JP2022099512A - Hydrogen combustion catalyst, and hydrogen combustion method - Google Patents

Hydrogen combustion catalyst, and hydrogen combustion method Download PDF

Info

Publication number
JP2022099512A
JP2022099512A JP2020213316A JP2020213316A JP2022099512A JP 2022099512 A JP2022099512 A JP 2022099512A JP 2020213316 A JP2020213316 A JP 2020213316A JP 2020213316 A JP2020213316 A JP 2020213316A JP 2022099512 A JP2022099512 A JP 2022099512A
Authority
JP
Japan
Prior art keywords
catalyst
metal particles
hydrogen combustion
hydrogen
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020213316A
Other languages
Japanese (ja)
Inventor
仁志 久保
Hitoshi Kubo
伸夫 原田
Nobuo Harada
豪紀 高根澤
Toshiki Takanezawa
俊祐 加藤
Toshisuke Katou
保則 岩井
Yasunori Iwai
祐希 枝尾
Yuki Edao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
National Institutes for Quantum and Radiological Science and Technology
Original Assignee
Tanaka Kikinzoku Kogyo KK
National Institutes for Quantum and Radiological Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, National Institutes for Quantum and Radiological Science and Technology filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2020213316A priority Critical patent/JP2022099512A/en
Publication of JP2022099512A publication Critical patent/JP2022099512A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

To provide a hydrogen combustion catalyst for processing gas containing iodine and hydrogen that is more resistant to catalyst poisoning of iodine than conventional ones.SOLUTION: A hydrogen combustion catalyst of the invention has catalyst metal particles made of any noble metal of Rh, Pt, and Ru, or an alloy thereof carried by a carrier made of an inorganic oxide. The hydrogen combustion catalyst has 20 or more of the catalyst metal particles of a diameter of 20 nm or more and 200 nm or less that are observed within the visual field of 3 μm×3 μm when observed at X30,000 magnification. Preferably, the hydrogen combustion catalyst uses an inorganic oxide containing α-alumina of 50 mass% or more as the carrier. More preferably, a hydrophobic functional group of a low molecular weight of 7 carbons or less is bonded to the carrier.SELECTED DRAWING: Figure 4

Description

本発明は、耐ヨウ素触媒被毒性に優れた水素燃焼触媒及び水素燃焼方法に関する。詳しくは、ヨウ素の触媒被毒による活性低下が従来以上に抑制された水素燃焼触媒に関する。 The present invention relates to a hydrogen combustion catalyst and a hydrogen combustion method having excellent toxicity resistance to iodine catalysts. More specifically, the present invention relates to a hydrogen combustion catalyst in which the decrease in activity due to catalyst poisoning of iodine is suppressed more than before.

近年の原子力発電所においては、原子力事故が発生した際の原子炉建屋の水素爆発防止策として、水素燃焼装置(イグナイタ)の導入が実施又は検討されている。水素燃焼装置は、水素(同位体水素を含む)を酸化燃焼して水(水蒸気)に変化(再結合)させてガス中の水素濃度を低減させる機器であり、電源を必要としないことから、事故時の電源喪失状態にあっても有効な水素爆発防止策として期待されている。水素燃焼装置の主要構成は、触媒(水素燃焼触媒)が充填された触媒層(触媒プレート)である。この触媒層に使用される水素燃焼触媒としては、無機酸化物担体に触媒金属としてPt、Pd等の貴金属が担持された貴金属触媒が知られている。 In recent years, nuclear power plants have been implementing or considering the introduction of a hydrogen combustion device (igniter) as a measure to prevent hydrogen explosion in a reactor building in the event of a nuclear accident. A hydrogen combustion device is a device that oxidatively burns hydrogen (including isotope hydrogen) and changes (recombusts) it into water (steam) to reduce the hydrogen concentration in the gas. It is expected as an effective hydrogen explosion prevention measure even in the state of power loss at the time of an accident. The main configuration of the hydrogen combustion device is a catalyst layer (catalyst plate) filled with a catalyst (hydrogen combustion catalyst). As the hydrogen combustion catalyst used for this catalyst layer, a noble metal catalyst in which a noble metal such as Pt or Pd is supported as a catalyst metal on an inorganic oxide carrier is known.

原子力発電所における原子力事故の中でも、特に重大なものとして懸念されているのが炉心溶融(メルトダウン)である。炉心溶融が発生すると、燃料棒被覆管(ジルコニウム合金等)と水・水蒸気との反応や、落下した溶融炉心とコンクリート等との反応により大量の水素が発生する。この大量発生した水素による水素爆発の危険が増大する。そのため、水素燃焼装置における水素燃焼触媒には、安定した触媒活性が要求される。 Among the nuclear accidents at nuclear power plants, the core meltdown is of particular concern. When a core meltdown occurs, a large amount of hydrogen is generated due to the reaction between the fuel rod cladding tube (zirconium alloy, etc.) and water / steam, or the reaction between the dropped molten core and concrete, etc. The risk of hydrogen explosion due to this large amount of hydrogen generated increases. Therefore, the hydrogen combustion catalyst in the hydrogen combustion apparatus is required to have stable catalytic activity.

ところで、炉心溶融が発生すると水素の大量発生と同時に、放射性ヨウ素の大量発生も予測されている。大量発生したヨウ素は、水素燃焼装置の触媒に対して触媒被毒として作用し、触媒の活性低下の要因となり得る。ヨウ素の触媒被毒による活性低下は不可逆的であり、反応温度を高温とした場合でも継続する。そのため、水素燃焼装置の運転条件(反応条件)の調整では対処できない。そこで、かかるヨウ素を含む水素含有ガスの処理においては、水素燃焼触媒に耐ヨウ素被毒性を具備させることが必要となる。 By the way, when core meltdown occurs, it is predicted that a large amount of radioactive iodine will be generated at the same time as a large amount of hydrogen. A large amount of iodine generated acts as a catalyst poisoning on the catalyst of the hydrogen combustion device, and may cause a decrease in the activity of the catalyst. The decrease in activity due to catalyst poisoning of iodine is irreversible and continues even when the reaction temperature is high. Therefore, it cannot be dealt with by adjusting the operating conditions (reaction conditions) of the hydrogen combustion device. Therefore, in the treatment of the hydrogen-containing gas containing iodine, it is necessary to equip the hydrogen combustion catalyst with iodine toxicity resistance.

本願出願人等は、上記した貴金属触媒粒子が担持された水素燃焼触媒について、耐ヨウ素被毒性を具備させたものとして特許文献1の水素燃焼触媒を開示している。この水素燃焼触媒は、触媒金属粒子としてPtとPdとを同時に担持し、更に、触媒に一定量の塩素を含有させたものである。 The applicants of the present application disclose the hydrogen combustion catalyst of Patent Document 1 as a hydrogen combustion catalyst on which the above-mentioned noble metal catalyst particles are supported, which is provided with iodine toxicity resistance. This hydrogen combustion catalyst simultaneously supports Pt and Pd as catalyst metal particles, and further contains a certain amount of chlorine in the catalyst.

特許第5780536号明細書Japanese Patent No. 5780536

上記した従来の耐ヨウ素被毒性を有する水素燃焼触媒は、ヨウ素及び水素を含むガスに対して、ヨウ素の影響を受け難く水素燃焼活性を発揮することができる。但し、炉心溶融等のシビアアクシデントが原子力発電所施設周辺に与える影響の重大性を考慮すると、より過酷な被毒環境を想定した対応が要求される。この点、上記従来の水素燃焼触媒でもヨウ素の触媒被毒が全く生じないわけではない。本発明者等の検討によれば、上記の水素燃焼触媒を高濃度のヨウ素を含むガスに暴露した場合には、触媒被毒によって失活が生じることが確認されている。 The above-mentioned conventional hydrogen combustion catalyst having iodine toxicity resistance can exhibit hydrogen combustion activity against a gas containing iodine and hydrogen without being easily affected by iodine. However, considering the seriousness of the impact of severe accidents such as core meltdown on the vicinity of nuclear power plant facilities, it is necessary to take measures assuming a more severe poisoned environment. In this respect, the conventional hydrogen combustion catalyst does not mean that iodine catalyst poisoning does not occur at all. According to the studies by the present inventors, it has been confirmed that when the above hydrogen combustion catalyst is exposed to a gas containing a high concentration of iodine, inactivation occurs due to catalyst poisoning.

本発明は、上記のような背景のもとになされたものであり、ヨウ素及び水素を含有するガスを処理する水素燃焼触媒において、耐ヨウ素触媒被毒特性が従来よりも優れており、良好な水素燃焼活性を維持し得るものを提供する。そして、かかる水素燃焼触媒を適用する水素燃焼方法を提供する。 The present invention has been made based on the above background, and in a hydrogen combustion catalyst for treating a gas containing iodine and hydrogen, the iodine catalyst poisoning resistance property is superior to that of the conventional one, which is good. Provided are those capable of maintaining hydrogen combustion activity. Then, a hydrogen combustion method to which the hydrogen combustion catalyst is applied is provided.

本発明者等は上記課題を解決すべく、従来と同様、PtやRh等の貴金属を触媒金属粒子とした水素燃焼触媒を基礎としつつ、その製造プロセス及び触媒粒子の構成の見直しから検討を行った。その結果、触媒金属粒子を構成する貴金属種を特定の範囲に限定すると共に、触媒金属粒子を所定の粒径以上に粗大とすることで、耐ヨウ素触媒被毒性の向上がみられることを見出し本発明に想到した。 In order to solve the above problems, the present inventors have made a study from reviewing the manufacturing process and the composition of the catalyst particles, based on the hydrogen combustion catalyst using noble metals such as Pt and Rh as catalyst metal particles, as in the conventional case. rice field. As a result, it was found that the iodine-resistant catalyst toxicity is improved by limiting the noble metal species constituting the catalyst metal particles to a specific range and making the catalyst metal particles coarser than a predetermined particle size. I came up with the invention.

即ち、本発明は、無機酸化物からなる担体に、Rh、Pt、Ruのいずれかの貴金属又はこれらの合金からなる触媒金属粒子が担持されてなる水素燃焼触媒において、前記水素燃焼触媒を倍率30000倍で観察したとき、3μm×3μmの視野範囲内で観察される粒径20nm以上200nm以下の前記触媒金属粒子の個数が20個以上であることを特徴とする水素燃焼触媒である。 That is, the present invention relates to a hydrogen combustion catalyst in which a carrier made of an inorganic oxide is supported with a noble metal of Rh, Pt, Ru, or catalyst metal particles made of an alloy thereof, and the hydrogen combustion catalyst has a magnification of 30,000. It is a hydrogen combustion catalyst characterized in that the number of the catalyst metal particles having a particle size of 20 nm or more and 200 nm or less observed in a field range of 3 μm × 3 μm when observed at a magnification of 20 or more is 20 or more.

上記の通り、本発明に係る水素燃焼触媒は、所定の貴金属(Rh、Pt、Ru)からなる触媒金属粒子について、その粒径を意図的に粗大とすることを特徴とする。水素燃焼触媒に限らず一般的な触媒においては、数nm~10nm以下にまで微細化された触媒金属粒子を多く生成し、その割合を高くして微細粒子を分散することで活性点を増加させて触媒活性を確保している。本発明に係る水素燃焼触媒は、この一般的知見とは逆に、粒径20nm以上の粗大な触媒金属粒子を生成することで、耐ヨウ素被毒性を向上させつつ、触媒活性を維持している。20nm以上の粗大な触媒金属粒子において耐ヨウ素被毒性が向上する理由は、必ずしも明確ではない。この点に関し本発明者等は、粗大な触媒金属粒子は、ヨウ素分子の吸着が数nmサイズの触媒金属粒子よりも生じ難い状態、若しくはヨウ素分子の吸着が生じてもその影響を受け難い状態にあるためであると考察する。 As described above, the hydrogen combustion catalyst according to the present invention is characterized in that the particle size of the catalyst metal particles made of a predetermined noble metal (Rh, Pt, Ru) is intentionally coarse. Not limited to hydrogen combustion catalysts, general catalysts generate a large amount of catalytic metal particles finely divided to several nm to 10 nm or less, and increase the ratio to disperse the fine particles to increase the active site. The catalytic activity is ensured. Contrary to this general finding, the hydrogen combustion catalyst according to the present invention maintains catalytic activity while improving iodine toxicity resistance by producing coarse catalytic metal particles having a particle size of 20 nm or more. .. The reason why iodine toxicity resistance is improved in coarse catalyst metal particles of 20 nm or more is not always clear. In this regard, the present inventors have stated that coarse catalyst metal particles are less likely to be adsorbed by iodine molecules than catalyst metal particles having a size of several nm, or are less susceptible to the adsorption of iodine molecules. Consider that it is because of it.

本発明に係る水素燃焼触媒について詳細に説明する。本発明に係る水素燃焼触媒は、基本的な構成は従来技術と同様、触媒金属粒子が無機酸化物担体に担持されることで構成される。以下、これらの構成について説明する。 The hydrogen combustion catalyst according to the present invention will be described in detail. The hydrogen combustion catalyst according to the present invention is basically configured by supporting catalyst metal particles on an inorganic oxide carrier as in the prior art. Hereinafter, these configurations will be described.

A.触媒金属粒子
A-1.触媒金属粒子の組成
本発明に係る水素燃焼触媒の触媒金属粒子は、Rh(ロジウム)、Pt(白金)、Ru(ルテニウム)のいずれかの貴金属又はこれらの合金からなる。本発明においては、触媒金属粒子の粒径制御によって耐ヨウ素被毒性を確保しているが、水素燃焼活性は、これらの貴金属のいずれか又は合金によって発揮される。触媒金属粒子は、これらの貴金属単独で構成することができる。この点、上記特許文献1記載の水素燃焼触媒のように、PtとPdの双方を担持することを前提する触媒とは相違する。但し、上記貴金属を2種以上担持しても良い。
A. Catalyst metal particles A-1. Composition of Catalyst Metal Particles The catalyst metal particles of the hydrogen combustion catalyst according to the present invention are made of any of Rh (lodium), Pt (platinum), Ru (ruthenium) noble metal or an alloy thereof. In the present invention, iodine toxicity resistance is ensured by controlling the particle size of the catalyst metal particles, but the hydrogen combustion activity is exhibited by any one of these noble metals or an alloy. The catalyst metal particles can be composed of these noble metals alone. In this respect, it is different from a catalyst that is premised on supporting both Pt and Pd, such as the hydrogen combustion catalyst described in Patent Document 1. However, two or more kinds of the above precious metals may be supported.

2種以上の貴金属を担持する場合、各貴金属からなる触媒金属粒子が独立して混在していても良いし、それら貴金属の合金からなる触媒金属粒子が存在していても良い。貴金属合金としては、Rh-Pt合金、Pt-Ru合金、Rh-Ru合金等が好ましい。これらの触媒金属粒子は、X線回折分析(XRD)等により、金属状態にあることが確認される。 When two or more kinds of noble metals are supported, the catalyst metal particles made of each noble metal may be independently mixed, or the catalyst metal particles made of an alloy of these noble metals may be present. As the noble metal alloy, Rh-Pt alloy, Pt-Ru alloy, Rh-Ru alloy and the like are preferable. These catalyst metal particles are confirmed to be in a metallic state by X-ray diffraction analysis (XRD) or the like.

