JP2022103832A - Electromagnetic ultrasonic inspection device - Google Patents

Electromagnetic ultrasonic inspection device Download PDF

Info

Publication number
JP2022103832A
JP2022103832A JP2020218706A JP2020218706A JP2022103832A JP 2022103832 A JP2022103832 A JP 2022103832A JP 2020218706 A JP2020218706 A JP 2020218706A JP 2020218706 A JP2020218706 A JP 2020218706A JP 2022103832 A JP2022103832 A JP 2022103832A
Authority
JP
Japan
Prior art keywords
coil
pipe
subject
electromagnetic ultrasonic
receiving coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020218706A
Other languages
Japanese (ja)
Other versions
JP7482771B2 (en
Inventor
佑己 大島
Yuki Oshima
将史 成重
Masashi Narushige
俊介 沖田
Shunsuke Okita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2020218706A priority Critical patent/JP7482771B2/en
Publication of JP2022103832A publication Critical patent/JP2022103832A/en
Application granted granted Critical
Publication of JP7482771B2 publication Critical patent/JP7482771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

To provide an electromagnetic ultrasonic inspection device capable of performing flaw detection scanning of a test object in a direction perpendicular to the arrangement direction of magnets of an electromagnetic ultrasonic probe.SOLUTION: An electromagnetic ultrasonic inspection device of the invention includes: a magnet array 13 having a plurality of magnets 11 arranged in the axial direction of piping 1 and alternately arranged so that the outer side of the piping 1 in the radial direction becomes an N pole or an S pole; an electromagnetic ultrasonic probe 10 having coils (14A to 14D) wound around the magnet array 13 with the circumferential direction of the piping 1 as the central axis and separated from each other in the circumferential direction of the piping 1; a flaw detection device 20; and a calculation device 30. The flaw detection device 20 records a plurality of reception signals corresponding to the combination of the transmission coil and the reception coil by selecting and controlling the combination of the transmission coil and the reception coil among the coils 14A to 14D. The calculation device 30 extracts and sums the intensities of the plurality of received signals based on the propagation time of the ultrasonic waves for each position in the piping 1, and generates a flaw detection image showing the distribution of the summed intensities.SELECTED DRAWING: Figure 1

Description

本発明は、電磁超音波探触子を備えた電磁超音波検査装置に関する。 The present invention relates to an electromagnetic ultrasonic inspection device including an electromagnetic ultrasonic probe.

超音波による被検体の探傷検査を行う方法として、超音波探触子を用いる方法と、電磁超音波探触子を用いる方法(例えば特許文献1参照)がある。 As a method of performing a flaw detection inspection of a subject by ultrasonic waves, there are a method using an ultrasonic probe and a method using an electromagnetic ultrasonic probe (see, for example, Patent Document 1).

超音波探触子は、電気信号と超音波の変換を行う圧電素子を備え、接触媒質を介し被検体の表面に接触する。超音波探触子は、接触媒質を介し被検体へ超音波を送信し、被検体の内部の欠陥(詳細には、亀裂など)で反射された超音波を接触媒質を介し受信する。 The ultrasonic probe includes a piezoelectric element that converts an electric signal and an ultrasonic wave, and contacts the surface of a subject via a contact medium. The ultrasonic probe transmits ultrasonic waves to the subject via the contact medium, and receives ultrasonic waves reflected by internal defects (specifically, cracks or the like) of the subject via the contact medium.

特許文献1の電磁超音波探触子は、複数の磁石を有する磁石アレイと、磁石アレイの周囲に巻き回された1つのコイルとを備える。 The electromagnetic ultrasonic probe of Patent Document 1 includes a magnet array having a plurality of magnets and one coil wound around the magnet array.

複数の磁石は、被検体の表面に沿う一方向に且つ二列に配列されている。詳しく説明すると、第一列の磁石は、被検体の表面に垂直な方向の一方側がN極、反対側がS極となるように配置されている。第二列の磁石は、被検体の表面に垂直な方向の一方側がS極、反対側がN極となるように配置されている。第1列の磁石と第2列の磁石は、前記一方向にて交互となるように配置されている。したがって、複数の磁石は、被検体の表面に垂直な方向の一方側がN極となるかS極となるよう交互に配置されている。これにより、被検体の表面に垂直な方向における磁場の向きが交互に変化する静磁場(周期磁界)を発生させる。 The plurality of magnets are arranged in one direction and in two rows along the surface of the subject. More specifically, the magnets in the first row are arranged so that one side in the direction perpendicular to the surface of the subject is the north pole and the other side is the south pole. The magnets in the second row are arranged so that one side in the direction perpendicular to the surface of the subject is the south pole and the other side is the north pole. The magnets in the first row and the magnets in the second row are arranged so as to alternate in the one direction. Therefore, the plurality of magnets are alternately arranged so that one side in the direction perpendicular to the surface of the subject becomes the north pole or the south pole. As a result, a static magnetic field (periodic magnetic field) is generated in which the direction of the magnetic field in the direction perpendicular to the surface of the subject changes alternately.

コイルは、被検体の表面に沿い且つ前記一方向(言い換えれば、磁石の配列方向)に垂直な他の方向を中心軸として、磁石アレイの周囲に巻き回されている。 The coil is wound around the magnet array along the surface of the subject and with the other direction perpendicular to the one direction (that is, the direction of arrangement of the magnets) as a central axis.

探傷装置は、電磁超音波探触子のコイルに送信信号(パルス信号)を印加して、コイルが対向する被検体の表層部に渦電流を発生させる。そして、この渦電流と複数の磁石による静磁場との相互作用により、被検体の表層部に超音波を発生させる。この超音波は、磁石の配列方向に向けて送信角(詳細には、被検体の厚さ方向に対して斜めの角度)で伝播され、被検体の内部の欠陥で反射され、被検体の表層部に戻ってくる。探傷装置は、前述した作用とは逆の作用により、戻ってきた超音波によってコイルに発生した受信信号(波形信号)を取得する。これにより、被検体の欠陥を検出する。 The flaw detector applies a transmission signal (pulse signal) to the coil of the electromagnetic ultrasonic probe to generate an eddy current in the surface layer portion of the subject to which the coil faces. Then, ultrasonic waves are generated on the surface layer of the subject by the interaction between this eddy current and the static magnetic field of a plurality of magnets. This ultrasonic wave is propagated at a transmission angle (specifically, an angle oblique to the thickness direction of the subject) toward the arrangement direction of the magnet, is reflected by a defect inside the subject, and is reflected on the surface layer of the subject. Come back to the club. The flaw detector acquires a received signal (waveform signal) generated in the coil by the returned ultrasonic wave by an action opposite to the above-mentioned action. Thereby, the defect of the subject is detected.

