JP2022102349A - Resin composition for fiber-reinforced composite material, and fiber-reinforced composite material using the same - Google Patents

Resin composition for fiber-reinforced composite material, and fiber-reinforced composite material using the same Download PDF

Info

Publication number
JP2022102349A
JP2022102349A JP2020217033A JP2020217033A JP2022102349A JP 2022102349 A JP2022102349 A JP 2022102349A JP 2020217033 A JP2020217033 A JP 2020217033A JP 2020217033 A JP2020217033 A JP 2020217033A JP 2022102349 A JP2022102349 A JP 2022102349A
Authority
JP
Japan
Prior art keywords
fiber
reinforced composite
composite material
resin
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020217033A
Other languages
Japanese (ja)
Inventor
康幸 ▲高▼尾
Yasuyuki Takao
裕一 谷口
Yuichi Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2020217033A priority Critical patent/JP2022102349A/en
Publication of JP2022102349A publication Critical patent/JP2022102349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Abstract

To provide a resin composition for a fiber-reinforced composite material which is excellent in fracture toughness without impairing low viscosity and heat resistance, and a method for producing the same.SOLUTION: A two-pack type resin composition is composed of a main agent of an epoxy resin, and a curing agent, in which the main agent contains 30 wt.% or more of an epoxy resin (A) such as a bisphenol F type epoxy resin and a phenol novolac type epoxy resin, the curing agent contains 70 wt.% or more of an alicyclic diamine compound (B) represented by the following formula (2), a blending ratio of the main agent to the curing agent (weight of curing agent/active hydrogen equivalent of curing agent)/(weight of main agent/epoxy equivalent of main agent) is in a range of 0.90-1.30, and fracture toughness (K1c) of a cured product when cured at 150°C for 2 hours is 1.5 MPa/√m or more. In the formula (2), R1 and R2 independently represent H and CH3.SELECTED DRAWING: None

Description

本発明は、低粘度かつ破壊靭性に優れた繊維強化複合材料用の樹脂組成物と、それを用いた繊維強化複合材料及びこれを用いた繊維強化成形体の製造方法に関する。 The present invention relates to a resin composition for a fiber-reinforced composite material having low viscosity and excellent breaking toughness, a fiber-reinforced composite material using the same, and a method for producing a fiber-reinforced molded body using the same.

繊維強化複合材料は、一般に、ガラス繊維、アラミド繊維や炭素繊維等の強化繊維と、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂、ベンゾオキサジン樹脂、シアネート樹脂、ビスマレイミド樹脂等の熱硬化性マトリクス樹脂から構成され、軽量かつ、強度、耐食性や耐疲労性等の機械物性に優れることから、航空機、自動車、土木建築およびスポーツ用品等の構造材料として幅広く適応されている。 Fiber reinforced composite materials generally include reinforced fibers such as glass fiber, aramid fiber and carbon fiber, and heat such as unsaturated polyester resin, vinyl ester resin, epoxy resin, phenol resin, benzoxazine resin, cyanate resin and bismaleimide resin. Since it is composed of a curable matrix resin and is lightweight and has excellent mechanical properties such as strength, corrosion resistance and fatigue resistance, it is widely applied as a structural material for aircraft, automobiles, civil engineering and construction and sporting goods.

近年、環境問題の高まりから自動車等において従来のガソリンを用いる内燃機関からより環境負荷の低い天然ガスを使用した内燃機関、さらには二酸化炭素を排出しない水素ガスを用いた燃料電池自動車が実用化されている。これら自動車等の移動体に搭載する天然ガスや水素ガスの貯蔵タンクにはその軽量性からタンクライナーを繊維強化複合材料で補強した圧力容器が利用されている。ここで使用される強化繊維としてはガラス繊維、炭素繊維等が使用できるが、中でも炭素繊維は比強度が高く圧力容器軽量化のメリットが大きく、天然ガスの貯蔵タンクよりも高い耐圧性能が要求される水素ガスの貯蔵タンクに好適に使用されている。この貯蔵タンクに用いられる繊維強化複合材料には繊維の強度が必要なことはもちろんのこと、マトリックス樹脂についても高い破壊靭性と耐熱性が要求される。 In recent years, due to growing environmental problems, conventional internal combustion engines that use gasoline, internal combustion engines that use natural gas with a lower environmental load, and fuel cell vehicles that use hydrogen gas that does not emit carbon dioxide have been put into practical use. ing. A pressure vessel in which a tank liner is reinforced with a fiber-reinforced composite material is used for a storage tank for natural gas or hydrogen gas mounted on a moving body such as an automobile because of its light weight. Glass fiber, carbon fiber, etc. can be used as the reinforcing fiber used here, but among them, carbon fiber has a high specific strength and has a great merit of reducing the weight of the pressure vessel, and is required to have higher pressure resistance than the natural gas storage tank. It is suitably used for storage tanks for hydrogen gas. The fiber-reinforced composite material used in this storage tank is required to have fiber strength, and the matrix resin is also required to have high fracture toughness and heat resistance.

これら繊維強化複合材料の製造方法は、熱硬化性のマトリクス樹脂が予め強化繊維へ含浸されたプリプレグを用いたオートクレーブ成形法またはプレス成形法、マトリックス樹脂を含侵したトウプリプレグをライナーに巻き付けたのちに硬化させるフィラメントワインディング成形法、強化繊維へ液状のマトリクス樹脂を含浸させる工程と熱硬化による成形工程を含むレジントランスファー成形法等の手法によって実施される。このうちプリプレグを用いずに含浸と成形を行うレジントランスファー成形法は、成型速度を早くすることが可能なことから生産性を向上させる成形法として検討が進められている。 The method for producing these fiber-reinforced composite materials is an autoclave molding method or a press molding method using a prepreg in which a thermosetting matrix resin is pre-impregnated in the reinforcing fibers, and a tow prepreg impregnated with the matrix resin is wound around a liner. It is carried out by a method such as a filament winding molding method for curing, a resin transfer molding method including a step of impregnating a reinforcing fiber with a liquid matrix resin and a molding step by thermosetting. Of these, the resin transfer molding method, in which impregnation and molding are performed without using a prepreg, is being studied as a molding method for improving productivity because the molding speed can be increased.

