JP2022101029A - Biological sound signal processing device and biological sound signal processing method - Google Patents

Biological sound signal processing device and biological sound signal processing method Download PDF

Info

Publication number
JP2022101029A
JP2022101029A JP2020215364A JP2020215364A JP2022101029A JP 2022101029 A JP2022101029 A JP 2022101029A JP 2020215364 A JP2020215364 A JP 2020215364A JP 2020215364 A JP2020215364 A JP 2020215364A JP 2022101029 A JP2022101029 A JP 2022101029A
Authority
JP
Japan
Prior art keywords
signal
auscultation
biological sound
noise
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020215364A
Other languages
Japanese (ja)
Inventor
大輔 坂田
Daisuke Sakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Micro Devices Inc
Original Assignee
Nisshinbo Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Micro Devices Inc filed Critical Nisshinbo Micro Devices Inc
Priority to JP2020215364A priority Critical patent/JP2022101029A/en
Publication of JP2022101029A publication Critical patent/JP2022101029A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

To provide a biological sound signal processing device and a biological sound signal processing method capable of reducing a biological sound as noise, and collecting a small biological sound as an object of auscultation.SOLUTION: Detection parts 1A and 1B collect auscultation signals containing a cardiac sound as noise unnecessary for the auscultation at the mutually separated positions. The auscultation sound signals are compared at a calculation part 2, and a signal resultant from a biological sound which is noise at a position where auscultation is to be executed is generated as a virtual noise signal. The virtual noise signal is subtracted from the auscultation signal at the position where auscultation is to be executed at a third auscultation signal calculation part 22 so that the auscultation signal that does not contain noise or in which noise is substantially reduced is acquired.SELECTED DRAWING: Figure 5

Description

本発明は、生体音からなる雑音を含む生体音の信号処理装置および信号処理方法に関する。 The present invention relates to a signal processing device and a signal processing method for biological sounds including noise composed of biological sounds.

電子聴診器は、チェストピースで生体音を収集し、マイクロフォン等により収集した生体音を生体音信号に変換し、信号処理回路により増幅やフィルタリング等の信号処理を行い、イヤーピース等に出力する構成となっている。ここで一般的に行われる雑音低減のための信号処理は、診察開始時や終了時に発生する雑音や環境雑音を低減するために行われていた(特許文献1、2)。 The electronic stethoscope has a configuration in which biological sound is collected by a chest piece, the biological sound collected by a microphone or the like is converted into a biological sound signal, signal processing such as amplification or filtering is performed by a signal processing circuit, and the sound is output to an earpiece or the like. It has become. The signal processing for noise reduction generally performed here has been performed to reduce noise and environmental noise generated at the start and end of the examination (Patent Documents 1 and 2).

特開平10-24033号公報Japanese Unexamined Patent Publication No. 10-240033 特開2016-67857号公報Japanese Unexamined Patent Publication No. 2016-67857

ところで、生体音以外の雑音を低減することができたとしても所望の聴診ができるとは限らない。例えば、被聴診者の胴体部を聴診する際、被聴診者の体内で常時発生している心音は非常に大きく心音以外の小さな生体音を聴診したい場合に、生体音である心音が雑音となってしまう。本発明はこのような実状に鑑み、雑音となる生体音を低減し、聴診対象となる小さな生体音を収集することができる生体音信号処理装置および生体音信号処理方法を提供することを目的とする。 By the way, even if noise other than biological sound can be reduced, it is not always possible to perform a desired auscultation. For example, when auscultating the body of a person to be auscultated, the heart sounds that are constantly generated in the body of the auscultated person are very large, and when a small biological sound other than the heart sounds is to be auscultated, the heart sounds that are the biological sounds become noise. It ends up. In view of such an actual situation, it is an object of the present invention to provide a biological sound signal processing device and a biological sound signal processing method capable of reducing biological sounds that become noise and collecting small biological sounds to be auscultated. do.