特開2014-081235号公報Japanese Unexamined Patent Publication No. 2014-081235

電磁超音波探触子は、例えば、配管の周囲に固定されて、運転中(詳細には、例えば高温流体が流れているとき)の配管の探傷検査を行うことが期待されている。超音波探触子を用いる場合は、例えば接触媒質として接着剤を用いて、配管の表面と探触子の接触状態を維持する必要があるものの、電磁超音波探触子を用いる場合は、その必要がない。また、電磁超音波探触子の磁石として耐熱性の高いもの(詳細には、例えばサマリウムコバルト磁石等)を用いれば、200~300℃の高温環境でも探触子を配置することが可能である。 The electromagnetic ultrasonic probe is expected to be fixed around the pipe, for example, to perform a flaw detection inspection of the pipe during operation (specifically, for example, when a high temperature fluid is flowing). When using an ultrasonic probe, for example, it is necessary to use an adhesive as a contact medium to maintain the contact state between the surface of the pipe and the probe, but when using an electromagnetic ultrasonic probe, the contact state is maintained. There is no need. Further, if a magnet having high heat resistance (specifically, for example, a samarium-cobalt magnet) is used as the magnet of the electromagnetic ultrasonic probe, the probe can be arranged even in a high temperature environment of 200 to 300 ° C. ..

特許文献1の電磁超音波探触子では、コイルに印加する送信信号の周波数を可変して超音波の送信角を可変することにより、探触子の一方向(言い換えれば、磁石の配列方向)における被検体の探傷走査を行うことが可能である。しかし、探触子の他の方向(言い換えれば、磁石の配列方向に垂直な方向)における被検体の探傷走査を行うことができない。そのため、探触子の位置を固定していれば、探触子の検査範囲が限られてしまう。 In the electromagnetic ultrasonic probe of Patent Document 1, one direction of the probe (in other words, the arrangement direction of magnets) is obtained by changing the frequency of the transmission signal applied to the coil to change the transmission angle of the ultrasonic wave. It is possible to perform a flaw detection scan of the subject in. However, it is not possible to perform a flaw detection scan of the subject in the other direction of the probe (in other words, the direction perpendicular to the arrangement direction of the magnets). Therefore, if the position of the probe is fixed, the inspection range of the probe is limited.

本発明の目的は、電磁超音波探触子の磁石の配列方向に垂直な方向における被検体の探傷走査を行うことができる電磁超音波検査装置を提供することにある。 An object of the present invention is to provide an electromagnetic ultrasonic inspection apparatus capable of performing flaw detection scanning of a subject in a direction perpendicular to the arrangement direction of magnets of the electromagnetic ultrasonic probe.

上記目的を達成するために、本発明は、被検体の表面に沿う一方向に配列され、前記被検体の前記表面に垂直な方向の一方側がN極となるかS極となるよう交互に配置された複数の磁石を有する磁石アレイ、及び前記被検体の前記表面に沿い且つ前記一方向に垂直な他の方向を中心軸として前記磁石アレイの周囲に巻き回され、前記他の方向に互いに離間された複数のコイルを備えた電磁超音波探触子と、前記複数のコイルのうちの送信コイルと受信コイルの組合せを選択して、前記送信コイルに送信信号を印加して前記送信コイルが対向する前記被検体の表層部に超音波を発生させると共に、前記被検体の内部で反射されて前記受信コイルが対向する前記被検体の表層部に戻ってきた超音波によって前記受信コイルに発生した受信信号を取得することにより、前記送信コイルと前記受信コイルの組合せに対応する複数の受信信号を収録する探傷装置と、前記被検体の内部の位置毎に、前記位置で超音波が反射されたと仮定した場合の前記送信コイルと前記受信コイルの組合せに応じた超音波の伝播時間に基づき、前記位置に対応する前記複数の受信信号の強度を抽出して合算し、合算した強度の分布を示す探傷画像を生成する計算装置とを備える。 In order to achieve the above object, the present invention is arranged in one direction along the surface of the subject, and alternately arranged so that one side of the subject in the direction perpendicular to the surface becomes an N pole or an S pole. A magnet array having a plurality of magnets formed therein, and wound around the magnet array about the other direction along the surface of the subject and perpendicular to the one direction, and separated from each other in the other directions. A combination of an electromagnetic ultrasonic probe having a plurality of coils and a transmission coil and a reception coil among the plurality of coils is selected, and a transmission signal is applied to the transmission coil so that the transmission coils face each other. In addition to generating ultrasonic waves on the surface layer portion of the subject, the reception coil generated on the receiving coil by the ultrasonic waves reflected inside the subject and returned to the surface layer portion of the subject facing the receiving coil. It is assumed that the ultrasonic wave is reflected at the position of each position inside the subject and the flaw detector that records a plurality of received signals corresponding to the combination of the transmitting coil and the receiving coil by acquiring the signal. Based on the propagation time of ultrasonic waves according to the combination of the transmitting coil and the receiving coil in the case of It is equipped with a computing device that generates an image.

本発明によれば、電磁超音波探触子の磁石の配列方向に垂直な方向における被検体の探傷走査を行うことができる。 According to the present invention, it is possible to perform flaw detection scanning of a subject in a direction perpendicular to the arrangement direction of the magnets of the electromagnetic ultrasonic probe.

本発明の一実施形態における電磁超音波検査装置の構成を表すブロック図である。It is a block diagram which shows the structure of the electromagnetic ultrasonic inspection apparatus in one Embodiment of this invention. 本発明の一実施形態における電磁超音波探触子の構造を、配管の一部と共に表す図である。It is a figure which shows the structure of the electromagnetic ultrasonic probe in one Embodiment of this invention together with a part of a pipe. 図2の矢視III-IIIによる垂直断面図である。It is a vertical cross-sectional view by arrow view III-III of FIG. 図2の矢視IV-IVによる垂直断面図である。It is a vertical cross-sectional view by arrow view IV-IV of FIG. 図2のxz座標系による傾斜断面図であって、本実施形態における超音波の伝播経路の一例を表す。It is an inclined sectional view by the xz coordinate system of FIG. 2, and shows an example of the propagation path of ultrasonic waves in this embodiment. 本発明の一実施形態における送信コイルと受信コイルの組合せに対応する受信信号のデータを表す図である。It is a figure which shows the data of the received signal corresponding to the combination of the transmitting coil and the receiving coil in one Embodiment of this invention.

本発明の一実施形態を、図面を参照しつつ説明する。本実施形態では、配管(詳細には、例えば、配管の周方向に延在する溶接部)の探傷検査を行う場合を例にとって説明する。 An embodiment of the present invention will be described with reference to the drawings. In the present embodiment, a case where a flaw detection inspection is performed on a pipe (specifically, for example, a welded portion extending in the circumferential direction of the pipe) will be described as an example.

