JP2022104111A - Post-exhaust treatment device - Google Patents

Post-exhaust treatment device Download PDF

Info

Publication number
JP2022104111A
JP2022104111A JP2020219119A JP2020219119A JP2022104111A JP 2022104111 A JP2022104111 A JP 2022104111A JP 2020219119 A JP2020219119 A JP 2020219119A JP 2020219119 A JP2020219119 A JP 2020219119A JP 2022104111 A JP2022104111 A JP 2022104111A
Authority
JP
Japan
Prior art keywords
exhaust
temperature
scr catalyst
decrease
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020219119A
Other languages
Japanese (ja)
Inventor
貴幸 古川
Takayuki Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2020219119A priority Critical patent/JP2022104111A/en
Publication of JP2022104111A publication Critical patent/JP2022104111A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Silencers (AREA)

Abstract

To provide a post-exhaust treatment device which is suppressed in power consumption when maintaining a temperature of an SCR catalyst, and has no risk that fuel economy is largely deteriorated.SOLUTION: In a post-exhaust treatment device 100, an oxidization catalyst 103, a first PM collection filter 104, a valve body 106 and an SCR catalyst 105 are sequentially arranged from an exhaust upstream side toward an exhaust downstream side of an exhaust flow passage 102 of an internal combustion engine 101, a heater 110 and a second PM collection filter 111 are sequentially arranged from an exhaust upstream side toward an exhaust downstream side of a bypass flow passage 109 in which an exhaust upstream-side end 107 is connected to the exhaust flow passage 102 at an exhaust upstream side of the oxidization catalyst 103 as well as an exhaust downstream-side end 108 is connected to the exhaust flow passage 102 at an exhaust downstream side of the valve body 106 and at an exhaust upstream side of the SCR catalyst 105, the valve body 106 is closed when the lowering of a temperature of the SCR catalyst 105 resulting from the lowering of an exhaust temperature is concerned, and the valve body 106 is opened when the lowering of the temperature of the SCR catalyst 105 resulting from the lowering of the exhaust temperature is not concerned.SELECTED DRAWING: Figure 1

Description

内燃機関の排気を浄化する排気後処理装置に関する。 The present invention relates to an exhaust aftertreatment device that purifies the exhaust gas of an internal combustion engine.

内燃機関の排気を浄化する際にPM(Particulate Matter)捕集フィルタやSCR(Selective Catalytic Reduction)触媒が使用されている。 PM (Particulate Matter ) collection filters and SCR ( Slective Catalytic Reduction ) catalysts are used to purify the exhaust gas of internal combustion engines.

SCR触媒では、SCR触媒の温度が活性化温度以上に維持される事で内燃機関の排気中の窒素酸化物(NOX)を効率的に浄化する事が出来る。 In the SCR catalyst, nitrogen oxides (NO X ) in the exhaust gas of the internal combustion engine can be efficiently purified by maintaining the temperature of the SCR catalyst above the activation temperature.

排気温度が低い場合に排気流路に設置された加熱装置で排気が加熱される事でSCR触媒の温度が維持される技術が知られている(例えば、特許文献1を参照)。 A technique is known in which the temperature of the SCR catalyst is maintained by heating the exhaust gas with a heating device installed in the exhaust flow path when the exhaust gas temperature is low (see, for example, Patent Document 1).

排気温度を基準に排気が加熱装置に流れる流路と排気が加熱装置に流れない流路とが切り替えられる技術も知られている(例えば、特許文献2を参照)。 There is also known a technique of switching between a flow path in which exhaust gas flows to a heating device and a flow path in which exhaust gas does not flow to a heating device based on the exhaust temperature (see, for example, Patent Document 2).

特開2010-265862号公報Japanese Unexamined Patent Publication No. 2010-265862 特開2020-76325号公報Japanese Unexamined Patent Publication No. 2020-7325

例えば、内燃機関としてのディーゼルエンジンの排気流路の排気上流側から排気下流側に向けて、加熱装置としてのEHC(Electrically Heated Catalyst)と、酸化触媒としてのDOC(Diesel Oxidation Catalyst)と、PM捕集フィルタとしてのCSF(Catalyzed Soot Filter)と、脱硝触媒としてのSCR触媒と、が順次配置された構成を想定すると、EHCはSCR触媒の温度を維持する為にSCR触媒のみでなく熱容量が大きいDOCとCSFとを加熱する必要があるので、消費電力が大きくなり、燃費が大きく悪化する懸念がある。 For example, EHC ( Electrically H eated Catalyst) as a heating device and DOC ( Diesel Oxidation C ) as an oxidation catalyst from the exhaust upstream side to the exhaust downstream side of the exhaust flow path of a diesel engine as an internal combustion engine. Assuming a configuration in which atalyst ), CSF (Catalyzed S oot Filter) as a PM collection filter, and an SCR catalyst as a denitration catalyst are sequentially arranged, EHC is used to maintain the temperature of the SCR catalyst. Since it is necessary to heat not only the SCR catalyst but also the DOC and CSF having a large heat capacity, there is a concern that the power consumption will increase and the fuel efficiency will be significantly deteriorated.

以上の事情に鑑み、SCR触媒の温度を維持する際に、消費電力が小さく、燃費が大きく悪化する虞がない排気後処理装置を提供する事を目的とする。 In view of the above circumstances, it is an object of the present invention to provide an exhaust aftertreatment device which consumes less power and does not have a risk of significantly deteriorating fuel consumption when maintaining the temperature of the SCR catalyst.