このレジントランスファー成形法においては高い生産性を確保する目的から、速やかに強化繊維に含浸させるためにマトリックス樹脂の粘度は充填温度では十分に低いことが求められている。また、マトリックス樹脂を強化繊維に含浸させた後、生産性を高めるために速やかに硬化することが求められることから、硬化速度の速いマトリクス樹脂が求められている。さらに、これらの成形法では、硬化後において成形物を金型から脱型する工程が含まれており、高い生産性を確保するためには硬化速度が速いだけでなく脱型性にも優れるマトリクス樹脂組成物が求められている。 In this resin transfer molding method, in order to ensure high productivity, the viscosity of the matrix resin is required to be sufficiently low at the filling temperature in order to quickly impregnate the reinforcing fibers. Further, since it is required that the reinforcing fibers are impregnated with the matrix resin and then rapidly cured in order to increase the productivity, a matrix resin having a high curing rate is required. Furthermore, these molding methods include a step of removing the molded product from the mold after curing, and in order to ensure high productivity, a matrix that not only has a high curing speed but also has excellent mold removal properties. A resin composition is required.

従来、レジントランスファー成形法では、不飽和ポリエステル樹脂、ビニルエステル樹脂、ウレタン樹脂やエポキシ樹脂等の熱硬化性樹脂が用いられてきた。ラジカル重合性を有する不飽和ポリエステル樹脂、ビニルエステル樹脂は低粘度であり速硬化性に優れるものの、成形時の硬化収縮が大きく、成形物の耐熱性、強度や靱性等の機械物性が相対的に低いという課題がある。ウレタン樹脂は速硬化性に優れ、強度や靱性の高い成形物が得られるものの、成形物の耐熱性が低い、吸水率が高いという課題がある。エポキシ樹脂は硬化性が遅く、破壊靭性が十分でないという課題がある。 Conventionally, in the resin transfer molding method, thermosetting resins such as unsaturated polyester resin, vinyl ester resin, urethane resin and epoxy resin have been used. Although unsaturated polyester resin and vinyl ester resin having radical polymerizable properties have low viscosity and excellent quick-curing property, they have a large curing shrinkage during molding, and the mechanical properties such as heat resistance, strength and toughness of the molded product are relatively good. There is a problem that it is low. Urethane resin is excellent in quick-curing property, and although a molded product having high strength and toughness can be obtained, there are problems that the heat resistance of the molded product is low and the water absorption rate is high. Epoxy resin has a problem that the curability is slow and the fracture toughness is not sufficient.

特許文献1、2には、エポキシ樹脂と特定のフェノール化合物の組み合わせにより樹脂組成物の速硬化性を付与させた取り組みがなされているものの、貯蔵タンクに用いられる繊維強化複合材料のマトリックス樹脂としては十分な破壊靭性を有しているかについては記載がない。 Although Patent Documents 1 and 2 make efforts to impart fast-curing properties of the resin composition by combining an epoxy resin and a specific phenol compound, the matrix resin of the fiber-reinforced composite material used for the storage tank is used. There is no description as to whether it has sufficient breaking toughness.

特許文献3にはマトリックス樹脂を高破壊靭性化する方法として、マトリックス樹脂に熱可塑性樹脂やゴム粒子などの高靭性高分子化合物を添加する方法が提案されている。しかしながら、高分子化合物を添加すると靭性は高まるものの、マトリックス樹脂組成物の粘度が高くなるため、レジントランスファー成形法、リキッドコンプレッション成形法への適用は困難である。 Patent Document 3 proposes a method of adding a high toughness polymer compound such as a thermoplastic resin or rubber particles to the matrix resin as a method of increasing the fracture toughness of the matrix resin. However, although the toughness is increased by adding the polymer compound, the viscosity of the matrix resin composition is increased, so that it is difficult to apply to the resin transfer molding method and the liquid compression molding method.

特許文献4には60℃以下の比較的低温において、粘度上昇が小さいために樹脂含浸性に優れ、しかも1時間以内の短時間で脱型可能な硬化物となるエポキシ樹脂が提案されている。しかしながら、このエポキシ樹脂組成物については意匠性に優れた表面平滑性の高い成形物を得ることが目的であり、貯蔵タンクに用いられる繊維強化複合材料のマトリックス樹脂としては十分な破壊靭性を有しているかについては記載がない。 Patent Document 4 proposes an epoxy resin that is excellent in resin impregnation property because the viscosity increase is small at a relatively low temperature of 60 ° C. or lower, and is a cured product that can be demolded in a short time within 1 hour. However, the purpose of this epoxy resin composition is to obtain a molded product with excellent design and high surface smoothness, and it has sufficient fracture toughness as a matrix resin of a fiber reinforced composite material used for a storage tank. There is no description as to whether it is.

特許文献5にはエポキシ樹脂と開鎖ポリアミンとメチレンビスシクロヘキシル構造を有するアミン化合物を含有する硬化性組成物について破壊靭性が高くなると記載されている。しかしながら実施例に示されている破壊靭性は1.0MPa/√m程度であることから、貯蔵タンクに用いられる繊維強化複合材料のマトリックス樹脂として用いるには不十分であり、より破壊靭性の高いマトリックス樹脂が要求されている。 Patent Document 5 describes that a curable composition containing an epoxy resin, an open chain polyamine, and an amine compound having a methylenebiscyclohexyl structure has high fracture toughness. However, since the fracture toughness shown in the examples is about 1.0 MPa / √m, it is insufficient to be used as a matrix resin for a fiber-reinforced composite material used in a storage tank, and a matrix having higher fracture toughness. Resin is required.