上記目的を達成するため、本願請求項1に係る生体音信号処理装置は、被聴診者の第1の聴診部から雑音となる生体音を含む第1の聴診信号を収集し、前記第1の聴診部から離れた第2の聴診部から前記雑音となる生体音を含む第2の聴診信号を収集する検出部と、前記第1の聴診信号と前記第2の聴診信号とを比較して仮想雑音信号を生成して、前記第1の聴診信号と前記仮想雑音信号の差分から、前記第1の聴診部における聴診信号となる第3の聴診信号を算出する算出部と、を備えたことを特徴とする。 In order to achieve the above object, the biological sound signal processing device according to claim 1 of the present application collects a first hearing signal including a biological sound that becomes noise from the first hearing unit of the listener, and the first one. A detection unit that collects a second hearing signal including a biological sound that becomes noise from a second hearing unit away from the hearing unit, and a virtual comparison between the first hearing signal and the second hearing signal. It is provided with a calculation unit that generates a noise signal and calculates a third hearing signal that is a hearing signal in the first hearing unit from the difference between the first hearing signal and the virtual noise signal. It is a feature.

本願請求項2に係る生体音信号処理方法は、被聴診者の第1の聴診部から雑音となる生体音を含む第1の聴診信号を収集するステップと、前記被聴診者の前記第1の聴診部から離れた第2の聴診部から前記雑音となる生体音を含む第2の聴診信号を収集するステップと、前記第1の聴診信号と前記第2の聴診信号とを比較し、前記第1の聴診信号に含まれる仮想雑音信号を生成するステップと、前記第1の聴診信号と前記仮想雑音信号との差分から、前記第1の聴診部における聴診信号となる第3の聴診信号を算出するステップと、を含むことを特徴とする。 The biological sound signal processing method according to claim 2 of the present application includes a step of collecting a first auscultation signal including auscultatory sound that becomes noise from the first auscultation unit of the auscultated person, and the first auscultated person. The step of collecting the second auscultation signal including the biological sound that becomes noise from the second auscultation unit away from the auscultation unit, the first auscultation signal and the second auscultation signal are compared, and the first auscultation signal is compared. From the step of generating the virtual noise signal included in the auscultation signal 1 and the difference between the first auscultation signal and the virtual noise signal, a third auscultation signal to be the auscultation signal in the first auscultation unit is calculated. It is characterized by including steps to be performed.

本願請求項3に係る生体音信号処理方法は、請求項2記載の生体音信号処理方法において、前記第1の聴診信号および前記第2の聴診信号を収集するステップは、前記雑音となる生体音として心音を含む聴診信号を収集するステップであることを特徴とする。 The biological sound signal processing method according to claim 3 of the present application is the biological sound signal processing method according to claim 2, wherein the step of collecting the first hearing signal and the second hearing signal is the biological sound that becomes noise. It is characterized in that it is a step of collecting a hearing signal including a heartbeat.

本発明によれば、離れた位置の聴診信号を収集、比較して所望の聴診部における仮想雑音信号を生成し、収集した聴診信号と仮想雑音信号との差分から、所望の聴診信号を算出することができるので、生体音に起因する雑音の影響を受けずに信号レベルの低い生体音を聴診することが可能となる。特に信号レベルの大きい心音が雑音となる場合に、本発明の生体音信号処理方法は効果が大きい。 According to the present invention, auscultation signals at distant positions are collected and compared to generate a virtual noise signal in a desired auscultation unit, and a desired auscultation signal is calculated from the difference between the collected auscultation signal and the virtual noise signal. Therefore, it is possible to auscultate a biological sound having a low signal level without being affected by noise caused by the biological sound. The biological sound signal processing method of the present invention is particularly effective when a heart sound having a large signal level becomes noise.

本発明の実施形態の説明図である。It is explanatory drawing of the Embodiment of this invention. 本発明の実施形態の説明図である。It is explanatory drawing of the Embodiment of this invention. 本発明の実施形態の説明図である。It is explanatory drawing of the Embodiment of this invention. 本発明の実施形態の説明図である。It is explanatory drawing of the Embodiment of this invention. 本発明の第1の実施例の生体音信号処理装置の説明図である。It is explanatory drawing of the biological sound signal processing apparatus of 1st Embodiment of this invention. 本発明の第2の実施例の生体音信号処理装置の説明図である。It is explanatory drawing of the biological sound signal processing apparatus of the 2nd Embodiment of this invention.

