object for power generation 19 Steam outflow pipe 20 Fresh water tank 21 Each heliostat 22 (heat collection) Tower 23 Reflected sunlight 24 Heat transfer (light transfer)

Claims (2)

太陽光・太陽熱を集熱し、海水等水分の淡水化および同時に蒸気圧から電力を得ること。
集めた熱を加熱容器に集中し、送水管から出される一定量の海水等水分が、加熱容器内部で太陽照射時間中、沸騰されることで、蒸気を大量発生させ、蒸気流出管へ蒸気を導く。蒸気流出管の先で、蒸気は冷え、淡水となった水分を貯蔵することが出来る。蒸気流出管の加熱容器出口部分に、発電用回転物(風車、プロペラ、タービン等)を設置して、その回転から発電し電力を得る。
Collecting sunlight and solar heat, desalination of water such as seawater, and at the same time obtaining electric power from vapor pressure.
The collected heat is concentrated in the heating container, and a certain amount of water such as seawater discharged from the water supply pipe is boiled inside the heating container during the sun irradiation time, generating a large amount of steam and sending steam to the steam outflow pipe. Guide. At the end of the steam outflow pipe, the steam cools and can store fresh water. A rotating object for power generation (wind turbine, propeller, turbine, etc.) is installed at the outlet of the heating container of the steam outflow pipe, and power is generated from the rotation to obtain electric power.
海水から淡水化した場合、太陽照射時間の終えた加熱容器には、塩分を主体とした残留物が残る。取り出して塩精製工程に入り、連日の塩生産が可能となる。When desalinated from seawater, a residue mainly composed of salt remains in the heating container after the solar irradiation time. It is taken out and entered into a salt refining process, enabling daily salt production.
JP2020220072A 2020-12-28 2020-12-28 Heating vessel Pending JP2022104471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020220072A JP2022104471A (en) 2020-12-28 2020-12-28 Heating vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020220072A JP2022104471A (en) 2020-12-28 2020-12-28 Heating vessel

Publications (1)

Publication Number Publication Date
JP2022104471A true JP2022104471A (en) 2022-07-08

Family

ID=82279832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020220072A Pending JP2022104471A (en) 2020-12-28 2020-12-28 Heating vessel

Country Status (1)

Country Link
JP (1) JP2022104471A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025119A (en) * 2009-07-23 2011-02-10 Michihiro Oe Fresh water production device and fresh water production-power generation device
JP2014058903A (en) * 2012-09-18 2014-04-03 Kobe Steel Ltd System combining power generator and desalination device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025119A (en) * 2009-07-23 2011-02-10 Michihiro Oe Fresh water production device and fresh water production-power generation device
JP2014058903A (en) * 2012-09-18 2014-04-03 Kobe Steel Ltd System combining power generator and desalination device

Similar Documents

Publication Publication Date Title
Okampo et al. Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review
Compain Solar energy for water desalination
Kalogirou Seawater desalination using renewable energy sources
Khoshrou et al. New opportunities in mass and energy consumption of the Multi-Stage Flash Distillation type of brackish water desalination process
Kasaeian et al. Osmotic desalination by solar energy: A critical review
Ranjan et al. Energy, exergy and thermo-economic analysis of solar distillation systems: A review
Belessiotis et al. The history of renewable energies for water desalination
Jamshidian et al. Techno-economic assessment of a hybrid RO-MED desalination plant integrated with a solar CHP system
US20170275182A1 (en) Coupling photovoltaic and concentrated solar power technologies for desalination
Palenzuela et al. Concentrating solar power and desalination plants
US10597309B2 (en) Coupling photovoltaic, concentrated solar power, and wind technologies for desalination
Soomro et al. Performance and cost comparison of different concentrated solar power plants integrated with direct-contact membrane distillation system
Palenzuela et al. Concentrating solar power and desalination plants: engineering and economics of coupling multi-effect distillation and solar plants
Ahmed et al. A review on application of renewable energy for desalination technologies with emphasis on concentrated solar power
Pourkiaei et al. Status of direct and indirect solar desalination methods: comprehensive review
Darwish et al. Desalting seawater in Qatar by renewable energy: a feasibility study
Dehghan et al. Solar-driven water treatment: generation II technologies
WO2016008007A1 (en) Apparatus and systems for solar pumping and water purification
Alagumalai et al. Water: a global grand challenge and a path forward
JP2022104471A (en) Heating vessel
WO2016001369A1 (en) System of a desalination plant driven by a solar power plant
Abdunnabi et al. Design of CSP plants for desalination in Libya
Kalogirou Concentrating solar power plants for electricity and desalinated water production
Abu-Arabi Status and prospects for solar desalination in the MENA region
Gorjian et al. Seawater Desalination using Solar Thermal Technologies: state of the art

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220726