WO2019/171991WO2019 / 171991 特許5576789号公報Japanese Patent No. 5576789 特開平8-27360号公報Japanese Unexamined Patent Publication No. 8-27360 特開2009-102563号公報Japanese Unexamined Patent Publication No. 2009-102563 特許第6312711号公報Japanese Patent No. 6312711

本発明は、低粘度性と耐熱性を損なうことなく、破壊靭性に優れた繊維強化複合材料用の樹脂組成物を提供することを目的とする。更に、繊維強化複合材料及び繊維強化成形体を生産性良く得ることができる樹脂組成物又は製造方法を提供することを目的とする。 An object of the present invention is to provide a resin composition for a fiber-reinforced composite material having excellent fracture toughness without impairing low viscosity and heat resistance. Further, it is an object of the present invention to provide a resin composition or a production method capable of obtaining a fiber-reinforced composite material and a fiber-reinforced molded product with high productivity.

本発明者らは、前述の課題を解決するため検討を行った結果、特定の構造を有するエポキシ樹脂を含む主剤と、特定の構造を有するアミン化合物を硬化剤に用いることにより、前記課題を解決することを見出し、本発明を完成させるに至った。 As a result of studies to solve the above-mentioned problems, the present inventors have solved the above-mentioned problems by using a main agent containing an epoxy resin having a specific structure and an amine compound having a specific structure as a curing agent. It was found that the present invention was completed.

すなわち、 エポキシ樹脂の主剤と、硬化剤とからなる2液型の樹脂組成物であって、主剤が下記式(1)で表されるエポキシ樹脂(A)を30重量%以上含み、硬化剤が下記式(2)で表される脂環ジアミン化合物(B)を70重量%以上含み、主剤と硬化剤との配合比(硬化剤の重量/硬化剤の活性水素当量)/(主剤の重量/主剤のエポキシ当量)が0.90~1.30の範囲であり、150℃、2時間で硬化させたときの硬化物の破壊靭性(K1c)が1.5MPa/√m以上であることを特徴とする繊維強化複合材用樹脂組成物である。

Figure 2022102349000001

(式中、nは0以上の整数を表し、0~5である)
Figure 2022102349000002

(式中、R、Rは独立にH、CHを表す) That is, it is a two-component resin composition composed of a main agent of an epoxy resin and a curing agent, and the main agent contains 30% by weight or more of the epoxy resin (A) represented by the following formula (1), and the curing agent is Contains 70% by weight or more of the alicyclic diamine compound (B) represented by the following formula (2), and the blending ratio of the main agent and the curing agent (weight of the curing agent / active hydrogen equivalent of the curing agent) / (weight of the main agent / The epoxy equivalent of the main agent) is in the range of 0.90 to 1.30, and the breaking toughness (K1c) of the cured product when cured at 150 ° C. for 2 hours is 1.5 MPa / √m or more. It is a resin composition for a fiber-reinforced composite material.
Figure 2022102349000001

(In the formula, n represents an integer of 0 or more and is 0 to 5)
Figure 2022102349000002

(In the formula, R 1 and R 2 independently represent H and CH 3 )

本発明の繊維強化複合材用樹脂組成物は、150℃、2時間で硬化させたときの硬化物のガラス転移温度が120℃以上であることを特徴とする。 The resin composition for a fiber-reinforced composite material of the present invention is characterized in that the glass transition temperature of the cured product when cured at 150 ° C. for 2 hours is 120 ° C. or higher.

本発明の他の形態は、上記繊維強化複合材料用樹脂組成物に、強化繊維を配合してなることを特徴とする繊維強化複合材料である。この場合、強化繊維の体積含有率が45~70%であることが好ましい。 Another embodiment of the present invention is a fiber-reinforced composite material characterized by blending reinforcing fibers with the resin composition for a fiber-reinforced composite material. In this case, the volume content of the reinforcing fibers is preferably 45 to 70%.

本発明は、上記繊維強化複合材料を、レジントランスファー成形法、またはリキッドコンプレッション成形法で成形することを特徴とする成形体の製造方法である。 The present invention is a method for producing a molded product, which comprises molding the fiber-reinforced composite material by a resin transfer molding method or a liquid compression molding method.

本発明の繊維強化複合材料用樹脂組成物は、低粘度で良好な強化繊維への含浸性を有し、かつ比較的短時間での硬化性を示す。そのため、繊維強化複合材料をレジントランスファー成形法によって成形体とするために使用される繊維強化複合材料用樹脂組成物として適する。更に、硬化して得られる成形物は破壊靭性が高く、かつガラス転移温度が高いものとなる。 The resin composition for a fiber-reinforced composite material of the present invention has a low viscosity, good impregnation into reinforcing fibers, and exhibits curability in a relatively short time. Therefore, it is suitable as a resin composition for a fiber-reinforced composite material used for forming a fiber-reinforced composite material into a molded product by a resin transfer molding method. Further, the molded product obtained by curing has high fracture toughness and a high glass transition temperature.

以下、本発明の実施の形態について詳細に説明する。
本発明の繊維強化複合材料用樹脂組成物は、これに強化繊維を配合して繊維強化複合材料となり、この繊維強化複合材料を硬化又は成形することにより硬化物又は成形体となる。以下、繊維強化複合材料用樹脂組成物を樹脂組成物とも言い、繊維強化複合材料を複合材料とも言う。
Hereinafter, embodiments of the present invention will be described in detail.
The resin composition for a fiber-reinforced composite material of the present invention is made into a fiber-reinforced composite material by blending the reinforcing fibers with the resin composition, and by curing or molding the fiber-reinforced composite material, a cured product or a molded product is obtained. Hereinafter, the resin composition for a fiber-reinforced composite material is also referred to as a resin composition, and the fiber-reinforced composite material is also referred to as a composite material.

本発明の樹脂組成物は、上記式(1)で表されるエポキシ樹脂(A)を含む主剤と、上記式(2)で表される脂環ジアミン化合物(B)を含む硬化剤からなる2液硬化型の樹脂組成物である。 The resin composition of the present invention comprises a main agent containing an epoxy resin (A) represented by the above formula (1) and a curing agent containing an alicyclic diamine compound (B) represented by the above formula (2). It is a liquid-curable resin composition.