本発明の生体音信号処理装置および生体音信号処理方法は、まず、検出部で相互に離れた位置の聴診に不要な雑音となる同一の生体音を含む聴診信号を収集する。この聴診音信号を算出部で比較し、聴診したい位置における雑音となる生体音に起因する信号を仮想雑音信号として生成する。この仮想雑音信号を聴診したい位置の聴診信号から減算することで雑音を含まない、あるいは雑音を大幅に低減した聴診信号を得ることができる構成となっている。 The biological sound signal processing apparatus and the biological sound signal processing method of the present invention first collect auscultation signals including the same biological sound, which is unnecessary noise for auscultation at positions separated from each other by the detection unit. This auscultation sound signal is compared by the calculation unit, and a signal caused by a biological sound that becomes noise at the position to be auscultated is generated as a virtual noise signal. By subtracting this virtual noise signal from the auscultation signal at the position to be auscultated, it is possible to obtain an auscultation signal that does not contain noise or has significantly reduced noise.

例えば、図1に示す腹部(聴診部A:第1の聴診部に相当)の聴診を行う場合を例にとり、本発明の実施形態について説明する。 For example, an embodiment of the present invention will be described by taking as an example the case of performing auscultation of the abdomen (auscultation unit A: corresponding to the first auscultation unit) shown in FIG.

本発明の生体音信号処理装置は、一般的な電子聴診器の信号処理装置に付加することで構成でき、本発明の信号処理方法を実現することが可能となる。一般的な電子聴診器を用いて聴診部Aの聴診を行うと、心音を含む腸音が収集される。このとき、腸音は小さく心音は大きい。そのため、腸音を聴診したい場合に心音が雑音となってしまう。 The biological sound signal processing device of the present invention can be configured by adding it to a signal processing device of a general electronic stethoscope, and the signal processing method of the present invention can be realized. When auscultation of the auscultation unit A is performed using a general electronic stethoscope, intestinal sounds including heart sounds are collected. At this time, the intestinal sound is small and the heart sound is large. Therefore, when auscultating the intestinal sound, the heart sound becomes noise.

そこで、聴診部Aの聴診信号の収集とともに聴診部B(第2の聴診部に相当)で聴診信号の収集を行う。この場合心音が雑音となるので、心音を測定するため聴診部Bを心臓に近い位置に設定している。以下、聴診部Aで収集された信号を第1の聴診信号とし、聴診部Bで収集された信号を第2の聴診信号とする。 Therefore, the auscultation signal of the auscultation unit A is collected and the auscultation signal is collected by the auscultation unit B (corresponding to the second auscultation unit). In this case, the heart sound becomes noise, so the auscultation unit B is set at a position close to the heart in order to measure the heart sound. Hereinafter, the signal collected by the auscultation unit A will be referred to as a first auscultation signal, and the signal collected by the auscultation unit B will be referred to as a second auscultation signal.

第1の聴診信号は、心臓で発生した心音が被聴診者の体内を伝搬しながら減衰、変調等した信号に腸音が加算された信号となる。一方第2の聴診信号は、心臓で発生した心音が被聴診者の体内を伝搬した信号でほとんど減衰等していない信号となる。なお、被聴診者の体内では、心音以外の呼吸音等の生体音が発生して雑音となる。一方、胴体部の聴診においては心音が最も大きな雑音となるため、心音や呼吸音のような生体音に起因する雑音を「心音」として説明することとする。 The first auscultation signal is a signal in which the heart sound generated in the heart is attenuated or modulated while propagating in the body of the auscultated person, and the intestinal sound is added to the signal. On the other hand, the second auscultation signal is a signal in which the heart sound generated in the heart propagates in the body of the auscultated person and is hardly attenuated. In the body of the auscultated person, biological sounds such as breath sounds other than heart sounds are generated and become noise. On the other hand, since heart sounds are the loudest noises in auscultation of the body, noises caused by biological sounds such as heart sounds and breath sounds will be described as "heart sounds".

図2に第1の聴診信号(a)と第2の聴診信号(b)の一例を示す。図2に示すように、第1の聴診信号(a)、第2の聴診信号(b)のいずれにも周期的な信号が収集されていることがわかる。これが心音に起因する信号(雑音)である。またこの周期的な信号について第1の聴診信号(a)と第2の聴診信号(b)とを比較すると、第2の聴診信号(b)に含まれる周期的な信号は、遅延し、減衰し、また変調等されて第1の聴診信号(a)として収集されていることがわかる。 FIG. 2 shows an example of the first auscultation signal (a) and the second auscultation signal (b). As shown in FIG. 2, it can be seen that periodic signals are collected in both the first auscultation signal (a) and the second auscultation signal (b). This is the signal (noise) caused by the heartbeat. Further, when the first auscultation signal (a) and the second auscultation signal (b) are compared with respect to this periodic signal, the periodic signal included in the second auscultation signal (b) is delayed and attenuated. It can also be seen that the signal is modulated and collected as the first auscultation signal (a).

