JP2022099433A - Wave surface float power generator - Google Patents

Wave surface float power generator Download PDF

Info

Publication number
JP2022099433A
JP2022099433A JP2020213196A JP2020213196A JP2022099433A JP 2022099433 A JP2022099433 A JP 2022099433A JP 2020213196 A JP2020213196 A JP 2020213196A JP 2020213196 A JP2020213196 A JP 2020213196A JP 2022099433 A JP2022099433 A JP 2022099433A
Authority
JP
Japan
Prior art keywords
shaft
power generation
buoy
rotating body
rotation axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020213196A
Other languages
Japanese (ja)
Other versions
JP7509028B2 (en
Inventor
賢二 森▲崎▼
Kenji MORISAKI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2020213196A priority Critical patent/JP7509028B2/en
Publication of JP2022099433A publication Critical patent/JP2022099433A/en
Application granted granted Critical
Publication of JP7509028B2 publication Critical patent/JP7509028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

To provide a wave surface float power generator capable of generating power by waves on the water surface.SOLUTION: A wave surface float power generator includes: a housing for a buoy including closed space inside; a shaft arranged in the space; a rotor arranged in the space and fixed to the shaft, having center of gravity in a position which is deviated from a rotational axis of the shaft, and capable of rotating with the rotational axis of the shaft as a rotational axis; a repulsive magnet bearing provided on the housing and the rotor to support the rotor rotatably; and a dynamo fixed to the housing for generating power by being driven through the shaft by rotation of the rotor.SELECTED DRAWING: Figure 2

Description

本発明は、環境発電装置を搭載する水上に浮かぶブイ(浮標)に関し、特に、波の動きによってブイの傾きが変化することを利用する波面フロート発電装置に関する。 The present invention relates to a buoy (buoy) floating on water on which an energy harvesting device is mounted, and more particularly to a wave surface float power generation device that utilizes the fact that the inclination of the buoy changes due to the movement of a wave.

電磁誘導を用いた発電装置として、特許文献1に記載された筒状コイル内面上に磁石を転動または摺動可能に搭載した発電装置がある。当該発電装置は円筒に巻かれた筒状コイルの内面上に磁石を入れ、この筒状コイルの傾きによって内部の磁石がコイルの中を転動し発電するものである。特許文献1は、当該発電装置を樹木等に取り付けた場合、風力による樹木の揺動に対応して発電し、海上に当該発電装置のハウジングを浮かべた場合、波動によって発電すると、示唆している。 As a power generation device using electromagnetic induction, there is a power generation device in which a magnet is tumbled or slidably mounted on an inner surface of a tubular coil described in Patent Document 1. In the power generation device, a magnet is inserted on the inner surface of a cylindrical coil wound in a cylinder, and the internal magnet rolls in the coil due to the inclination of the tubular coil to generate electric power. Patent Document 1 suggests that when the power generation device is attached to a tree or the like, power is generated in response to the rocking of the tree due to wind power, and when the housing of the power generation device is floated on the sea, power is generated by wave motion. ..

特開平10-42540号公報Japanese Unexamined Patent Publication No. 10-42540

しかしながら、特許文献1に開示の技術の場合、筒状コイルであるため、その芯方向の傾き(高低差)がある場合にしか発電することができないという問題点があった。 However, in the case of the technique disclosed in Patent Document 1, since it is a cylindrical coil, there is a problem that power can be generated only when there is an inclination (height difference) in the core direction.

本発明は、以上の従来技術の問題点に鑑みなされたものであり、さざ波のようなわずかな高低差ででも十分な発電量が得られる波面フロート発電装置を提供することを目的とする。 The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a wavefront float power generation device capable of obtaining a sufficient amount of power generation even with a slight height difference such as ripples.

本発明の波面フロート発電装置は、内部に閉塞された空間を備えるブイの筐体と、前記空間の中に配されたシャフトと、前記空間の中に配され且つ前記シャフトに固定され前記シャフトの回転軸から外れた位置に重心を有し且つ前記シャフトの回転軸を回転軸として回転可能な回転体と、前記筐体及び前記回転体に設けられ前記回転体を回転可能に支持する反発型磁気軸受と、前記回転体の回転により前記シャフトを介して駆動されて発電する前記筐体に固定されたダイナモと、を有することを特徴とする。 The wave surface float power generation device of the present invention includes a buoy housing having a space enclosed inside, a shaft arranged in the space, and a shaft arranged in the space and fixed to the shaft. A rotating body that has a center of gravity at a position off the rotation axis and can rotate around the rotation axis of the shaft, and a repulsive magnetic force provided on the housing and the rotating body to rotatably support the rotating body. It is characterized by having a bearing and a dynamo fixed to the housing, which is driven via the shaft by the rotation of the rotating body to generate power.