主剤成分として使用するエポキシ樹脂は、上記式(1)で表される2官能以上のエポキシ樹脂(A)を必須成分として含む。具体的には、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂等が挙げられる。これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。 The epoxy resin used as the main agent component contains a bifunctional or higher functional epoxy resin (A) represented by the above formula (1) as an essential component. Specific examples thereof include bisphenol F type epoxy resin and phenol novolac type epoxy resin. These may be used alone or in combination of two or more.

主剤には、式(1)で表されるエポキシ樹脂(A)の他に、必要に応じて、それ以外のエポキシ樹脂を加えることができる。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、イソホロンビスフェノール型エポキシ樹脂等のビスフェノール型エポキシ樹脂や、これらビスフェノール型エポキシ樹脂のハロゲン、アルキル置換体、水素化物などの他、単量体に限らず複数の繰り返し単位を有する高分子量体、アルキレンオキサイド付加物のグリシジルエーテルや、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂や、3,4-エポキシ-6-メチルシクロヘキシルメチル-3,4-エポキシ-6-メチルシクロヘキサンカルボキシレ-ト、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、1-エポキシエチル-3,4-エポキシシクロヘキサン等の脂環式エポキシ樹脂や、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ポリオキシアルキレンジグリシジルエーテル等の脂肪族エポキシ樹脂や、フタル酸ジグリシジルエステルや、テトラヒドロフタル酸ジグリシジルエステルや、ダイマー酸グリシジルエステル等のグリシジルエステルや、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルジアミノジフェニルスルホン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシリレンジアミン等のグリシジルアミン類等が挙げられる。 In addition to the epoxy resin (A) represented by the formula (1), other epoxy resins can be added to the main agent, if necessary. Specifically, bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol Z type epoxy resin, and isophoron bisphenol type epoxy resin, and halogens of these bisphenol type epoxy resins, In addition to alkyl substituents and hydrides, high molecular weight bodies having multiple repeating units, not limited to monomers, glycidyl ethers with alkylene oxide adducts, cresol novolak type epoxy resins, bisphenol A novolak type epoxy resins, and other novolak Type epoxy resin, 3,4-epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methylcyclohexanecarboxylate, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 1, -Alicyclic epoxy resins such as epoxyethyl-3,4-epoxycyclohexane, aliphatic epoxy resins such as trimethylolpropane polyglycidyl ether, pentaerythritol polyglycidyl ether, and polyoxyalkylene diglycidyl ether, and diglycidyl phthalate. Epoxy, tetrahydrophthalic acid diglycidyl ester, glycidyl ester such as dimer acid glycidyl ester, tetraglycidyl diaminodiphenylmethane, tetraglycidyl diaminodiphenyl sulfone, triglycidyl aminophenol, triglycidyl aminocresol, tetraglycidyl xylylene diamine and the like. Examples include amines.

主剤については、上記式(1)で示されるエポキシ樹脂(A)が30重量%以上含まれることが必要である。上記式(1)で示されるエポキシ樹脂が30重量%未満では破壊靭性(K1c)が低くなり、繊維強化複合材料としての性能が担保できなくなる。好ましくは50重量%以上、より好ましくは60重量%以上、さらに好ましくは70重量%以上である。 The main agent needs to contain 30% by weight or more of the epoxy resin (A) represented by the above formula (1). If the epoxy resin represented by the above formula (1) is less than 30% by weight, the fracture toughness (K1c) becomes low, and the performance as a fiber-reinforced composite material cannot be guaranteed. It is preferably 50% by weight or more, more preferably 60% by weight or more, still more preferably 70% by weight or more.

硬化剤成分としては、上記式(2)で表されるメチレンビスシクロヘキシル構造を有する脂環ジアミン化合物(B)を必須成分として含む。具体的には4、4‘-メチレンビス(シクロヘキシルアミン)又は4、4’-メチレンビス(2-メチルシクロヘキシルアミン)である。これらジアミン化合物には2,4‘-及び2,2’-の異性体が含まれていてもよい。また、これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。 The curing agent component contains an alicyclic diamine compound (B) having a methylenebiscyclohexyl structure represented by the above formula (2) as an essential component. Specifically, it is 4,4'-methylenebis (cyclohexylamine) or 4,4'-methylenebis (2-methylcyclohexylamine). These diamine compounds may contain 2,4'-and 2,2'-isomers. Further, these may be used alone or in combination of two or more.

脂環ジアミン化合物(B)を含む硬化剤は、他の脂環構造を有するアミン化合物を含めることができる。具体的には、イソホロンジアミン、ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、1,2-シクロヘキサンジアミン、1,3-ビスアミノメチルシクロヘキサンなどがある。 The curing agent containing the alicyclic diamine compound (B) can include an amine compound having another alicyclic structure. Specifically, there are isophoronediamine, bis (aminomethyl) -bicyclo [2.2.1] heptane, 1,2-cyclohexanediamine, 1,3-bisaminomethylcyclohexane and the like.

硬化剤は、上記式(2)で表される脂環ジアミン化合物(B)が70重量%以上、好ましくは90重量%以上含まれることが必要である。脂環ジアミン化合物(B)が70重量%未満では破壊靭性(K1c)が低くなり、貯蔵タンク用の繊維強化複合材料としての性能が担保できなくなる。 The curing agent needs to contain 70% by weight or more, preferably 90% by weight or more of the alicyclic diamine compound (B) represented by the above formula (2). If the alicyclic diamine compound (B) is less than 70% by weight, the fracture toughness (K1c) becomes low, and the performance as a fiber-reinforced composite material for a storage tank cannot be guaranteed.

