JP2022099068A - Buried pipe determination apparatus, exploration apparatus, and buried pipe determination method - Google Patents

Buried pipe determination apparatus, exploration apparatus, and buried pipe determination method Download PDF

Info

Publication number
JP2022099068A
JP2022099068A JP2020212823A JP2020212823A JP2022099068A JP 2022099068 A JP2022099068 A JP 2022099068A JP 2020212823 A JP2020212823 A JP 2020212823A JP 2020212823 A JP2020212823 A JP 2020212823A JP 2022099068 A JP2022099068 A JP 2022099068A
Authority
JP
Japan
Prior art keywords
candidate
buried pipe
vector
candidate region
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020212823A
Other languages
Japanese (ja)
Inventor
勝 綱崎
Masaru Tsunasaki
貴志 染田
Takashi Someda
直樹 木虎
Naoki Kitora
快彦 岩尾
Yoshihiko Iwao
圭一郎 高橋
Keiichiro Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2020212823A priority Critical patent/JP2022099068A/en
Publication of JP2022099068A publication Critical patent/JP2022099068A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Image Analysis (AREA)

Abstract

To provide technique capable of reducing an oversight rate of buried pipes when automatically extracting candidates for the buried pipes while suppressing the increase in teacher data.SOLUTION: A buried pipe determination apparatus comprises: a candidate area vector derivation unit S2 for deriving a feature quantity, which is obtained by quantifying a plurality of predetermined features, for determining that a quadratic curve candidate in a candidate area is a buried pipe and deriving a candidate area vector having each of the plurality of feature quantities as a component for each of the plurality of candidate areas derived by a candidate area derivation unit S3; and a buried pipe candidate extraction unit S1 for classifying the plurality of derived candidate area vectors based on a classification rule group for classifying a buried pipe candidate vector that is a candidate for the buried pipe and a non-buried pipe candidate vector that is not the candidate for the buried pipe to extract the candidate area that is the candidate for the buried pipe.SELECTED DRAWING: Figure 2

Description

本発明は、地中に埋設された埋設管を含む探索範囲において設定された走査ラインに沿って走査されたときに、地中に向けて放射した探査用電磁波の反射波を処理し、走査ラインを含む垂直断面視での埋設管の埋設状況を示す断面データ画像を取得し、当該断面データ画像に基づいて地中における埋設管の有無を判定可能な埋設管判定装置、探査装置、及び埋設管判定方法に関する。 The present invention processes the reflected wave of the exploration electromagnetic wave radiated toward the ground when scanned along the scanning line set in the search range including the buried pipe buried in the ground, and the scanning line. A buried pipe determination device, an exploration device, and a buried pipe that can acquire a cross-sectional data image showing the burial status of a buried pipe in a vertical cross-sectional view including and can determine the presence or absence of a buried pipe in the ground based on the cross-sectional data image. Regarding the judgment method.

従来、埋設管判定装置としては、地中に埋設された埋設管を含む探索範囲において設定された走査ラインに沿って走査されたときに、地中に向けて放射した探査用電磁波の反射波を処理し、走査ラインを含む垂直断面視での埋設管の埋設状況を示す断面データ画像を取得し、当該断面データ画像に含まれる二次曲線画像を抽出し、当該二次曲線画像の広がりを1点に収斂し埋設管を抽出するマイグレーション処理を実行するものが知られている(特許文献1を参照)。
一方、他の埋設管判定装置として、地中に埋設された埋設管を含む探索範囲において設定された走査ラインに沿って走査されたときに、地中に向けて放射した探査用電磁波の反射波を処理し、走査ラインを含む垂直断面視での埋設管の埋設状況を示す断面データ画像を取得し、当該断面データ画像を機械学習させ、AIにより埋設管の特徴を抽出し、断面データ画像から埋設管を抽出する研究もなされている。
Conventionally, as a buried pipe determination device, when scanned along a scanning line set in a search range including a buried pipe buried in the ground, the reflected wave of the exploration electromagnetic wave radiated toward the ground is emitted. Processing is performed, a cross-sectional data image showing the burial status of the buried pipe in a vertical cross-sectional view including a scanning line is acquired, a quadratic curve image included in the cross-sectional data image is extracted, and the spread of the quadratic curve image is set to 1. It is known to execute a migration process that converges to a point and extracts a buried pipe (see Patent Document 1).
On the other hand, as another buried pipe determination device, the reflected wave of the exploration electromagnetic wave radiated toward the ground when scanned along the scanning line set in the search range including the buried pipe buried in the ground. Is processed, a cross-sectional data image showing the burial status of the buried pipe in a vertical cross-sectional view including a scanning line is acquired, the cross-sectional data image is machine-learned, the characteristics of the buried pipe are extracted by AI, and the cross-sectional data image is used. Research is also being conducted to extract buried pipes.