図1は、本実施形態における電磁超音波検査装置の構成を表すブロック図である。図2は、本実施形態における電磁超音波探触子の構造を、配管の一部と共に表す図である。図3は、図2の矢視III-IIIによる垂直断面図である。図4は、図2の矢視IV-IVによる垂直断面図である。図5は、図2のxz座標系による傾斜断面図であって、本実施形態における超音波の伝播経路の一例を表す。図6は、本実施形態における送信コイルと受信コイルの組合せに対応する複数の受信信号を表す図である。なお、図2、図4、及び図5において、配管の表面は、実際には曲面であるものの、便宜上、平面で示されている。 FIG. 1 is a block diagram showing a configuration of an electromagnetic ultrasonic inspection device according to the present embodiment. FIG. 2 is a diagram showing the structure of the electromagnetic ultrasonic probe in the present embodiment together with a part of the pipe. FIG. 3 is a vertical cross-sectional view taken along the line III-III of FIG. FIG. 4 is a vertical cross-sectional view taken along the line IV-IV of FIG. FIG. 5 is an inclined cross-sectional view based on the xz coordinate system of FIG. 2, and shows an example of the propagation path of ultrasonic waves in the present embodiment. FIG. 6 is a diagram showing a plurality of received signals corresponding to the combination of the transmitting coil and the receiving coil in the present embodiment. In FIGS. 2, 4, and 5, the surface of the pipe is actually a curved surface, but is shown as a flat surface for convenience.

本実施形態の電磁超音波検査装置は、配管1(被検体)の周囲に固定された電磁超音波探触子10と、電磁超音波探触子10を制御して複数の受信信号を収録する探傷装置20と、探傷装置20で収録された複数の受信信号に基づいて探傷画像を生成する計算装置30と、計算装置30で生成された探傷画像を表示する表示装置40(詳細には、例えばディスプレイ)と、計算装置30に接続された入力装置50(詳細には、例えばキーボードやマウス)とを備える。計算装置30は、プログラムを記憶するROMと、プログラムに従って処理を実行するCPUと、処理結果を記憶するRAMとを有する。 The electromagnetic ultrasonic inspection device of the present embodiment controls the electromagnetic ultrasonic probe 10 fixed around the pipe 1 (subject) and the electromagnetic ultrasonic probe 10 to record a plurality of received signals. The flaw detection device 20, a calculation device 30 that generates a flaw detection image based on a plurality of received signals recorded by the flaw detection device 20, and a display device 40 that displays the flaw detection image generated by the calculation device 30 (specifically, for example, for example). A display) and an input device 50 (specifically, for example, a keyboard or a mouse) connected to the calculation device 30. The calculation device 30 has a ROM for storing a program, a CPU for executing processing according to the program, and a RAM for storing the processing result.

電磁超音波探触子10は、複数の磁石11及びそれらの配管1に対向する部分以外の大部分を覆う樹脂カバー12を有する磁石アレイ13と、磁石アレイ13の周囲に巻き回された複数(本実施形態では4つ)のコイル14A~14Dと、磁石アレイ13及びコイル14A~14Dを収納するケーシング15とを備える。 The electromagnetic ultrasonic probe 10 includes a magnet array 13 having a plurality of magnets 11 and a resin cover 12 covering most of the magnets 11 other than the portion facing the pipe 1, and a plurality of magnet arrays 13 wound around the magnet array 13. In this embodiment, four coils 14A to 14D and a casing 15 for accommodating the magnet array 13 and the coils 14A to 14D are provided.

複数の磁石11は、配管1の軸方向(言い換えれば、配管1の表面に沿う一方向)に且つ一列に配列され、配管1の半径方向(言い換えれば、配管1の表面に垂直な方向)の外側がN極となるかS極となるよう交互に配置されている。これにより、配管1の半径方向における磁場の向きが交互に変化する静磁場(周期磁界)を発生させる。なお、磁石11のピッチW(間隔)は、磁石11の幅と同じである。 The plurality of magnets 11 are arranged in the axial direction of the pipe 1 (in other words, in one direction along the surface of the pipe 1) and in a row, and in the radial direction of the pipe 1 (in other words, the direction perpendicular to the surface of the pipe 1). They are arranged alternately so that the outer side becomes the north pole or the south pole. As a result, a static magnetic field (periodic magnetic field) in which the direction of the magnetic field in the radial direction of the pipe 1 changes alternately is generated. The pitch W (interval) of the magnet 11 is the same as the width of the magnet 11.

コイル14A~14Dは、配管1の周方向(言い換えれば、配管1の表面に沿い且つ前記一方向に垂直な他の方向)を中心軸として磁石アレイ13の周囲に巻き回され、配管1の周方向に互いに離間されている。なお、コイルのピッチp(間隔)は、コイルの幅eより大きい。 The coils 14A to 14D are wound around the magnet array 13 about the circumferential direction of the pipe 1 (in other words, the other direction along the surface of the pipe 1 and perpendicular to the one direction) as the central axis, and are wound around the circumference of the pipe 1. They are separated from each other in the direction. The coil pitch p (interval) is larger than the coil width e.

本実施形態の探傷装置20及び計算装置30は、フルマトリクスキャプチャー(Full Matrix Capture:FMC)/トータルフォーカンシングメソッド(Total Focusing Method:TFM)又は開口合成法(Synthetic Aperture Focusing Technique:SAFT)と呼ばれる手法を利用して、配管1の周方向(言い換えれば、電磁超音波探触子10の磁石11の配列方向に垂直な方向)における配管1の探傷走査を行うものである。 The flaw detection device 20 and the calculation device 30 of the present embodiment are called Full Matrix Capture (FMC) / Total Focusing Method (TFM) or Synthetic Aperture Focusing Technique (SAFT). Using the method, the flaw detection scan of the pipe 1 in the circumferential direction of the pipe 1 (in other words, the direction perpendicular to the arrangement direction of the magnets 11 of the electromagnetic ultrasonic probe 10) is performed.

探傷装置20は、電磁超音波探触子10のコイル14A~14Dのうちの送信コイルと受信コイルの組合せを選択して制御することにより、送信コイルと受信コイルの組合せに対応する複数の受信信号を収録するようになっている。その詳細を説明する。 The flaw detector 20 selects and controls the combination of the transmitting coil and the receiving coil among the coils 14A to 14D of the electromagnetic ultrasonic probe 10, and thereby a plurality of receiving signals corresponding to the combination of the transmitting coil and the receiving coil. Is to be recorded. The details will be explained.

探傷装置20は、コイル14A~14Dのうちのいずれかを送信コイルとして選択するデマルチプレクサ21と、デマルチプレクサ21で選択された送信コイルに送信信号(パルス信号)を印加するパルサ22と、コイル14A~14Dのうちのいずれかを受信コイルとして選択するマルチプレクサ23と、マルチプレクサ23で選択された受信コイルの受信信号(波形信号)を取得するレシーバ24と、送信コイルと受信コイルの組合せの情報と関連付けて複数の受信信号を収録するデータ収録部25とを備える。なお、データ収録部25は、例えばハードディスクまたはメモリで構成されている。 The flaw detector 20 includes a demultiplexer 21 that selects one of the coils 14A to 14D as a transmission coil, a pulser 22 that applies a transmission signal (pulse signal) to the transmission coil selected by the demultiplexer 21, and a coil 14A. The multiplexer 23 that selects any of 14D as the receiving coil, the receiver 24 that acquires the received signal (waveform signal) of the receiving coil selected by the multiplexer 23, and the information of the combination of the transmitting coil and the receiving coil are associated with each other. A data recording unit 25 for recording a plurality of received signals is provided. The data recording unit 25 is composed of, for example, a hard disk or a memory.