本発明の波面フロート発電装置によれば、重量分布に偏倚があることでさざ波のような波力の揺れ若しくはわずかな高低差ででも十分な発電量が得られる効果が得られる。 According to the wavefront float power generation device of the present invention, since the weight distribution is uneven, it is possible to obtain an effect that a sufficient amount of power generation can be obtained even with a wave force fluctuation such as ripples or a slight height difference.

本発明の第1の実施例である波面フロート発電装置を概念的に示す斜視図である。It is a perspective view which conceptually shows the wavefront float power generation apparatus which is 1st Embodiment of this invention. 図1の線xxに沿って部分的に切断して波面フロート発電装置の内部を説明する部分的断面図である。It is a partial sectional view explaining the inside of the wavefront float power generation apparatus by partially cutting along the line xx of FIG. 第1の実施例である波面フロート発電装置の動作を説明する線図である。It is a diagram explaining the operation of the wavefront float power generation apparatus which is 1st Example. 第1の実施例である波面フロート発電装置の反転させた場合の動作を説明する線図である。It is a diagram explaining the operation when the wavefront float power generation apparatus which is 1st Example is inverted. 本発明の第2の実施例の波面フロート発電装置を概念的に示す断面図である。It is sectional drawing which conceptually shows the wavefront float power generation apparatus of the 2nd Embodiment of this invention. 第2の実施例の波面フロート発電装置における回転板を説明する斜視図である。It is a perspective view explaining the rotating plate in the wavefront float power generation apparatus of 2nd Embodiment. 第2の実施例の波面フロート発電装置における回転板の変形例を説明する斜視図である。It is a perspective view explaining the modification of the rotating plate in the wavefront float power generation apparatus of 2nd Example.

以下、図面を参照しつつ本発明による実施例の波面フロート発電装置について説明する。なお、実施例において、実質的に同一の機能及び構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, the wavefront float power generation device according to the embodiment of the present invention will be described with reference to the drawings. In the examples, components having substantially the same function and configuration are designated by the same reference numerals, so that duplicate description will be omitted.

(構成の説明)
図1は本発明の第1の実施例である海上に浮いているブイ(浮標)である波面フロート発電装置10を概念的に示す斜視図である。図2は図1の線xxに沿って部分的に切断して波面フロート発電装置10の内部を説明する部分的断面図である。
(Explanation of configuration)
FIG. 1 is a perspective view conceptually showing a wavefront float power generation device 10 which is a buoy (buoy) floating on the sea, which is the first embodiment of the present invention. FIG. 2 is a partial cross-sectional view illustrating the inside of the wavefront float power generation device 10 by partially cutting along the line xx of FIG.

波面フロート発電装置10は、浮体として閉塞された筐体(以下、ブイともいう)BUOYと、その密閉された内部空間SPに配された、発電機であるダイナモ11と、このダイナモを駆動するシャフトSFと、このシャフトを回転させる回転板12(回転体)と、を備えている。波面フロート発電装置10には、ダイナモ11に電気的に接続されて電力が供給される負荷回路を有する電子装置15も備えられている。電子装置15は、ダイナモ11が発電した電気を使用する電子機器であって、例えば、ダイナモ11からの電気を整流する機能と蓄電をする機能を有する。電子装置15は、電力が供給されれば、波面フロート発電装置10の中になくても外部に搭載してもよい。 The wave surface float power generation device 10 includes a housing (hereinafter, also referred to as a buoy) BUOY closed as a floating body, a dynamo 11 which is a generator arranged in the sealed internal space SP, and a shaft for driving the dynamo. It includes an SF and a rotating plate 12 (rotating body) for rotating the shaft. The wavefront float power generation device 10 is also provided with an electronic device 15 having a load circuit electrically connected to the dynamo 11 to supply electric power. The electronic device 15 is an electronic device that uses electricity generated by the dynamo 11, and has, for example, a function of rectifying electricity from the dynamo 11 and a function of storing electricity. The electronic device 15 may be mounted outside the wavefront float power generation device 10 as long as electric power is supplied.

ブイBUOYは、内部に閉塞された空間SPを備える。ブイBUOYの筐体材料には、水又は空気の影響を遮断し、外部から内部に電磁波を透過させるべく、耐水性の合成樹脂やガラス等を使用することができる。ブイBUOYの外形は円柱状に限定されず、浮体FLやバラストをブイ本体の周りに外装しても良く、また、外見上の全体を、楕円、円形(球)、立方形/長方形などの形状としても良い。 The buoy BUOY includes a space SP that is closed inside. For the housing material of the buoy BUOY, water resistant synthetic resin, glass, or the like can be used in order to block the influence of water or air and allow electromagnetic waves to pass from the outside to the inside. The outer shape of the buoy BUOY is not limited to a columnar shape, and a floating FL or ballast may be attached around the buoy body, and the entire appearance may be an ellipse, a circle (sphere), a cube / rectangle, or the like. May be.