本発明の樹脂組成物では主剤と硬化剤の2液型となっている。この主剤と硬化剤の配合比率は、主剤中のエポキシ基のモル数と硬化剤中の活性水素のモル数の比率で決まる。この配合比率は(硬化剤の重量/硬化剤の活性水素当量)/(主剤の重量/主剤のエポキシ当量)で計算される値(以下当量比と記載)で示され、この値の範囲が0.90~1.30、好ましくは0.95~1.25、より好ましくは1.00~1.20であることが必要である。この値が0.90未満では樹脂の破壊靭性及びガラス転移温度が低くなる傾向があり、1.30を超えると破壊靭性は高くなるもののガラス転移温度が低くなる傾向にある。 The resin composition of the present invention is a two-component type of a main agent and a curing agent. The blending ratio of the main agent and the curing agent is determined by the ratio of the number of moles of the epoxy group in the main agent and the number of moles of the active hydrogen in the curing agent. This compounding ratio is indicated by a value calculated by (weight of curing agent / active hydrogen equivalent of curing agent) / (weight of main agent / epoxy equivalent of main agent) (hereinafter referred to as equivalent ratio), and the range of this value is 0. It needs to be .90 to 1.30, preferably 0.95 to 1.25, and more preferably 1.00 to 1.20. If this value is less than 0.90, the fracture toughness of the resin and the glass transition temperature tend to be low, and if it exceeds 1.30, the fracture toughness tends to be high but the glass transition temperature tends to be low.

主剤の粘度(25℃)は、好ましくは8500mPa・s以下、より好ましくは6500mPa・s以下、さらに好ましくは3000mPa・s以下である。硬化剤の粘度(25℃)は、好ましくは300mPa・s以下、より好ましくは200mPa・s以下、さらに好ましくは150mPa・s以下である。
これは後述するレジントランスファー成形法、リキッドコンプレッション成形法において繊維中に樹脂を充填しやすくするためであり、前述の粘度を超えると主剤、硬化剤を混合した後の粘度も高くなるため、樹脂が繊維内への充填不良、さらには成形金型への充填不良を引き起こすため、好ましくない。
The viscosity (25 ° C.) of the main agent is preferably 8500 mPa · s or less, more preferably 6500 mPa · s or less, and further preferably 3000 mPa · s or less. The viscosity (25 ° C.) of the curing agent is preferably 300 mPa · s or less, more preferably 200 mPa · s or less, still more preferably 150 mPa · s or less.
This is to make it easier to fill the resin in the fiber in the resin transfer molding method and the liquid compression molding method described later, and if the viscosity exceeds the above-mentioned viscosity, the viscosity after mixing the main agent and the curing agent also increases, so that the resin becomes It is not preferable because it causes poor filling in the fiber and further, poor filling in the molding die.

本発明の樹脂組成物には、必要により他の硬化剤成分、硬化促進剤、又は硬化触媒を含むことができる。上記他の硬化剤成分又は硬化促進剤、硬化触媒としては、例えば、三級アミン、カルボン酸、スルホン酸、ルイス酸錯体、オニウム塩、アルコール類、フェノール、フェノールノボラック、クレゾール、クレゾールノボラック、アリルフェノール、ニトロフェノール、パラアミノフェノール、メタアミノフェノール、モノ-t-ブチルフェノール、ジ-t-ブチルフェノール等のフェノール性水酸基を一つ有する化合物等が挙げられる。これらについては1種または2種以上を用いてもよい。 The resin composition of the present invention may contain other curing agent components, curing accelerators, or curing catalysts, if necessary. Examples of the other curing agent component, curing accelerator, and curing catalyst include tertiary amine, carboxylic acid, sulfonic acid, Lewis acid complex, onium salt, alcohols, phenol, phenol novolac, cresol, cresol novolak, and allylphenol. , Nitrophenol, paraaminophenol, metaaminophenol, mono-t-butylphenol, di-t-butylphenol and other compounds having one phenolic hydroxyl group. For these, one kind or two or more kinds may be used.

主剤および硬化剤には、その他の成分として、可塑剤、染料、有機顔料や無機充填剤、高分子化合物、カップリング剤、界面活性剤および溶剤など適宜配合することもできる。これらを配合する場合は反応性を考慮して主剤または硬化剤のどちらかに配合する。ただし、主剤及び硬化剤の両方に反応性がない場合は主剤、硬化剤のどちらにも配合することができる。 Other components such as plasticizers, dyes, organic pigments and inorganic fillers, polymer compounds, coupling agents, surfactants and solvents can be appropriately added to the main agent and the curing agent. When these are blended, they are blended in either the main agent or the curing agent in consideration of reactivity. However, if both the main agent and the curing agent are not reactive, they can be blended in either the main agent or the curing agent.

本発明の樹脂組成物は、エポキシ樹脂と異なる硬化性樹脂を配合することもできる。このような硬化性樹脂としては、不飽和ポリエステル樹脂、硬化性アクリル樹脂、硬化性アミノ樹脂、硬化性メラミン樹脂、硬化性ウレア樹脂、硬化性シアネートエステル樹脂、硬化性ウレタン樹脂、硬化性オキセタン樹脂、硬化性エポキシ/オキセタン複合樹脂等が挙げられるがこれらに限定されない。これらは、主剤および硬化剤に含まれる成分との反応性や粘度等を考慮して、いずれかに配合することができる。 The resin composition of the present invention may also contain a curable resin different from the epoxy resin. Examples of such curable resins include unsaturated polyester resins, curable acrylic resins, curable amino resins, curable melamine resins, curable urea resins, curable cyanate ester resins, curable urethane resins, and curable oxetane resins. Examples thereof include, but are not limited to, a curable epoxy / oxetane composite resin. These can be blended in any of them in consideration of the reactivity with the components contained in the main agent and the curing agent, the viscosity and the like.

本発明の樹脂組成物は、150℃、2時間で硬化させたときのガラス転移温度が120℃以上であるとよい。ガラス転移温度が120℃未満の場合は成形時の金型からの脱型時に変形を起こしやすくなる。 The resin composition of the present invention preferably has a glass transition temperature of 120 ° C. or higher when cured at 150 ° C. for 2 hours. If the glass transition temperature is less than 120 ° C., deformation is likely to occur when the mold is removed from the mold during molding.