内燃機関の排気流路に設置された酸化触媒と、前記排気流路に設置されると共に前記酸化触媒の排気下流側に配置された第一PM捕集フィルタと、前記排気流路に設置されると共に前記第一PM捕集フィルタの排気下流側に配置されたSCR触媒と、を備え、前記内燃機関の排気を浄化する排気後処理装置において、前記排気流路に設置されると共に前記第一PM捕集フィルタの排気下流側且つ前記SCR触媒の排気上流側に配置された弁体と、前記酸化触媒の排気上流側で前記排気流路に排気上流端が接続されると共に前記弁体の排気下流側且つ前記SCR触媒の排気上流側で前記排気流路に排気下流端が接続された迂回流路と、前記迂回流路に設置された加熱装置と、前記迂回流路に設置されると共に前記加熱装置の排気下流側に配置された第二PM捕集フィルタと、を更に備え、前記弁体は、排気温度の低下に起因する前記SCR触媒の温度低下が懸念される場合に閉じられ、排気温度の低下に起因する前記SCR触媒の温度低下が懸念されない場合に開かれる排気後処理装置を提供する。 An oxidation catalyst installed in the exhaust flow path of the internal combustion engine, a first PM collection filter installed in the exhaust flow path and arranged on the exhaust downstream side of the oxidation catalyst, and installed in the exhaust flow path. In an exhaust aftertreatment device that comprises an SCR catalyst arranged on the exhaust downstream side of the first PM collection filter and purifies the exhaust of the internal combustion engine, the first PM is installed in the exhaust flow path. A valve body arranged on the exhaust downstream side of the collection filter and on the exhaust upstream side of the SCR catalyst, and an exhaust upstream end are connected to the exhaust flow path on the exhaust upstream side of the oxidation catalyst, and the exhaust downstream of the valve body are connected. A detour flow path in which the exhaust downstream end is connected to the exhaust flow path on the side and on the exhaust upstream side of the SCR catalyst, a heating device installed in the detour flow path, and the heating device installed in the detour flow path. Further provided with a second PM collection filter located on the downstream side of the exhaust of the apparatus, the valve body is closed when there is a concern that the temperature of the SCR catalyst will decrease due to a decrease in the exhaust temperature, and the exhaust temperature will be reduced. Provided is an exhaust aftertreatment device which is opened when there is no concern about a temperature drop of the SCR catalyst due to a drop in the temperature of the SCR catalyst.

前記迂回流路は、前記排気流路よりも最大流量が小さい事が望ましい。 It is desirable that the detour flow path has a smaller maximum flow rate than the exhaust flow path.

前記第二PM捕集フィルタは、前記第一PM捕集フィルタよりも容量が小さい事が望ましい。 It is desirable that the capacity of the second PM collection filter is smaller than that of the first PM collection filter.

前記加熱装置は、排気温度の低下に起因する前記SCR触媒の温度低下が懸念される場合に作動され、排気温度の低下に起因する前記SCR触媒の温度低下が懸念されない場合に停止される事が望ましい。 The heating device may be operated when there is a concern that the temperature of the SCR catalyst may decrease due to a decrease in the exhaust temperature, and may be stopped when there is no concern about a temperature decrease of the SCR catalyst due to a decrease in the exhaust temperature. desirable.

排気温度の低下に起因する前記SCR触媒の温度低下が懸念される場合とは、前記内燃機関が搭載された車両が減速状態で前記内燃機関の燃料噴射量が減少傾向にあるか又は無噴射である場合や、前記車両が停車状態で前記内燃機関がアイドリング運転している場合であり、排気温度の低下に起因する前記SCR触媒の温度低下が懸念されない場合とは、前記車両が非減速状態にある場合や、前記車両が非停車状態にある場合である事が望ましい。 When there is a concern that the temperature of the SCR catalyst will drop due to a drop in the exhaust temperature, the fuel injection amount of the internal combustion engine tends to decrease or no injection occurs when the vehicle equipped with the internal combustion engine is in a decelerated state. In some cases, when the vehicle is stopped and the internal combustion engine is idling, and there is no concern about a decrease in the temperature of the SCR catalyst due to a decrease in the exhaust temperature, the vehicle is in a non-deceleration state. It is desirable that there is a case or that the vehicle is in a non-stop state.

前記弁体は、排気温度の低下に起因する前記SCR触媒の温度低下が大きいと想定される場合に開度が小さくされ、排気温度の低下に起因する前記SCR触媒の温度低下が小さいと想定される場合に開度が大きくされ、排気温度の低下に起因する前記SCR触媒の温度低下が懸念されない場合に全開とされる事が望ましい。 It is assumed that the opening degree of the valve body is reduced when the temperature drop of the SCR catalyst is assumed to be large due to the decrease in the exhaust temperature, and the temperature decrease of the SCR catalyst due to the decrease in the exhaust temperature is small. In this case, the opening degree is increased, and it is desirable that the SCR catalyst is fully opened when there is no concern about the temperature decrease of the SCR catalyst due to the decrease in the exhaust temperature.

SCR触媒の温度を維持する際に、消費電力が小さく、燃費が大きく悪化する虞がない排気後処理装置を提供する事が出来る。 When maintaining the temperature of the SCR catalyst, it is possible to provide an exhaust aftertreatment device that consumes less power and does not have a risk of significantly deteriorating fuel efficiency.

実施の形態に係る排気後処理装置を説明する図である。It is a figure explaining the exhaust gas aftertreatment apparatus which concerns on embodiment.

図1に示す様に、排気後処理装置100は、内燃機関101の排気を浄化するものであって、内燃機関101の排気流路102に設置された酸化触媒103と、排気流路102に設置されると共に酸化触媒103の排気下流側に配置された第一PM捕集フィルタ104と、排気流路102に設置されると共に第一PM捕集フィルタ104の排気下流側に配置されたSCR触媒105と、を備える。 As shown in FIG. 1, the exhaust aftertreatment device 100 purifies the exhaust gas of the internal combustion engine 101, and is installed in the oxidation catalyst 103 installed in the exhaust flow path 102 of the internal combustion engine 101 and in the exhaust flow path 102. The first PM collection filter 104 installed on the exhaust downstream side of the oxidation catalyst 103 and the SCR catalyst 105 installed on the exhaust flow path 102 and arranged on the exhaust downstream side of the first PM collection filter 104. And.

内燃機関101は、例えば、移動体(例えば、車両)や非移動体(例えば、産業機械)に搭載されるディーゼルエンジンやガソリンエンジンである。酸化触媒103は、例えば、DOCやTWC(Three Way Catalyst)である。第一PM捕集フィルタ104は、例えば、CSFやDPF(Diesel Particulate Filter)である。SCR触媒105は、例えば、尿素SCR触媒である。 The internal combustion engine 101 is, for example, a diesel engine or a gasoline engine mounted on a moving body (for example, a vehicle) or a non-moving body (for example, an industrial machine). The oxidation catalyst 103 is, for example, DOC or TWC (Three Way Catalyst). The first PM collection filter 104 is, for example, a CSF or a DPF ( Diesel Particulate Filter). The SCR catalyst 105 is, for example, a urea SCR catalyst.