自身の駆動軸を回転させることで発電をするダイナモ11は、回転板12の回転により、駆動軸と同軸に一体となったシャフトSFを介して駆動されて発電する。ダイナモ11は、自身の駆動軸が回転した時にダイナモ11が一緒に回らないように、外周を合成樹脂等でブイBUOYに固定されている。 The dynamo 11 that generates electricity by rotating its own drive shaft is driven by the rotation of the rotating plate 12 via a shaft SF that is coaxially integrated with the drive shaft to generate electricity. The outer circumference of the dynamo 11 is fixed to the buoy BUOY with a synthetic resin or the like so that the dynamo 11 does not rotate together when its drive shaft rotates.

回転板12は空間SPの中に配される円盤であり、円盤の中心がシャフトSFに固定されて構成されている。回転板12はシャフトSFの回転中心軸(単に回転軸ともいう)から外れた位置に重心を有する。重心が回転中心軸から偏倚した回転板12は、シャフトSFに垂直な面内でシャフトと共に回転可能となっている。回転板12は、シャフトSFと共に回転して、シャフトSFに取り付けたダイナモ11を駆動することが出来る。 The rotating plate 12 is a disk arranged in the space SP, and the center of the disk is fixed to the shaft SF. The rotating plate 12 has a center of gravity at a position deviated from the rotation center axis (also simply referred to as a rotation axis) of the shaft SF. The rotating plate 12 whose center of gravity is deviated from the center of rotation can rotate together with the shaft in a plane perpendicular to the shaft SF. The rotary plate 12 can rotate together with the shaft SF to drive the dynamo 11 attached to the shaft SF.

回転板12は、例えば、シャフトSFの回転軸方向に着磁された円柱形の磁石円盤(第1の永久磁石)である。回転板12には、例えば、フェライト磁石が用いられる。 The rotating plate 12 is, for example, a cylindrical magnet disk (first permanent magnet) magnetized in the rotation axis direction of the shaft SF. For the rotating plate 12, for example, a ferrite magnet is used.

回転板12には、固定されたシャフトSFの回転軸から外れた外周に近い周囲の一部に他の回転板部分より重い錘体13が設けられていることにより、重心が前記シャフトの回転軸から錘体へ偏倚している。錘体13は、回転板の他の部分(フェライト)より比重の大きい例えばオーステナイト系ステンレス鋼、高マンガン鋼、高ニッケル合金等の非磁性体からなり、回転板12を部分的に重くする。錘体13は、回転板12の外形に変化が出ないように内部に設置する。 The rotating plate 12 is provided with a weight body 13 that is heavier than the other rotating plate portions in a part of the periphery near the outer periphery that is off the rotating shaft of the fixed shaft SF, so that the center of gravity of the rotating plate 12 is the rotating shaft of the shaft. It is biased from to the weight body. The weight body 13 is made of a non-magnetic material having a specific gravity higher than that of other parts (ferrite) of the rotating plate, such as austenitic stainless steel, high manganese steel, and high nickel alloy, and makes the rotating plate 12 partially heavy. The weight body 13 is installed inside so that the outer shape of the rotating plate 12 does not change.

反発型磁気軸受PMBは磁石組立体であって、互いに半径が略等しい磁石円盤14b、14cと磁石円筒14dがそれらの中心をシャフトSFの回転軸と同軸に配置されて、それらの間に閉塞された空間SPを画定するように、ブイBUOYに埋め込まれている。すなわち、反発型磁気軸受PMBは、ブイBUOYの傾きによって位置が移動しないように、外周を合成樹脂などでブイBUOYに固定されている。ブイBUOYの空間SPの中にて、回転板12と反発型磁気軸受PMBとは、シャフトSFの回転軸を中心に同心円上に回転対称となるように配置されている。 The repulsive magnetic bearing PMB is a magnet assembly in which magnet disks 14b, 14c and magnet cylinders 14d having substantially equal radii are arranged at their centers coaxially with the rotation axis of the shaft SF and are closed between them. It is embedded in the buoy BUOY so as to define the space SP. That is, the outer circumference of the repulsive magnetic bearing PMB is fixed to the buoy BUOY with a synthetic resin or the like so that the position does not move due to the inclination of the buoy BUOY. In the space SP of the buoy BUOY, the rotary plate 12 and the repulsive magnetic bearing PMB are arranged so as to be rotationally symmetric on a concentric circle about the rotation axis of the shaft SF.