尚、本発明においては、貴金属の中でもPd(パラジウム)は触媒金属粒子の構成金属の対象外となる。Pdからなる触媒金属粒子は、水素燃焼活性は発揮し得るものの、20nm以上に粗大化することが困難である。そのため、耐ヨウ素触媒被毒性の確保が困難となる。よって、Pdが除外される点においても、本発明は上記特許文献1記載の水素燃焼触媒とは相違するものといえる。 In the present invention, among the noble metals, Pd (palladium) is excluded from the constituent metals of the catalyst metal particles. Although the catalytic metal particles made of Pd can exhibit hydrogen combustion activity, it is difficult to coarsen them to 20 nm or more. Therefore, it becomes difficult to secure the toxicity of the iodine catalyst. Therefore, it can be said that the present invention is different from the hydrogen combustion catalyst described in Patent Document 1 in that Pd is excluded.

A-2.触媒金属粒子の粒径
A-2-1.粒径20nm以上200nm以下の触媒金属粒子
本発明に係る水素燃焼触媒においては、上記した貴金属で構成される触媒金属粒子として、粒径20nm以上200nm以下の粗大な触媒金属粒子の存在を必須とする。上述の通り、触媒活性(水素燃焼活性)を有しながら耐ヨウ素触媒被毒性を発揮し得るのは20nm以上の粗大な触媒粒子だからである。本発明で必須とされる粗大な触媒金属粒子としては、40nm以上及び50nm以上の触媒金属粒子を含んでいても良い。但し、200nmを超えても耐ヨウ素触媒被毒性を特段に向上させることはできない。また、200nmを超える粗大な触媒金属粒子の生成は困難である。
A-2. Particle size of catalyst metal particles A-2-1. Catalyst metal particles with a particle size of 20 nm or more and 200 nm or less In the hydrogen combustion catalyst according to the present invention, the presence of coarse catalytic metal particles having a particle size of 20 nm or more and 200 nm or less is essential as the catalyst metal particles composed of the above-mentioned noble metal. .. As described above, it is because the coarse catalyst particles having a diameter of 20 nm or more can exhibit the iodine catalyst toxicity resistance while having the catalytic activity (hydrogen combustion activity). The coarse catalyst metal particles essential in the present invention may include catalyst metal particles having a diameter of 40 nm or more and 50 nm or more. However, even if it exceeds 200 nm, the toxicity of the iodine catalyst cannot be particularly improved. Further, it is difficult to generate coarse catalyst metal particles exceeding 200 nm.

そして、本発明に係る水素燃焼触媒の特定は、所定の観察条件における触媒金属粒子の個数(粒子数)によってなされる。具体的には、水素燃焼触媒を倍率30000倍で観察したとき、3μm×3μmの視野範囲内で観察可能な粒径20nm以上200nm以下の触媒金属粒子の個数が20個以上であることを要件とする。 The hydrogen combustion catalyst according to the present invention is specified by the number of catalyst metal particles (number of particles) under predetermined observation conditions. Specifically, when the hydrogen combustion catalyst is observed at a magnification of 30,000 times, the number of catalyst metal particles having a particle size of 20 nm or more and 200 nm or less that can be observed within a visual field range of 3 μm × 3 μm is required to be 20 or more. do.

本発明の水素燃焼触媒を特定する手段として、倍率30000倍の観察結果を適用するのは、20nm以上の粗大な触媒金属粒子を広範囲で捕捉し計測するためである。この観察の具体的手段としては、SEM(走査型電子顕微鏡)による倍率30000倍の観察結果を適用するのが好ましい。SEM観察における30000倍という倍率は、比較的低倍率であり、10nm以下の微小粒子の捕捉・観察には不向きな設定である。しかし、本発明者等によれば、10nm以下の微小粒子は、耐ヨウ素触媒被毒性の観点からみればその存在を無視しても差し支えのない要素である。そこで、本発明は、低倍率でのSEM観察により、耐ヨウ素触媒被毒性を発揮し得る粒径20nm以上の触媒金属粒子の有無を広範囲で確認することとしている。 As a means for specifying the hydrogen combustion catalyst of the present invention, the observation result at a magnification of 30,000 times is applied in order to capture and measure coarse catalyst metal particles having a magnification of 20 nm or more in a wide range. As a specific means of this observation, it is preferable to apply the observation result by SEM (scanning electron microscope) at a magnification of 30,000 times. The magnification of 30,000 times in SEM observation is a relatively low magnification, and is not suitable for capturing and observing fine particles of 10 nm or less. However, according to the present inventors, fine particles of 10 nm or less are elements whose existence can be ignored from the viewpoint of iodine-resistant catalyst toxicity. Therefore, the present invention is to confirm the presence or absence of catalyst metal particles having a particle size of 20 nm or more that can exhibit iodine-resistant catalyst toxicity by SEM observation at a low magnification in a wide range.

本発明における水素燃焼触媒におけるSEM観察の詳細な手法は以下の通りである。SEM観察に使用されるSEM装置については、当然に限定はなされない。観察倍率は30000倍に設定するが、このときの加速電圧については、3KeV以上15keV以下とするのが好ましい。SEM観察においては、3μm×3μmの視野範囲の少なくとも中心近傍に触媒金属粒子が観察されるようにし、その上で視野範囲全域における触媒金属粒子を観察する。 The detailed method of SEM observation in the hydrogen combustion catalyst in the present invention is as follows. Naturally, the SEM apparatus used for SEM observation is not limited. The observation magnification is set to 30,000 times, and the acceleration voltage at this time is preferably 3 KeV or more and 15 keV or less. In the SEM observation, the catalyst metal particles are observed at least in the vicinity of the center of the visual field range of 3 μm × 3 μm, and then the catalytic metal particles are observed in the entire visual field range.

得られたSEM観察像から、触媒金属粒子の粒径と粒子数を測定する。本発明における触媒金属粒子の粒径の測定は、2軸平均法に基づく。2軸平均法では、粒子の長径(l)と短径(l)との平均((l+l)/2)によって、触媒金属粒子の粒径を算出する。ここで、本発明に係る水素燃焼触媒の触媒金属粒子の形状は、球形に近い粒子もあるが、楕円形や不定形の粒子も混在している。特に、本発明の水素燃焼触媒においては、アスペクト比が大きい棒状の粒子が観察されることがある。この棒状の触媒金属粒子は、複数の触媒金属粒子が触媒の製造過程で近接・融着して生成された触媒金属粒子である。触媒金属粒子の近接と融着は、特に、比表面積が小さい担体を適用することで生じる傾向がある。担体の比表面積が小さいと、触媒金属粒子間の粒子間距離が狭くなるため、触媒製造過程の熱処理により粒子が移動して融着し棒状の触媒金属粒子が生成されると考えられる。 From the obtained SEM observation image, the particle size and the number of particles of the catalyst metal particles are measured. The measurement of the particle size of the catalyst metal particles in the present invention is based on the biaxial averaging method. In the biaxial averaging method, the particle size of the catalyst metal particles is calculated by averaging ((l 1 + l 2 ) / 2) of the major axis (l 1 ) and the minor axis (l 2 ) of the particles. Here, the shape of the catalyst metal particles of the hydrogen combustion catalyst according to the present invention is close to spherical, but elliptical and amorphous particles are also mixed. In particular, in the hydrogen combustion catalyst of the present invention, rod-shaped particles having a large aspect ratio may be observed. The rod-shaped catalyst metal particles are catalyst metal particles produced by close contact and fusion of a plurality of catalyst metal particles in the catalyst manufacturing process. Proximity and fusion of catalytic metal particles tend to occur, especially with the application of carriers with a small specific surface area. If the specific surface area of the carrier is small, the distance between the particles of the catalyst metal particles becomes narrow, so it is considered that the particles move and fuse due to the heat treatment in the catalyst manufacturing process to generate rod-shaped catalyst metal particles.

触媒金属粒子の個数のカウントについては、基本的に、2軸平均法により粒径が20nm以上となっている触媒金属粒子を1粒子とする。但し、上記の棒状の触媒金属粒子については、そのまま1粒子としてカウントすることは好ましくない。棒状の触媒金属粒子は、本来は複数の粒子からなるものであるので、これを1個の粒子とカウントしつつ粒径を測定すると、適切な粒径分布を得ることができないからである。 Regarding the counting of the number of catalyst metal particles, basically, the catalyst metal particles having a particle size of 20 nm or more by the biaxial averaging method are regarded as one particle. However, it is not preferable to count the rod-shaped catalyst metal particles as they are as one particle. This is because the rod-shaped catalyst metal particles are originally composed of a plurality of particles, and if the particle size is measured while counting the particles as one particle, an appropriate particle size distribution cannot be obtained.

そこで本発明では、触媒金属粒子の粒子数及び粒径の測定に際し、まず、各粒子の長径(l)と短径(l)との比であるアスペクト比(l/l)を確認する。そして、アスペクト比が2未満の触媒金属粒子は単一の触媒金属粒子として粒子数を1(個)とカウントする。そして、この触媒金属粒子の粒径は、長径と短径とから算出する。一方、アスペクト比が2以上である触媒金属粒子については、複数の触媒金属粒子で構成された粒子と判定し、長径を短径で除した数n(l/l:nは自然数であり1未満の端数は切り捨て)に分割し、粒子数をn個とカウントする。そして、分割された触媒金属粒子の粒径は、分割された長径(l/n)と短径とから算出する。以上の条件により、観察された触媒金属粒子の粒径及び個数を測定し、各粒径毎の粒子数を示す粒径分布を作成する。尚、この粒径分布の作成に際しては、算出された粒径値は端数処理(四捨五入等)して、10nm単位の粒径毎の粒子数を積算することが好ましい。 Therefore, in the present invention, when measuring the number of particles and the particle size of the catalyst metal particles, first, the aspect ratio (l 1 / l 2 ), which is the ratio between the major axis (l 1 ) and the minor axis (l 2 ) of each particle, is determined. Confirm. Then, the catalyst metal particles having an aspect ratio of less than 2 are counted as 1 (pieces) as a single catalyst metal particle. Then, the particle size of the catalyst metal particles is calculated from the major axis and the minor axis. On the other hand, the catalytic metal particles having an aspect ratio of 2 or more are determined to be particles composed of a plurality of catalytic metal particles, and the number n (l 1 / l 2 : n) obtained by dividing the major axis by the minor axis is a natural number. Fractions less than 1 are rounded down), and the number of particles is counted as n. Then, the particle size of the divided catalyst metal particles is calculated from the divided major axis (l 1 / n) and minor axis. Under the above conditions, the observed particle size and number of catalyst metal particles are measured, and a particle size distribution showing the number of particles for each particle size is created. When creating this particle size distribution, it is preferable that the calculated particle size value is rounded off (rounded or the like) to integrate the number of particles for each particle size in units of 10 nm.

以上のような詳細条件により、倍率30000倍のSEM観察における粒径20nm以上の触媒金属粒子の有無及び粒子数を得ることができる。本発明において、粒径20nm以上の触媒金属粒子の観察数について、20個以上とするのは、本発明者等による検討から良好な耐ヨウ素触媒被毒性においては20個以上の粗大粒子が生成されるからである。この観察される20nm以上の触媒金属粒子の個数については、40個以上が好ましく、60個以上がより好ましい。粒径20nm以上の触媒金属粒子の個数の上限については、制限されるべきではないが、製造の可能性の観点から200個以下とするのが好ましい。尚、本発明に係る水素燃焼触媒における、上記観察条件による触媒金属粒子の粒径分布においては、粒径20nm~30nmの触媒金属粒子の割合が比較的高い傾向がある。但し、より好適な耐ヨウ素触媒被毒性を示す触媒においては、粒径20nm~30nmの触媒金属粒子に加えて、これより粗大な粒径40nm、50nmの触媒金属粒子の生成も確認されている。 Under the above detailed conditions, the presence or absence of catalyst metal particles having a particle size of 20 nm or more and the number of particles can be obtained in SEM observation at a magnification of 30,000 times. In the present invention, the number of observed catalyst metal particles having a particle size of 20 nm or more is set to 20 or more. This is because that. The number of the observed catalyst metal particles of 20 nm or more is preferably 40 or more, more preferably 60 or more. The upper limit of the number of catalyst metal particles having a particle size of 20 nm or more should not be limited, but is preferably 200 or less from the viewpoint of manufacturing possibility. In the particle size distribution of the catalyst metal particles under the above observation conditions in the hydrogen combustion catalyst according to the present invention, the proportion of the catalyst metal particles having a particle size of 20 nm to 30 nm tends to be relatively high. However, in a catalyst showing more preferable iodine-resistant catalyst toxicity, it has been confirmed that, in addition to the catalyst metal particles having a particle size of 20 nm to 30 nm, catalyst metal particles having a coarser particle size of 40 nm and 50 nm are also produced.

尚、以上説明した倍率30000倍の観察結果において、粒径20nm未満の粒子が観察されていても良い。後述のとおり、本発明の水素燃焼触媒においても、粒径20nm未満の触媒金属粒子の存在は否定されないからである。但し、本発明におけるSEM観察においては、粒径20nm未満の触媒金属粒子の個数・粒径を測定する必要はない。 In the observation result at a magnification of 30,000 times described above, particles having a particle size of less than 20 nm may be observed. As will be described later, even in the hydrogen combustion catalyst of the present invention, the presence of catalyst metal particles having a particle size of less than 20 nm cannot be denied. However, in the SEM observation in the present invention, it is not necessary to measure the number and particle size of the catalytic metal particles having a particle size of less than 20 nm.

A-2-2.粒径20nm未満の触媒金属粒子
以上の説明の通り、本発明に係る水素燃焼触媒は、粒径20nm以上の触媒金属粒子を備えることを必須とするが、粒径20nm未満、特に粒径1nm以上10nm以下の微細な触媒金属粒子の存在を否定するものではない。これらの微細な触媒金属粒子は、耐ヨウ素触媒被毒性が劣るだけであって、ヨウ素被毒による失活はしても、粒径20nm以上の触媒金属粒子の活性に悪影響を及ぼすことはないからである。また、製造プロセスで意図的に触媒金属粒子を粗大化しようとしても、微細粒子の生成を完全に抑制することはできない。よって、本発明では、粒径20nmの触媒金属粒子と共に、粒径20nm未満の触媒金属粒子を含み得る。
A-2-2. Catalyst metal particles with a particle size of less than 20 nm As described above, the hydrogen combustion catalyst according to the present invention is essential to include catalyst metal particles having a particle size of 20 nm or more, but the particle size is less than 20 nm, particularly the particle size of 1 nm or more. It does not deny the existence of fine catalytic metal particles of 10 nm or less. These fine catalyst metal particles are only inferior in iodine poisoning resistance, and even if they are deactivated by iodine poisoning, they do not adversely affect the activity of the catalyst metal particles having a particle size of 20 nm or more. Is. Further, even if the catalyst metal particles are intentionally coarsened in the manufacturing process, the formation of fine particles cannot be completely suppressed. Therefore, in the present invention, the catalyst metal particles having a particle size of less than 20 nm may be included together with the catalyst metal particles having a particle size of 20 nm.