前述した様に、排気中の窒素酸化物を効率的に浄化する為には、SCR触媒105の温度が活性化温度以上に維持される事が望ましいが、内燃機関101が搭載された車両が減速状態で内燃機関101の燃料噴射量が減少傾向にあるか又は無噴射である場合や、車両が停車状態で内燃機関101がアイドリング運転している場合には、排気温度が低くなるので、SCR触媒105の熱がSCR触媒105に流れる低温の排気に奪われ、SCR触媒105の温度も低くなってしまうという課題が存在する。 As described above, in order to efficiently purify the nitrogen oxides in the exhaust gas, it is desirable that the temperature of the SCR catalyst 105 is maintained above the activation temperature, but the vehicle equipped with the internal combustion engine 101 decelerates. When the fuel injection amount of the internal combustion engine 101 tends to decrease or is not injected in the state, or when the internal combustion engine 101 is idling while the vehicle is stopped, the exhaust temperature becomes low, so that the SCR catalyst is used. There is a problem that the heat of the 105 is taken away by the low-temperature exhaust flowing through the SCR catalyst 105, and the temperature of the SCR catalyst 105 also becomes low.

当該課題を解決すべく、排気後処理装置100は、排気流路102に設置されると共に第一PM捕集フィルタ104の排気下流側且つSCR触媒105の排気上流側に配置された弁体106と、酸化触媒103の排気上流側で排気流路102に排気上流端107が接続されると共に弁体106の排気下流側且つSCR触媒105の排気上流側で排気流路102に排気下流端108が接続された迂回流路109と、迂回流路109に設置された加熱装置110と、迂回流路109に設置されると共に加熱装置110の排気下流側に配置された第二PM捕集フィルタ111と、を更に備える。 In order to solve this problem, the exhaust aftertreatment device 100 is installed in the exhaust flow path 102, and the valve body 106 is arranged on the exhaust downstream side of the first PM collection filter 104 and on the exhaust upstream side of the SCR catalyst 105. The exhaust upstream end 107 is connected to the exhaust flow path 102 on the exhaust upstream side of the oxidation catalyst 103, and the exhaust downstream end 108 is connected to the exhaust flow path 102 on the exhaust downstream side of the valve body 106 and on the exhaust upstream side of the SCR catalyst 105. The detour flow path 109, the heating device 110 installed in the detour flow path 109, and the second PM collection filter 111 installed in the detour flow path 109 and arranged on the exhaust downstream side of the heating device 110. Further prepare.

弁体106は、例えば、ECU(Electronic(or Engine) Control Unit)112で開閉が制御される電磁弁である。加熱装置110は、例えば、ECU112で作動停止(電力供給の有無)が制御されるEHCや電気ヒータである。第二PM捕集フィルタ111は、例えば、CSFやDPFである。 The valve body 106 is, for example, a solenoid valve whose opening and closing is controlled by an ECU ( E lectronic (or Engine) C ontrol Unit) 112. The heating device 110 is, for example, an EHC or an electric heater whose operation stop (whether or not power is supplied) is controlled by the ECU 112. The second PM collection filter 111 is, for example, a CSF or a DPF.

以降の説明を簡単にする為に、排気が酸化触媒103と第一PM捕集フィルタ104とを経てSCR触媒105に流れる流路を主流路R1(図1の一点鎖線矢印)と指称すると共に、排気が加熱装置110と第二PM捕集フィルタ111とを経てSCR触媒105に流れる流路を副流路R2(図1の二点鎖線矢印)と指称する。主流路R1は、従来から広く使用されている一般的な流路であるので、主流路R1の構造や作用に関しての詳細な説明は省略する。尚、主流路R1と副流路R2の一部(図1の実線矢印)は共通である。 For the sake of simplification of the following description, the flow path through which the exhaust gas flows through the oxidation catalyst 103 and the first PM collection filter 104 to the SCR catalyst 105 is referred to as the main flow path R1 (dashed-dotted line arrow in FIG. 1). The flow path through which the exhaust gas flows through the heating device 110 and the second PM collection filter 111 to the SCR catalyst 105 is referred to as an auxiliary flow path R2 (two-dot chain line arrow in FIG. 1). Since the main flow path R1 is a general flow path that has been widely used in the past, detailed description of the structure and operation of the main flow path R1 will be omitted. A part of the main flow path R1 and the sub flow path R2 (solid line arrow in FIG. 1) is common.

弁体106は、排気温度の低下に起因するSCR触媒105の温度低下が懸念される場合に閉じられ(例えば、全閉とされ)、排気温度の低下に起因するSCR触媒105の温度低下が懸念されない場合に開かれる(例えば、全開とされる)。 The valve body 106 is closed when there is a concern that the temperature of the SCR catalyst 105 will decrease due to a decrease in the exhaust temperature (for example, it is fully closed), and there is a concern that the temperature of the SCR catalyst 105 will decrease due to a decrease in the exhaust temperature. If not, it will be opened (for example, fully open).

弁体106が全閉とされると、主流路R1が遮断され、排気が主流路R1に流れないので、排気温度の低下に起因する主流路R1の温度低下、酸化触媒103の温度低下、第一PM捕集フィルタ104の温度低下を抑制する事が出来ると共に、全部の排気が副流路R2に流れ、加熱装置110で排気が加熱されるので、排気温度の低下に起因するSCR触媒105の温度低下を抑制する事が出来る。 When the valve body 106 is fully closed, the main flow path R1 is shut off and the exhaust does not flow into the main flow path R1, so that the temperature of the main flow path R1 drops due to the drop in the exhaust temperature, the temperature of the oxidation catalyst 103 drops, and the first One PM collection filter 104 can suppress the temperature drop, and all the exhaust gas flows to the sub-flow path R2, and the exhaust gas is heated by the heating device 110. Therefore, the SCR catalyst 105 caused by the drop in the exhaust gas temperature It is possible to suppress the temperature drop.