次に、この周期的な信号を比較する。例えば、図3は周期的な信号のピーク信号を含む第1の聴診信号と第2の聴診信号について、所定の一定時間(1回の心拍を測定することができる時間)だけ抽出し、フーリエ変換した結果を示す。第1の聴診信号のフーリエ変換結果を実線で、第2の聴診信号のフーリエ変換した結果を破線で、それぞれ示している。 Next, this periodic signal is compared. For example, FIG. 3 shows the Fourier transform by extracting the first auscultation signal including the peak signal of the periodic signal and the second auscultation signal for a predetermined fixed time (time during which one heartbeat can be measured). The result is shown. The Fourier transform result of the first auscultation signal is shown by a solid line, and the Fourier transform result of the second auscultation signal is shown by a broken line.

図3に示す例では、15Hzから50Hz付近の信号は、第2の聴診信号のレベルが第1の聴診信号のレベルより大きくなっている。即ち、減衰が大きいことがわかる。これに対して、1Hzから5Hz付近の信号、8Hz付近の信号は、第1の聴診信号のレベルが第2の聴診信号のレベルより大きくなっている。即ち、第2の聴診信号にない信号が含まれていることがわかる。 In the example shown in FIG. 3, in the signal near 15 Hz to 50 Hz, the level of the second auscultation signal is higher than the level of the first auscultation signal. That is, it can be seen that the attenuation is large. On the other hand, in the signal near 1 Hz to 5 Hz and the signal near 8 Hz, the level of the first auscultation signal is higher than the level of the second auscultation signal. That is, it can be seen that a signal that is not included in the second auscultation signal is included.

そこで、第1の聴診信号に含まれる雑音信号を減算する。ここで、減算する雑音信号を仮想雑音信号とする。図3に示す例では、第1の聴診信号と第2の聴診信号とを比較したとき、第2の聴診信号をそのまま仮想雑音信号としても所望の聴診信号を得ることができることがわかる。そこで、第2の聴診信号をそのまま仮想雑音信号とすることとなる。 Therefore, the noise signal included in the first auscultation signal is subtracted. Here, the noise signal to be subtracted is referred to as a virtual noise signal. In the example shown in FIG. 3, when the first auscultation signal and the second auscultation signal are compared, it can be seen that a desired auscultation signal can be obtained even if the second auscultation signal is used as a virtual noise signal as it is. Therefore, the second auscultation signal is used as it is as a virtual noise signal.

第1の聴診信号から仮想雑音信号(第2の聴診信号)を減算すると、1Hzから5Hz付近の信号と8Hz付近の信号が得られる。この信号を逆フーリエ変換すれば、雑音が取り除かれた所望の第3の聴診信号となる。なおこの第3の聴診信号の算出には、一般的な電子聴診器において行われるフィルタリングやゲイン調整等も、当然行うことになる。 By subtracting the virtual noise signal (second auscultation signal) from the first auscultation signal, a signal in the vicinity of 1 Hz to 5 Hz and a signal in the vicinity of 8 Hz are obtained. The inverse Fourier transform of this signal yields a desired third auscultation signal with noise removed. In addition, in the calculation of the third auscultation signal, filtering, gain adjustment, and the like performed in a general electronic stethoscope are naturally performed.

また、仮想雑音信号を得る方法は種々変更することができる。例えば、図3に示す第1の聴診信号と第2の聴診信号とを比較すると、第2の聴診信号の15Hzから50Hz付近の信号が大きく減衰していることがわかる。この減衰率を用いて、第2の聴診信号全体を減衰させて仮想雑音信号として、第1の聴診信号から減算して第3の聴診信号とすることもできる。 Further, the method of obtaining the virtual noise signal can be variously changed. For example, when the first auscultation signal and the second auscultation signal shown in FIG. 3 are compared, it can be seen that the signal of the second auscultation signal in the vicinity of 15 Hz to 50 Hz is greatly attenuated. Using this attenuation rate, the entire second auscultation signal can be attenuated to obtain a virtual noise signal, which can be subtracted from the first auscultation signal to obtain a third auscultation signal.