まず、デマルチプレクサ21は、送信コイルとしてコイル14Aを選択する。パルサ22は、デマルチプレクサ21を介しコイル14Aに送信信号を印加して、コイル14Aが対向する配管1の表層部に渦電流を発生させる。そして、この渦電流と各磁石11による磁場との相互作用により、各磁石11が対向する配管1の表層部にローレンツ力が生じ、このローレンツ力による配管1の表層部の変位によって素元波を発生させる。なお、図3において、素元波の振動方向は、実際には紙面に対して垂直な方向であるものの、便宜上、紙面に対して平行な方向で示されている。 First, the demultiplexer 21 selects the coil 14A as the transmission coil. The pulsar 22 applies a transmission signal to the coil 14A via the demultiplexer 21 to generate an eddy current in the surface layer portion of the pipe 1 with which the coil 14A faces. Then, due to the interaction between this eddy current and the magnetic field generated by each magnet 11, a Lorentz force is generated on the surface layer portion of the pipe 1 on which each magnet 11 faces, and the original wave is generated by the displacement of the surface layer portion of the pipe 1 due to the Lorentz force. generate. In FIG. 3, the vibration direction of the prime wave is actually a direction perpendicular to the paper surface, but is shown in a direction parallel to the paper surface for convenience.

隣り合う磁石11による磁場の方向が180度反転しているため、隣り合う素元波の位相も180度ずれる。コイル14Aが対向する(言い換えれば、複数の磁石11が対向する)配管1の表層部に発生した複数の素元波は、下記の式(1)で表された送信角θの方向における位相が一致することから、送信角θの合成波(詳細には、SH波。以降、単に、超音波という)を形成する。式中のλは超音波の波長、Vは音速、fは超音波の周波数である。式(1)から明らかなように、超音波の送信角θは、超音波の周波数f(すなわち、コイル14Aに印加する送信信号の周波数)によって設定可能である。例えば超音波の周波数f=V/Wに設定すれば、超音波の送信角θ=30°となる。 Since the directions of the magnetic fields due to the adjacent magnets 11 are inverted by 180 degrees, the phases of the adjacent prime waves are also shifted by 180 degrees. The plurality of elemental waves generated in the surface layer portion of the pipe 1 on which the coils 14A face each other (in other words, the plurality of magnets 11 face each other) have a phase in the direction of the transmission angle θ represented by the following equation (1). Since they match, a composite wave having a transmission angle θ (specifically, an SH wave, hereinafter simply referred to as an ultrasonic wave) is formed. In the equation, λ is the wavelength of the ultrasonic wave, V is the speed of sound, and f is the frequency of the ultrasonic wave. As is clear from the equation (1), the ultrasonic transmission angle θ can be set by the ultrasonic frequency f (that is, the frequency of the transmission signal applied to the coil 14A). For example, if the ultrasonic frequency f = V / W is set, the ultrasonic transmission angle θ = 30 °.

Figure 2022103832000002
Figure 2022103832000002

マルチプレクサ23は、受信コイルとしてコイル14A~14Dを順次選択する。受信コイルとしてのコイル14Aは、送信コイルとしてのコイル14Aが対向する配管1の表層部から伝播されて配管1の内部の欠陥2で反射されて受信コイルとしてのコイル14Aが対向する配管1の表層部に戻ってきた超音波により、受信信号を発生する。受信コイルとしてのコイル14Bは、送信コイルとしてのコイル14Aが対向する配管1の表層部から伝播されて配管1の内部の欠陥2で反射されて受信コイルとしてのコイル14Bが対向する配管1の表層部に戻ってきた超音波により、受信信号を発生する。受信コイルとしてのコイル14Cは、送信コイルとしてのコイル14Aが対向する配管1の表層部から伝播されて配管1の内部の欠陥2で反射されて受信コイルとしてのコイル14Cが対向する配管1の表層部に戻ってきた超音波(図5参照)により、受信信号を発生する。受信コイルとしてのコイル14Dは、送信コイルとしてのコイル14Aが対向する配管1の表層部から伝播されて配管1の内部の欠陥2で反射されて受信コイルとしてのコイル14Dが対向する配管1の表層部に戻ってきた超音波により、受信信号を発生する。 The multiplexer 23 sequentially selects the coils 14A to 14D as the receiving coil. The coil 14A as a receiving coil is propagated from the surface layer portion of the pipe 1 facing the coil 14A as a transmitting coil, reflected by a defect 2 inside the pipe 1, and the surface layer of the pipe 1 facing the coil 14A as a receiving coil. The received signal is generated by the ultrasonic waves returned to the unit. The coil 14B as a receiving coil is propagated from the surface layer portion of the pipe 1 facing the coil 14A as a transmitting coil, reflected by a defect 2 inside the pipe 1, and the surface layer of the pipe 1 facing the coil 14B as a receiving coil. The received signal is generated by the ultrasonic waves returned to the unit. The coil 14C as a receiving coil is propagated from the surface layer portion of the pipe 1 facing the coil 14A as a transmitting coil, reflected by a defect 2 inside the pipe 1, and the surface layer of the pipe 1 facing the coil 14C as a receiving coil. A received signal is generated by the ultrasonic waves returned to the unit (see FIG. 5). The coil 14D as a receiving coil is propagated from the surface layer portion of the pipe 1 facing the coil 14A as a transmitting coil, reflected by a defect 2 inside the pipe 1, and the surface layer of the pipe 1 facing the coil 14D as a receiving coil. The received signal is generated by the ultrasonic waves returned to the unit.

レシーバ24は、送信コイルとしてコイル14Aが選択された場合のコイル14Aの受信信号W11、コイル14Bの受信信号W12、コイル14Cの受信信号W13、及びコイル14Dの受信信号W14を、マルチプレクサ23を介し取得してデータ収録部25に出力する。 The receiver 24 combines the received signal W 11 of the coil 14A, the received signal W 12 of the coil 14B, the received signal W 13 of the coil 14C, and the received signal W 14 of the coil 14D when the coil 14A is selected as the transmitting coil. It is acquired via 23 and output to the data recording unit 25.

次に、デマルチプレクサ21は、送信コイルとしてコイル14Bを選択する。パルサ22は、デマルチプレクサ21を介しコイル14Bに送信信号を印加して、コイル14Bが対向する配管1の表層部に超音波を発生させる。 Next, the demultiplexer 21 selects the coil 14B as the transmission coil. The pulsar 22 applies a transmission signal to the coil 14B via the demultiplexer 21 to generate ultrasonic waves in the surface layer portion of the pipe 1 with which the coil 14B faces.