弁体106が全閉とされた後に再び弁体106が全開とされると、主流路R1が開放され、排気が再び主流路R1に流れるが、弁体106が全閉とされている間に主流路R1の温度低下、酸化触媒103の温度低下、第一PM捕集フィルタ104の温度低下が抑制されているので、主流路R1に流れる排気の温度が低下し難く、SCR触媒105の温度低下も生じ難い。弁体106が全開とされると、大部分の排気は主流路R1に流れるものの、副流路R2は遮断されないので、主流路R1に流れない残部分の排気が副流路R2に流れる。 When the valve body 106 is fully opened again after the valve body 106 is fully closed, the main flow path R1 is opened and the exhaust flows into the main flow path R1 again, but while the valve body 106 is fully closed. Since the temperature decrease of the main flow path R1, the temperature decrease of the oxidation catalyst 103, and the temperature decrease of the first PM collection filter 104 are suppressed, the temperature of the exhaust flowing to the main flow path R1 is difficult to decrease, and the temperature of the SCR catalyst 105 decreases. Is unlikely to occur. When the valve body 106 is fully opened, most of the exhaust gas flows into the main flow path R1, but the sub-flow path R2 is not blocked, so that the remaining exhaust gas that does not flow into the main flow path R1 flows into the sub-flow path R2.

排気温度の低下に起因するSCR触媒105の温度低下が懸念される場合とは、内燃機関101が搭載された車両が減速状態で内燃機関101の燃料噴射量が減少傾向にあるか又は無噴射である場合や、車両が停車状態で内燃機関101がアイドリング運転(エンジン回転数がアイドル(最小)回転数以下となる運転状態)している場合であり、排気温度の低下に起因する前記SCR触媒の温度低下が懸念されない場合とは、前記車両が非減速状態にある場合や、前記車両が非停車状態にある場合である。例えば、車両が坂道を下っている時にアクセルを戻すと、車両が減速状態で内燃機関101の燃料噴射量が減少傾向となるか又は無噴射となるので、排気温度の低下に起因するSCR触媒105の温度低下が懸念される。また、車両が信号の多い道路を走行しており、頻繁に赤信号で停車せざるを得なく、車両が発進、加速、減速、及び停車を繰り返す状況では、SCR触媒105が減速や停車で冷やされ、停車が長く続くと、よりSCR触媒105が冷えてしまう。エンジン回転数は、例えば、エンジン回転数センサ113で検出され、ECU112に入力される。 When there is a concern that the temperature of the SCR catalyst 105 will drop due to a drop in the exhaust temperature, the fuel injection amount of the internal combustion engine 101 tends to decrease while the vehicle equipped with the internal combustion engine 101 is in a decelerated state, or there is no injection. In some cases, or when the internal combustion engine 101 is in an idling operation (an operating state in which the engine rotation speed is equal to or lower than the idle (minimum) rotation speed) while the vehicle is stopped, the SCR catalyst is caused by a decrease in the exhaust temperature. The case where there is no concern about a temperature drop is a case where the vehicle is in a non-deceleration state or a case where the vehicle is in a non-stop state. For example, if the accelerator is released while the vehicle is descending a slope, the fuel injection amount of the internal combustion engine 101 tends to decrease or becomes non-injection when the vehicle is decelerated, so that the SCR catalyst 105 due to the decrease in the exhaust temperature There is a concern that the temperature of the engine will drop. In addition, when the vehicle is traveling on a road with many traffic lights and the vehicle has to stop at a red light frequently, and the vehicle repeatedly starts, accelerates, decelerates, and stops, the SCR catalyst 105 cools down by decelerating or stopping. If the vehicle is stopped for a long time, the SCR catalyst 105 will become colder. The engine speed is detected by, for example, the engine speed sensor 113 and is input to the ECU 112.

弁体106は、排気温度の低下に起因するSCR触媒105の温度低下が懸念されない状態から排気温度の低下に起因するSCR触媒105の温度低下が懸念される状態に遷移した瞬間に閉じられても良いが、排気温度の低下に起因するSCR触媒105の温度低下を出来る限り抑制すべく、排気温度の低下に起因するSCR触媒105の温度低下が懸念されない状態から排気温度の低下に起因するSCR触媒105の温度低下が懸念される状態に遷移しそうな場合に前以て閉じられる事が望ましい。 Even if the valve body 106 is closed at the moment of transition from a state in which the temperature drop of the SCR catalyst 105 due to the decrease in the exhaust temperature is not a concern to a state in which the temperature decrease in the SCR catalyst 105 due to the decrease in the exhaust temperature is a concern. Good, but in order to suppress the temperature drop of the SCR catalyst 105 due to the drop in the exhaust temperature as much as possible, the SCR catalyst caused by the drop in the exhaust temperature from the state where there is no concern about the temperature drop of the SCR catalyst 105 due to the drop in the exhaust temperature. It is desirable to close the 105 in advance when it is likely to transition to a state in which a temperature drop is a concern.

排気温度の低下に起因するSCR触媒105の温度低下が懸念されない状態から排気温度の低下に起因するSCR触媒105の温度低下が懸念される状態に遷移しそうな場合とは、例えば、エンジン回転数がアイドル回転数超であるものの、エンジン回転数が所定割合で継続的に低下しており、近い将来にエンジン回転数がアイドル回転数以下となりそうな場合である。 The case where the temperature drop of the SCR catalyst 105 due to the decrease in the exhaust temperature is not a concern is likely to shift to the state in which the temperature drop of the SCR catalyst 105 due to the decrease in the exhaust temperature is a concern is, for example, the engine rotation speed. This is a case where the engine speed is continuously decreasing at a predetermined rate even though the idle speed is exceeded, and the engine speed is likely to be lower than the idle speed in the near future.