粒径20nm未満の触媒金属粒子の特定においては、上述のSEM観察(倍率30000倍)では極めて困難である。そこで、粒径20nm未満の触媒金属粒子の特定に関しては、TEM(透過型電子顕微鏡)により検討するのが好ましい。この場合、TEM観察の倍率としては、500000倍以上2000000倍以下の倍率として微細粒子の有無や分布状態を観察することが好ましい。この高倍率観察の下では視野範囲は、0.4μm×0.6μm~0.08μm×0.12μmとなる。 It is extremely difficult to specify the catalyst metal particles having a particle size of less than 20 nm by the above-mentioned SEM observation (magnification: 30,000 times). Therefore, it is preferable to examine the identification of the catalyst metal particles having a particle size of less than 20 nm by a TEM (transmission electron microscope). In this case, it is preferable to observe the presence or absence of fine particles and the distribution state at a magnification of 500,000 times or more and 2000,000 times or less as the magnification of TEM observation. Under this high magnification observation, the visual field range is 0.4 μm × 0.6 μm to 0.08 μm × 0.12 μm.

本発明に関し、耐ヨウ素触媒被毒性に乏しい粒径20nm未満の触媒金属粒子の粒子数は、それ自体はさほど意味のある要素ではない。但し、微細粒子の観察に際し、粒径20nm以上の粗大粒子の有無及び微細粒子との関係を評価することは、水素燃焼触媒の耐ヨウ素触媒被毒性の評価に有用である。 With respect to the present invention, the number of particles of the catalyst metal particles having a particle size of less than 20 nm, which is poorly toxic to the iodine catalyst, is not a significant factor in itself. However, when observing the fine particles, it is useful to evaluate the presence or absence of coarse particles having a particle size of 20 nm or more and the relationship with the fine particles in the evaluation of the iodine-resistant toxicity of the hydrogen combustion catalyst.

本発明に係る水素燃焼触媒をTEMにより高倍率観察するとき、観察対象とする触媒金属粒子の粒径範囲は1nm以上30nm以下とするのが好ましい。上記したSEM観察(倍率30000倍)とは逆に、TEM観察では粗大粒子の観察には不適格である。TEM観察における粗大触媒金属粒子の有無やその多寡の確認には、20nm以上30nm以下の粒径の触媒金属粒子の観察で足りる。 When observing the hydrogen combustion catalyst according to the present invention at high magnification by TEM, the particle size range of the catalyst metal particles to be observed is preferably 1 nm or more and 30 nm or less. Contrary to the above-mentioned SEM observation (magnification 30,000 times), TEM observation is not suitable for observation of coarse particles. Observation of catalyst metal particles having a particle size of 20 nm or more and 30 nm or less is sufficient for confirming the presence or absence of coarse catalyst metal particles and the amount thereof in TEM observation.

そして、本発明に係る水素燃焼触媒において、粒径1nm以上30nm以下の触媒金属粒子の粒子数を測定したとき、20nm以上30nm以下の触媒金属粒子の合計粒子数が、粒径1nm以上30nm以下の触媒金属粒子の総粒子数に占める割合が1.0%以上であることが好ましい。この20nm以上30nm以下の触媒金属粒子の個数基準の割合は、1.5%以上であるものがより好ましい。 When the number of particles of the catalyst metal particles having a particle size of 1 nm or more and 30 nm or less is measured in the hydrogen combustion catalyst according to the present invention, the total number of particles of the catalyst metal particles having a particle size of 20 nm or more and 30 nm or less is 1 nm or more and 30 nm or less. The ratio of the catalyst metal particles to the total number of particles is preferably 1.0% or more. The ratio based on the number of catalyst metal particles of 20 nm or more and 30 nm or less is more preferably 1.5% or more.

また、20nm以上30nm以下の触媒金属粒子の割合は、触媒金属粒子の体積を基準としても評価することができる。即ち、本発明に係る水素燃焼触媒は、粒径1nm以上30nm以下の触媒金属粒子のそれぞれの体積を測定したとき、20nm以上30nm以下の触媒金属粒子の合計体積が、前記粒径1nm以上30nm以下の触媒金属粒子の総体積に占める割合が30%以上であることが好ましい。この20nm以上30nm以下の触媒金属粒子の体積基準の割合は、50%以上がより好ましい。 Further, the ratio of the catalyst metal particles of 20 nm or more and 30 nm or less can be evaluated based on the volume of the catalyst metal particles. That is, in the hydrogen combustion catalyst according to the present invention, when the volumes of the catalytic metal particles having a particle size of 1 nm or more and 30 nm or less are measured, the total volume of the catalytic metal particles having a particle size of 20 nm or more and 30 nm or less is 1 nm or more and 30 nm or less. It is preferable that the ratio of the catalyst metal particles to the total volume of the catalyst metal particles is 30% or more. The volume-based ratio of the catalyst metal particles of 20 nm or more and 30 nm or less is more preferably 50% or more.

上述した従来の水素燃焼触媒(特許文献1)のような一般的な触媒においては、粒径10nm以下の微細な触媒金属粒子を主体とし、これより粗大な粒径20nm以上の触媒金属粒子の個数割合は極めて低い。本発明で好ましいとする粒径20nm以上30nm以下の触媒金属粒子の個数割合は、この従来の水素燃焼触媒と明確に区別される。 In a general catalyst such as the above-mentioned conventional hydrogen combustion catalyst (Patent Document 1), fine catalyst metal particles having a particle size of 10 nm or less are mainly used, and the number of catalyst metal particles having a coarser particle size of 20 nm or more is mainly used. The ratio is extremely low. The number ratio of the catalyst metal particles having a particle size of 20 nm or more and 30 nm or less, which is preferable in the present invention, is clearly distinguished from this conventional hydrogen combustion catalyst.

以上のTEMによる粒径20nm未満の微細粒子の観察においては、粒径及び粒子数の測定は、上述したSEM観察における観察条件を適用することが好ましい。粒径の測定では2軸平均法が適用できる。また、TEMによる高倍率観察でも、複数の触媒金属粒子の融着による棒状粒子がみられる可能性はあるが、その場合には上記した分割によって粒子数と粒径を算出できる。触媒金属粒子の体積は、粒子を球体近似して測定された粒径に基づき算出できる。そして、測定・算出した触媒金属粒子の粒子、粒径、体積によって、粒径20nm以上30nm以下の触媒金属粒子の体積基準、粒子数基準の割合を得ることができる。 In the above observation of fine particles having a particle size of less than 20 nm by TEM, it is preferable to apply the observation conditions in the above-mentioned SEM observation to the measurement of the particle size and the number of particles. The biaxial averaging method can be applied to measure the particle size. Further, even in high-magnification observation by TEM, there is a possibility that rod-shaped particles due to fusion of a plurality of catalyst metal particles can be seen, but in that case, the number of particles and the particle size can be calculated by the above-mentioned division. The volume of the catalyst metal particles can be calculated based on the particle size measured by approximating the particles to a sphere. Then, depending on the particles, particle size, and volume of the catalytic metal particles measured and calculated, it is possible to obtain the volume-based and particle number-based ratios of the catalytic metal particles having a particle size of 20 nm or more and 30 nm or less.

B.無機酸化物担体
本発明に係る水素燃焼触媒において、担体として無機酸化物を適用するのは、触媒層内で反応熱による局所的加熱が生じた場合でも着火の危険性がなく、また、放射性物質による放射線損傷のおそれがないからである。また、無機酸化物担体は、各種触媒の担体としての使用例が多く、コスト面や触媒製造時におけるハンドリング性に優れている。尚、従来の水素燃焼触媒においては、担体としてスチレンジビニルベンゼン共重合体(SDB)等の疎水性樹脂を使用する例があるが、本発明では耐久性の観点から樹脂担体の適用はない。樹脂製の担体は、熱及び放射線に弱く反応層内での反応熱による燃焼損傷や、放射線環境での劣化の恐れがあるからである。
B. Inorganic oxide carrier In the hydrogen combustion catalyst according to the present invention, the application of an inorganic oxide as a carrier has no risk of ignition even when local heating due to reaction heat occurs in the catalyst layer, and is a radioactive substance. This is because there is no risk of radiation damage due to. Further, the inorganic oxide carrier is often used as a carrier for various catalysts, and is excellent in cost and handleability at the time of catalyst production. In the conventional hydrogen combustion catalyst, there is an example in which a hydrophobic resin such as a styrene-divinylbenzene copolymer (SDB) is used as a carrier, but in the present invention, a resin carrier is not applied from the viewpoint of durability. This is because the resin carrier is vulnerable to heat and radiation, and there is a risk of combustion damage due to the reaction heat in the reaction layer and deterioration in the radiation environment.

B-1.担体の組成
担体となる無機酸化物としては、酸化アルミニウム(Al23)であるアルミナ(α-アルミナ、γ-アルミナ)、酸化ケイ素(SiO:シリカ)、多孔性結晶性アルミノケイ酸塩(Mn+ x/nAlSi2x+2y x-・zHO:ゼオライト)、酸化ジルコニウム(ZrO:ジルコニア)、酸化チタニウム(TiO:チタニア)等の無機酸化物が挙げられる。これらの無機酸化物は、従来から触媒担体として利用されており、多孔性、耐熱性に優れている。本発明では、前記の無機酸化物を単独又は混合して使用できる。本発明で特に好ましい無機酸化物担体は、α-アルミナを含む無機酸化物である。α-アルミナを含む無機酸化物を担体とするとき、α-アルミナの含有量は、担体全体の質量に対して50質量%以上100質量%以下であることが好ましい。この場合、α-アルミナ以外の無機酸化物としては、上記の無機酸化物が挙げられる。例えば、本発明者等の検討によれば、結晶性の高いα-アルミナを含む無機酸化物担体としては、シリカとα-アルミナの混合物が挙げられる。こうしたα-アルミナを含む無機酸化物担体は、α-アルミナ粉末と他の無機酸化物の粉末とを混合処理して形成することができる。また、α-アルミナ粉末或いはα-アルミナ粉末担体に触媒金属粒子を担持した後に、他の無機酸化物を含む溶液を添加しても良い。具体的には、後述する触媒の疎水化処理の一例としては、α-アルミナ粉末担体に触媒金属粒子を担持した後にシランカップリング剤を添加している。この処理によってシランカップリング剤由来のシリカが担体に含まれることとなる。このような担体を有する触媒も、本発明の好適な態様となる。そして、このような場合においては、α-アルミナの含有量が50質量%以上であることが好ましい。
B-1. Carrier composition As the inorganic oxide used as the carrier, alumina (α-alumina, γ-alumina) which is aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 : silica), and porous crystalline aluminosilicate (polycarbonate). Examples thereof include inorganic oxides such as M n + x / n Al x Si y O 2x + 2y x -zH 2 O: zeolite), zirconium oxide (ZrO 2 : zirconia), and titanium oxide (TIO 2 : titania). These inorganic oxides have been conventionally used as catalyst carriers and are excellent in porosity and heat resistance. In the present invention, the above-mentioned inorganic oxides can be used alone or in combination. A particularly preferable inorganic oxide carrier in the present invention is an inorganic oxide containing α-alumina. When an inorganic oxide containing α-alumina is used as a carrier, the content of α-alumina is preferably 50% by mass or more and 100% by mass or less with respect to the total mass of the carrier. In this case, examples of the inorganic oxide other than α-alumina include the above-mentioned inorganic oxides. For example, according to the study by the present inventors, examples of the inorganic oxide carrier containing α-alumina having high crystallinity include a mixture of silica and α-alumina. Such an inorganic oxide carrier containing α-alumina can be formed by mixing and treating α-alumina powder and powder of another inorganic oxide. Further, after supporting the catalyst metal particles on the α-alumina powder or the α-alumina powder carrier, a solution containing another inorganic oxide may be added. Specifically, as an example of the hydrophobic treatment of the catalyst described later, a silane coupling agent is added after supporting the catalyst metal particles on the α-alumina powder carrier. By this treatment, silica derived from the silane coupling agent is contained in the carrier. A catalyst having such a carrier is also a preferred embodiment of the present invention. In such a case, the content of α-alumina is preferably 50% by mass or more.

B-2.担体の比表面積
上記無機酸化物担体は、比表面積として50m/g以下であることが好ましい。本発明では、粒径20nm以上の触媒金属粒子が所定数以上生成されることが要求されている。後述のとおり、本発明に係る水素燃焼触媒では、含侵法で担持された触媒金属の塩を熱処理して触媒金属粒子とする。触媒金属粒子の粗大化のためには、熱処理の際に近接する触媒金属粒子の移動と結合が必要となる。担体の比表面積を小さくすることで、触媒金属粒子の粒子間距離が短くなることから、前記の移動・結合により触媒金属粒子の粗大化を促進することができる。担体の比表面積は、30m/g以下であることがより好ましい。また、担体の比表面積の下限値は0.1m/g以上とすることが好ましい。担体の比表面積が小さ過ぎると、触媒としての有効な活性面積が低下し、本来発揮すべき水素燃焼活性そのものが悪化するおそれがあるからである。尚、無機酸化物担体の比表面積は、Nガス等を適用したガス吸着法により測定可能であり、測定結果についてのBET多点法等による解析から比表面積の値を得ることができる。
B-2. Specific surface area of the carrier The specific surface area of the inorganic oxide carrier is preferably 50 m 2 / g or less. In the present invention, it is required that a predetermined number or more of catalyst metal particles having a particle size of 20 nm or more are produced. As will be described later, in the hydrogen combustion catalyst according to the present invention, the salt of the catalyst metal supported by the impregnation method is heat-treated to obtain catalyst metal particles. In order to coarsen the catalyst metal particles, it is necessary to move and bond the catalyst metal particles in close proximity during the heat treatment. By reducing the specific surface area of the carrier, the distance between the particles of the catalyst metal particles is shortened, so that the coarsening of the catalyst metal particles can be promoted by the above-mentioned movement / bonding. The specific surface area of the carrier is more preferably 30 m 2 / g or less. The lower limit of the specific surface area of the carrier is preferably 0.1 m 2 / g or more. This is because if the specific surface area of the carrier is too small, the effective active area as a catalyst is reduced, and the hydrogen combustion activity itself, which should be exhibited originally, may be deteriorated. The specific surface area of the inorganic oxide carrier can be measured by a gas adsorption method to which N2 gas or the like is applied, and the value of the specific surface area can be obtained from the analysis of the measurement results by the BET multipoint method or the like.