図4は、第2の聴診信号を図に示す周波数帯域全体にわたって減衰させた例である。減衰率は、15Hzから50Hz付近の第2の聴診信号を第1の聴診信号のレベルに合わせるように減衰させた例である。 FIG. 4 shows an example in which the second auscultation signal is attenuated over the entire frequency band shown in the figure. The attenuation factor is an example in which the second auscultation signal in the vicinity of 15 Hz to 50 Hz is attenuated so as to match the level of the first auscultation signal.

この場合も、第1の聴診信号から仮想雑音信号(減衰させた第2の聴診信号)を減算することで、1Hzから15Hz付近の信号が得られ、この信号を逆フーリエ変換し、必要な信号処理を加えることで、所望の第3の聴診信号を得ることができる。 In this case as well, by subtracting the virtual noise signal (attenuated second hearing signal) from the first hearing signal, a signal near 1 Hz to 15 Hz is obtained, and this signal is inverse Fourier transformed to obtain the required signal. By adding the treatment, a desired third hearing signal can be obtained.

さらにまた図示は省略するが、仮想雑音信号を得る別の方法として、第2の聴診信号を減衰させる際、周波数帯域毎に減衰率を変える等の変更も可能である。所定の周波数帯域の信号のみを抽出し、あるいは不要の周波数帯域の信号を除外する等の信号処理、あるいは上記信号処理を組み合わせる方法でもよい。 Further, although not shown, as another method for obtaining a virtual noise signal, it is possible to change the attenuation rate for each frequency band when the second auscultation signal is attenuated. A signal processing such as extracting only a signal in a predetermined frequency band or excluding a signal in an unnecessary frequency band, or a method in which the above signal processing is combined may be used.

仮想雑音信号の生成は、聴診のために必要な第3の聴診信号に聴診の対象となる生体音が含まれるように適宜変更すればよい。 The generation of the virtual noise signal may be appropriately changed so that the third auscultation signal required for auscultation includes the biological sound to be auscultated.

以上説明したように本発明の生体音処理方法により仮想雑音信号を生成するため、同じ生体音に起因する雑音について第1の聴診信号と第2の聴診信号として収集するのが好ましい。そのため、本発明の生体音信号処理装置の検出部は、相互に離れた位置の第1の聴診部と第2の聴診部において同時に聴診信号を得るように集音部を複数備えるのが望ましい。一方、心音のようなばらつきのある生体信号では、必ずしも同一の信号を比較する必要はない場合もある。例えば、第1の聴診部で所定の時間、第1の聴診信号を収集し、その後、第2の聴診部で所定の時間、第2の聴診信号を収集する構成とし、これらを比較して、仮想雑音信号を生成することもできる。以下、本発明に生体音信号処理方法を実現するための生体音処理装置の実施例について詳細に説明する。 As described above, since the virtual noise signal is generated by the biological sound processing method of the present invention, it is preferable to collect the noise caused by the same biological sound as the first auscultation signal and the second auscultation signal. Therefore, it is desirable that the detection unit of the biological sound signal processing device of the present invention includes a plurality of sound collecting units so that the first auscultation unit and the second auscultation unit at positions separated from each other simultaneously obtain the auscultation signal. On the other hand, for biological signals with variations such as heart sounds, it may not always be necessary to compare the same signals. For example, the first auscultation unit collects the first auscultation signal for a predetermined time, and then the second auscultation unit collects the second auscultation signal for a predetermined time. It is also possible to generate a virtual noise signal. Hereinafter, examples of the biological sound processing apparatus for realizing the biological sound signal processing method in the present invention will be described in detail.