本発明の樹脂組成物は、150℃、2時間で硬化させたときの硬化物の破壊靭性(K1c)が1.5MPa/√m以上である。水素ガス貯蔵タンク等の繊維強化複合材料として使用するマトリックス樹脂として有用である。好ましくは硬化物の破壊靭性(K1c)が1.7MPa/√m以上である。 The resin composition of the present invention has a fracture toughness (K1c) of 1.5 MPa / √m or more when cured at 150 ° C. for 2 hours. It is useful as a matrix resin used as a fiber-reinforced composite material for hydrogen gas storage tanks and the like. The fracture toughness (K1c) of the cured product is preferably 1.7 MPa / √m or more.

本発明の繊維強化複合材料に用いられる強化繊維としては、ガラス繊維、アラミド繊維、炭素繊維等から選ばれるが、強度に優れた繊維強化複合材料を得るためには炭素繊維を使用するのが好ましい。 The reinforcing fiber used in the fiber-reinforced composite material of the present invention is selected from glass fiber, aramid fiber, carbon fiber and the like, but it is preferable to use carbon fiber in order to obtain a fiber-reinforced composite material having excellent strength. ..

本発明の繊維強化複合材料は、上記樹脂組成物と強化繊維を含む。繊維強化複合材料における強化繊維の体積含有率は、好ましくは30~75%、より好ましくは45~75%の範囲である。この範囲にすることにより、空隙が少なく、かつ強化繊維の体積含有率が高い成形体が得られるため、優れた強度の成形材料が得られる。 The fiber-reinforced composite material of the present invention contains the above resin composition and reinforcing fibers. The volume content of the reinforcing fiber in the fiber-reinforced composite material is preferably in the range of 30 to 75%, more preferably 45 to 75%. Within this range, a molded product having few voids and a high volume content of the reinforcing fibers can be obtained, so that a molding material having excellent strength can be obtained.

繊維強化複合材料の硬化は、好ましくは主剤を50~90℃の範囲、硬化剤を20~60℃の範囲の温度で予め繊維を配置した金型等に注入し、90~160℃の温度、好ましくは100~140℃で、5~15分、好ましくは7~10分加熱硬化することで1次硬化を行う。1次硬化終了後、金型から成形体を取り出し、その後、120~160℃、好ましくは140~150℃の温度にて10~120分、好ましくは15~30分にて後硬化をおこなうことで目的とする繊維強化複合材料を得ることができる。この時、主剤と硬化剤は前述の配合比率の範囲で同時に金型へ注入してもよいが、均一性を高めるため、直前に混合してから注入することが望ましい。しかし、混合すること無く金型に注入し、繊維の存在下で混合してもよい。混合方式としては衝突混合、スタティックミキサー方式等特に制限はないが、短時間で均一混合が完了する衝突混合方式が好ましい。
また、金型への樹脂の注入温度は温度が低すぎると流動性が低下し、成形型及び繊維への充填不良が起こり好ましくない。反対に注入温度が高いとバリが発生したり、注入時に樹脂の硬化が始まりタンク内や成形型内での樹脂の硬化が速くなり、樹脂の充填が完了する前に硬化が進行することで充填不良が発生するため好ましくない。また、金型内での1次硬化時間を含む成形時間は短すぎると十分に充填されず、さらには硬化不良により脱型時に成形体が変形する恐れがあり、長すぎると生産性の低下が起こるため好ましくない。後硬化の温度は低すぎると硬化が十分に進行せず、所定の機械物性、ガラス転移温度を発現しない恐れがあり、高すぎると樹脂の酸化劣化、熱劣化を引き起こす恐れがある。
The fiber-reinforced composite material is preferably cured by injecting the main agent into a mold or the like in which fibers are arranged in advance at a temperature in the range of 50 to 90 ° C. and a curing agent in the temperature range of 20 to 60 ° C. Primary curing is performed by heating and curing at 100 to 140 ° C. for 5 to 15 minutes, preferably 7 to 10 minutes. After the completion of the primary curing, the molded product is taken out from the mold, and then post-cured at a temperature of 120 to 160 ° C., preferably 140 to 150 ° C. for 10 to 120 minutes, preferably 15 to 30 minutes. The desired fiber-reinforced composite material can be obtained. At this time, the main agent and the curing agent may be injected into the mold at the same time within the range of the above-mentioned compounding ratio, but in order to improve the uniformity, it is desirable to mix them immediately before injection. However, it may be poured into the mold without mixing and mixed in the presence of fibers. The mixing method is not particularly limited, such as collision mixing and static mixer method, but a collision mixing method that completes uniform mixing in a short time is preferable.
Further, if the temperature at which the resin is injected into the mold is too low, the fluidity decreases, and poor filling into the mold and fibers occurs, which is not preferable. On the other hand, if the injection temperature is high, burrs will occur, or the resin will start to cure at the time of injection, and the resin will cure faster in the tank or molding mold. It is not preferable because it causes defects. Further, if the molding time including the primary curing time in the mold is too short, the molded product is not sufficiently filled, and further, the molded product may be deformed at the time of demolding due to poor curing, and if it is too long, the productivity is lowered. Not preferable because it happens. If the post-curing temperature is too low, curing does not proceed sufficiently, and the predetermined mechanical properties and glass transition temperature may not be exhibited, and if it is too high, oxidative deterioration and thermal deterioration of the resin may occur.