尚、無機酸化物担体の比表面積は、無機酸化物粒子の粒径と表面の細孔の状態によって定まる。そのため、本発明においては、無機酸化物担体の粒径は、0.1μm以上10μm以下とすることが好ましい。尚、上記の好適な比表面積を発現し易い無機酸化物担体としては、α-アルミナが挙げられる。よって、上記した担体全体の質量に対して50質量%以上100質量%以下のα-アルミナを含み、前記比表面積を有する無機酸化物が、特に好ましい担体となる。 The specific surface area of the inorganic oxide carrier is determined by the particle size of the inorganic oxide particles and the state of the pores on the surface. Therefore, in the present invention, the particle size of the inorganic oxide carrier is preferably 0.1 μm or more and 10 μm or less. Examples of the inorganic oxide carrier that easily develops the above-mentioned suitable specific surface area include α-alumina. Therefore, an inorganic oxide containing α-alumina in an amount of 50% by mass or more and 100% by mass or less with respect to the total mass of the above-mentioned carrier and having the specific surface area is a particularly preferable carrier.

尚、無機酸化物担体の形状については特に限定されない。担体の形状としては、無機酸化物粒子を円筒形、球形のペレット状に成形したものが一般的である。また、ハニカム、網等の適宜の支持体に無機酸化物粒子をコーティングし、このコーティング層を担体とすることも一般に知られている。 The shape of the inorganic oxide carrier is not particularly limited. The shape of the carrier is generally one in which inorganic oxide particles are formed into cylindrical or spherical pellets. It is also generally known that an appropriate support such as a honeycomb or a net is coated with inorganic oxide particles and the coating layer is used as a carrier.

B-3.担体への疎水化処理
本発明に係る水素燃焼触媒においては、無機酸化物担体に疎水化処理が施されていることが好ましい。本発明の水素燃焼触媒が搭載される水素燃焼装置においては、大気中の水分(水ミスト、水蒸気)や水素燃焼反応により生じる水が触媒に接触するようになっている。これらの水分は触媒金属の活性サイトを覆い触媒活性の低下の要因となる。また、処理対象ガス中の水素とヨウ素との反応が生じることがあり、このときヨウ化水素(HI)が生成される。このヨウ化水素は、上記の水分と反応してヨウ化水素酸となる。ヨウ化水素酸は、無機酸化物担体を侵食して触媒の損傷を引き起こすこととなる。これらの理由から、水素燃焼触媒の無機酸化物担体は、効果的に水分を排出することができるよう疎水化されていることが好ましい。
B-3. Hydrophobicization treatment on the carrier In the hydrogen combustion catalyst according to the present invention, it is preferable that the inorganic oxide carrier is hydrophobized. In the hydrogen combustion apparatus equipped with the hydrogen combustion catalyst of the present invention, water in the atmosphere (water mist, water vapor) and water generated by the hydrogen combustion reaction come into contact with the catalyst. These waters cover the active sites of the catalytic metal and cause a decrease in catalytic activity. In addition, a reaction between hydrogen and iodine in the gas to be treated may occur, and at this time, hydrogen iodide (HI) is generated. This hydrogen iodide reacts with the above-mentioned water to become hydrogen iodide acid. Hydrogen iodide acid will erode the inorganic oxide carrier and cause damage to the catalyst. For these reasons, the inorganic oxide carrier of the hydrogen combustion catalyst is preferably hydrophobized so as to be able to effectively discharge water.

疎水化された無機酸化物担体としては、担体表面に炭素数1以上7以下の疎水性の低分子官能基が付与されているものが好ましい。疎水性の低分子官能基としては、アルキル基、ビニル基、エポキシ基、アクリル基等が挙げられる。低分子官能基の炭素数を1以上7以下とするのは、炭素数が7を超える官能基は、触媒が高温となったときに疎水性を失う傾向にあり、それによって触媒活性が低下するおそれがあるからである。疎水性の低分子官能基の好ましい具体例は、メチル基、エチル基、プロピル基が挙げられる。これらのアルキル基は、担体表面の極性を低下させる効果に優れ、担体からの水分子の排出を有効に進行させることができる。これらの官能基は少なくとも1種が担体に付与されていれば良いが、複数の官能基を有していても良い。 As the hydrophobicized inorganic oxide carrier, a carrier surface to which a hydrophobic small molecule functional group having 1 or more and 7 or less carbon atoms is imparted is preferable. Examples of the hydrophobic low molecular weight functional group include an alkyl group, a vinyl group, an epoxy group, an acrylic group and the like. The reason why the carbon number of the low molecular weight functional group is 1 or more and 7 or less is that the functional group having more than 7 carbon atoms tends to lose the hydrophobicity when the temperature of the catalyst becomes high, thereby reducing the catalytic activity. This is because there is a risk. Preferred specific examples of the hydrophobic small molecule functional group include a methyl group, an ethyl group and a propyl group. These alkyl groups are excellent in the effect of lowering the polarity of the surface of the carrier, and can effectively promote the discharge of water molecules from the carrier. At least one of these functional groups may be added to the carrier, but it may have a plurality of functional groups.

尚、この疎水性の低分子官能基としては、水酸基(OH)は含まれない。上述した水素とヨウ素との反応により生じるヨウ化水素酸は、水酸基と反応することでヨウ化水素酸を生成することがあり、この場合も担体の侵食の恐れがあるからである。 The hydrophobic small molecule functional group does not contain a hydroxyl group (OH). This is because the hydrogen iodide acid generated by the above-mentioned reaction between hydrogen and iodine may generate hydrogen iodide acid by reacting with a hydroxyl group, and in this case as well, there is a risk of carrier erosion.

上述した無機酸化物担体を疎水化する低分子量の官能基は、無機酸化物表面に存在していると推定される。本発明の水素燃焼触媒において、疎水性官能基の存在を観察・確認する方法としては、触媒に赤外線を照射したときの赤外線吸収スペクトルを測定する等が挙げられる。赤外線吸収スペクトルの測定法としては、フーリエ変換型赤外分光法(FT-IR)が周知である。この測定方法より疎水性官能基を含む触媒を分析するとき、2900~3000cm-1付近において赤外吸収ピークが観察され、これにより官能基の存在が確認できる。 It is presumed that the low molecular weight functional group that makes the above-mentioned inorganic oxide carrier hydrophobic is present on the surface of the inorganic oxide. In the hydrogen combustion catalyst of the present invention, as a method of observing and confirming the presence of a hydrophobic functional group, an infrared absorption spectrum when the catalyst is irradiated with infrared rays may be measured. Fourier Transform Infrared Spectroscopy (FT-IR) is well known as a method for measuring an infrared absorption spectrum. When analyzing a catalyst containing a hydrophobic functional group by this measuring method, an infrared absorption peak is observed in the vicinity of 2900 to 3000 cm -1 , which confirms the presence of the functional group.

C.触媒金属粒子の担持量
以上説明した貴金属からなる触媒金属粒子を無機酸化物担体に担持するときの担持量は、触媒全体の質量を基準に0.1質量%~5.0質量%であるものが好ましい。この担持量は、触媒中の全ての貴金属の含有量であり、粒径20nm以上の触媒金属粒子を構成する貴金属の量だけでなく、粒径20nm以下の微細な触媒金属粒子を構成する貴金属の量も含む。
C. The amount of the catalyst metal particles supported The amount of the catalyst metal particles made of the noble metal described above supported on the inorganic oxide carrier is 0.1% by mass to 5.0% by mass based on the total mass of the catalyst. Is preferable. This carrying amount is the content of all the noble metals in the catalyst, and is not only the amount of the noble metal constituting the catalyst metal particles having a particle size of 20 nm or more, but also the amount of the noble metal constituting the fine catalyst metal particles having a particle size of 20 nm or less. Including quantity.

尚、本発明に係る水素触媒をメタルハニカム等の支持体に塗布・積層して使用する場合、触媒金属の合計担持量は、構造体の体積当たり0.5~10g/Lに調整するのが好ましい。但し、この条件は、支持体に塗布された触媒の全体質量に対して、貴金属の担持量が0.1質量%~5.0質量%とすることが前提となる。 When the hydrogen catalyst according to the present invention is applied and laminated on a support such as a metal honeycomb, the total amount of the catalyst metal supported should be adjusted to 0.5 to 10 g / L per volume of the structure. preferable. However, this condition is based on the premise that the amount of the noble metal supported is 0.1% by mass to 5.0% by mass with respect to the total mass of the catalyst coated on the support.

D.本発明に係る水素燃焼触媒の製造方法
次に、本発明の水素燃焼触媒の製造方法について説明する。本発明に係る水素燃焼触媒は、基本的には従来の水素燃焼触媒と同様の方法で製造可能である。即ち、触媒金属粒子を構成する金属(Rh、Pt、Ru)の金属化合物の溶液を無機酸化物担体に接触・含浸させ、その後、熱処理により原子状金属を担持する方法による。そして、触媒の好ましい形態として、疎水性の低分子官能基を触媒に付与する。
D. Method for Producing Hydrogen Combustion Catalyst According to the Present Invention Next, a method for producing the hydrogen combustion catalyst according to the present invention will be described. The hydrogen combustion catalyst according to the present invention can be manufactured basically by the same method as the conventional hydrogen combustion catalyst. That is, a method is used in which a solution of a metal compound of a metal (Rh, Pt, Ru) constituting the catalyst metal particles is contacted and impregnated with an inorganic oxide carrier, and then an atomic metal is supported by heat treatment. Then, as a preferred form of the catalyst, a hydrophobic small molecule functional group is imparted to the catalyst.

金属化合物溶液を無機酸化物担体に含浸させる工程において、使用される金属化合物としては、Rh化合物としては、塩化ロジウム、硝酸ロジウム等が好ましい。Pt化合物としては、塩化白金酸、ジアミンジニトロ白金、テトラアンミン白金ジクロライド、ヘキサアンミン白金テトラクロライド、塩化白金酸カリウム、塩化白金等の白金化合物が好ましい。そして、Ru化合物としては、塩化ルテニウム、硝酸ルテニウム等が好ましい。これらの金属化合物を溶液化する溶媒としては、水又はアルコール等の有機溶媒の他、水と有機溶媒との混合溶媒が使用できる。 As the metal compound used in the step of impregnating the inorganic oxide carrier with the metal compound solution, rhodium chloride, rhodium nitrate or the like is preferable as the Rh compound. As the Pt compound, platinum compounds such as platinum chloride acid, didinitroplatinum diamine, tetraammine platinum dichloride, hexaammine platinum tetrachloride, potassium chloride platinum acid, and platinum chloride are preferable. As the Ru compound, ruthenium chloride, ruthenium nitrate and the like are preferable. As the solvent for solving these metal compounds, in addition to an organic solvent such as water or alcohol, a mixed solvent of water and an organic solvent can be used.

金属化合物溶液の金属化合物濃度は、触媒金属の担持量に応じて調整される。好ましくは、溶液の濃度は、0.04~15.5質量%とする。また、無機酸化物担体に金属化合物溶液を含浸させるとき、金属化合物溶液の液量を、無機酸化物担体の吸水量の60%~150%とすることが好ましい。吸水量に対して過剰量の液分を含侵させると、担体上における金属濃度にムラが生じ易くなる。金属濃度が不均一であると、粗大粒子が形成されない領域が生じて、製造後の触媒に均一な触媒活性を付与できなくなる可能性がある。そのため、含侵時の液量を制限することが好ましい。 The metal compound concentration of the metal compound solution is adjusted according to the amount of the catalyst metal supported. Preferably, the concentration of the solution is 0.04 to 15.5% by mass. Further, when the inorganic oxide carrier is impregnated with the metal compound solution, the amount of the metal compound solution is preferably 60% to 150% of the water absorption amount of the inorganic oxide carrier. If an excessive amount of liquid is impregnated with respect to the amount of water absorbed, the metal concentration on the carrier tends to be uneven. If the metal concentration is non-uniform, a region where coarse particles are not formed may occur, and it may not be possible to impart uniform catalytic activity to the catalyst after production. Therefore, it is preferable to limit the amount of liquid at the time of impregnation.

尚、複数の触媒金属粒子を担持する場合には、それぞれの金属化合物溶液を個別に吸着させても良く、その順序は問わない。また、各化合物溶液を混合した混合溶液を担体に吸着させても良い。溶液の吸着の方法は、溶液に担体を浸漬しても良いし、担体に溶液を滴下しても良い。 When a plurality of catalyst metal particles are supported, each metal compound solution may be adsorbed individually, and the order thereof does not matter. Further, a mixed solution obtained by mixing each compound solution may be adsorbed on the carrier. As a method for adsorbing the solution, the carrier may be immersed in the solution, or the solution may be dropped onto the carrier.

上記金属化合物溶液を無機酸化物担体に含浸後は、熱処理により金属原子として触媒金属粒子を生成するが、本発明の水素燃焼触媒の製造にあっては、熱処理前に溶媒を蒸発・揮発させる乾燥処理を行うことが好ましい。そして、この乾燥処理では、粗大な触媒金属粒子(20nm以上100nm以下)を効果的に形成するため、乾燥条件を適切にすることが好ましい。 After impregnating the inorganic oxide carrier with the above metal compound solution, catalyst metal particles are generated as metal atoms by heat treatment. In the production of the hydrogen combustion catalyst of the present invention, drying is performed by evaporating and volatilizing the solvent before heat treatment. It is preferable to carry out the treatment. In this drying treatment, coarse catalyst metal particles (20 nm or more and 100 nm or less) are effectively formed, so that it is preferable to make the drying conditions appropriate.

熱処理前の乾燥処理の条件としては、含浸後の無機酸化物担体を50℃以上100℃以下の比較的低温とすることが好ましい。金属化合物溶液が含浸された無機酸化物担体を加熱して乾燥するとき、水分(溶媒)は、担体表面から一様に蒸発することはなく、担体表面の凹凸の角部等の蒸発し易い部分(乾燥点)から優先的に蒸発する。そして、乾燥点周囲の金属化合物溶液が、乾燥点付近に移動して乾燥するようになっている。この乾燥点における金属塩溶液の移動と乾燥とのサイクルによって、乾燥点付近に金属化合物が凝集する。乾燥温度を比較的低温とすることで、前記のサイクルの進行速度を調整して金属化合物の凝集を促し、粗大な触媒金属粒子を形成することができる。 As a condition for the drying treatment before the heat treatment, it is preferable that the inorganic oxide carrier after impregnation has a relatively low temperature of 50 ° C. or higher and 100 ° C. or lower. When the inorganic oxide carrier impregnated with the metal compound solution is heated and dried, the water (solvent) does not evaporate uniformly from the surface of the carrier, and easily evaporates such as corners of irregularities on the surface of the carrier. Evaporates preferentially from (drying point). Then, the metal compound solution around the drying point moves to the vicinity of the drying point and dries. The cycle of movement of the metal salt solution and drying at this drying point causes the metal compound to aggregate near the drying point. By setting the drying temperature to a relatively low temperature, it is possible to adjust the progress rate of the cycle to promote aggregation of the metal compound and form coarse catalytic metal particles.