弁体106は、排気温度の低下に起因するSCR触媒105の温度低下が懸念される状態から排気温度の低下に起因するSCR触媒105の温度低下が懸念されない状態に遷移した瞬間に開かれても良いが、例えば、渋滞や信号待ちが多い交通状況では、排気温度の低下に起因するSCR触媒105の温度低下が懸念される状態と排気温度の低下に起因するSCR触媒105の温度低下が懸念されない状態とが短時間で繰り返され、排気温度の低下に起因するSCR触媒105の温度低下が懸念される状態から排気温度の低下に起因するSCR触媒105の温度低下が懸念されない状態に遷移した直後に再び排気温度の低下に起因するSCR触媒105の温度低下が懸念されない状態から排気温度の低下に起因するSCR触媒105の温度低下が懸念される状態に遷移する場合が多いので、排気温度の低下に起因するSCR触媒105の温度低下が懸念される状態から排気温度の低下に起因するSCR触媒105の温度低下が懸念されない状態に遷移した後に排気温度の低下に起因するSCR触媒105の温度低下が懸念されない状態が所定時間に亘って継続した時に開かれる事が望ましい。 Even if the valve body 106 is opened at the moment of transition from a state in which the temperature drop of the SCR catalyst 105 due to the decrease in the exhaust temperature is a concern to a state in which the temperature decrease in the SCR catalyst 105 due to the decrease in the exhaust temperature is not a concern. It is good, but for example, in a traffic situation where there is a lot of traffic congestion or waiting for a signal, there is no concern about the temperature decrease of the SCR catalyst 105 due to the decrease in the exhaust temperature and the temperature decrease of the SCR catalyst 105 due to the decrease in the exhaust temperature. Immediately after the state is repeated in a short time and the state in which the temperature decrease of the SCR catalyst 105 due to the decrease in the exhaust temperature is a concern is changed to the state in which the temperature decrease of the SCR catalyst 105 due to the decrease in the exhaust temperature is not a concern. In many cases, there is a transition from a state in which the temperature drop of the SCR catalyst 105 due to the drop in the exhaust temperature is not a concern to a state in which the temperature drop in the SCR catalyst 105 due to the drop in the exhaust temperature is a concern. There is concern about the temperature decrease of the SCR catalyst 105 due to the decrease in the exhaust temperature after the transition from the state in which the temperature decrease of the SCR catalyst 105 due to the concern to the state in which the temperature decrease of the SCR catalyst 105 due to the decrease in the exhaust temperature is not concerned. It is desirable to open when the non-catalyzed state continues for a predetermined time.

尚、弁体106が全閉と全開の何れかのみでなく任意の開度とされる態様もあり得る。例えば、弁体106は、排気温度の低下に起因するSCR触媒105の温度低下が大きいと想定される場合に開度が小さくされ、排気温度の低下に起因するSCR触媒105の温度低下が小さいと想定される場合に開度が大きくされ(全開は除く)、排気温度の低下に起因するSCR触媒105の温度低下が懸念されない場合に全開とされても良い。 It should be noted that there may be a mode in which the valve body 106 is not only fully closed or fully opened but also has an arbitrary opening degree. For example, the valve body 106 has a small opening when it is assumed that the temperature drop of the SCR catalyst 105 due to the drop in the exhaust temperature is large, and the temperature drop of the SCR catalyst 105 due to the drop in the exhaust temperature is small. It may be fully opened when the opening degree is increased (excluding full opening) when it is assumed and there is no concern about the temperature decrease of the SCR catalyst 105 due to the decrease in exhaust temperature.

弁体106が全閉と全開の何れかのみでなく任意の開度とされる事で排気圧力の上昇を招く全閉の状態を出来る限り回避しながら排気温度の低下に起因するSCR触媒105の温度低下を抑制する事が出来る。 The SCR catalyst 105 caused by a decrease in the exhaust temperature while avoiding a fully closed state in which the valve body 106 is not only fully closed or fully opened but also has an arbitrary opening, which causes an increase in exhaust pressure as much as possible. It is possible to suppress the temperature drop.

排気温度の低下に起因するSCR触媒105の温度低下が大きいと想定される場合とは、例えば、低温環境下にある場合(外気温度が低い場合)である。排気温度の低下に起因するSCR触媒105の温度低下が小さいと想定される場合とは、例えば、高温環境下にある場合(外気温度が高い場合)である。外気温度は、例えば、外気温度センサ114で検出され、ECU112に入力される。GPS(Global Positioning System)で取得された現在位置情報と現在日時情報とを基に外気温度を推定する事も出来る。 The case where the temperature drop of the SCR catalyst 105 due to the drop in the exhaust temperature is assumed to be large is, for example, the case where the SCR catalyst 105 is in a low temperature environment (when the outside air temperature is low). The case where the temperature drop of the SCR catalyst 105 due to the drop in the exhaust temperature is assumed to be small is, for example, the case where the SCR catalyst 105 is in a high temperature environment (when the outside air temperature is high). The outside air temperature is, for example, detected by the outside air temperature sensor 114 and input to the ECU 112. It is also possible to estimate the outside air temperature based on the current position information acquired by GPS ( Global Positioning System) and the current date and time information.

エンジン回転数が低い場合(例えば、エンジン回転数がアイドル回転数以下の場合)や外気温度が低い場合(例えば、外気温度が氷点下の場合)に加え、例えば、アクセル開度が小さく車速が遅い場合(アクセル開度が所定開度以下で車速が所定速度以下の場合)や車速が遅く(車速が所定速度以下で)フットブレーキが作動している場合にも、排気温度の低下に起因するSCR触媒105の温度低下が懸念されるので、弁体106が閉じられる事が望ましい。アクセル開度は、例えば、アクセル開度センサ115で検出され、ECU112に入力される。車速は、例えば、車速センサ116で検出され、ECU112に入力される。フットブレーキの作動状態は、例えば、フットブレーキセンサ117で検出され、ECU112に入力される。 In addition to when the engine speed is low (for example, when the engine speed is less than or equal to the idle speed) or when the outside air temperature is low (for example, when the outside air temperature is below freezing point), for example, when the accelerator opening is small and the vehicle speed is slow. Even when the accelerator opening is less than the specified opening and the vehicle speed is less than the specified speed) or the vehicle speed is slow (the vehicle speed is less than the specified speed) and the foot brake is operating, the SCR catalyst caused by the decrease in the exhaust temperature It is desirable that the valve body 106 is closed because there is a concern that the temperature of 105 will drop. The accelerator opening degree is detected by, for example, the accelerator opening degree sensor 115 and is input to the ECU 112. The vehicle speed is detected by, for example, the vehicle speed sensor 116 and is input to the ECU 112. The operating state of the foot brake is detected by, for example, the foot brake sensor 117 and input to the ECU 112.

迂回流路109は、排気流路102よりも最大流量が小さい。即ち、副流路R2は、主流路R1よりも最大流量が小さい。例えば、図1に示した様に、排気上流端107の最小流路断面積が排気流路102の最小流路断面積と同一(共通)とされ、排気下流端108の最小流路断面積が排気流路102の最小流路断面積よりも小さくされる。 The detour flow path 109 has a smaller maximum flow rate than the exhaust flow path 102. That is, the sub-flow path R2 has a smaller maximum flow rate than the main flow path R1. For example, as shown in FIG. 1, the minimum flow path cross-sectional area of the exhaust upstream end 107 is the same (common) as the minimum flow path cross-sectional area of the exhaust flow path 102, and the minimum flow path cross-sectional area of the exhaust downstream end 108 is It is made smaller than the minimum flow path cross-sectional area of the exhaust flow path 102.