マルチプレクサ23は、受信コイルとしてコイル14A~14Dを順次選択する。受信コイルとしてのコイル14Aは、送信コイルとしてのコイル14Bが対向する配管1の表層部から伝播されて配管1の内部の欠陥2で反射されて受信コイルとしてのコイル14Aが対向する配管1の表層部に戻ってきた超音波により、受信信号を発生する。受信コイルとしてのコイル14Bは、送信コイルとしてのコイル14Bが対向する配管1の表層部から伝播されて配管1の内部の欠陥2で反射されて受信コイルとしてのコイル14Bが対向する配管1の表層部に戻ってきた超音波により、受信信号を発生する。受信コイルとしてのコイル14Cは、送信コイルとしてのコイル14Bが対向する配管1の表層部から伝播されて配管1の内部の欠陥2で反射されて受信コイルとしてのコイル14Cが対向する配管1の表層部に戻ってきた超音波により、受信信号を発生する。受信コイルとしてのコイル14Dは、送信コイルとしてのコイル14Bが対向する配管1の表層部から伝播されて配管1の内部の欠陥2で反射されて受信コイルとしてのコイル14Dが対向する配管1の表層部に戻ってきた超音波により、受信信号を発生する。 The multiplexer 23 sequentially selects the coils 14A to 14D as the receiving coil. The coil 14A as a receiving coil is propagated from the surface layer portion of the pipe 1 facing the coil 14B as a transmitting coil, reflected by a defect 2 inside the pipe 1, and the surface layer of the pipe 1 facing the coil 14A as a receiving coil. The received signal is generated by the ultrasonic waves returned to the unit. The coil 14B as a receiving coil is propagated from the surface layer portion of the pipe 1 facing the coil 14B as a transmitting coil, reflected by a defect 2 inside the pipe 1, and the surface layer of the pipe 1 facing the coil 14B as a receiving coil. The received signal is generated by the ultrasonic waves returned to the unit. The coil 14C as a receiving coil is propagated from the surface layer portion of the pipe 1 facing the coil 14B as a transmitting coil, reflected by a defect 2 inside the pipe 1, and the surface layer of the pipe 1 facing the coil 14C as a receiving coil. The received signal is generated by the ultrasonic waves returned to the unit. The coil 14D as a receiving coil is propagated from the surface layer portion of the pipe 1 facing the coil 14B as a transmitting coil, reflected by a defect 2 inside the pipe 1, and the surface layer of the pipe 1 facing the coil 14D as a receiving coil. The received signal is generated by the ultrasonic waves returned to the unit.

レシーバ24は、送信コイルとしてコイル14Bが選択された場合のコイル14Aの受信信号W21、コイル14Bの受信信号W22、コイル14Cの受信信号W23、及びコイル14Dの受信信号W24を、マルチプレクサ23を介し取得してデータ収録部25に出力する。 The receiver 24 combines the received signal W 21 of the coil 14A, the received signal W 22 of the coil 14B, the received signal W 23 of the coil 14C, and the received signal W 24 of the coil 14D when the coil 14B is selected as the transmitting coil. It is acquired via 23 and output to the data recording unit 25.

次に、デマルチプレクサ21は、送信コイルとしてコイル14Cを選択する。パルサ22は、デマルチプレクサ21を介しコイル14Cに送信信号を印加して、コイル14Cが対向する配管1の表層部に超音波を発生させる。 Next, the demultiplexer 21 selects the coil 14C as the transmission coil. The pulsar 22 applies a transmission signal to the coil 14C via the demultiplexer 21 to generate ultrasonic waves in the surface layer portion of the pipe 1 with which the coil 14C faces.

マルチプレクサ23は、受信コイルとしてコイル14A~14Dを順次選択する。受信コイルとしてのコイル14Aは、送信コイルとしてのコイル14Cが対向する配管1の表層部から伝播されて配管1の内部の欠陥2で反射されて受信コイルとしてのコイル14Aが対向する配管1の表層部に戻ってきた超音波により、受信信号を発生する。受信コイルとしてのコイル14Bは、送信コイルとしてのコイル14Cが対向する配管1の表層部から伝播されて配管1の内部の欠陥2で反射されて受信コイルとしてのコイル14Bが対向する配管1の表層部に戻ってきた超音波により、受信信号を発生する。受信コイルとしてのコイル14Cは、送信コイルとしてのコイル14Cが対向する配管1の表層部から伝播されて配管1の内部の欠陥2で反射されて受信コイルとしてのコイル14Cが対向する配管1の表層部に戻ってきた超音波により、受信信号を発生する。受信コイルとしてのコイル14Dは、送信コイルとしてのコイル14Cが対向する配管1の表層部から伝播されて配管1の内部の欠陥2で反射されて受信コイルとしてのコイル14Dが対向する配管1の表層部に戻ってきた超音波により、受信信号を発生する。 The multiplexer 23 sequentially selects the coils 14A to 14D as the receiving coil. The coil 14A as a receiving coil is propagated from the surface layer portion of the pipe 1 facing the coil 14C as a transmitting coil, reflected by a defect 2 inside the pipe 1, and the surface layer of the pipe 1 facing the coil 14A as a receiving coil. The received signal is generated by the ultrasonic waves returned to the unit. The coil 14B as a receiving coil is propagated from the surface layer portion of the pipe 1 facing the coil 14C as a transmitting coil, reflected by a defect 2 inside the pipe 1, and the surface layer of the pipe 1 facing the coil 14B as a receiving coil. The received signal is generated by the ultrasonic waves returned to the unit. The coil 14C as a receiving coil is propagated from the surface layer portion of the pipe 1 facing the coil 14C as a transmitting coil, reflected by a defect 2 inside the pipe 1, and the surface layer of the pipe 1 facing the coil 14C as a receiving coil. The received signal is generated by the ultrasonic waves returned to the unit. The coil 14D as a receiving coil is propagated from the surface layer portion of the pipe 1 facing the coil 14C as a transmitting coil, reflected by a defect 2 inside the pipe 1, and the surface layer of the pipe 1 facing the coil 14D as a receiving coil. The received signal is generated by the ultrasonic waves returned to the unit.

レシーバ24は、送信コイルとしてコイル14Cが選択された場合のコイル14Aの受信信号W31、コイル14Bの受信信号W32、コイル14Cの受信信号W33、及びコイル14Dの受信信号W34を、マルチプレクサ23を介し取得してデータ収録部25に出力する。 The receiver 24 combines the received signal W 31 of the coil 14A, the received signal W 32 of the coil 14B, the received signal W 33 of the coil 14C, and the received signal W 34 of the coil 14D when the coil 14C is selected as the transmitting coil. It is acquired via 23 and output to the data recording unit 25.