また、この乾燥処理においては、金属化合物溶液を含侵させた無機酸化物担体を振動、搖動、回転させた状態で加熱することがより好ましい。無機酸化物担体を静置状態ではなく運動状態の下で乾燥することで、上記した金属化合物の移動及び凝集を促進し、効果的に粗大な触媒金属粒子を形成する。尚、上記の比較的低温で行う乾燥処理において、乾燥処理の時間は1時間以上24時間以下とすることが好ましい。比較的低温で処理しつつ、溶媒を十分に蒸発・揮発させるためである。この乾燥処理では、金属化合物溶液を含侵させた無機酸化物担体を十分に乾燥させることが好ましい。具体的基準としては、含水させた乾燥処理前の無機酸化物担体に対して95%以上99.5%以下の重量減率を示すまで乾燥させることが好ましい。 Further, in this drying treatment, it is more preferable to heat the inorganic oxide carrier impregnated with the metal compound solution in a state of vibration, shaking, and rotation. By drying the inorganic oxide carrier under a moving state rather than a stationary state, the movement and aggregation of the above-mentioned metal compound are promoted, and coarse catalyst metal particles are effectively formed. In the above-mentioned drying treatment performed at a relatively low temperature, the drying treatment time is preferably 1 hour or more and 24 hours or less. This is to sufficiently evaporate and volatilize the solvent while treating at a relatively low temperature. In this drying treatment, it is preferable to sufficiently dry the inorganic oxide carrier impregnated with the metal compound solution. As a specific standard, it is preferable to dry the inorganic oxide carrier before the water-containing drying treatment until it shows a weight loss rate of 95% or more and 99.5% or less.

そして、乾燥処理後の金属化合物が担持された無機酸化物担体を熱処理することで、原子状金属が析出し触媒金属粒子が生成される。また、2種類以上金属原子が担持されたとき、この熱処理の過程で合金化が生じることもある。この熱処理条件については、熱処理温度として300~700℃が好ましい。300℃以上である理由は、担持した金属化合物を分解して触媒金属粒子とし、更に、その粒径を粗大化させるためである。また、700℃以上で熱処理すると、金属粒子が過剰に粗大化するおそれがある。熱処理時間としては、0.5~10時間とするのが好ましい。0.5時間未満では十分な触媒金属の生成がなさないからである。また、10時間以上の熱処理は、効果に差異がないため、触媒の製造効率及びエネルギーコスト等の面から好ましくないからである。 Then, by heat-treating the inorganic oxide carrier on which the metal compound after the drying treatment is supported, atomic metals are precipitated and catalytic metal particles are generated. Further, when two or more kinds of metal atoms are supported, alloying may occur in the process of this heat treatment. As for the heat treatment conditions, the heat treatment temperature is preferably 300 to 700 ° C. The reason why the temperature is 300 ° C. or higher is that the carried metal compound is decomposed into catalytic metal particles, and the particle size thereof is coarsened. Further, when the heat treatment is performed at 700 ° C. or higher, the metal particles may be excessively coarsened. The heat treatment time is preferably 0.5 to 10 hours. This is because sufficient catalytic metal is not produced in less than 0.5 hours. Further, the heat treatment for 10 hours or more is not preferable in terms of catalyst production efficiency, energy cost and the like because there is no difference in the effect.

また、この熱処理は適切な還元雰囲気の下で行うことが必要である。好適な熱処理雰囲気としては、水素を3~100体積%含み残部が不活性ガス(窒素、アルゴン等)である混合ガス雰囲気が挙げられる。この混合ガスについては、水素濃度が低過ぎる雰囲気では、金属化合物の分解が進行しにくいことから3体積%を水素濃度の下限としている。 Further, it is necessary to perform this heat treatment under an appropriate reducing atmosphere. A suitable heat treatment atmosphere includes a mixed gas atmosphere containing 3 to 100% by volume of hydrogen and the balance being an inert gas (nitrogen, argon, etc.). Regarding this mixed gas, the lower limit of the hydrogen concentration is set to 3% by volume because the decomposition of the metal compound does not easily proceed in an atmosphere where the hydrogen concentration is too low.

以上の熱処理により、本発明で規定した粗大な触媒金属粒子の割合の高い水素燃焼触媒とすることができる。そして、この水素燃焼触媒に疎水性の低分子官能基を付与することで、疎水化された水素燃焼触媒を得ることができる。 By the above heat treatment, a hydrogen combustion catalyst having a high proportion of coarse catalyst metal particles specified in the present invention can be obtained. Then, by imparting a hydrophobic small molecule functional group to this hydrogen combustion catalyst, a hydrophobic hydrogen combustion catalyst can be obtained.

触媒の疎水化処理では、炭素数7以下のアルキル基等の低分子官能基を末端に有する化合物の溶液に、上記で製造した水素燃焼触媒を浸漬する方法が好ましい。これにより、無機酸化物担体表面に官能基を付与できる。 In the hydrophobic treatment of the catalyst, a method of immersing the hydrogen combustion catalyst produced above in a solution of a compound having a low molecular weight functional group such as an alkyl group having 7 or less carbon atoms at the terminal is preferable. Thereby, a functional group can be imparted to the surface of the inorganic oxide carrier.

疎水化処理のための化合物としては、シラン無機質表面改質剤が好ましく、末端に低分子の疎水性官能基を有するシラン無機質表面改質剤として、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルクロロシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジクロロシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリクロロシラン、トリエチルメトキシシラン、トリエチルエトキシシラン、トリエチルクロロシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジクロロシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリクロロシラン、トリプロピルメトキシシラン、トリプロピルエトキシシラン、トリプロピルクロロシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジクロロシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリクロロシランのいずれが好ましい。プロピル基を有する化合物は直鎖状のもののみならず、分岐状のものを含む。 As the compound for the hydrophobic treatment, a silane inorganic surface modifier is preferable, and as a silane inorganic surface modifier having a low molecular weight hydrophobic functional group at the terminal, trimethylmethoxysilane, trimethylethoxysilane, trimethylchlorosilane, dimethyl Dimethoxysilane, dimethyldiethoxysilane, dimethyldichlorosilane, methyltrimethoxysilane, methyltriethoxysilane, methyltrichlorosilane, triethylmethoxysilane, triethylethoxysilane, triethylchlorosilane, diethyldimethoxysilane, diethyldiethoxysilane, diethyldichlorosilane, Ethyltrimethoxysilane, ethyltriethoxysilane, ethyltrichlorosilane, tripropylmethoxysilane, tripropylethoxysilane, tripropylchlorosilane, dipropyldimethoxysilane, dipropyldiethoxysilane, dipropyldichlorosilane, propyltrimethoxysilane, propyl Either triethoxysilane or propyltrichlorosilane is preferable. Compounds having a propyl group include not only linear compounds but also branched compounds.

疎水化処理の具体的な方法としては、上記の官能基を含む化合物を溶媒に溶解させた溶液に触媒を浸漬する。その後、触媒を溶液から取り出し、適宜に洗浄、乾燥を行う。尚、本発明に係る水素燃焼触媒では、担体表面上の水酸基に全面的に置換されていることが好ましい。溶液中に混合する化合物の量は、各化合物に規定されている被覆面積(m/g)と、担体の重量(g)及び比表面積(m/g)から算出することができるが((担体重量×担体比表面積)/化合物の被覆面積)、概算で担体100gに対して1.0~100gの化合物が使用される。また、溶液(溶媒)の液量は、担体が全面的に漬かる程度とするのが好ましい。 As a specific method of the hydrophobizing treatment, the catalyst is immersed in a solution in which the above-mentioned compound containing a functional group is dissolved in a solvent. After that, the catalyst is taken out from the solution, and washed and dried as appropriate. In the hydrogen combustion catalyst according to the present invention, it is preferable that the catalyst is completely substituted with hydroxyl groups on the surface of the carrier. The amount of the compound to be mixed in the solution can be calculated from the coating area (m 2 / g) specified for each compound, the weight (g) of the carrier and the specific surface area (m 2 / g) ( (Carrier weight x carrier specific surface area) / coating area of the compound), approximately 1.0 to 100 g of the compound is used with respect to 100 g of the carrier. The amount of the solution (solvent) is preferably such that the carrier is completely immersed.

尚、上記のように、本発明においては、疎水化処理は水素燃焼触媒の製造後に(担体に触媒金属粒子を担持させた後に)行うことが好ましい。無機酸化物担体そのものに官能基を付与することは、触媒製造前の無機酸化物担体をシラン無機質表面改質剤等で処理することで可能である。しかし、本発明の触媒製造工程では、上記の通り、金属化合物が担持された無機酸化物担体を熱処理する際の温度として700℃までの温度を想定しており、400℃以上で熱処理をすることもある。かかる高温では疎水基がダメージを受けるおそれがあるので、疎水化処理は触媒の製造後に行うことが好ましい。 As described above, in the present invention, the hydrophobization treatment is preferably performed after the hydrogen combustion catalyst is manufactured (after the catalyst metal particles are supported on the carrier). It is possible to impart a functional group to the inorganic oxide carrier itself by treating the inorganic oxide carrier before the production of the catalyst with a silane inorganic surface modifier or the like. However, in the catalyst manufacturing process of the present invention, as described above, the temperature up to 700 ° C. is assumed as the temperature at which the inorganic oxide carrier carrying the metal compound is heat-treated, and the heat treatment is performed at 400 ° C. or higher. There is also. Since the hydrophobic group may be damaged at such a high temperature, it is preferable to perform the hydrophobic treatment after the catalyst is manufactured.

E.本発明に係る水素燃焼触媒を用いた水素含有ガスの処理方法
以上説明した本発明に係る水素燃焼触媒は、ヨウ素を含む水素含有ガスを処理対象とする水素燃焼プロセスに好適である。この水素燃焼方法では、水素含有ガスを上記水素燃焼触媒に通過させるものであり、これにより水素含有ガス中の水素が燃焼される。本発明における反応温度としては、50~300℃が好ましい。また、本発明の水素燃焼触媒は、比較的低温下でも燃焼反応の継続が可能であるので、反応温度を50℃以下と比較的低温にしても水素燃焼反応を継続させることができる。
E. Method for Treating Hydrogen-Containing Gas Using Hydrogen Combustion Catalyst According to the Present Invention The hydrogen combustion catalyst according to the present invention described above is suitable for a hydrogen combustion process in which a hydrogen-containing gas containing iodine is treated. In this hydrogen combustion method, the hydrogen-containing gas is passed through the hydrogen combustion catalyst, whereby hydrogen in the hydrogen-containing gas is burned. The reaction temperature in the present invention is preferably 50 to 300 ° C. Further, since the hydrogen combustion catalyst of the present invention can continue the combustion reaction even at a relatively low temperature, the hydrogen combustion reaction can be continued even at a relatively low reaction temperature of 50 ° C. or lower.

そして、本発明の水素燃焼触媒は、耐ヨウ素触媒被毒性に優れており、ヨウ素濃度が0.01ppm以上の水素含有ガスに対して有効である。処理対象ガスのヨウ素濃度の上限については、30ppmのものであっても触媒被毒による活性低下が抑制されている。 The hydrogen combustion catalyst of the present invention is excellent in iodine resistance to toxicity, and is effective against a hydrogen-containing gas having an iodine concentration of 0.01 ppm or more. Regarding the upper limit of the iodine concentration of the gas to be treated, even if it is 30 ppm, the decrease in activity due to catalyst poisoning is suppressed.

また、本発明に係る水素燃焼触媒は、疎水化処理を施すことで、水素燃焼反応による生成水及び雰囲気中の水による影響を抑制することができる。本発明の水素燃焼方法では、処理対象となる水素含有ガスが、その反応温度における飽和水蒸気量の相当する水分を含んでいても有効に処理可能である。 Further, the hydrogen combustion catalyst according to the present invention can suppress the influence of water produced by the hydrogen combustion reaction and water in the atmosphere by subjecting the hydrogen combustion catalyst to a hydrophobic treatment. In the hydrogen combustion method of the present invention, even if the hydrogen-containing gas to be treated contains water corresponding to the saturated water vapor amount at the reaction temperature, it can be effectively treated.

以上で説明したように、本発明に係る水素燃焼触媒は、Rh、Pt、Ru及びこれらの合金からなる触媒金属の粒径分布として、粗大粒子(20nm以上100nm以下)の数の割合を高めたものである。これにより、本発明に係る水素燃焼触媒は、ヨウ素に対する耐触媒被毒性に優れており、活性を大きく低下させることなく継続的に水素燃焼することができる。また、本発明に係る触媒は、疎水性処理をすることで、水分による活性低下も抑制されている。 As described above, in the hydrogen combustion catalyst according to the present invention, the proportion of coarse particles (20 nm or more and 100 nm or less) is increased as the particle size distribution of the catalyst metal composed of Rh, Pt, Ru and alloys thereof. It is a thing. As a result, the hydrogen combustion catalyst according to the present invention has excellent catalytic toxicity to iodine and can continuously burn hydrogen without significantly reducing its activity. Further, the catalyst according to the present invention is subjected to a hydrophobic treatment to suppress a decrease in activity due to moisture.

本実施形態で使用したα-アルミナ担体の粒径分布を示す図。The figure which shows the particle size distribution of the α-alumina carrier used in this embodiment. 本実施形態の実施例2の水素燃焼触媒のSEM像(30000倍)と棒状粒子についての測定方法を説明する図。The figure explaining the SEM image (30000 times) of the hydrogen combustion catalyst of Example 2 of this Embodiment, and the measuring method about the rod-shaped particles. 本実施形態の実施例1、2、4と比較例1、3の水素燃焼触媒のSEM観察像(30000倍)を示す写真。Photographs showing SEM observation images (30000 times) of hydrogen combustion catalysts of Examples 1, 2 and 4 and Comparative Examples 1 and 3 of this embodiment. SEM観察(30000倍)により得られた本実施形態の実施例1、2、4と比較例1、3の水素燃焼触媒の触媒金属粒子の粒径分布を示す図。The figure which shows the particle size distribution of the catalyst metal particle of the hydrogen combustion catalyst of Examples 1, 2 and 4 and Comparative Examples 1 and 3 of this Embodiment obtained by SEM observation (30000 times). 本実施形態の実施例1、2、4と比較例1、3の水素燃焼触媒のTEM観察像(500000倍)を示す写真。Photographs showing TEM observation images (500,000 times) of hydrogen combustion catalysts of Examples 1, 2 and 4 and Comparative Examples 1 and 3 of this embodiment. TEM観察(500000倍)により得られた本実施形態の実施例1、2、4と比較例1、3の水素燃焼触媒の触媒金属粒子の粒径分布(粒径-粒子数)を示す図。The figure which shows the particle size distribution (particle size-the number of particles) of the catalyst metal particles of the hydrogen combustion catalyst of Examples 1, 2 and 4 and Comparative Examples 1 and 3 of this Embodiment obtained by TEM observation (500,000 times). TEM観察(500000倍)により得られた本実施形態の実施例1、2、4と比較例1、3の水素燃焼触媒の触媒金属粒子の粒径分布(粒径-体積率)を示す図。It is a figure which shows the particle size distribution (particle size-volume ratio) of the catalyst metal particles of the hydrogen combustion catalyst of Examples 1, 2 and 4 and Comparative Examples 1 and 3 of this Embodiment obtained by TEM observation (500,000 times). 本実施形態の実施例5、比較例1、3の水素燃焼触媒の赤外線吸収スペクトルを示す図。The figure which shows the infrared absorption spectrum of the hydrogen combustion catalyst of Example 5 and Comparative Examples 1 and 3 of this Embodiment.