外部への放熱量は流路の表面積に比例するので、副流路R2での放熱を出来る限り抑制すべく、基本的には、副流路R2の流路断面積が副流路R2の全長に亘り出来る限り小さく設計される事が望ましい。 Since the amount of heat dissipated to the outside is proportional to the surface area of the flow path, the flow path cross-sectional area of the sub-flow path R2 is basically the total length of the sub-flow path R2 in order to suppress heat dissipation in the sub-flow path R2 as much as possible. It is desirable that the design be as small as possible.

前述した様に、弁体106が全閉とされると、全部の排気が副流路R2に流れるので、弁体106が全閉とされた状態で副流路R2に流れる排気の量を基準に副流路R2の流路断面積が設計される。 As described above, when the valve body 106 is fully closed, all the exhaust gas flows to the sub-flow path R2. Therefore, the amount of exhaust gas flowing to the sub-flow path R2 with the valve body 106 fully closed is used as a reference. The flow path cross-sectional area of the sub-flow path R2 is designed.

例えば、弁体106が排気温度の低下に起因するSCR触媒105の温度低下が懸念される状態で全閉とされる態様では、弁体106が全閉とされた状態で副流路R2に流れるのは排気温度の低下に起因するSCR触媒105の温度低下が懸念される状態で排出される僅かな量の排気のみであるので、副流路R2の流路断面積を比較的小さくする事が出来る。 For example, in the embodiment in which the valve body 106 is fully closed in a state where there is a concern that the temperature of the SCR catalyst 105 is lowered due to the decrease in the exhaust temperature, the valve body 106 flows into the subchannel R2 in a fully closed state. Since only a small amount of exhaust gas is discharged in a state where there is a concern that the temperature of the SCR catalyst 105 will decrease due to the decrease in the exhaust gas temperature, it is possible to make the flow path cross-sectional area of the sub-flow path R2 relatively small. You can.

排気温度の低下に起因するSCR触媒105の温度低下が懸念されない状態から排気温度の低下に起因するSCR触媒105の温度低下が懸念される状態に遷移しそうな場合に弁体106が前以て全閉とされる態様では、弁体106が全閉とされた状態で副流路R2に流れ得る排気の最大量を基準に副流路R2の流路断面積が設定される。 When the temperature drop of the SCR catalyst 105 due to the drop in the exhaust temperature is not a concern and the temperature drop of the SCR catalyst 105 due to the drop in the exhaust temperature is likely to shift, the valve body 106 is fully loaded in advance. In the closed mode, the flow path cross-sectional area of the sub-flow path R2 is set based on the maximum amount of exhaust gas that can flow to the sub-flow path R2 with the valve body 106 fully closed.

図1では、概略的な描写に伴い、排気上流端107の最小流路断面積が排気流路102の最小流路断面積と同一とされ、排気下流端108の最小流路断面積が排気流路102の最小流路断面積よりも小さくされる事で副流路R2の最大流量が主流路R1の最大流量よりも小さくされているが、副流路R2での放熱を出来る限り抑制するという観点から言えば、実際は迂回流路109の流路断面積が迂回流路109の全長に亘り排気流路102の流路断面積よりも小さくされる事で副流路R2の最大流量が主流路R1の最大流量よりも小さくされる事が望ましい。 In FIG. 1, the minimum flow path cross-sectional area of the exhaust upstream end 107 is the same as the minimum flow path cross-sectional area of the exhaust flow path 102, and the minimum flow path cross-sectional area of the exhaust downstream end 108 is the exhaust flow. The maximum flow rate of the sub-flow path R2 is made smaller than the maximum flow rate of the main flow path R1 by making it smaller than the minimum flow path cross-sectional area of the path 102, but it is said that heat dissipation in the sub-flow path R2 is suppressed as much as possible. From the viewpoint, the maximum flow rate of the sub-flow path R2 is actually the main flow path because the flow path cross-sectional area of the detour flow path 109 is made smaller than the flow path cross-sectional area of the exhaust flow path 102 over the entire length of the detour flow path 109. It is desirable that the flow rate be smaller than the maximum flow rate of R1.

加熱装置110は、消費電力を出来る限り小さくすべく、排気温度の低下に起因するSCR触媒105の温度低下が懸念される場合に作動され、排気温度の低下に起因するSCR触媒105の温度低下が懸念されない場合に停止される事が望ましい。 The heating device 110 is operated when there is a concern that the temperature of the SCR catalyst 105 will decrease due to the decrease in the exhaust temperature in order to reduce the power consumption as much as possible, and the temperature decrease of the SCR catalyst 105 due to the decrease in the exhaust temperature will occur. It is desirable to stop if there is no concern.

前述した様に、排気温度の低下に起因するSCR触媒105の温度低下が懸念されない場合に弁体106が全開とされ、副流路R2に流れる排気は僅かとなるものの、たとえ僅かであっても高温の排気が副流路R2にも流れるので、加熱装置110が停止されても副流路R2、加熱装置110、第二PM捕集フィルタ111が予熱乃至保温される。 As described above, when there is no concern about the temperature decrease of the SCR catalyst 105 due to the decrease in the exhaust temperature, the valve body 106 is fully opened, and the exhaust gas flowing to the auxiliary flow path R2 is small, but even if it is small. Since the high-temperature exhaust also flows to the subchannel R2, the subchannel R2, the heating device 110, and the second PM collection filter 111 are preheated or kept warm even if the heating device 110 is stopped.

換言すれば、加熱装置110が停止されても副流路R2、加熱装置110、第二PM捕集フィルタ111が冷却され難いので、副流路R2に流れる排気の温度が低下し難く、SCR触媒105の温度低下も生じ難い。 In other words, even if the heating device 110 is stopped, the sub-flow path R2, the heating device 110, and the second PM collection filter 111 are difficult to cool, so that the temperature of the exhaust gas flowing through the sub-flow path R2 is difficult to decrease, and the SCR catalyst is used. It is unlikely that the temperature of 105 will drop.