次に、デマルチプレクサ21は、送信コイルとしてコイル14Dを選択する。パルサ22は、デマルチプレクサ21を介しコイル14Dに送信信号を印加して、コイル14Dが対向する配管1の表層部に超音波を発生させる。 Next, the demultiplexer 21 selects the coil 14D as the transmission coil. The pulsar 22 applies a transmission signal to the coil 14D via the demultiplexer 21 to generate ultrasonic waves in the surface layer portion of the pipe 1 with which the coil 14D faces.

マルチプレクサ23は、受信コイルとしてコイル14A~14Dを順次選択する。受信コイルとしてのコイル14Aは、送信コイルとしてのコイル14Dが対向する配管1の表層部から伝播されて配管1の内部の欠陥2で反射されて受信コイルとしてのコイル14Aが対向する配管1の表層部に戻ってきた超音波により、受信信号を発生する。受信コイルとしてのコイル14Bは、送信コイルとしてのコイル14Dが対向する配管1の表層部から伝播されて配管1の内部の欠陥2で反射されて受信コイルとしてのコイル14Bが対向する配管1の表層部に戻ってきた超音波により、受信信号を発生する。受信コイルとしてのコイル14Cは、送信コイルとしてのコイル14Dが対向する配管1の表層部から伝播されて配管1の内部の欠陥2で反射されて受信コイルとしてのコイル14Cが対向する配管1の表層部に戻ってきた超音波により、受信信号を発生する。受信コイルとしてのコイル14Dは、送信コイルとしてのコイル14Dが対向する配管1の表層部から伝播されて配管1の内部の欠陥2で反射されて受信コイルとしてのコイル14Dが対向する配管1の表層部に戻ってきた超音波により、受信信号を発生する。 The multiplexer 23 sequentially selects the coils 14A to 14D as the receiving coil. The coil 14A as a receiving coil is propagated from the surface layer portion of the pipe 1 facing the coil 14D as a transmitting coil, reflected by a defect 2 inside the pipe 1, and the surface layer of the pipe 1 facing the coil 14A as a receiving coil. The received signal is generated by the ultrasonic waves returned to the unit. The coil 14B as a receiving coil is propagated from the surface layer portion of the pipe 1 facing the coil 14D as a transmitting coil, reflected by a defect 2 inside the pipe 1, and the surface layer of the pipe 1 facing the coil 14B as a receiving coil. The received signal is generated by the ultrasonic waves returned to the unit. The coil 14C as a receiving coil is propagated from the surface layer portion of the pipe 1 facing the coil 14D as a transmitting coil, reflected by a defect 2 inside the pipe 1, and the surface layer of the pipe 1 facing the coil 14C as a receiving coil. The received signal is generated by the ultrasonic waves returned to the unit. The coil 14D as a receiving coil is propagated from the surface layer portion of the pipe 1 facing the coil 14D as a transmitting coil, reflected by a defect 2 inside the pipe 1, and the surface layer of the pipe 1 facing the coil 14D as a receiving coil. The received signal is generated by the ultrasonic waves returned to the unit.

レシーバ24は、送信コイルとしてコイル14Dが選択された場合のコイル14Aの受信信号W41、コイル14Bの受信信号W42、コイル14Cの受信信号W43、及びコイル14Dの受信信号W44を、マルチプレクサ23を介し取得してデータ収録部25に出力する。 The receiver 24 combines the received signal W 41 of the coil 14A, the received signal W 42 of the coil 14B, the received signal W 43 of the coil 14C, and the received signal W 44 of the coil 14D when the coil 14D is selected as the transmitting coil. It is acquired via 23 and output to the data recording unit 25.

データ収録部25は、上述した受信信号を、対応する送信コイルと受信コイルの組合せの情報と共に収録する。但し、例えば検査領域を限定したい場合や不良なコイルが存在する場合など、必要に応じて、送信コイルと受信コイルの組合せを変更してもよい。 The data recording unit 25 records the above-mentioned received signal together with information on the combination of the corresponding transmitting coil and the receiving coil. However, the combination of the transmitting coil and the receiving coil may be changed as necessary, for example, when it is desired to limit the inspection area or when there is a defective coil.

計算装置30は、配管1の内部の位置毎に、その位置で超音波が反射されたと仮定した場合の送信コイルと受信コイルの組合せに応じた超音波の伝播時間に基づき、その位置に対応する複数の受信信号の強度(振幅)を抽出して合算し、合算した強度の分布を示す探傷画像を生成する。その詳細を説明する。 The calculation device 30 corresponds to each position inside the pipe 1 based on the propagation time of the ultrasonic wave according to the combination of the transmission coil and the reception coil when it is assumed that the ultrasonic wave is reflected at that position. The intensities (amplitudes) of a plurality of received signals are extracted and added up to generate a flaw detection image showing the combined intensity distribution. The details will be explained.

例えば図5で示すように配管1の内部の位置(xi,zi)に欠陥2が存在すると仮定すれば、送信コイルが対向する配管1の表層部で発生した超音波が伝播経路F1に沿って伝播し、欠陥2で反射された超音波が伝播経路F2に沿って伝播し、受信コイルが対向する配管1の表層部に戻ってくる。送信コイルが対向する配管1の表層部の位置(xm,zm)とすれば、伝播経路F1における超音波の伝播時間τmiは、下記の式(2)で与えられる。また、受信コイルが対向する配管1の表層部の位置(xn,zn)とすれば、伝播経路F2における超音波の伝播時間τniは、下記の式(3)で与えられる。したがって、伝播経路(F1+F2)における超音波の伝播時間は(τmi+τni)で与えられる。 For example, assuming that the defect 2 exists at the internal position (xi, zi) of the pipe 1 as shown in FIG. 5, the ultrasonic wave generated in the surface layer portion of the pipe 1 facing the transmission coil is along the propagation path F1. The ultrasonic wave propagating and reflected by the defect 2 propagates along the propagation path F2 and returns to the surface layer portion of the pipe 1 facing the receiving coil. Assuming that the position (xm, zm) of the surface layer portion of the pipe 1 facing the transmission coil, the propagation time τmi of the ultrasonic wave in the propagation path F1 is given by the following equation (2). Further, assuming that the position (xn, Zn) of the surface layer portion of the pipe 1 facing the receiving coil, the propagation time τni of the ultrasonic wave in the propagation path F2 is given by the following equation (3). Therefore, the propagation time of the ultrasonic wave in the propagation path (F1 + F2) is given by (τmi + τni).