以下、本発明における最良の実施形態について説明する。本実施形態では、無機酸化物担体としてα-アルミナ、γ-アルミナを用い、これにRh、Pt、Ruを担持して水素燃焼触媒を製造した。また、製造した水素燃焼触媒について疎水化処理を行ったものも製造した。そして、各触媒について、ヨウ素の影響による水素燃焼活性を評価した。 Hereinafter, the best embodiment of the present invention will be described. In this embodiment, α-alumina and γ-alumina are used as the inorganic oxide carrier, and Rh, Pt, and Ru are supported on the α-alumina and γ-alumina to produce a hydrogen combustion catalyst. In addition, the produced hydrogen combustion catalyst that had been hydrophobized was also produced. Then, for each catalyst, the hydrogen combustion activity due to the influence of iodine was evaluated.

実施例1(Pt/α―Al :無機酸化物担体として、市販のα-アルミナ粉末100gを用意した。図1に、このα-アルミナ担体について、走査型電子顕微鏡観察に基づき測定した粒径分布を示す。本実施例のα-アルミナ担体は、400nm近傍に粒径分布のピークを有し、平均粒径は約450nmであった。また、このα-アルミナ担体の比表面積は約1m/gであった。 Example 1 (Pt / α-Al 2 O 3 ) : As an inorganic oxide carrier, 100 g of commercially available α-alumina powder was prepared. FIG. 1 shows the particle size distribution of this α-alumina carrier measured by observation with a scanning electron microscope. The α-alumina carrier of this example had a peak particle size distribution near 400 nm, and the average particle size was about 450 nm. The specific surface area of this α-alumina carrier was about 1 m 2 / g.

そして、この無機酸化物担体に、塩化白金酸エタノール溶液25g(Pt濃度4質量%、白金1g相当、担体吸水量の70%)加えて含浸させた。そして、乾燥処理を行った。乾燥処理は、金属化合物溶液含浸後の担体をエバポレーターのフラスコに入れ、フラスコを45度傾けた状態で70℃~80℃の温水に浸漬した。フラスコ内部は50mbar.に減圧している。そして、8時間ゆっくり(回転速度40rpm)回転させながら加熱した。この乾燥処理後、担体をカラムに入れて3体積%水素ガス(Nバランス)を300℃で2時間流通させ還元し水素燃焼触媒を製造した。 Then, 25 g of an ethanol chloride solution (Pt concentration 4% by mass, equivalent to 1 g of platinum, 70% of the amount of water absorbed by the carrier) was added to this inorganic oxide carrier and impregnated. Then, a drying treatment was performed. In the drying treatment, the carrier impregnated with the metal compound solution was placed in an evaporator flask, and the flask was immersed in warm water at 70 ° C. to 80 ° C. with the flask tilted 45 degrees. The inside of the flask is 50 mbar. The pressure is reduced to. Then, it was heated while slowly rotating for 8 hours (rotation speed 40 rpm). After this drying treatment, the carrier was placed in a column and 3% by volume hydrogen gas (N 2 balance) was circulated at 300 ° C. for 2 hours for reduction to produce a hydrogen combustion catalyst.

実施例2(Rh/α―Al :実施例1と同じα-アルミナ100gに、塩化ロジウム溶液25g(Rh濃度4質量%、ロジウム1g相当)加えて含浸させた。そして、実施例1と同じ条件で乾燥処理を行った。乾燥処理後、担体をカラムに入れて100体積%水素ガスを400℃で2時間流通させ還元し水素燃焼触媒を製造した。 Example 2 (Rh / α-Al 2 O 3 ) : To 100 g of the same α-alumina as in Example 1, 25 g of a rhodium chloride solution (Rh concentration 4% by mass, equivalent to 1 g of rhodium) was added and impregnated. Then, the drying treatment was performed under the same conditions as in Example 1. After the drying treatment, the carrier was placed in a column and 100% by volume hydrogen gas was circulated at 400 ° C. for 2 hours for reduction to produce a hydrogen combustion catalyst.

実施例3(Ru/α―Al :実施例1と同じα-アルミナ100gに、塩化ルテニウム溶液50g(Ru濃度2質量%、ルテニウム1g相当、担体吸水量の145%)加えて含浸させた。そして、実施例1と同じ条件で乾燥処理を行った。乾燥処理後、担体をカラムに入れて100体積%水素ガスを600℃で4時間流通させ還元し水素燃焼触媒を製造した。 Example 3 (Ru / α-Al 2 O 3 ) : To 100 g of the same α-alumina as in Example 1, 50 g of ruthenium chloride solution (Ru concentration 2% by mass, equivalent to 1 g of ruthenium, 145% of carrier water absorption) is added and impregnated. I let you. Then, the drying treatment was performed under the same conditions as in Example 1. After the drying treatment, the carrier was placed in a column and 100% by volume hydrogen gas was circulated at 600 ° C. for 4 hours for reduction to produce a hydrogen combustion catalyst.

実施例4(Pt/γ―Al :この実施例では、担体となる無機酸化物としてγ-アルミナを使用した。このγ-アルミナ担体の平均粒径は約450nmであった。また、比表面積は50m/gであった。そして、実施例1と同様にしてPtを担持して水素燃焼触媒を製造した。 Example 4 (Pt / γ-Al 2 O 3 ) : In this example, γ-alumina was used as the inorganic oxide as a carrier. The average particle size of this γ-alumina carrier was about 450 nm. The specific surface area was 50 m 2 / g. Then, a hydrogen combustion catalyst was produced by supporting Pt in the same manner as in Example 1.

実施例5(Rh/疎水化α―Al :実施例2で製造した水素燃焼触媒を疎水化処理した触媒を製造した。疎水化処理は、触媒100gに、メチルトリメトキシシラン22.7gと純水60gとエタノール60gとを均一に溶解した混合液を加え振とうし、攪拌することにより行った。1日経過後取り出し、純水にて洗浄した後、200℃にて乾燥して疎水化処理有の水素燃焼触媒とした。尚、この疎水化処理による触媒の重量増加は約1gであり、担体中のα-アルミナの含有量は、実施例2の100質量%に対して、99質量%となった。 Example 5 (Rh / Hydrophobicization α-Al 2 O 3 ) : A catalyst obtained by hydrophobizing the hydrogen combustion catalyst produced in Example 2 was produced. The hydrophobization treatment was carried out by adding a mixture in which 22.7 g of methyltrimethoxysilane, 60 g of pure water and 60 g of ethanol were uniformly dissolved in 100 g of the catalyst, shaking and stirring. After 1 day, it was taken out, washed with pure water, and dried at 200 ° C. to prepare a hydrogen combustion catalyst with hydrophobization treatment. The weight increase of the catalyst by this hydrophobization treatment was about 1 g, and the content of α-alumina in the carrier was 99% by mass with respect to 100% by mass of Example 2.

比較例1(Pt/疎水化SiO :上記各実施例に対する比較例として、上述した従来の水素燃焼触媒に相当する触媒を製造した。担体としてシリカ担体(平均粒径0.3μm、比表面積230m/g)100gを用意し、これを疎水化処理した。疎水化処理は、担体に、メチルトリメトキシシラン40gと純水50gとエタノール50gとを均一に溶解した混合液を加え振とうし、攪拌することにより行った。1日経過後取り出し、純水にて洗浄した後、200℃にて乾燥した。 Comparative Example 1 (Pt / Hydrophobicized SiO 2 ) : As a comparative example for each of the above Examples, a catalyst corresponding to the above-mentioned conventional hydrogen combustion catalyst was produced. As a carrier, 100 g of a silica carrier (average particle size 0.3 μm, specific surface area 230 m 2 / g) was prepared and treated with hydrophobicity. The hydrophobization treatment was carried out by adding a mixed solution of 40 g of methyltrimethoxysilane, 50 g of pure water and 50 g of ethanol uniformly to the carrier, shaking and stirring. After 1 day, it was taken out, washed with pure water, and then dried at 200 ° C.

次に、疎水化処理を施したシリカ担体に、塩化白金酸エタノール溶液25g(Pt濃度4質量%、白金1g相当)を加え含浸させた。その後、防爆式乾燥器にて120℃で乾燥処理してエタノールを蒸発させた。このとき、触媒は静置させてある。その後、カラムに入れ、3体積%水素ガス(Nバランス)を230℃で2時間流通させ還元し水素燃焼触媒を製造した。 Next, 25 g of a platinum chloride ethanol solution (Pt concentration 4% by mass, equivalent to 1 g of platinum) was added to the silica carrier subjected to the hydrophobic treatment and impregnated. Then, it was dried at 120 ° C. in an explosion-proof dryer to evaporate ethanol. At this time, the catalyst is allowed to stand still. Then, it was placed in a column, and 3% by volume hydrogen gas (N 2 balance) was circulated at 230 ° C. for 2 hours and reduced to produce a hydrogen combustion catalyst.

比較例2(PtPd/疎水化SiO
比較例1と同じ疎水化処理したシリカ担体に触媒金属粒子としてPtPd合金を担持した水素燃焼触媒を製造した。疎水化処理を施したシリカ担体に、塩化白金酸エタノール溶液25g(Pt濃度4質量%、白金1g相当)と塩化パラジウム溶液6.25g(Pd濃度8質量%、パラジウム0.5g相当)溶液を混合液の状態で加え含浸させた(白金、パラジウムの担持比はモル比で1:1とした)。その後、比較例1と同条件で乾燥処理及び熱処理して水素燃焼触媒を製造した。
Comparative Example 2 (PtPd / Hydrophobicized SiO 2 ) :
A hydrogen combustion catalyst in which a PtPd alloy was supported as catalyst metal particles on the same hydrophobicized silica carrier as in Comparative Example 1 was produced. A solution of 25 g of an ethanol chloride solution (Pt concentration 4% by mass, equivalent to 1 g of platinum) and a solution of 6.25 g of palladium chloride solution (Pd concentration 8% by mass, equivalent to 0.5 g of palladium) are mixed with a hydrophobicized silica carrier. It was added in a liquid state and impregnated (the carrying ratio of platinum and palladium was 1: 1 in terms of molar ratio). Then, it was dried and heat-treated under the same conditions as in Comparative Example 1 to produce a hydrogen combustion catalyst.

比較例3:(Pd/α―Al :実施例1と同じα-アルミナ担体に触媒金属粒子としてPdを担持した水素燃焼触媒を製造した。α-アルミナ担体100gに、塩化パラジウム溶液12.5g(Pd濃度8質量%、パラジウム1g相当)溶液を含浸させた。その後、実施例1と同条件で触媒を回転させながら70℃で乾燥処理し、400℃で熱処理して水素燃焼触媒を製造した。 Comparative Example 3: (Pd / α-Al 2 O 3 ) : A hydrogen combustion catalyst in which Pd was supported as catalyst metal particles on the same α-alumina carrier as in Example 1 was produced. 100 g of the α-alumina carrier was impregnated with a solution of 12.5 g of a palladium chloride solution (Pd concentration: 8% by mass, equivalent to 1 g of palladium). Then, while rotating the catalyst under the same conditions as in Example 1, the catalyst was dried at 70 ° C. and heat-treated at 400 ° C. to produce a hydrogen combustion catalyst.

[触媒金属粒子の観察、粒径分布の測定]
上記で製造した実施例、比較例の水素燃焼触媒について、SEM観察及びTEM観察を行い、触媒金属粒子の粒径分布を検討した。
[Observation of catalyst metal particles, measurement of particle size distribution]
The hydrogen combustion catalysts of Examples and Comparative Examples produced above were observed by SEM and TEM, and the particle size distribution of the catalyst metal particles was examined.

[SEM観察]
各水素燃焼触媒について、SEM観察を行い、20nm以上の触媒金属粒子の有無、粒子数を測定した。観察条件は、倍率30000倍(加速電圧15keV)で3μm×3μmの視野範囲を観察して撮像した。得られたSEM像において、視認可能な触媒金属粒子(およそ10nm以上となる)について、長径及び短径を測定して2軸平均法により粒径を測定した。
[SEM observation]
SEM observation was performed on each hydrogen combustion catalyst, and the presence or absence of catalyst metal particles of 20 nm or more and the number of particles were measured. As for the observation conditions, a visual field range of 3 μm × 3 μm was observed and imaged at a magnification of 30,000 times (acceleration voltage 15 keV). In the obtained SEM image, the major axis and the minor axis of the visible catalytic metal particles (having about 10 nm or more) were measured, and the particle size was measured by the biaxial averaging method.

SEM観察による触媒金属粒子の粒径測定の例について説明する。図2は、実施例2(Rh/α―Al)の触媒のSEM像(30000倍)である。図2のSEM像において、担体上の白色コントラストの点が触媒金属粒子である。粒径分布測定に際しては、この30000倍のSEM像で認識可能な粒子を対象にしてその個数と粒径(2軸平均法)を測定した。触媒金属粒子は多くがアスペクト比2未満である。但し、アスペクト比が2以上の棒状の粒子も観られる(図2参照)。例えば、図2には長径150nm・短径50nmの棒状の粒子が観察される。このようなアスペクト比2以上の棒状の触媒金属粒子については、上記した通り、長径を短径で割った数値を粒子数とし、それぞれにについて粒径を算出した。図2の例では、粒子数は3個であり、それぞれ粒径50nmとした。そして、測定された触媒金属粒子の個数と粒径を基にして粒径分布を作成した。尚、このとき粒径の10nm未満の数値は四捨五入し、10nm毎の粒径分布を得た。 An example of measuring the particle size of the catalyst metal particles by SEM observation will be described. FIG. 2 is an SEM image (30000 times) of the catalyst of Example 2 (Rh / α-Al 2 O 3 ). In the SEM image of FIG. 2, the white contrast points on the carrier are the catalytic metal particles. In measuring the particle size distribution, the number and particle size (biaxial averaging method) of particles recognizable by this 30,000 times SEM image were measured. Most of the catalyst metal particles have an aspect ratio of less than 2. However, rod-shaped particles with an aspect ratio of 2 or more can also be seen (see FIG. 2). For example, in FIG. 2, rod-shaped particles having a major axis of 150 nm and a minor axis of 50 nm are observed. For such rod-shaped catalyst metal particles having an aspect ratio of 2 or more, as described above, the numerical value obtained by dividing the major axis by the minor axis was used as the number of particles, and the particle size was calculated for each. In the example of FIG. 2, the number of particles was 3, and the particle size was 50 nm for each. Then, a particle size distribution was created based on the measured number and particle size of the catalyst metal particles. At this time, the numerical value of the particle size less than 10 nm was rounded off to obtain the particle size distribution for each 10 nm.