加熱装置110が停止された後に再び加熱装置110が作動された場合に、加熱装置110が停止されている間に副流路R2、加熱装置110、第二PM捕集フィルタ111が予熱乃至保温されているので、加熱装置110で副流路R2や第二PM捕集フィルタ111を所定温度に加熱乃至維持する際に必要な電力供給時間が短くなり、消費電力を小さくする事が出来る。 When the heating device 110 is operated again after the heating device 110 is stopped, the subchannel R2, the heating device 110, and the second PM collection filter 111 are preheated or kept warm while the heating device 110 is stopped. Therefore, the power supply time required for heating or maintaining the subchannel R2 and the second PM collection filter 111 to a predetermined temperature in the heating device 110 is shortened, and the power consumption can be reduced.

第二PM捕集フィルタ111は、副流路R2に流れる排気中の僅かな量のPMを捕集する事が出来れば良いので、第一PM捕集フィルタ104よりも容量(PM捕集容量)が小さい。 Since the second PM collection filter 111 only needs to be able to collect a small amount of PM in the exhaust gas flowing through the secondary flow path R2, it has a larger capacity (PM collection capacity) than the first PM collection filter 104. Is small.

容量が小さいという事は必然的に容積が小さく熱容量も小さくなるので、第二PM捕集フィルタ111を所定温度に加熱乃至維持する際に必要な電力供給時間が短くなり、消費電力を小さくする事が出来る。 Since the small capacity inevitably means that the volume is small and the heat capacity is also small, the power supply time required for heating or maintaining the second PM collection filter 111 at a predetermined temperature is shortened, and the power consumption is reduced. Can be done.

第二PM捕集フィルタ111に捕集されたPMは、例えば、弁体106が全開とされる様な高負荷状態で排出される高温の排気で第一PM捕集フィルタ104に捕集されたPMと共に燃焼除去される。 The PM collected by the second PM collection filter 111 is collected by the first PM collection filter 104 by, for example, high-temperature exhaust gas discharged under a high load state such that the valve body 106 is fully opened. It is burnt and removed together with PM.

以上に説明した様に、排気後処理装置100では、本来の主流路R1と別に副流路R2が設置され、排気温度の低下に起因するSCR触媒105の温度低下が懸念される場合に大部分の排気が副流路R2に流れる様に弁体106が制御され、副流路R2に流れる排気が加熱装置110で加熱された後にSCR触媒105に流れるので、排気温度の低下に起因するSCR触媒105の温度低下を抑制する事が出来る。 As described above, in the exhaust aftertreatment device 100, the sub-flow path R2 is installed separately from the original main flow path R1, and most of the cases where there is a concern that the temperature of the SCR catalyst 105 will decrease due to the decrease in the exhaust temperature. The valve body 106 is controlled so that the exhaust gas from the sub-flow path R2 flows to the sub-flow path R2, and the exhaust gas flowing from the sub-flow path R2 flows to the SCR catalyst 105 after being heated by the heating device 110. It is possible to suppress the temperature drop of 105.

特に、排気後処理装置100では、排気温度の低下に起因するSCR触媒105の温度低下が懸念される場合に、即ち、実際に排気温度が低下する前に、主流路R1が遮断されるので、排気温度を基準に排気が加熱装置に流れる流路と排気が加熱装置に流れない流路とが切り替えられる場合よりも、排気温度の低下に起因するSCR触媒105の温度低下を効果的に抑制する事が出来る。 In particular, in the exhaust aftertreatment device 100, when there is a concern about a temperature drop of the SCR catalyst 105 due to a drop in the exhaust temperature, that is, before the exhaust temperature actually drops, the main flow path R1 is cut off. The temperature drop of the SCR catalyst 105 due to the drop in the exhaust temperature is more effectively suppressed than when the flow path in which the exhaust gas flows to the heating device and the flow path in which the exhaust gas does not flow to the heating device are switched based on the exhaust gas temperature. I can do things.

100 排気後処理装置
101 内燃機関
102 排気流路
103 酸化触媒
104 第一PM捕集フィルタ
105 SCR触媒
106 弁体
107 排気上流端
108 排気下流端
109 迂回流路
110 加熱装置
111 第二PM捕集フィルタ
112 ECU
113 エンジン回転数センサ
114 外気温度センサ
115 アクセル開度センサ
116 車速センサ
117 フットブレーキセンサ
R1 主流路
R2 副流路
100 Exhaust aftertreatment device 101 Internal combustion engine 102 Exhaust flow path 103 Oxidation catalyst 104 First PM collection filter 105 SCR catalyst 106 Valve body 107 Exhaust upstream end 108 Exhaust downstream end 109 Bypass flow path 110 Heating device 111 Second PM collection filter 112 ECU
113 Engine speed sensor 114 Outside air temperature sensor 115 Accelerator opening sensor 116 Vehicle speed sensor 117 Foot brake sensor R1 Main flow path R2 Sub flow path

Claims (6)