本発明の第1の実施例として、第1の聴診信号と第2の聴診信号を同時に収集することができる生体音信号処理装置について説明する。図5は本実施例の生体音信号処理装置の説明図である。一般的な電子聴診器のチェストピースを2個備える構成とし、一方のチェストピースを検出部1A、他方のチェストピースを検出部1Bとする。各検出部1A、1Bにはそれぞれマイクロフォンを備えており、生体音を生体音信号に変換する。ここで検出部1Aを用いて図1に示す聴診部Aの聴診を行い、検出部1Bを用いて聴診部Bの聴診を行うと、検出部1Aから第1の聴診信号が、検出部1Bから第2の聴診信号がそれぞれ出力される。 As a first embodiment of the present invention, a biological sound signal processing device capable of simultaneously collecting a first auscultation signal and a second auscultation signal will be described. FIG. 5 is an explanatory diagram of the biological sound signal processing device of this embodiment. Two chest pieces of a general electronic stethoscope are provided, one chest piece is a detection unit 1A, and the other chest piece is a detection unit 1B. Each of the detection units 1A and 1B is provided with a microphone, and converts the biological sound into a biological sound signal. Here, when the auscultation unit A shown in FIG. 1 is auscultated using the detection unit 1A and the auscultation unit B is auscultated using the detection unit 1B, the first auscultation signal from the detection unit 1A is transmitted from the detection unit 1B. The second auscultation signal is output respectively.

算出部2は、一般的な電子聴診器の信号処理部内に構成することができる。算出部2において検出部1Aで収取された生体信号は、第1の聴診信号として比較部21に入力する。同様に検出部1Bで収集された生体音は、第2の聴診信号として比較部21に入力する。比較部21では、入力した第1の聴診信号と第2の聴診信号を比較し、先に説明した生体音信号処理方法に従い仮想雑音信号を生成し、第3の聴診信号算出部22へ出力する。 The calculation unit 2 can be configured in a signal processing unit of a general electronic stethoscope. The biological signal collected by the detection unit 1A in the calculation unit 2 is input to the comparison unit 21 as a first auscultation signal. Similarly, the biological sound collected by the detection unit 1B is input to the comparison unit 21 as a second auscultation signal. The comparison unit 21 compares the input first auscultation signal and the second auscultation signal, generates a virtual noise signal according to the biological sound signal processing method described above, and outputs the virtual noise signal to the third auscultation signal calculation unit 22. ..

第3の聴診信号算出部22では、検出部1Aから入力する第1の聴診信号から仮想雑音信号を減算し、その差分を第3の聴診信号として算出する。この第1の聴診信号は仮想雑音信号を生成するために用いた信号とするのが望ましいので、第1の聴診信号を比較部21から入力するようにしてもよい。第3の聴診信号算出部22で算出された第3の聴診信号は、通常の電子聴診器における信号処理が施され、イヤーピース等に接続している出力端子3に出力され、聴診者が認知可能となる。算出部2で行われる信号処理は、半導体集積回路で処理することができる。 The third auscultation signal calculation unit 22 subtracts the virtual noise signal from the first auscultation signal input from the detection unit 1A, and calculates the difference as the third auscultation signal. Since it is desirable that the first auscultation signal is a signal used to generate a virtual noise signal, the first auscultation signal may be input from the comparison unit 21. The third auscultation signal calculated by the third auscultation signal calculation unit 22 is subjected to signal processing in a normal electronic stethoscope and output to an output terminal 3 connected to an earpiece or the like so that the listener can recognize it. Will be. The signal processing performed by the calculation unit 2 can be processed by the semiconductor integrated circuit.

次に第2の実施例として、単一の検出部で第1の聴診信号と第2の聴診信号を取集することができる生体音信号処理装置について説明する。図6は本実施例の生体音信号処理装置の説明図である。本実施例ではチェストピースは1個のみで構成するため、一般的な電子聴診器で構成することができる。1個のチェストピースを検出部1Cとする。図1に示す聴診部Aの聴診を一定時間行い、聴診部Bの聴診を一定時間行う。 Next, as a second embodiment, a biological sound signal processing device capable of collecting a first auscultation signal and a second auscultation signal by a single detection unit will be described. FIG. 6 is an explanatory diagram of the biological sound signal processing device of this embodiment. Since the chest piece is composed of only one in this embodiment, it can be configured with a general electronic stethoscope. One chest piece is used as the detection unit 1C. The auscultation unit A shown in FIG. 1 is auscultated for a certain period of time, and the auscultation unit B is auscultated for a certain period of time.

検出部1Cで収集された聴診部Aの聴診結果である第1の聴診信号は、算出部2に出力される。また検出部1Cで収集された聴診部Bの聴診結果である第2の聴診信号も、算出部2に出力される。 The first auscultation signal, which is the auscultation result of the auscultation unit A collected by the detection unit 1C, is output to the calculation unit 2. Further, the second auscultation signal, which is the auscultation result of the auscultation unit B collected by the detection unit 1C, is also output to the calculation unit 2.