本発明の樹脂組成物から繊維強化複合材料又は成形体を作製する方法は、特に限定されないが、レジントランスファー成形法又はリキッドコンプレッション成形法が好適である。
レジントランスファー法とは、強化繊維からなる繊維基材あるいはプリフォームを成形型内に設置し、その成形型内に液状の繊維強化複合材料用樹脂組成物を注入して強化繊維に含浸させて、繊維強化複合材料とし、その後に加熱して繊維強化複合材料を硬化させて、成形体を得る方法である。硬化条件は前述の樹脂組成物の硬化で説明した条件が適する。
リキッドコンプレッション成形法とは、あらかじめ樹脂をなじませた強化繊維からなる繊維基材あるいはプリフォームを成形型内に成形圧力を解放した状態で設置し、成形型を型締めすることで含浸と成形を同時に行い繊維強化複合材料とした後に金型を加熱して繊維強化複合材料を硬化させて、成形体を得る方法である。リキッドコンプレッション成形法の硬化条件も、前述の樹脂組成物の硬化で説明した条件が適する。
The method for producing the fiber-reinforced composite material or the molded product from the resin composition of the present invention is not particularly limited, but a resin transfer molding method or a liquid compression molding method is preferable.
In the resin transfer method, a fiber base material or preform made of reinforcing fibers is placed in a molding die, and a liquid resin composition for a fiber-reinforced composite material is injected into the molding die to impregnate the reinforcing fibers. This is a method in which a fiber-reinforced composite material is obtained and then heated to cure the fiber-reinforced composite material to obtain a molded product. As the curing conditions, the conditions described in the above-mentioned curing of the resin composition are suitable.
The liquid compression molding method is to impregnate and mold by installing a fiber base material or preform made of reinforcing fibers that have been preliminarily blended with resin in the molding die with the molding pressure released, and then molding the molding die. This is a method of obtaining a molded product by simultaneously performing the process to obtain a fiber-reinforced composite material and then heating a mold to cure the fiber-reinforced composite material. As the curing conditions of the liquid compression molding method, the conditions described in the above-mentioned curing of the resin composition are also suitable.

次に、本発明を実施例に基づいて具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。配合量を示す部は、特に断りがない限り質量部である。 Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded. The portion indicating the blending amount is a mass portion unless otherwise specified.

実施例及び比較例で使用した各成分の略号は、以下の通りである。
YD-127:ビスフェノールA型エポキシ樹脂(日鉄ケミカル&マテリアル(株)製)
YDF-1500:ビスフェノールF型エポキシ樹脂(日鉄ケミカル&マテリアル(株)製)
PACM:4、4‘-メチレンビス(シクロヘキシルアミン)
MACM:4、4‘-メチレンビス(2-メチルシクロヘキシルアミン)
NBDA:ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン(別名:ノルボルナンジアミン)
The abbreviations of each component used in Examples and Comparative Examples are as follows.
YD-127: Bisphenol A type epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd.)
YDF-1500: Bisphenol F type epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd.)
PACM: 4,4'-methylenebis (cyclohexylamine)
MACM: 4,4'-methylenebis (2-methylcyclohexylamine)
NBDA: Bis (aminomethyl) -bicyclo [2.2.1] heptane (also known as norbornane diamine)

各物性の測定または試験方法は以下のとおりである。
(エポキシ当量)
JIS K7236に準拠して測定を実施した。
(硬化剤中の活性水素当量)
JIS K7234に準拠した方法によりアミン価を求めたのち、活性水素当量を計算にて求めた。
(粘度)
主剤、硬化剤の粘度についてはE型粘度計コーンプレートタイプ(東機産業製:RE80H)を用いて25℃で測定し、測定開始から60秒経過後の値を、粘度の値とした。
(機械物性)
JIS K7162に準拠して測定を実施した。
(破壊靭性)
ASTM D5045に準拠して測定を実施した。
(ガラス転移温度)
JIS K7121に準拠し、温度範囲20~200℃、昇温速度20℃/minで2回測定をおこない、2回目の測定値をガラス転移温度とした。
The measurement or test method for each physical property is as follows.
(Epoxy equivalent)
Measurements were carried out in accordance with JIS K7236.
(Active hydrogen equivalent in the curing agent)
After determining the amine value by a method according to JIS K7234, the active hydrogen equivalent was calculated.
(viscosity)
The viscosities of the main agent and the curing agent were measured at 25 ° C. using an E-type viscometer cone plate type (manufactured by Toki Sangyo: RE80H), and the value 60 seconds after the start of the measurement was taken as the viscosity value.
(Mechanical characteristics)
Measurements were carried out in accordance with JIS K7162.
(Fracture toughness)
Measurements were performed according to ASTM D5045.
(Glass-transition temperature)
According to JIS K7121, the measurement was performed twice in a temperature range of 20 to 200 ° C. and a heating rate of 20 ° C./min, and the second measured value was taken as the glass transition temperature.

実施例1
主剤としてYDF-1500 100g、硬化剤としてPACM 31.1gをポリ容器に取り、自転・公転真空ミキサーを用いて2000rpmで20秒撹拌を実施した。得られた樹脂組成物を事前にオーブン内にて150℃に余熱した160mm×160mm×2mm厚のスペースを有する金型に流し込み、そのまま150℃で2時間して硬化物を得た。得られた硬化物の板からCNCフライス盤を用いて試験片を切り出し、それぞれの測定を実施した。その結果を表1に示す。
Example 1
100 g of YDF-1500 as the main agent and 31.1 g of PACM as the curing agent were taken in a plastic container, and stirring was carried out at 2000 rpm for 20 seconds using a rotation / revolution vacuum mixer. The obtained resin composition was poured into a mold having a space of 160 mm × 160 mm × 2 mm thick preheated to 150 ° C. in advance in an oven, and the cured product was obtained as it was at 150 ° C. for 2 hours. Test pieces were cut out from the obtained cured product plate using a CNC milling machine, and each measurement was carried out. The results are shown in Table 1.

実施例2~8
樹脂組成物の配合を表1の配合比で行った以外は、実施例1と同様の手順にて硬化物を作成し、測定を実施した。その結果を表1に示す。
Examples 2-8
A cured product was prepared and measured in the same procedure as in Example 1 except that the resin composition was blended at the blending ratio shown in Table 1. The results are shown in Table 1.

実施例9
硬化条件を150℃、20分にした以外は実施例1と同様の手順にて硬化物を作成し、測定を実施した。その結果を表1に示す。
Example 9
A cured product was prepared and measured in the same procedure as in Example 1 except that the curing conditions were set to 150 ° C. for 20 minutes. The results are shown in Table 1.

比較例1~6
樹脂組成物の配合を表2の配合比で行った以外は、実施例1と同様の手順にて硬化物を作成し、測定を実施した。その結果を表2に示す。
Comparative Examples 1 to 6
A cured product was prepared and measured in the same procedure as in Example 1 except that the resin composition was blended at the blending ratio shown in Table 2. The results are shown in Table 2.