内燃機関の排気流路に設置された酸化触媒と、
前記排気流路に設置されると共に前記酸化触媒の排気下流側に配置された第一PM捕集フィルタと、
前記排気流路に設置されると共に前記第一PM捕集フィルタの排気下流側に配置されたSCR触媒と、
を備え、
前記内燃機関の排気を浄化する排気後処理装置において、
前記排気流路に設置されると共に前記第一PM捕集フィルタの排気下流側且つ前記SCR触媒の排気上流側に配置された弁体と、
前記酸化触媒の排気上流側で前記排気流路に排気上流端が接続されると共に前記弁体の排気下流側且つ前記SCR触媒の排気上流側で前記排気流路に排気下流端が接続された迂回流路と、
前記迂回流路に設置された加熱装置と、
前記迂回流路に設置されると共に前記加熱装置の排気下流側に配置された第二PM捕集フィルタと、
を更に備え、
前記弁体は、排気温度の低下に起因する前記SCR触媒の温度低下が懸念される場合に閉じられ、排気温度の低下に起因する前記SCR触媒の温度低下が懸念されない場合に開かれる
事を特徴とする排気後処理装置。
Oxidation catalyst installed in the exhaust flow path of the internal combustion engine,
The first PM collection filter installed in the exhaust flow path and arranged on the exhaust downstream side of the oxidation catalyst,
With the SCR catalyst installed in the exhaust flow path and arranged on the exhaust downstream side of the first PM collection filter,
Equipped with
In the exhaust aftertreatment device that purifies the exhaust gas of the internal combustion engine,
A valve body installed in the exhaust flow path and arranged on the exhaust downstream side of the first PM collection filter and on the exhaust upstream side of the SCR catalyst.
A detour in which the exhaust upstream end is connected to the exhaust flow path on the exhaust upstream side of the oxidation catalyst and the exhaust downstream end is connected to the exhaust flow path on the exhaust downstream side of the valve body and on the exhaust upstream side of the SCR catalyst. Channel and
The heating device installed in the detour flow path and
A second PM collection filter installed in the detour flow path and arranged on the exhaust downstream side of the heating device,
Further prepare
The valve body is closed when there is a concern about a temperature drop of the SCR catalyst due to a decrease in the exhaust temperature, and is opened when there is no concern about a temperature decrease of the SCR catalyst due to a decrease in the exhaust temperature. Exhaust aftertreatment device.
前記迂回流路は、前記排気流路よりも最大流量が小さい
請求項1に記載の排気後処理装置。
The exhaust aftertreatment device according to claim 1, wherein the detour flow path has a smaller maximum flow rate than the exhaust flow path.
前記第二PM捕集フィルタは、前記第一PM捕集フィルタよりも容量が小さい
請求項1又は2に記載の排気後処理装置。
The exhaust aftertreatment device according to claim 1 or 2, wherein the second PM collection filter has a smaller capacity than the first PM collection filter.
前記加熱装置は、排気温度の低下に起因する前記SCR触媒の温度低下が懸念される場合に作動され、排気温度の低下に起因する前記SCR触媒の温度低下が懸念されない場合に停止される
請求項1乃至3の何れか一項に記載の排気後処理装置。
The heating device is operated when there is a concern about a temperature drop of the SCR catalyst due to a decrease in the exhaust temperature, and is stopped when there is no concern about a temperature decrease of the SCR catalyst due to a decrease in the exhaust temperature. The exhaust aftertreatment device according to any one of 1 to 3.
排気温度の低下に起因する前記SCR触媒の温度低下が懸念される場合とは、前記内燃機関が搭載された車両が減速状態で前記内燃機関の燃料噴射量が減少傾向にあるか又は無噴射である場合や、前記車両が停車状態で前記内燃機関がアイドリング運転している場合であり、排気温度の低下に起因する前記SCR触媒の温度低下が懸念されない場合とは、前記車両が非減速状態にある場合や、前記車両が非停車状態にある場合である
請求項1乃至4の何れか一項に記載の排気後処理装置。
When there is concern about a decrease in the temperature of the SCR catalyst due to a decrease in the exhaust temperature, the fuel injection amount of the internal combustion engine tends to decrease or no injection is performed when the vehicle equipped with the internal combustion engine is in a decelerated state. In some cases, when the vehicle is stopped and the internal combustion engine is idling, and there is no concern about a decrease in the temperature of the SCR catalyst due to a decrease in the exhaust temperature, the vehicle is in a non-deceleration state. The exhaust aftertreatment device according to any one of claims 1 to 4, wherein there is a case or the vehicle is in a non-stop state.
前記弁体は、排気温度の低下に起因する前記SCR触媒の温度低下が大きいと想定される場合に開度が小さくされ、排気温度の低下に起因する前記SCR触媒の温度低下が小さいと想定される場合に開度が大きくされ、排気温度の低下に起因する前記SCR触媒の温度低下が懸念されない場合に全開とされる
請求項1乃至5の何れか一項に記載の排気後処理装置。
It is assumed that the opening degree of the valve body is reduced when the temperature drop of the SCR catalyst is assumed to be large due to the decrease in the exhaust temperature, and the temperature decrease of the SCR catalyst due to the decrease in the exhaust temperature is small. The exhaust aftertreatment device according to any one of claims 1 to 5, wherein the opening degree is increased in such a case, and the SCR catalyst is fully opened when there is no concern about the temperature decrease of the SCR catalyst due to the decrease of the exhaust temperature.
JP2020219119A 2020-12-28 2020-12-28 Post-exhaust treatment device Pending JP2022104111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020219119A JP2022104111A (en) 2020-12-28 2020-12-28 Post-exhaust treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020219119A JP2022104111A (en) 2020-12-28 2020-12-28 Post-exhaust treatment device

Publications (1)

Publication Number Publication Date
JP2022104111A true JP2022104111A (en) 2022-07-08

Family

ID=82282064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020219119A Pending JP2022104111A (en) 2020-12-28 2020-12-28 Post-exhaust treatment device

Country Status (1)

Country Link
JP (1) JP2022104111A (en)

Similar Documents

Publication Publication Date Title
JP3876705B2 (en) Diesel engine exhaust gas purification system
US20140150411A1 (en) Reductant injection control system
JP2004211680A (en) Method for controlling exhaust gas temperature and space velocity during regeneration to protect temperature sensitive diesel engine components and aftertreatment device
BR102013031896B1 (en) Method and device for increasing the temperature of the exhaust gas in the exhaust tract of a turbocharged internal combustion engine
US20110283681A1 (en) Method for operating components for exhaust gas after-treatment and exhaust gas after-treatment apparatus
EP2581569A1 (en) Dpf system
US8893493B2 (en) Engine exhaust system and method of operation
EP3093482B1 (en) Exhaust gas purification system of internal combustion engine and exhaust gas purification method of internal combustion engine
EP2792865A1 (en) Diesel engine exhaust gas purification method and exhaust gas purification system
CN113494365A (en) Exhaust throttle valve control method based on state machine
EP2131022B1 (en) Thermal management of the after treatment system
JP2022104111A (en) Post-exhaust treatment device
JP2008050946A (en) Exhaust gas recirculation system for internal combustion engine
JPH11132035A (en) Exhaust emission control device for internal combustion engine
JP4378754B2 (en) Engine exhaust gas purification system
WO2015046506A1 (en) Exhaust gas purification system and exhaust gas purification method
US20120186231A1 (en) Exhaust gas after treatment system with temperature control
JP4461995B2 (en) Exhaust gas purification device for internal combustion engine
JP5233596B2 (en) Exhaust gas purification device
US11698019B2 (en) Exhaust gas aftertreatment system
JP2004027956A (en) Internal combustion engine
JP2005069238A5 (en)
JP2008232055A (en) Exhaust emission control system for internal combustion engine
EP3055525B1 (en) Additive supply device and additive supply method for engine
JP2005036726A (en) Exhaust temperature rising device of internal combustion engine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201228