算出部2において第1の聴診信号、第2聴診信号が比較部21に入力する。この比較部21は記憶部23を備えており、第1の聴診信号および第2の聴診信号を順次記憶する。第1の聴診信号と第2の聴診信号とが入力した後、比較部21で第1の聴診信号と第2の聴診信号を記憶部23から読み出し、比較し、先に説明した生体音信号処理方法に従い仮想雑音信号を生成し、第3の聴診信号算出部22へ出力する。 In the calculation unit 2, the first auscultation signal and the second auscultation signal are input to the comparison unit 21. The comparison unit 21 includes a storage unit 23, and sequentially stores the first auscultation signal and the second auscultation signal. After the first hearing signal and the second hearing signal are input, the comparison unit 21 reads out the first hearing signal and the second hearing signal from the storage unit 23, compares them, and processes the biological sound signal described above. A virtual noise signal is generated according to the method and output to the third hearing signal calculation unit 22.

第3の聴診信号算出部22では、記憶部23に記憶されている第1の聴診信号を読み込み、この第1の聴診信号から仮想雑音信号を減算し、その差分を第3の聴診信号として算出する。この第3の聴診信号は、通常の電子聴診器における信号処理が施され、イヤーピース等に接続している出力端子3に出力され、聴診者が認知可能となる。算出部2で行われる信号処理は、半導体集積回路で処理することができる。 The third auscultation signal calculation unit 22 reads the first auscultation signal stored in the storage unit 23, subtracts the virtual noise signal from the first auscultation signal, and calculates the difference as the third auscultation signal. do. This third auscultation signal is subjected to signal processing in a normal electronic stethoscope and is output to an output terminal 3 connected to an earpiece or the like so that the auscultator can recognize it. The signal processing performed by the calculation unit 2 can be processed by the semiconductor integrated circuit.

以上説明したように、本発明の生体音信号処理方法を実現する生体音信号処理装置は、通常の電子聴診器に検出部を付加し、あるいは通常の電子聴診器により簡便に構成することができる。 As described above, the biological sound signal processing device that realizes the biological sound signal processing method of the present invention can be easily configured by adding a detection unit to a normal electronic stethoscope or by using a normal electronic stethoscope. ..

なお本発明の生体音処理方法および生体音処理装置は、上記実施例に限定されるものでないことは言うまでもない。例えば、生体音の雑音として心音を例にとり説明したが、雑音となる生体音はこれに限定されないし、所望の生体音を収集するため、聴診部A、Bは適宜変更すればよい。 Needless to say, the biological sound processing method and the biological sound processing apparatus of the present invention are not limited to the above examples. For example, the heart sound has been described as an example of the noise of the biological sound, but the biological sound that becomes the noise is not limited to this, and the auscultation units A and B may be appropriately changed in order to collect the desired biological sound.

1A、1B、1C:検出部、2:算出部、21:比較部、22:第3の聴診信号算出部、23:記憶部、3:出力端子 1A, 1B, 1C: Detection unit 2: Calculation unit, 21: Comparison unit, 22: Third auscultation signal calculation unit, 23: Storage unit, 3: Output terminal

Claims (3)