[TEM観察]
各水素燃焼触媒について、TEM観察を行い、30nm以下の触媒金属粒子の分布状態を観察した。観察条件は、倍率500000倍(加速電圧100keV)で0.4μm×0.6μmの視野範囲を観察して撮像した。得られたTEM像において、視認可能な触媒金属粒子の粒径を測定した。ここでは、1nm以上30nm以下の触媒粒子を1nm単位で測定した。そして、1nm以上30nm以下の触媒粒子の粒径分布を作成した。子の粒径分布においては、粒径-粒子数の分布図と粒径-体積率(各粒径に属する触媒金属粒子の体積率の合計)の分布図を作成した。
[TEM observation]
TEM observation was carried out for each hydrogen combustion catalyst, and the distribution state of the catalyst metal particles of 30 nm or less was observed. As for the observation conditions, a visual field range of 0.4 μm × 0.6 μm was observed and imaged at a magnification of 500,000 times (acceleration voltage 100 keV). In the obtained TEM image, the particle size of the visible catalyst metal particles was measured. Here, catalyst particles of 1 nm or more and 30 nm or less were measured in units of 1 nm. Then, a particle size distribution of catalyst particles of 1 nm or more and 30 nm or less was created. Regarding the particle size distribution of the child, a distribution map of particle size-number of particles and a distribution map of particle size-volume ratio (total volume ratio of catalytic metal particles belonging to each particle size) were created.

各水素燃焼触媒について行ったSEM観察(30000倍)の結果について、例示として実施例1、2、4と比較例1、3のSEM像を図3に示す。また、このSEM像に基づき測定した実施例1、2、4と比較例1、3における触媒金属粒子の粒径分布を図4に示す。図4からわかるように、実施例1、2、4の水素燃焼触媒においては、粒径20nm以上の触媒金属粒子が明確に生成されており、いずれも20個以上の粗大粒子の生成が確認される。これらの触媒では、粒径20nmの触媒金属粒子に加えて、粒径30~40nmの触媒金属粒子が多くみられる。特に、担体としてα-アルミナを適用した触媒(実施例1、2)においては、粒径50nm以上の触媒金属粒子の生成も確認されている。 The SEM images of Examples 1, 2 and 4 and Comparative Examples 1 and 3 are shown in FIG. 3 as an example of the results of SEM observation (30000 times) performed for each hydrogen combustion catalyst. Further, FIG. 4 shows the particle size distribution of the catalyst metal particles in Examples 1, 2 and 4 and Comparative Examples 1 and 3 measured based on this SEM image. As can be seen from FIG. 4, in the hydrogen combustion catalysts of Examples 1, 2 and 4, catalyst metal particles having a particle size of 20 nm or more were clearly generated, and it was confirmed that 20 or more coarse particles were generated in each of them. To. In these catalysts, in addition to the catalyst metal particles having a particle size of 20 nm, many catalyst metal particles having a particle size of 30 to 40 nm are found. In particular, in the catalyst to which α-alumina is applied as a carrier (Examples 1 and 2), the formation of catalyst metal particles having a particle size of 50 nm or more has also been confirmed.

一方、比較例1の従来の水素燃焼触媒の場合、粒径20nm以上の触媒金属粒子も一応は生成しているがその数は極めて少ない。比較例1の水素燃焼触媒は、SEM観察では10nm程度の触媒金属粒子が主体となり、粒径30nm以上の触媒金属粒子は見られない。 On the other hand, in the case of the conventional hydrogen combustion catalyst of Comparative Example 1, catalyst metal particles having a particle size of 20 nm or more are also generated, but the number thereof is extremely small. The hydrogen combustion catalyst of Comparative Example 1 is mainly composed of catalytic metal particles having a particle size of about 10 nm in SEM observation, and no catalytic metal particles having a particle size of 30 nm or more are observed.

また、比較例3の水素燃焼触媒は、担体(α-アルミナ担体)及び製造方法は実施例1等と同じであり、触媒金属粒子としてPdを適用したものである。図4からわかるように、この触媒では、粒径20nm以上の触媒金属粒子の粒子数は20個未満と少ない。このことから、粒径20nm以上の粗大な触媒金属粒子の形成においては、製造方法に加えて触媒金属粒子を構成する金属種も重要であると考察される。 Further, the hydrogen combustion catalyst of Comparative Example 3 has the same carrier (α-alumina carrier) and the same production method as in Example 1 and the like, and Pd is applied as the catalyst metal particles. As can be seen from FIG. 4, in this catalyst, the number of catalyst metal particles having a particle size of 20 nm or more is as small as less than 20. From this, it is considered that the metal species constituting the catalyst metal particles are important in addition to the production method in the formation of coarse catalyst metal particles having a particle size of 20 nm or more.

次に、TEM観察(500000倍)の結果として、実施例1、2、4と比較例1、3のTEM像を図5に示す。更に、TEM像に基づき測定した実施例1、2、4と比較例1、3における触媒金属粒子の粒径分布を図6(粒径-粒子数)と図7(粒径-体積率)に示す。図5からわかるように、いずれの触媒においても、粒径10nm以下の微細な触媒金属粒子の生成・分散が確認される。但し、実施例の触媒においては、TEM観察であっても粒径20nm以上の触媒金属粒子が確認されるのに対し、比較例では、粒径20nm以上の粗大粒子は見られない。 Next, as a result of TEM observation (500,000 times), TEM images of Examples 1, 2 and 4 and Comparative Examples 1 and 3 are shown in FIG. Further, the particle size distributions of the catalyst metal particles in Examples 1, 2 and 4 and Comparative Examples 1 and 3 measured based on the TEM image are shown in FIGS. 6 (particle size-number of particles) and FIG. 7 (particle size-volume ratio). show. As can be seen from FIG. 5, the formation and dispersion of fine catalyst metal particles having a particle size of 10 nm or less are confirmed in any of the catalysts. However, in the catalyst of the example, catalyst metal particles having a particle size of 20 nm or more are confirmed even by TEM observation, whereas in the comparative example, coarse particles having a particle size of 20 nm or more are not observed.

図6のTEM観察による粒径分布(粒径-粒子数)を確認すると、各実施例の触媒は、20nm以上30nm以下の触媒金属粒子の合計粒子数が、粒径1nm以上30nm以下の触媒金属粒子の総粒子数に占める割合が2%以上となっている。比較例では20nm以上の触媒金属粒子は見られない。そして、この20nm以上の触媒金属粒子の存在は、各触媒金属粒子の体積率(図7)を見るとより明確になる。各実施例の触媒は、20nm以上30nm以下の触媒金属粒子の合計体積が、前記粒径1nm以上30nm以下の触媒金属粒子の総体積に占める割合が50%以上となっている。 When the particle size distribution (particle size-number of particles) confirmed by TEM observation in FIG. 6, the catalyst of each example has a total number of catalytic metal particles of 20 nm or more and 30 nm or less, and the total number of particles is 1 nm or more and 30 nm or less. The ratio of particles to the total number of particles is 2% or more. In the comparative example, no catalyst metal particles having a diameter of 20 nm or more are observed. The presence of the catalyst metal particles having a diameter of 20 nm or more becomes clearer by looking at the volume fraction of each catalyst metal particle (FIG. 7). In the catalyst of each example, the ratio of the total volume of the catalyst metal particles having a particle size of 20 nm or more and 30 nm or less to the total volume of the catalyst metal particles having a particle size of 1 nm or more and 30 nm or less is 50% or more.

尚、図示のない実施例3、比較例2の触媒金属粒子のSEM及びTEMの観察結果及び粒径分布についても上記と同様の傾向を示していた。 以上のSEM観察及びTEM観察による各水素燃焼触媒の触媒金属粒子の粒径分布をまとめると表1のようになる。 The SEM and TEM observation results and particle size distribution of the catalyst metal particles of Example 3 and Comparative Example 2 (not shown) showed the same tendency as described above. Table 1 summarizes the particle size distributions of the catalyst metal particles of each hydrogen combustion catalyst by the above SEM observation and TEM observation.

Figure 2022099512000002
Figure 2022099512000002

[疎水性官能基の確認]
触媒を疎水化処理した実施例5及び比較例1、3について、FT-IR分析による赤外吸収スペクトルの測定を行った。FT-IR分析は、拡散反射法を使用した。触媒をメノウ乳鉢で粉砕し、十分に粉末化した後、触媒体積の約2倍のKBr粉末を加え、均一になるまで混合した。それをアルミニウム皿に乗せ、平滑面を形成した後、分析装置内にセットし、室温及び大気下で赤外吸収スペクトルを測定した。
[Confirmation of hydrophobic functional groups]
Infrared absorption spectra of Example 5 and Comparative Examples 1 and 3 in which the catalyst was hydrophobized were measured by FT-IR analysis. The FT-IR analysis used the diffuse reflection method. The catalyst was pulverized in an agate mortar and sufficiently pulverized, then KBr powder having about twice the volume of the catalyst was added and mixed until uniform. After placing it on an aluminum dish to form a smooth surface, it was set in an analyzer and the infrared absorption spectrum was measured at room temperature and in the atmosphere.

図8に実施例5及び比較例1、3の水素燃焼触媒の赤外吸収スペクトルを示す。何れの触媒においても、2900~3000cm-1付近において疎水性官能基であるメチル基由来の吸収ピークが見られる。本発明に係る水素燃焼触媒において、疎水化処理の有無は、赤外吸収スペクトルの測定により確認できるといえる。 FIG. 8 shows the infrared absorption spectra of the hydrogen combustion catalysts of Example 5 and Comparative Examples 1 and 3. In any of the catalysts, an absorption peak derived from the methyl group, which is a hydrophobic functional group, is observed in the vicinity of 2900 to 3000 cm -1 . It can be said that the presence or absence of the hydrophobic treatment in the hydrogen combustion catalyst according to the present invention can be confirmed by measuring the infrared absorption spectrum.

[水素燃焼活性試験]
実施例1~実施例5及び比較例1で製造した各水素燃焼触媒について、水素燃焼活性の評価試験を行った。この評価試験では、予め、触媒をヨウ素含有ガスに暴露してヨウ素被毒を生じさせるヨウ素被毒処理を行い、その後、触媒を用いて水素含有ガスを試験ガスとする水素燃焼試験により触媒活性を評価した。
[Hydrogen combustion activity test]
An evaluation test of hydrogen combustion activity was carried out for each hydrogen combustion catalyst produced in Examples 1 to 5 and Comparative Example 1. In this evaluation test, the catalyst is exposed to iodine-containing gas in advance to perform iodine poisoning treatment that causes iodine poisoning, and then the catalytic activity is determined by a hydrogen combustion test using a hydrogen-containing gas as the test gas using the catalyst. evaluated.

ヨウ素被毒処理は、ヨウ素水溶液(ヨウ素濃度80mg/L)にキャリアガスをバブリングしてヨウ素含有ガスを生成し、このヨウ素含有ガスを水素燃焼触媒が充填されたカラムに流通させることにより行った。このヨウ素被毒処理においては、ヨウ素水をバブリングするキャリアガスとして、空気と水素混合ガス(1体積%水素+0.5体積%酸素+窒素バランス)の2種類のガスを使用した。後者の水素混合ガスによるヨウ素被毒処理は、低酸素雰囲気下での水素燃焼活性を評価するための試験である。酸素が不足した雰囲気においては、水素は燃焼(酸化)し難い。よって、水素混合ガスによるヨウ素被毒処理をすることで、触媒活性の優劣をより明確に確認することができる。ヨウ素被毒処理では、ヨウ素水をバブリングするキャリアガスの流量を300mL/minとし、触媒量を10ccとし、処理時間を15時間とした。 The iodine poisoning treatment was carried out by bubbling a carrier gas in an iodine aqueous solution (iodine concentration 80 mg / L) to generate an iodine-containing gas, and circulating the iodine-containing gas in a column filled with a hydrogen combustion catalyst. In this iodine poisoning treatment, two types of gases, air and a hydrogen mixed gas (1% by volume hydrogen + 0.5% by volume oxygen + nitrogen balance), were used as carrier gases for bubbling iodine water. The latter treatment with iodine poisoning with a hydrogen mixed gas is a test for evaluating hydrogen combustion activity in a low oxygen atmosphere. Hydrogen is difficult to burn (oxidize) in an oxygen-deficient atmosphere. Therefore, the superiority or inferiority of the catalytic activity can be confirmed more clearly by performing the iodine poisoning treatment with the hydrogen mixed gas. In the iodine poisoning treatment, the flow rate of the carrier gas bubbling iodine water was set to 300 mL / min, the catalyst amount was set to 10 cc, and the treatment time was set to 15 hours.

水素燃焼試験では、上記のヨウ素被毒処理後の水素燃焼触媒をカラムに充填し、ここに水素を含む反応ガスを流通し、カラム出口側の反応ガスの組成を分析して水素燃焼率(触媒活性)を測定した。水素燃焼率は、「(反応前の水素濃度-反応後の水素濃度)/反応前の水素濃度×100」として算出した。導入した反応ガスは、水素濃度1000ppm(空気バランス)の水素混合ガスを使用した。その他の試験条件は以下の通りとした。
・反応ガス流量:800mL/min
・反応温度:室温、100℃
・試験方法:昇温速度を10℃/分とし、所定の反応温度到達後に1時間保持した後、反応ガスを分析した。
In the hydrogen combustion test, the column is filled with the hydrogen combustion catalyst after the above-mentioned iodine poisoning treatment, a reaction gas containing hydrogen is circulated there, and the composition of the reaction gas on the column outlet side is analyzed to determine the hydrogen combustion rate (catalyst). Activity) was measured. The hydrogen burning rate was calculated as "(hydrogen concentration before reaction-hydrogen concentration after reaction) / hydrogen concentration before reaction x 100". As the introduced reaction gas, a hydrogen mixed gas having a hydrogen concentration of 1000 ppm (air balance) was used. Other test conditions were as follows.
-Reaction gas flow rate: 800 mL / min
-Reaction temperature: room temperature, 100 ° C
-Test method: The temperature rise rate was set to 10 ° C./min, and the reaction gas was analyzed after holding for 1 hour after reaching a predetermined reaction temperature.

以上の水素燃焼試験の結果を表2に示す。尚、本実施形態の水素燃焼試験では、各触媒の初期活性を確認するため、ヨウ素被毒処理を行っていない水素燃焼触媒についても実施した。 The results of the above hydrogen combustion test are shown in Table 2. In the hydrogen combustion test of the present embodiment, in order to confirm the initial activity of each catalyst, a hydrogen combustion catalyst not subjected to iodine poisoning treatment was also carried out.