Figure 2022103832000003
Figure 2022103832000003

Figure 2022103832000004
Figure 2022103832000004

Figure 2022103832000005
Figure 2022103832000005

計算装置30は、配管1の内部の位置(xi,zi)毎に、送信コイルと受信コイルの組合せに応じた超音波の伝播時間(τmi+τni)に基づき、位置(xi,zi)に対応する複数の受信信号の強度Wnm(τmi+τni)を抽出して合算する。すなわち、上記の式(4)(但し、本実施形態では、N=4)を用いて、配管1の内部の位置(xi,zi)に対応する強度(合算値)Siを算出する。そして、強度Siを画素値に変換して、強度Siの分布を示す探傷画像を生成する。計算装置30は、生成した探傷画像を表示装置40に出力して表示させる。 A plurality of calculation devices 30 correspond to the positions (xi, zi) based on the ultrasonic wave propagation time (τmi + τni) according to the combination of the transmission coil and the reception coil for each position (xi, zi) inside the pipe 1. The strength W nm (τmi + τni) of the received signal of is extracted and added up. That is, using the above equation (4) (however, in this embodiment, N = 4), the strength (total value) Si corresponding to the internal position (xi, zi) of the pipe 1 is calculated. Then, the intensity Si is converted into a pixel value to generate a flaw detection image showing the distribution of the intensity Si. The calculation device 30 outputs the generated flaw detection image to the display device 40 and displays it.

以上のように本実施形態においては、配管1の周方向(言い換えれば、電磁超音波探触子10の磁石11の配列方向に垂直な方向)における配管1の探傷走査を行うことができる。そのため、電磁超音波探触子10の位置を固定しても、広範囲の検査を行うことができる。また、複数の電磁超音波探触子10を配管1の周方向に配置する場合に、それらの間隔を大きくすることができる。 As described above, in the present embodiment, the flaw detection scan of the pipe 1 can be performed in the circumferential direction of the pipe 1 (in other words, the direction perpendicular to the arrangement direction of the magnets 11 of the electromagnetic ultrasonic probe 10). Therefore, even if the position of the electromagnetic ultrasonic probe 10 is fixed, a wide range of inspections can be performed. Further, when a plurality of electromagnetic ultrasonic probes 10 are arranged in the circumferential direction of the pipe 1, the distance between them can be increased.

なお、電磁超音波探触子10のコイルのピッチpに関し、下記の式(5)の条件を満たすことが好ましい。式中のσは、xz座標系における超音波の代表偏向角である(図5参照)。これにより、所謂グレーティングローブによるアーチファクトを抑えることができる。 It is preferable that the condition of the following equation (5) is satisfied with respect to the pitch p of the coil of the electromagnetic ultrasonic probe 10. Σ in the equation is a representative deflection angle of ultrasonic waves in the xz coordinate system (see FIG. 5). This makes it possible to suppress artifacts caused by so-called grating lobes.

Figure 2022103832000006
Figure 2022103832000006

また、本実施形態の探傷装置20は、探触子10のコイル14A~14Dを選択的にパルサ22と接続するデマルチプレクサ21と、探触子10のコイル14A~14Dを選択的にレシーバ24と接続するマルチプレクサ23とを備える。そのため、デマルチプレクサ21を備えず、コイル14A~14Dにそれぞれ接続する複数のパルサを備える場合や、マルチプレクサ23を備えず、コイル14A~14Dにそれぞれ接続する複数のレシーバを備える場合と比べ、探傷装置20の小型化及びコスト低減を図ることができる。 Further, in the flaw detector 20 of the present embodiment, the demultiplexer 21 that selectively connects the coils 14A to 14D of the probe 10 to the pulser 22, and the receiver 24 that selectively connects the coils 14A to 14D of the probe 10 to the receiver 24. It includes a multiplexer 23 to be connected. Therefore, as compared with the case where the demultiplexer 21 is not provided and a plurality of pulsars connected to the coils 14A to 14D are provided, or the case where the multiplexer 23 is not provided and a plurality of receivers connected to the coils 14A to 14D are provided, the flaw detection device is provided. It is possible to reduce the size and cost of 20.

なお、上記一実施形態において、特に説明しなかったが、探傷装置20は、送信コイルに印加する送信信号の周波数を可変して、超音波の送信角θを可変してもよい。すなわち、配管1の軸方向(言い換えれば、磁石11の配列方向)における配管1の探傷走査を行ってもよい。 Although not particularly described in the above embodiment, the flaw detector 20 may change the frequency of the transmission signal applied to the transmission coil to change the transmission angle θ of the ultrasonic wave. That is, the flaw detection scan of the pipe 1 in the axial direction of the pipe 1 (in other words, the arrangement direction of the magnets 11) may be performed.

また、上記一実施形態において、計算装置30は、探傷画像を表示装置40に出力して表示させる場合を例にとって説明したが、これに限られず、例えば、印刷機に出力して印刷させてもよいし、あるいは、記憶媒体に出力して記憶させてもよい。 Further, in the above embodiment, the case where the calculation device 30 outputs and displays the flaw detection image on the display device 40 has been described as an example, but the present invention is not limited to this, and for example, the calculation device 30 may be output to a printing machine for printing. Alternatively, it may be output to a storage medium and stored.

また、上記一実施形態において、電磁超音波探触子10は、4つのコイル14A~14Dを備えた場合を例にとって説明したが、これに限られない。電磁超音波探触子10は、2つ、3つ、又は5つ以上のコイルを備えてもよい。コイルの数にかかわらず、コイルと配管1の表面の間の距離を維持することが可能であるから、感度を維持することが可能である。 Further, in the above embodiment, the case where the electromagnetic ultrasonic probe 10 includes four coils 14A to 14D has been described as an example, but the present invention is not limited to this. The electromagnetic ultrasonic probe 10 may include two, three, or five or more coils. Since it is possible to maintain the distance between the coil and the surface of the pipe 1 regardless of the number of coils, it is possible to maintain the sensitivity.

また、上記一実施形態において、複数の磁石11は、配管1の軸方向に且つ一列に配列された場合を例にとって説明したが、これに限られず、配管1の軸方向に且つ複数列に配列されてもよい。また、上記一実施形態において、被検体は、配管1である場合を例にとって説明したが、これに限られず、例えば平板であってもよい。 Further, in the above embodiment, the case where the plurality of magnets 11 are arranged in the axial direction and in a row of the pipe 1 has been described as an example, but the present invention is not limited to this, and the magnets 11 are arranged in a plurality of rows in the axial direction of the pipe 1. May be done. Further, in the above embodiment, the case where the subject is the pipe 1 has been described as an example, but the subject is not limited to this, and may be, for example, a flat plate.