磁石円盤14b、14cと磁石円筒14dは、シャフトSFの回転軸方向に着磁された磁石(第2の永久磁石)である。第2の永久磁石の磁石材料としては、例えば、フェライト磁石や、ネオジウム磁石が挙げられる。ダイナモ14側の磁石円盤14cの中央部にはシャフトSF用の開口が設けられている。回転板12は、シャフトSFの回転軸の方向において第2の永久磁石の一対の磁石円盤14b、14cに挟まれ、且つシャフトSFの回転軸の垂直方向において第2の永久磁石の磁石円筒14dに囲まれるように配置されている。 The magnet disks 14b and 14c and the magnet cylinder 14d are magnets (second permanent magnets) magnetized in the direction of the rotation axis of the shaft SF. Examples of the magnet material of the second permanent magnet include a ferrite magnet and a neodymium magnet. An opening for the shaft SF is provided in the central portion of the magnet disk 14c on the dynamo 14 side. The rotary plate 12 is sandwiched between a pair of magnet disks 14b and 14c of the second permanent magnet in the direction of the rotation axis of the shaft SF, and is formed on the magnet cylinder 14d of the second permanent magnet in the direction perpendicular to the rotation axis of the shaft SF. It is arranged so as to be surrounded.

反発型磁気軸受PMBは、回転板12の外面に設けられた第1の永久磁石12aとブイBUOYに固定されかつ第1の永久磁石12aに対向して配された第2の永久磁石14b、14cとを有し、第1の永久磁石12aと第2の永久磁石14b、14cの同極が向かい合うようになされている。すなわち、反発型磁気軸受PMB(第2の永久磁石)は、回転板12(第1の永久磁石)を取り囲み、回転板12の磁極と同極が向かい合うように設置し、反発力により回転板12を浮かせることで、回転板12を離間した状態で回転可能に支持するとともに、ダイナモ11の駆動軸に回転以外の負荷がかからないように構成されている。回転板12と各永久磁石の内面との間隙は、反発力が得られるように、数mm~cm程度で設定することができる。 The repulsive magnetic bearing PMB has a first permanent magnet 12a provided on the outer surface of the rotating plate 12 and a second permanent magnet 14b, 14c fixed to the buoy BUOY and arranged facing the first permanent magnet 12a. The same poles of the first permanent magnet 12a and the second permanent magnets 14b and 14c face each other. That is, the repulsive magnetic bearing PMB (second permanent magnet) surrounds the rotating plate 12 (first permanent magnet) and is installed so that the magnetic poles of the rotating plate 12 and the same poles face each other. By floating the rotating plate 12, the rotating plate 12 is rotatably supported in a separated state, and the drive shaft of the dynamo 11 is configured so that a load other than rotation is not applied. The gap between the rotating plate 12 and the inner surface of each permanent magnet can be set to about several mm to cm so that a repulsive force can be obtained.

回転板12は、その半径における一部分に他の部分より重い偏倚した重量分布を有している。すなわち、回転板12は、その回転中心軸から偏倚した重心を備えているので、ブイBUOYのあらゆる傾きに応じて容易に回転できる。 The rotating plate 12 has a biased weight distribution that is heavier in one part of the radius than in the other parts. That is, since the rotating plate 12 has a center of gravity deviated from its rotation center axis, it can be easily rotated according to any inclination of the buoy BUOY.

このように、回転板12の一部(錘体13)は他の部分より重くなっており、ブイBUOYの傾きによって、必ずブイBUOYの最も位置の低いところに回転板12の当該一部が回動できるようになっている。すなわち、ブイBUOYの内部では、波面フロート発電装置全体の重さに比べて回転板12が軽いので、ブイBUOYの傾きに応じて、時計周りでも反時計周りでも回転できる。なお、ダイナモ11の駆動軸に回転方向センサ(図示せず)を有し、該回転方向センサの出力信号に応じて出力電圧のレベルを制御するように構成されている。 In this way, a part of the rotating plate 12 (weight body 13) is heavier than the other parts, and due to the inclination of the buoy BUOY, the part of the rotating plate 12 is always rotated to the lowest position of the buoy BUOY. You can move it. That is, since the rotating plate 12 is lighter than the weight of the entire wavefront float power generator inside the buoy BUOY, it can rotate clockwise or counterclockwise according to the inclination of the buoy BUOY. The drive shaft of the dynamo 11 has a rotation direction sensor (not shown), and is configured to control the level of the output voltage according to the output signal of the rotation direction sensor.

(動作の説明)
図3は、本実施例の波面フロート発電装置10の動作を説明する線図である。図3(A)は波がほとんどなく静止状態に近い海上に置いた場合の波面フロート発電装置10の姿勢を、図3(B)は海面の波の動きによって波面フロート発電装置10が傾く姿勢を、示す。
(Explanation of operation)
FIG. 3 is a diagram illustrating the operation of the wavefront float power generation device 10 of the present embodiment. FIG. 3A shows the attitude of the wavefront float power generation device 10 when it is placed on the sea near a stationary state with almost no waves, and FIG. 3B shows the attitude of the wavefront float power generation device 10 tilting due to the movement of waves on the sea surface. ,show.