Figure 2022102349000003
Figure 2022102349000003

Figure 2022102349000004
Figure 2022102349000004

Claims (6)

エポキシ樹脂の主剤と、硬化剤とからなる2液型の樹脂組成物であって、主剤が下記式(1)で表されるエポキシ樹脂(A)を30重量%以上含み、硬化剤が下記式(2)で表される脂環ジアミン化合物(B)を70重量%以上含み、主剤と硬化剤との配合比(硬化剤の重量/硬化剤の活性水素当量)/(主剤の重量/主剤のエポキシ当量)が0.90~1.30の範囲であり、150℃、2時間で硬化させたときの硬化物の破壊靭性(K1c)が1.5MPa/√m以上であることを特徴とする繊維強化複合材用樹脂組成物。
Figure 2022102349000005

(式中、nは0以上の整数を表し、0~5である)
Figure 2022102349000006

(式中、R、Rは独立にH、CHを表す)
A two-component resin composition consisting of an epoxy resin main agent and a curing agent, wherein the main agent contains 30% by weight or more of the epoxy resin (A) represented by the following formula (1), and the curing agent is the following formula. It contains 70% by weight or more of the alicyclic diamine compound (B) represented by (2), and the compounding ratio of the main agent and the curing agent (weight of the curing agent / active hydrogen equivalent of the curing agent) / (weight of the main agent / of the main agent). The epoxy equivalent) is in the range of 0.90 to 1.30, and the breaking toughness (K1c) of the cured product when cured at 150 ° C. for 2 hours is 1.5 MPa / √ m or more. Resin composition for fiber-reinforced composite materials.
Figure 2022102349000005

(In the formula, n represents an integer of 0 or more and is 0 to 5)
Figure 2022102349000006

(In the formula, R 1 and R 2 independently represent H and CH 3 )
150℃、2時間で硬化させたときの硬化物のガラス転移温度が120℃以上であることを特徴とする請求項1記載の繊維強化複合材用樹脂組成物。 The resin composition for a fiber-reinforced composite material according to claim 1, wherein the glass transition temperature of the cured product when cured at 150 ° C. for 2 hours is 120 ° C. or higher. 請求項1または2に記載の繊維強化複合材料用樹脂組成物に、強化繊維を配合してなることを特徴とする繊維強化複合材料。 A fiber-reinforced composite material, which comprises blending reinforcing fibers with the resin composition for a fiber-reinforced composite material according to claim 1 or 2. 強化繊維の体積含有率が30~75%である請求項3に記載の繊維強化複合材料。 The fiber-reinforced composite material according to claim 3, wherein the volume content of the reinforcing fibers is 30 to 75%. 請求項3または4に記載の繊維強化複合材料の硬化物。 A cured product of the fiber-reinforced composite material according to claim 3 or 4. 請求項3または4に記載の繊維強化複合材料を、レジントランスファー成形法、またはリキッドコンプレッション成形法で成形することを特徴とする成形体の製造方法。
A method for producing a molded product, which comprises molding the fiber-reinforced composite material according to claim 3 or 4 by a resin transfer molding method or a liquid compression molding method.
JP2020217033A 2020-12-25 2020-12-25 Resin composition for fiber-reinforced composite material, and fiber-reinforced composite material using the same Pending JP2022102349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020217033A JP2022102349A (en) 2020-12-25 2020-12-25 Resin composition for fiber-reinforced composite material, and fiber-reinforced composite material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020217033A JP2022102349A (en) 2020-12-25 2020-12-25 Resin composition for fiber-reinforced composite material, and fiber-reinforced composite material using the same

Publications (1)

Publication Number Publication Date
JP2022102349A true JP2022102349A (en) 2022-07-07

Family

ID=82273427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020217033A Pending JP2022102349A (en) 2020-12-25 2020-12-25 Resin composition for fiber-reinforced composite material, and fiber-reinforced composite material using the same

Country Status (1)

Country Link
JP (1) JP2022102349A (en)

Similar Documents

Publication Publication Date Title
JP6617559B2 (en) Two-component epoxy resin composition for fiber reinforced composite material and fiber reinforced composite material
JP4972851B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP6256666B1 (en) Epoxy resin curing agent, epoxy resin composition, carbon fiber reinforced composite material
US9328237B2 (en) Two-pack type epoxy resin composition for fiber-reinforced composite materials, and fiber-reinforced composite material
EP3053941A1 (en) Two-pack epoxy resin composition for fiber-reinforced composite material, and fiber-reinforced composite material
JP2014227473A (en) Epoxy resin composition for composite material, fiber-reinforced composite material, and methods for producing the same
JPWO2019065248A1 (en) Resin composition for fiber reinforced composite material and fiber reinforced composite material using it
EP3762443B1 (en) Cycloaliphatic amines for epoxy formulations: a novel curing agent for epoxy systems
JP7307050B2 (en) Resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same
JP2022102349A (en) Resin composition for fiber-reinforced composite material, and fiber-reinforced composite material using the same
TWI729088B (en) Epoxy resin composition, carbon fiber-reinforced composite material and method of manufacturing the same
JP6878944B2 (en) Epoxy resin curing agent, epoxy resin composition, fiber reinforced composite material
JP4352720B2 (en) Epoxy resin composition for fiber reinforced composite material, fiber reinforced composite material and method for producing the same
CN114133702A (en) High-temperature-resistant epoxy body suitable for RTM (resin transfer molding) and preparation method thereof
JP2018135496A (en) Two-liquid type epoxy resin composition for fiber-reinforced composite material, and fiber-reinforced composite material
JP7424990B2 (en) Resin composition for fiber-reinforced composite materials and fiber-reinforced composite materials using the same
JP7512064B2 (en) CURABLE RESIN COMPOSITION AND TOW PREPREG USING SAME
JP2005120127A (en) Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material and method for producing the same
JP2022156912A (en) Curable resin composition and fiber-reinforced composite material including the same