Figure 2022099512000003
Figure 2022099512000003

表2を参照すると、ヨウ素被毒処理による触媒活性に対する影響の大きさが確認される。比較例1の水素燃焼触媒は、ヨウ素被毒のない状態の初期活性は、室温で98%、100℃では99%の水素燃焼率を示すが、空気をキャリアガスとするヨウ素被毒処理により水素燃焼率は15%(反応温度100℃)に低下した。そして、水素混合ガスをキャリアガスとするより過酷なヨウ素被毒処理をしたとき、反応温度が100℃であっても水素燃焼率は0%(活性無し)となった。 With reference to Table 2, the magnitude of the effect of iodine poisoning treatment on catalytic activity can be confirmed. The hydrogen combustion catalyst of Comparative Example 1 shows a hydrogen combustion rate of 98% at room temperature and 99% at 100 ° C. in a state without iodine poisoning, but hydrogen is treated by iodine poisoning treatment using air as a carrier gas. The combustion rate decreased to 15% (reaction temperature 100 ° C.). Then, when a harsher iodine poisoning treatment using a hydrogen mixed gas as a carrier gas was performed, the hydrogen burning rate was 0% (no activity) even when the reaction temperature was 100 ° C.

上記の各比較例の結果と各実施例1~5の水素燃焼触媒の結果とを対比すると、これら実施例の触媒は、ヨウ素被毒処理を受けたときの水素燃焼率の低下幅が小さくなっている。これら実施例の触媒でも、基本的に反応温度が低い(室温)ではヨウ素被毒処理により水素燃焼活性を発揮しないが、反応温度を100℃とすることで水素燃焼活性を発揮し得る。水素混合ガスをキャリアガスとするヨウ素被毒処理を受けても、完全に失活することはない。各実施例の水素燃焼触媒において、粗大な(粒径20nm以上の)触媒金属粒子を形成したことで、耐ヨウ素触媒被毒性を獲得したといえる。 Comparing the results of each of the above comparative examples with the results of the hydrogen combustion catalysts of Examples 1 to 5, the catalysts of these Examples have a small decrease in the hydrogen combustion rate when subjected to iodine poisoning treatment. ing. Even with the catalysts of these examples, the hydrogen combustion activity is basically not exhibited by the iodine poisoning treatment when the reaction temperature is low (room temperature), but the hydrogen combustion activity can be exhibited by setting the reaction temperature to 100 ° C. Even if it is subjected to iodine poisoning treatment using a hydrogen mixed gas as a carrier gas, it will not be completely inactivated. It can be said that the iodine-resistant catalyst toxicity was obtained by forming coarse catalyst metal particles (particle size of 20 nm or more) in the hydrogen combustion catalyst of each example.

特に、実施例5の水素燃焼触媒(Rh/α-アルミナ担体+疎水化処理)は、水素混合ガスをキャリアガスとするヨウ素被毒処理を受けても、反応温度を100℃とすることで、水素燃焼率88%と極めて高い活性を発揮する。実施例5の触媒は、実施例2の触媒を疎水化処理した触媒であり、疎水化により初期活性の向上と耐ヨウ素触媒被毒性の向上が発揮されることがわかる。 In particular, the hydrogen combustion catalyst (Rh / α-alumina carrier + hydrophobic treatment) of Example 5 is subjected to iodine poisoning treatment using a hydrogen mixed gas as a carrier gas, by setting the reaction temperature to 100 ° C. It exhibits extremely high activity with a hydrogen burning rate of 88%. It can be seen that the catalyst of Example 5 is a catalyst obtained by hydrophobizing the catalyst of Example 2, and that the hydrophobicization exhibits an improvement in initial activity and an improvement in iodine resistance catalyst toxicity.

もっとも、本発明者等の検討によれば、水素燃焼触媒にとって疎水化処理は必ずしも必須の処理ではない。実施例2の触媒でも、水素混合ガスをキャリアガスとするヨウ素被毒処理を受けても、反応温度を室温から100℃とすることで水素燃焼活性を発揮する。そこで、実施例2のみについて反応温度を150℃として同様の水素燃焼試験を行ったところ、35%以上の水素燃焼率を発揮することを確認している。この点を考慮すると、疎水化処理をしない場合でも、反応温度の調整によって、所望の用途に対応可能であることが確認される。疎水化処理は、重度のヨウ素被毒が予測される用途・環境に対して有効であるといえる。 However, according to the study by the present inventors, the hydrophobizing treatment is not always essential for the hydrogen combustion catalyst. Even if the catalyst of Example 2 is subjected to iodine poisoning treatment using a hydrogen mixed gas as a carrier gas, hydrogen combustion activity is exhibited by setting the reaction temperature from room temperature to 100 ° C. Therefore, when a similar hydrogen combustion test was conducted with the reaction temperature set to 150 ° C. only in Example 2, it was confirmed that a hydrogen combustion rate of 35% or more was exhibited. Considering this point, it is confirmed that the desired application can be achieved by adjusting the reaction temperature even when the hydrophobizing treatment is not performed. It can be said that the hydrophobization treatment is effective for applications and environments where severe iodine poisoning is expected.

以上のとおり、粒径20nm以上の粗大触媒金属粒子を形成することで、水素燃焼触媒に高い耐ヨウ素触媒被毒性を付与できることが確認された。ここで、触媒金属粒子の粒径以外の要素である触媒金属粒子及び担体種類について確認すると、触媒金属粒子の金属種としては、実施例1~3の対比からRhが耐ヨウ素触媒被毒性の観点から特に好ましい貴金属であるといえる。特に、Pdを適用すると、初期活性及び耐ヨウ素触媒被毒性に乏しい触媒となる。これは、図4、5、6を参照すると分かるように、Pdは粗大化が困難な貴金属であることに基づくと考えられる。また、担体の種類については、実施例1と実施例4との対比からα-アルミナの適用が好ましいことが確認される。 As described above, it was confirmed that high iodine-resistant catalyst toxicity can be imparted to the hydrogen combustion catalyst by forming coarse catalyst metal particles having a particle size of 20 nm or more. Here, when the catalyst metal particles and the carrier types, which are elements other than the particle size of the catalyst metal particles, are confirmed, as the metal species of the catalyst metal particles, Rh is an iodine-resistant catalyst toxicity viewpoint from the comparison of Examples 1 to 3. Therefore, it can be said that it is a particularly preferable precious metal. In particular, when Pd is applied, the catalyst becomes poor in initial activity and iodine resistance catalyst toxicity. This is considered to be due to the fact that Pd is a noble metal that is difficult to coarsen, as can be seen with reference to FIGS. 4, 5 and 6. As for the type of carrier, it is confirmed that the application of α-alumina is preferable from the comparison between Examples 1 and 4.

以上の通り、本発明に係る水素燃焼触媒は、水素ガスの燃焼において、ヨウ素による触媒被毒が従来技術以上に抑制された触媒である。本発明に係る触媒は、疎水化処理によってより効果的な水素燃焼活性を示す。 As described above, the hydrogen combustion catalyst according to the present invention is a catalyst in which catalyst poisoning due to iodine is suppressed more than in the prior art in the combustion of hydrogen gas. The catalyst according to the present invention exhibits more effective hydrogen combustion activity by hydrophobizing treatment.

そして、本発明に係る水素燃焼触媒は、水素燃焼のための各種機器に適用可能である。特に、原子力発電所内における水素燃焼装置(水素再結合装置)に実装される触媒として有用である。 The hydrogen combustion catalyst according to the present invention can be applied to various devices for hydrogen combustion. In particular, it is useful as a catalyst mounted on a hydrogen combustion device (hydrogen recombination device) in a nuclear power plant.

また、本発明に係る水素燃焼触媒は、水素の同位体である重水素(D2)、トリチウム(T)の燃焼にも有効である。これらの同位体水素は、核融合発電施設等の原子力関連施設で取り扱われる可能性があり、それらに設置される水素燃焼装置にも応用可能である。 The hydrogen combustion catalyst according to the present invention is also effective for burning deuterium (D2) and tritium (T), which are isotopes of hydrogen. These isotope hydrogens may be handled in nuclear-related facilities such as fusion power generation facilities, and can be applied to hydrogen combustion equipment installed in them.

Claims (8)

無機酸化物からなる担体に、Rh、Pt、Ruのいずれかの貴金属又はこれらの合金からなる触媒金属粒子が担持されてなる水素燃焼触媒において、
倍率30000倍で観察したとき、3μm×3μmの視野範囲内で観察される粒径20nm以上200nm以下の前記触媒金属粒子の個数が20個以上であることを特徴とする水素燃焼触媒。
In a hydrogen combustion catalyst in which a carrier made of an inorganic oxide is supported with catalyst metal particles made of a noble metal of Rh, Pt, or Ru or an alloy thereof.
A hydrogen combustion catalyst characterized in that the number of the catalyst metal particles having a particle size of 20 nm or more and 200 nm or less observed in a visual field range of 3 μm × 3 μm when observed at a magnification of 30,000 times is 20 or more.
粒径1nm以上30nm以下の触媒金属粒子の粒子数を測定したとき、20nm以上30nm以下の触媒金属粒子の合計粒子数が、粒径1nm以上30nm以下の触媒金属粒子の総粒子数に占める割合が1%以上である請求項1記載の水素燃焼触媒。 When the number of particles of the catalyst metal particles having a particle size of 1 nm or more and 30 nm or less is measured, the ratio of the total number of catalyst metal particles having a particle size of 20 nm or more and 30 nm or less to the total number of particles of the catalyst metal particles having a particle size of 1 nm or more and 30 nm or less. The hydrogen combustion catalyst according to claim 1, which is 1% or more. 粒径1nm以上30nm以下の触媒金属粒子の体積を測定したとき、20nm以上30nm以下の触媒金属粒子の合計体積が、前記粒径1nm以上30nm以下の触媒金属粒子の総体積に占める割合が30%以上である請求項1記載の水素燃焼触媒。 When the volume of the catalytic metal particles having a particle size of 1 nm or more and 30 nm or less is measured, the ratio of the total volume of the catalytic metal particles having a particle size of 20 nm or more and 30 nm or less to the total volume of the catalytic metal particles having a particle size of 1 nm or more and 30 nm or less is 30%. The hydrogen combustion catalyst according to claim 1 as described above. 前記担体は、50質量%以上のα-アルミナを含む請求項1~請求項3のいずれかに記載の水素燃焼触媒。 The hydrogen combustion catalyst according to any one of claims 1 to 3, wherein the carrier contains 50% by mass or more of α-alumina. 前記担体の比表面積が0.1m/g以上50m/g以下である請求項4記載の水素燃焼触媒。 The hydrogen combustion catalyst according to claim 4, wherein the specific surface area of the carrier is 0.1 m 2 / g or more and 50 m 2 / g or less. 前記担体に、炭素数7以下の疎水性の低分子官能基が結合する請求項1~請求項5のいずれかに記載の水素燃焼触媒。 The hydrogen combustion catalyst according to any one of claims 1 to 5, wherein a hydrophobic low molecular weight functional group having 7 or less carbon atoms is bonded to the carrier. 前記疎水性の低分子官能基は、メチル基、エチル基である請求項6記載の水素燃焼触媒。 The hydrogen combustion catalyst according to claim 6, wherein the hydrophobic small molecule functional group is a methyl group or an ethyl group. 請求項1~請求項7のいずれかに記載の水素燃焼触媒に水素含有ガスを通過させ、前記水素含有ガス中の水素を燃焼させる方法であって、
前記水素含有ガスは、0.01ppm以上のヨウ素を含むものであり、
反応温度を10℃以上300℃以下として水素を燃焼させる水素燃焼方法。


A method of passing a hydrogen-containing gas through the hydrogen combustion catalyst according to any one of claims 1 to 7 to burn hydrogen in the hydrogen-containing gas.
The hydrogen-containing gas contains 0.01 ppm or more of iodine.
A hydrogen combustion method in which hydrogen is burned at a reaction temperature of 10 ° C. or higher and 300 ° C. or lower.


JP2020213316A 2020-12-23 2020-12-23 Hydrogen combustion catalyst, and hydrogen combustion method Pending JP2022099512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020213316A JP2022099512A (en) 2020-12-23 2020-12-23 Hydrogen combustion catalyst, and hydrogen combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020213316A JP2022099512A (en) 2020-12-23 2020-12-23 Hydrogen combustion catalyst, and hydrogen combustion method

Publications (1)

Publication Number Publication Date
JP2022099512A true JP2022099512A (en) 2022-07-05

Family

ID=82269670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020213316A Pending JP2022099512A (en) 2020-12-23 2020-12-23 Hydrogen combustion catalyst, and hydrogen combustion method

Country Status (1)

Country Link
JP (1) JP2022099512A (en)

Similar Documents

Publication Publication Date Title
KR101813297B1 (en) Hydrogen combustion catalyst and method for producing thereof, and method for combusting hydrogen
JP6865681B2 (en) Synthesis of colloidal noble metal nanoparticles with controlled size and morphology
EP3189894B1 (en) Catalyst for water-hydrogen exchange reaction, method for producing same and apparatus for water-hydrogen exchange reaction
EP3127609B1 (en) Catalyst for hydrogen combustion, process for producing same, and method for hydrogen combustion
Holmgren et al. A model of oxygen transport in Pt/ceria catalysts from isotope exchange
US7820585B2 (en) Metal cluster-carrying metal oxide support and process for production thereof
JP2007506548A (en) Nanoscale gold catalysts, activators, carrier media, and related methods useful for producing such catalyst systems by depositing gold on the carrier media using physical vapor deposition, in particular
Alerasool et al. Preparation and characterization of supported P Ru bimetallic clusters: Strong precursor-support interactions
CN113613786B (en) Metallic nanoparticle catalyst trapped on porous oxide support and having high activity even at low temperature
JP6284097B2 (en) Catalyst production method
Peter et al. Fabric impregnated with TiO2 gel with self‐cleaning property
Qiang et al. Direct synthesis of homogeneous Zr-doped SBA-15 mesoporous silica via masking zirconium sulfate
CN106881110A (en) A kind of preparation method of the palladium catalyst that Oxidation of Carbon Monoxide coexists suitable for steam
Yu et al. Superhydrophobic Pt–Pd/Al2O3 catalyst coating for hydrogen mitigation system of nuclear power plant
JP5612050B2 (en) Method for producing metal particle supported catalyst
JP2011230064A (en) Hydrogen and oxygen recombination catalyst, recombination apparatus, and nuclear plant
Chang et al. Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation
KR102057119B1 (en) A fabrication method of catalyst and exhaust gas purifying apparatus which are metal nanoparticles supported on metal oxide support treated by hydrothermal treatment for carbon monoxide oxidation
JP2022099512A (en) Hydrogen combustion catalyst, and hydrogen combustion method
JP4765092B2 (en) Colloidal solution and method for producing colloidal solution
EP2944609B1 (en) Method for preparing superoxide-generating composition, and superoxide-generating composition prepared by method
Basu et al. Effect of high temperature on swellable organically modified silica (SOMS) and its application for preferential CO oxidation in H2 rich environment
JPWO2011093305A1 (en) Radioactive gas waste treatment method, treatment facility, and impurity removal material
JP2021533991A (en) Exhaust gas purification catalyst
Dong et al. Amine‐Functionalized Amyloid Aerogels for CO2 Capture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231128