被聴診者の第1の聴診部から雑音となる生体音を含む第1の聴診信号を収集し、前記第1の聴診部から離れた第2の聴診部から前記雑音となる生体音を含む第2の聴診信号を収集する検出部と、
前記第1の聴診信号と前記第2の聴診信号とを比較して仮想雑音信号を生成し、前記第1の聴診信号と前記仮想雑音信号との差分から、前記第1の聴診部における聴診信号となる第3の聴診信号を算出する算出部と、を備えたことを特徴とする生体音信号処理装置。
A first auscultation signal containing a noisy biological sound is collected from the first auscultation unit of the auscultated person, and a second auscultation unit away from the first auscultation unit contains the noisy biological sound. The detector that collects the auscultation signal of 2 and
A virtual noise signal is generated by comparing the first auscultation signal with the second auscultation signal, and the auscultation signal in the first auscultation unit is obtained from the difference between the first auscultation signal and the virtual noise signal. A biological sound signal processing device including a calculation unit for calculating a third auscultation signal.
被聴診者の第1の聴診部から雑音となる生体音を含む第1の聴診信号を収集するステップと、
前記被聴診者の前記第1の聴診部から離れた第2の聴診部から前記雑音となる生体音を含む第2の聴診信号を収集するステップと、
前記第1の聴診信号と前記第2の聴診信号とを比較し、前記第1の聴診信号に含まれる仮想雑音信号を生成するステップと、
前記第1の聴診信号と前記仮想雑音信号との差分から、前記第1の聴診部における聴診信号となる第3の聴診信号を算出するステップと、を含むことを特徴とする体内音信号処理方法。
A step of collecting a first auscultation signal including a noisy biological sound from the first auscultation part of the auscultated person, and
A step of collecting a second auscultation signal including a biological sound that becomes noise from a second auscultation unit away from the first auscultation unit of the auscultated person, and a step of collecting the second auscultation signal.
A step of comparing the first auscultation signal with the second auscultation signal and generating a virtual noise signal included in the first auscultation signal.
A method for processing an internal sound signal, which comprises a step of calculating a third auscultation signal, which is a auscultation signal in the first auscultation unit, from a difference between the first auscultation signal and the virtual noise signal. ..
請求項2記載の生体音信号処理方法において、
前記第1の聴診信号および前記第2の聴診信号を収集するステップは、前記雑音となる生体音として心音を含む聴診信号を収集するステップであることを特徴とする生体音信号処理方法。
In the biological sound signal processing method according to claim 2,
A biological sound signal processing method, wherein the step of collecting the first auscultation signal and the second auscultation signal is a step of collecting auscultation signal including a heart sound as a biological sound that becomes noise.
JP2020215364A 2020-12-24 2020-12-24 Biological sound signal processing device and biological sound signal processing method Pending JP2022101029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020215364A JP2022101029A (en) 2020-12-24 2020-12-24 Biological sound signal processing device and biological sound signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020215364A JP2022101029A (en) 2020-12-24 2020-12-24 Biological sound signal processing device and biological sound signal processing method

Publications (1)

Publication Number Publication Date
JP2022101029A true JP2022101029A (en) 2022-07-06

Family

ID=82271143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020215364A Pending JP2022101029A (en) 2020-12-24 2020-12-24 Biological sound signal processing device and biological sound signal processing method

Country Status (1)

Country Link
JP (1) JP2022101029A (en)

Similar Documents

Publication Publication Date Title
US9125574B2 (en) System and method for acoustic detection of coronary artery disease and automated editing of heart sound data
KR101231866B1 (en) Hearing aid for cancelling a feedback noise and controlling method therefor
RU2595636C2 (en) System and method for audio signal generation
Jatupaiboon et al. Electronic stethoscope prototype with adaptive noise cancellation
US11735200B2 (en) Dual-microphone adaptive filtering algorithm for collecting body sound signals and application thereof
US9237870B2 (en) Device and method for processing heart sounds for ausculation
Patel et al. An adaptive noise reduction stethoscope for auscultation in high noise environments
CN112367600A (en) Voice processing method and hearing aid system based on mobile terminal
CN106377279A (en) Fetal heart audio signal processing method and apparatus
JP2022101029A (en) Biological sound signal processing device and biological sound signal processing method
US20180124525A1 (en) Method and system for recognizing a beat with a hearing aid
WO2023194541A1 (en) Audio signal processing techniques for noise mitigation
JP2020202448A (en) Acoustic device and acoustic processing method
CN213462323U (en) Hearing aid system based on mobile terminal
KR20050119758A (en) Hearing aid having noise and feedback signal reduction function and signal processing method thereof
Tosanguan et al. Modified spectral subtraction for de-noising heart sounds: Interference suppression via spectral comparison
Lin et al. Industrial wideband noise reduction for hearing aids using a headset with adaptive-feedback active noise cancellation
CA2749617C (en) Method for separating signal paths and use for improving speech using an electric larynx
CN116156385B (en) Filtering method, filtering device, chip and earphone
JP2023021854A (en) Electronic stethoscope signal processor, electronic stethoscope system, electronic stethoscope signal processing program, and electronic stethoscope signal processing method
US20230396939A1 (en) Method of suppressing undesired noise in a hearing aid
JP2022073681A (en) Electronic stethoscope
JP2007275324A (en) Multifunctional electronic stethoscope
KR20170086740A (en) Method for processing heartbeat sound in smart phone
JP2023050927A (en) Biological sound signal processing device and biological sound signal processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230926

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20231107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240430