波面フロート発電装置10を海上に置いた場合、海面の波の動きによって、波面フロート発電装置は絶対的な水平を維持することはなく、必ずどこかが高く、また多くの場合、その反対側が低くなる。そして、その高くなる場所、低くなる場所は波の動きに合わせて常に変動する。 When the wavefront float generator 10 is placed on the sea, the movement of the waves on the surface of the sea does not keep the wavefront float generator absolutely horizontal, it is always high somewhere and often low on the other side. Become. And the place where it gets higher and the place where it gets lower always fluctuates according to the movement of the wave.

よって、図3(A)の状態から波(図示せず)が変化するとブイBUOYの傾きが図3(B)の状態へ変化する。図3(B)に示すように、ブイBUOYが傾くとブイBUOYに固定されているダイナモ11と反発型磁気軸受PMBが傾く。反発型磁気軸受PMBが傾くと、反発力により回転板12も傾く。ダイナモ11と反発型磁気軸受PMBがブイBUOYに固定されているので、ブイBUOYが傾くことでダイナモ11の駆動軸(シャフトSF)と回転板12の位置関係は変わらず、回転板12は反発型磁気軸受PMBとの反発力で浮いているため、ダイナモ11の駆動軸に負荷がかかることはない。 Therefore, when the wave (not shown) changes from the state of FIG. 3 (A), the inclination of the buoy BUOY changes to the state of FIG. 3 (B). As shown in FIG. 3B, when the buoy BUOY is tilted, the dynamo 11 fixed to the buoy BUOY and the repulsive magnetic bearing PMB are tilted. When the repulsive magnetic bearing PMB is tilted, the rotating plate 12 is also tilted due to the repulsive force. Since the dynamo 11 and the repulsive magnetic bearing PMB are fixed to the buoy BUOY, the positional relationship between the drive shaft (shaft SF) of the dynamo 11 and the rotating plate 12 does not change when the buoy BUOY tilts, and the rotating plate 12 is a repulsive type. Since it floats due to the repulsive force with the magnetic bearing PMB, no load is applied to the drive shaft of the dynamo 11.

このとき、波面フロート発電装置10における回転板12の錘体13が最下点にない場合(図3(A)参照)であったとすると、該最下点にない錘体13は図3(B)に示す矢印のように最下点に向かって移動を始め、回転板12が回転することになる。このように、ブイBUOYの傾きが変化すると、錘体13がブイBUOYの最も低い方向へ移動する。錘体13は回転板12に取り付けてあるため、錘体13の移動により回転板12がシャフトSFと共に回転して、ダイナモ11が発電する。 At this time, assuming that the weight 13 of the rotating plate 12 in the wavefront float power generation device 10 is not at the lowest point (see FIG. 3A), the weight 13 not at the lowest point is shown in FIG. 3 (B). ) Will start moving toward the lowest point, and the rotating plate 12 will rotate. In this way, when the inclination of the buoy BUOY changes, the weight body 13 moves in the lowest direction of the buoy BUOY. Since the weight body 13 is attached to the rotating plate 12, the rotating plate 12 rotates together with the shaft SF due to the movement of the weight body 13, and the dynamo 11 generates electricity.

図4は、本実施例の波面フロート発電装置10が海面に対し反転した時の動作を説明する線図である。図4(A)は波がほとんどなく静止状態に近い海上に置いた場合の反転した波面フロート発電装置10の姿勢を、図4(B)は海面の波の動きによって反転した波面フロート発電装置10が傾く姿勢を、示す。 FIG. 4 is a diagram illustrating the operation when the wavefront float power generation device 10 of this embodiment is inverted with respect to the sea surface. FIG. 4A shows the attitude of the inverted wavefront float power generation device 10 when placed on the sea near a stationary state with almost no waves, and FIG. 4B shows the attitude of the wavefront float power generation device 10 inverted by the movement of waves on the sea surface. Shows a leaning posture.