1 配管(被検体)
10 電磁超音波探触子
11 磁石
13 磁石アレイ
14A~14D コイル
20 探傷装置
30 計算装置
1 Piping (subject)
10 Electromagnetic ultrasonic probe 11 Magnet 13 Magnet array 14A-14D Coil 20 flaw detector 30 Arithmetic logic unit

Claims (3)

被検体の表面に沿う一方向に配列され、前記被検体の前記表面に垂直な方向の一方側がN極となるかS極となるよう交互に配置された複数の磁石を有する磁石アレイ、及び前記被検体の前記表面に沿い且つ前記一方向に垂直な他の方向を中心軸として前記磁石アレイの周囲に巻き回され、前記他の方向に互いに離間された複数のコイルを備えた電磁超音波探触子と、
前記複数のコイルのうちの送信コイルと受信コイルの組合せを選択して、前記送信コイルに送信信号を印加して前記送信コイルが対向する前記被検体の表層部に超音波を発生させると共に、前記被検体の内部で反射されて前記受信コイルが対向する前記被検体の表層部に戻ってきた超音波によって前記受信コイルに発生した受信信号を取得することにより、前記送信コイルと前記受信コイルの組合せに対応する複数の受信信号を収録する探傷装置と、
前記被検体の内部の位置毎に、前記位置で超音波が反射されたと仮定した場合の前記送信コイルと前記受信コイルの組合せに応じた超音波の伝播時間に基づき、前記位置に対応する前記複数の受信信号の強度を抽出して合算し、合算した強度の分布を示す探傷画像を生成する計算装置とを備えたことを特徴とする電磁超音波検査装置。
A magnet array having a plurality of magnets arranged in one direction along the surface of the subject and alternately arranged so that one side of the subject in a direction perpendicular to the surface becomes an N pole or an S pole, and the said. An electromagnetic ultrasonic probe with a plurality of coils wound around the magnet array along the surface of the subject and around the other direction perpendicular to the one direction and separated from each other in the other direction. With a magnet,
A combination of a transmitting coil and a receiving coil among the plurality of coils is selected, and a transmitting signal is applied to the transmitting coil to generate ultrasonic waves on the surface layer portion of the subject to which the transmitting coil faces. A combination of the transmitting coil and the receiving coil by acquiring a received signal generated in the receiving coil by ultrasonic waves reflected inside the subject and returned to the surface layer portion of the subject facing the receiving coil. A flaw detector that records multiple received signals corresponding to
The plurality corresponding to the position based on the propagation time of the ultrasonic wave according to the combination of the transmission coil and the reception coil when it is assumed that the ultrasonic wave is reflected at the position for each position inside the subject. An electromagnetic ultrasonic inspection device provided with a calculation device that extracts and adds up the strengths of the received signals of the above and generates a flaw detection image showing the distribution of the total strengths.
請求項1に記載の電磁超音波検査装置において、
前記探傷装置は、前記送信コイルに印加する送信信号の周波数を可変することを特徴とする電磁超音波検査装置。
In the electromagnetic ultrasonic inspection apparatus according to claim 1,
The flaw detector is an electromagnetic ultrasonic inspection device characterized in that the frequency of a transmission signal applied to the transmission coil is variable.
請求項1に記載の電磁超音波検査装置において、
前記探傷装置は、前記複数のコイルのうちのいずれかを前記送信コイルとして選択するデマルチプレクサと、前記デマルチプレクサで選択された前記送信コイルに送信信号を印加するパルサと、前記複数のコイルのうちのいずれかを前記受信コイルとして選択するマルチプレクサと、前記マルチプレクサで選択された前記受信コイルの受信信号を取得するレシーバとを備えたことを特徴とする電磁超音波検査装置。
In the electromagnetic ultrasonic inspection apparatus according to claim 1,
The flaw detector includes a demultiplexer that selects one of the plurality of coils as the transmission coil, a pulser that applies a transmission signal to the transmission coil selected by the demultiplexer, and the plurality of coils. An electromagnetic ultrasonic inspection apparatus comprising: a multiplexer that selects any one of the above as the receiving coil, and a receiver that acquires a received signal of the receiving coil selected by the multiplexer.
JP2020218706A 2020-12-28 2020-12-28 Electromagnetic ultrasonic inspection equipment Active JP7482771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020218706A JP7482771B2 (en) 2020-12-28 2020-12-28 Electromagnetic ultrasonic inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020218706A JP7482771B2 (en) 2020-12-28 2020-12-28 Electromagnetic ultrasonic inspection equipment

Publications (2)

Publication Number Publication Date
JP2022103832A true JP2022103832A (en) 2022-07-08
JP7482771B2 JP7482771B2 (en) 2024-05-14

Family

ID=82280258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020218706A Active JP7482771B2 (en) 2020-12-28 2020-12-28 Electromagnetic ultrasonic inspection equipment

Country Status (1)

Country Link
JP (1) JP7482771B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4232557A (en) 1979-04-23 1980-11-11 Rockwell International Corporation Periodic magnet unidirectional transducer
JP7163215B2 (en) 2018-03-20 2022-10-31 株式会社神戸製鋼所 Slab internal state determination device and method, and continuous casting device
JP7120917B2 (en) 2018-12-27 2022-08-17 日立Geニュークリア・エナジー株式会社 Ultrasonic flaw detection method and apparatus

Also Published As

Publication number Publication date
JP7482771B2 (en) 2024-05-14

Similar Documents

Publication Publication Date Title
Isla et al. EMAT phased array: A feasibility study of surface crack detection
US11041831B2 (en) Ultrasonic probe, ultrasonic flaw detection apparatus and method
JP7120917B2 (en) Ultrasonic flaw detection method and apparatus
KR101061590B1 (en) Magnetostrictive transducers, structural diagnostic devices and structural diagnostic methods using the same
US8857263B2 (en) Ultrasonic probe and method for the nondestructive testing of a planar test specimen
JP5183422B2 (en) Three-dimensional ultrasonic imaging method and apparatus
JP2013079949A (en) Imaging system and method
WO2009104811A1 (en) Ultrasonic measurement device and ultrasonic measurement method
JP6248183B2 (en) Ultrasonic inspection apparatus and ultrasonic inspection method
WO2014190268A1 (en) Flexural modes in non-destructive testing and inspection
Yang et al. FRF-based lamb wave phased array
Harvey et al. Finite element analysis of ultrasonic phased array inspections on anisotropic welds
Young et al. Nonlinearity from stress corrosion cracking as a function of chloride exposure time using the time reversed elastic nonlinearity diagnostic
JP2012117825A (en) Ultrasonic sensor and ultrasonic flaw detection device
Elliott et al. Sizing subwavelength defects with ultrasonic imagery: An assessment of super-resolution imaging on simulated rough defects
JP2010266416A (en) Method of processing phased array aperture synthesis and method of evaluating application effect thereof
JP4644621B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
Nanekar et al. SAFT-assisted sound beam focusing using phased arrays (PA-SAFT) for non-destructive evaluation
Dixon et al. The wave-field from an array of periodic emitters driven simultaneously by a broadband pulse
JP2005351718A (en) Omnidirectional flaw detection probe
JP2022103832A (en) Electromagnetic ultrasonic inspection device
JP6463962B2 (en) Ultrasonic flaw detection system and inspection method
JP2005214686A (en) Electromagnetic ultrasonic probe and ultrasonic flaw detection method
KR101877769B1 (en) Apparatus for hybrid multi-frequency ultrasound phased array imaging
JP2011137768A (en) Ultrasonic array sensor and ultrasonic measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230516

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240430

R150 Certificate of patent or registration of utility model

Ref document number: 7482771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150