波面フロート発電装置10の重さだけを考えた場合、反発型磁気軸受PMBの重量が他に比べて十分大きいため、ブイBUOYは図4(A)のように反転した状態になる。ダイナモ11と反発型磁気軸受PMBをブイBUOYに固定しているので、ブイBUOYが反転してもダイナモ11の駆動軸と回転板12の位置関係は変わらず、回転板12は反発型磁気軸受PMBとの反発力で浮いているため、ダイナモ11の駆動軸に負荷がかかることはない。 Considering only the weight of the wavefront float power generation device 10, the weight of the repulsive magnetic bearing PMB is sufficiently larger than the others, so that the buoy BUOY is in an inverted state as shown in FIG. 4 (A). Since the dynamo 11 and the repulsive magnetic bearing PMB are fixed to the buoy BUOY, the positional relationship between the drive shaft of the dynamo 11 and the rotating plate 12 does not change even if the buoy BUOY is inverted, and the rotating plate 12 is the repulsive magnetic bearing PMB. Since it floats due to the repulsive force of, no load is applied to the drive shaft of the dynamo 11.

図4(B)に示すように海面の波により波面フロート発電装置10が傾いたとき、波面フロート発電装置10における回転板12の錘体13が最下点にない場合、該最下点にない錘体13は図4(B)に示す矢印のように最下点に向かって移動を始め、回転板12が回転することになる。このように、ブイBUOYの傾きが変化すると、錘体13がブイBUOYの最も低い方向へ移動する。錘体13は回転板12に取り付けてあるため、錘体13の移動により回転板12がシャフトSFと共に回転して、ダイナモ11が発電する。 As shown in FIG. 4B, when the wavefront float power generation device 10 is tilted by a wave on the sea surface, if the weight body 13 of the rotating plate 12 in the wavefront float power generation device 10 is not at the lowest point, it is not at the lowest point. The weight body 13 starts moving toward the lowest point as shown by the arrow shown in FIG. 4 (B), and the rotating plate 12 rotates. In this way, when the inclination of the buoy BUOY changes, the weight body 13 moves in the lowest direction of the buoy BUOY. Since the weight body 13 is attached to the rotating plate 12, the rotating plate 12 rotates together with the shaft SF due to the movement of the weight body 13, and the dynamo 11 generates electricity.

(効果の説明)
以上のように第1の実施例によれば、反発型磁気軸受PMBにより回転板12がよく回るため、さざ波のようなわずかな高低差でも傾きの変化を利用してダイナモを回すことでき、海上に浮かべるだけでダイナモ11により十分な発電量が得られる。
(Explanation of effect)
As described above, according to the first embodiment, since the rotating plate 12 is rotated well by the repulsive magnetic bearing PMB, the dynamo can be rotated by utilizing the change in inclination even with a slight height difference such as ripples at sea. A sufficient amount of power generation can be obtained by the dynamo 11 just by floating on the surface.

従来技術では波面フロート発電装置を傾ける角度によって発電できない方向が存在していたが、本実施例では傾く方向によらず発電することができる。従来技術では発電時に摩擦によるロスが発生していたが、本実施例では回転板が回転するロスをなくすことが出来る。 In the prior art, there was a direction in which power could not be generated depending on the angle at which the wavefront float power generation device was tilted, but in this embodiment, power can be generated regardless of the tilting direction. In the conventional technique, a loss due to friction occurs during power generation, but in this embodiment, the loss of rotating the rotating plate can be eliminated.

図5は、第2の実施例の波面フロート発電装置10を概念的に示す断面図である。本実施例は、第1の実施例のシャフトSFの回転軸から外れた一部の位置に周囲より重い錘体13が設けられた回転板12に代えて、シャフトSFの回転軸から外れた外周に近い位置の周囲の一部を残して、その一部以外の位置に、回転板より比重の軽い軽量体133が両外面の磁極面を平行に保ったまま設けられている偏倚重心回転板122を用いた以外、第1の実施例と同一である。 FIG. 5 is a cross-sectional view conceptually showing the wavefront float power generation device 10 of the second embodiment. In this embodiment, instead of the rotating plate 12 in which the weight body 13 heavier than the surroundings is provided at a part of the position deviated from the rotating shaft of the shaft SF of the first embodiment, the outer periphery deviated from the rotating shaft of the shaft SF is used. A eccentric center of gravity rotating plate 122 in which a lightweight body 133 having a lighter specific gravity than the rotating plate is provided in a position other than the part around the position close to the rotating plate while keeping the magnetic pole surfaces of both outer surfaces parallel to each other. It is the same as the first embodiment except that the above is used.

よって、本実施例における回転板122を図6の斜視図に示す。例えば、フェライト磁石からなる円形の回転板の開始材に、固定されたシャフトSFの回転軸から外れた外周に近い周囲の一部の位置に軸方向に繋ぐ回転板接続部122Cを残し、その周囲の回転板部分の両外面の磁極面を平行に保ったままくり抜き、そこに転板より比重の軽い軽量体133(例えば合成樹脂などの非磁性体)を充填して設けることにより、重心が前記シャフトの回転軸から回転板接続部122Cへ偏倚している回転板122が得られる。 Therefore, the rotary plate 122 in this embodiment is shown in the perspective view of FIG. For example, on the starting material of a circular rotating plate made of a ferrite magnet, a rotating plate connecting portion 122C connected in the axial direction is left at a part of the periphery near the outer periphery off the rotating axis of the fixed shaft SF, and the periphery thereof is left. By hollowing out while keeping the magnetic pole surfaces of both outer surfaces of the rotating plate portion parallel to each other and filling it with a lightweight body 133 (for example, a non-magnetic material such as synthetic resin) having a lighter specific gravity than the rolling plate, the center of gravity is described above. A rotating plate 122 biased from the rotating shaft of the shaft to the rotating plate connecting portion 122C can be obtained.

さらに、図示しないが、軽い軽量体133として空間を利用することもでき、すなわち、強度が保持できるのであれば両外面の磁極面を平行に保ったまま回転板接続部122C以外回転板12が一部欠けた回転板122としても、偏倚した重量分布を形成することもできる。 Further, although not shown, the space can be used as a light and lightweight body 133, that is, if the strength can be maintained, the rotating plate 12 other than the rotating plate connecting portion 122C is used while keeping the magnetic pole surfaces of both outer surfaces parallel to each other. Even if the rotating plate 122 is chipped, it is possible to form an uneven weight distribution.

本実施例によれば、第1の実施例の効果に加えて、装置の軽量化が達成される。 According to this embodiment, in addition to the effect of the first embodiment, the weight reduction of the apparatus is achieved.

また、変形例として図7の斜視図によって、第2の実施例の波面フロート発電装置における回転板の一例を説明する。当該変形例の回転板122は、回転板接続部122Cの内部に他の回転板部分より重い錘体13が設けられていること以外、図6に示す回転板と同一である。このように、第1の実施例を第2の実施例に組み合わせることで、シャフトSFの回転軸から回転板接続部122Cへ重心が更に片寄るので、ブイが傾いた時に回転板が回転する効率を上げることが出来る。 Further, as a modification, an example of the rotating plate in the wavefront float power generation device of the second embodiment will be described with reference to the perspective view of FIG. 7. The rotary plate 122 of the modified example is the same as the rotary plate shown in FIG. 6 except that a weight body 13 heavier than the other rotary plate portions is provided inside the rotary plate connection portion 122C. In this way, by combining the first embodiment with the second embodiment, the center of gravity is further shifted from the rotating shaft of the shaft SF to the rotating plate connecting portion 122C, so that the efficiency of rotating the rotating plate when the buoy is tilted can be improved. You can raise it.

10 波面フロート発電装置
11 ダイナモ
12 回転板
13 錘体
12a 第1の永久磁石
14b、14c、14d 第2の永久磁石
15 電子装置
BUOY ブイ
PMB 反発型磁気軸受
SF シャフト
10 Wave surface float power generator 11 Dynamo 12 Rotating plate 13 Weight 12a First permanent magnets 14b, 14c, 14d Second permanent magnets 15 Electronic device BUOY buoy PMB Repulsive magnetic bearing SF shaft

Claims (6)

内部に閉塞された空間を備えるブイの筐体と、
前記空間の中に配されたシャフトと、
前記空間の中に配され且つ前記シャフトに固定され前記シャフトの回転軸から外れた位置に重心を有し且つ前記シャフトの回転軸を回転軸として回転可能な回転体と、
前記筐体及び前記回転体に設けられ前記回転体を回転可能に支持する反発型磁気軸受と、
前記回転体の回転により前記シャフトを介して駆動されて発電する前記筐体に固定されたダイナモと、
を有することを特徴とする波面フロート発電装置。
A buoy housing with a closed space inside,
The shaft arranged in the space and
A rotating body arranged in the space, fixed to the shaft, having a center of gravity at a position off the rotation axis of the shaft, and rotatable around the rotation axis of the shaft.
A repulsive magnetic bearing provided on the housing and the rotating body to rotatably support the rotating body, and
A dynamo fixed to the housing, which is driven via the shaft by the rotation of the rotating body to generate electricity.
A wavefront float power generator characterized by having.
前記反発型磁気軸受は、前記回転体の外面に設けられた第1の永久磁石と前記筐体に固定されかつ前記第1の永久磁石に対向して配された第2の永久磁石とを有し、前記第1の永久磁石と前記第2の永久磁石の同極が向かい合うように配置されている
ことを特徴とする請求項1に記載の波面フロート発電装置。
The repulsive magnetic bearing has a first permanent magnet provided on the outer surface of the rotating body and a second permanent magnet fixed to the housing and arranged facing the first permanent magnet. The wave surface float power generation device according to claim 1, wherein the same poles of the first permanent magnet and the second permanent magnet are arranged so as to face each other.
前記シャフトの回転軸から外れた前記回転体の一部の位置に周囲より重い錘体が設けられていることにより、前記重心が前記シャフトの回転軸から偏倚している
ことを特徴とする請求項1又は2に記載の波面フロート発電装置。
The claim is characterized in that the center of gravity is deviated from the rotation axis of the shaft by providing a weight body heavier than the surroundings at a position of a part of the rotating body deviating from the rotation axis of the shaft. The wave surface float power generation device according to 1 or 2.
前記シャフトの回転軸から外れた前記回転体の一部の位置に周囲より比重が軽い軽量体が設けられていることにより、前記重心が前記シャフトの回転軸から偏倚している
ことを特徴とする請求項1又は2に記載の波面フロート発電装置。
It is characterized in that the center of gravity is deviated from the rotation axis of the shaft by providing a lightweight body having a lighter specific gravity than the surroundings at a position of a part of the rotating body deviating from the rotation axis of the shaft. The wave surface float power generation device according to claim 1 or 2.
前記回転体は、円盤又は円柱形状を有することを特徴とする請求項1乃至4のいずれかに記載の波面フロート発電装置。 The wavefront float power generation device according to any one of claims 1 to 4, wherein the rotating body has a disk or a cylindrical shape. 前記反発型磁気軸受は、前記シャフトの回転軸の方向において前記回転体が前記第2の永久磁石の一対の円盤に挟まれ、且つ前記シャフトの回転軸の垂直方向において前記回転体が前記第2の永久磁石の円筒に囲まれるように配置されている
ことを特徴とする請求項5に記載の波面フロート発電装置。

In the repulsive magnetic bearing, the rotating body is sandwiched between a pair of disks of the second permanent magnet in the direction of the rotation axis of the shaft, and the rotating body is the second in the direction perpendicular to the rotation axis of the shaft. The wave surface float power generation device according to claim 5, wherein the device is arranged so as to be surrounded by a cylinder of a permanent magnet of the above.

JP2020213196A 2020-12-23 2020-12-23 Wave front float power generation device Active JP7509028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020213196A JP7509028B2 (en) 2020-12-23 2020-12-23 Wave front float power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020213196A JP7509028B2 (en) 2020-12-23 2020-12-23 Wave front float power generation device

Publications (2)

Publication Number Publication Date
JP2022099433A true JP2022099433A (en) 2022-07-05
JP7509028B2 JP7509028B2 (en) 2024-07-02

Family

ID=82269505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020213196A Active JP7509028B2 (en) 2020-12-23 2020-12-23 Wave front float power generation device

Country Status (1)

Country Link
JP (1) JP7509028B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM469378U (en) 2013-05-28 2014-01-01 Smart Energy Inc Power generating apparatus utilizing wave energy converted from gravity
IT201700118632A1 (en) 2017-10-19 2019-04-19 Torpedine S R L BUOY AND METHOD FOR THE GENERATION OF ELECTRICITY
CN110067809A (en) 2019-05-14 2019-07-30 苏州圆格电子有限公司 A kind of permanent-magnet suspension bearing of radial direction and axial magnetic mutual exclusion suspension

Also Published As

Publication number Publication date
JP7509028B2 (en) 2024-07-02

Similar Documents

Publication Publication Date Title
US6879076B2 (en) Ellipsoid generator
JP2004282997A (en) Electric motor
JP3058452B2 (en) Magnetically mounted position stabilizing flywheel
US20120104765A1 (en) Device for generating electric power from small movements
KR20080037097A (en) Discoidal flying craft
JP4557245B2 (en) Motor device for artificial heart
JP5252532B2 (en) Hemispherical generator
CN109229424A (en) A kind of multi-degree of freedom spherical electrodynamic levitation momenttum wheel
JP2022099433A (en) Wave surface float power generator
TW202228366A (en) Permanent magnet generator faciliting electricity generation from ocean energy
JP4397417B2 (en) Rotating mechanism
US10644548B1 (en) Scanning motor with built-in magnetic stiffness
JP2005529575A (en) Rotating permanent magnet type electric motor with varying air gap between interacting stator and rotor elements
JP7481749B2 (en) Generator
JP4923238B2 (en) Magnetic repulsion support rotating machine
US10562067B2 (en) Efficient haptic accuator
KR100322990B1 (en) Vibration motor
JPS58587B2 (en) Wave power generation device
KR100338044B1 (en) Vibration generator
TW202346732A (en) Flywheel device and rotary electric machine
JP2002028569A (en) Direct current vibration motor and armature structure
JP3058451B2 (en) Magnetically mounted anti-vibration flywheel
JP2005348469A (en) Linear oscillator
CN113904493B (en) Electromagnetic power flywheel device and equipment with same
JPH10164809A (en) Vibration generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240603