特開平10-141907号公報Japanese Unexamined Patent Publication No. 10-141907

上記マイグレーション処理を実行して断面データ画像から埋設管を抽出する埋設管判定装置では、二次曲線画像がノイズが多い二次曲線を含んでいる場合、即ち、横縞等の強い信号が含まれている場合、当該横縞を誤って埋設管として抽出してしまうという問題があった。
また、二次曲線の収斂度を信号強度で判定するため、地層境界などからの強い信号の影響を大きく受けるという課題もあった。
一方、断面データ画像を機械学習し埋設管を抽出する技術では、学習のための教師データとしての断面データ画像が非常に多く必要となると共に、未学習の埋設管は検出が困難であるという問題があった。
また、断面データ画像では、土質、含水比、石の混入具合、舗装の種類、舗装における鉄筋の有無、近接管の影響、掘削跡の影響を考慮する必要があると共に、埋設管の口径・材質・埋設深さの影響も考慮する必要があり、断面データ画像を機械学習し埋設管を抽出する技術では、判定したときに的中率が低い傾向、即ち、埋設管の見逃し率が高い傾向があり、改善の余地があった。
In the buried pipe determination device that executes the above migration process and extracts the buried pipe from the cross-sectional data image, when the quadratic curve image contains a quadratic curve with a lot of noise, that is, a strong signal such as horizontal stripes is included. If so, there is a problem that the horizontal stripe is mistakenly extracted as a buried pipe.
In addition, since the degree of convergence of the quadratic curve is determined by the signal strength, there is also a problem that it is greatly affected by a strong signal from the boundary of the stratum.
On the other hand, the technique of machine learning the cross-sectional data image to extract the buried pipe requires a large number of cross-sectional data images as teacher data for learning, and it is difficult to detect the unlearned buried pipe. was there.
In addition, in the cross-sectional data image, it is necessary to consider the soil quality, water content ratio, stone mixing condition, pavement type, presence / absence of reinforcing bars in the pavement, influence of proximity pipe, influence of excavation trace, and diameter / material of buried pipe.・ It is necessary to consider the influence of the burial depth, and in the technique of machine learning the cross-sectional data image to extract the buried pipe, the hit rate tends to be low when it is judged, that is, the overlook rate of the buried pipe tends to be high. There was room for improvement.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、教師データの増加を抑制しながらも、埋設管の候補を自動で抽出する際に、埋設管の見逃し率を低減し得る技術を提供する点にある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to reduce the oversight rate of buried pipes when automatically extracting candidates for buried pipes while suppressing an increase in teacher data. The point is to provide the technology to obtain.

上記目的を達成するための埋設管判定装置は、
地中に埋設された埋設管を含む探索範囲において設定された走査ラインに沿って走査されたときに、前記地中に向けて放射した探査用電磁波の反射波を処理し、前記走査ラインを含む垂直断面視での前記埋設管の埋設状況を示す断面データ画像を取得し、当該断面データ画像に基づいて前記地中における前記埋設管の有無を判定可能な埋設管判定装置であって、その特徴構成は、
前記断面データ画像から前記埋設管の可能性のあるシグナルとしての二次曲線候補を一つ含む候補領域を導出する候補領域導出部と、
前記候補領域導出部にて導出された複数の前記候補領域の夫々に関し、当該候補領域における前記二次曲線候補が前記埋設管であることを判定するための複数の予め定められた特徴を数値化した特徴量を導出し、複数の前記特徴量の夫々を構成要素として有する候補領域ベクトルを導出する候補領域ベクトル導出部と、
導出した複数の前記候補領域ベクトルを、前記埋設管の候補となる埋設管候補ベクトルと前記埋設管の候補ではない非埋設管候補ベクトルとに分類する分類ルール群に基づいて分類して、前記埋設管の候補となる前記候補領域を抽出する埋設管候補抽出部とを備える点にある。
The buried pipe determination device for achieving the above purpose is
When scanned along a scanning line set in a search range including a buried pipe buried in the ground, the reflected wave of the exploration electromagnetic wave radiated toward the ground is processed and the scanning line is included. A buried pipe determination device capable of acquiring a cross-sectional data image showing the burial status of the buried pipe in a vertical cross-sectional view and determining the presence or absence of the buried pipe in the ground based on the cross-sectional data image. The composition is
A candidate region derivation unit for deriving a candidate region including one quadratic curve candidate as a possible signal of the buried pipe from the cross-sectional data image, and a candidate region derivation unit.
With respect to each of the plurality of candidate regions derived by the candidate region derivation unit, a plurality of predetermined features for determining that the quadratic curve candidate in the candidate region is the buried pipe are quantified. A candidate region vector derivation unit for deriving the created feature quantity and deriving a candidate region vector having each of the plurality of the feature quantities as a component.
The plurality of derived candidate region vectors are classified based on a classification rule group for classifying into a buried pipe candidate vector that is a candidate for the buried pipe and a non-buried pipe candidate vector that is not a candidate for the buried pipe, and the buried pipe is used. It is provided with a buried pipe candidate extraction unit for extracting the candidate region as a pipe candidate.

上記目的を達成するための埋設管判定方法は、
地中に埋設された埋設管を含む探索範囲において設定された走査ラインに沿って走査されたときに、前記地中に向けて放射した探査用電磁波の反射波を処理し、前記走査ラインを含む垂直断面視での前記埋設管の埋設状況を示す断面データ画像を取得し、当該断面データ画像に基づいて前記地中における前記埋設管の有無を判定可能な埋設管判定方法であって、その特徴構成は、
前記断面データ画像から前記埋設管の可能性のあるシグナルとしての二次曲線候補を一つ含む候補領域を導出する候補領域導出工程と、
前記候補領域導出工程にて導出された複数の前記候補領域の夫々に関し、当該候補領域における前記二次曲線候補が前記埋設管であることを判定するための複数の特徴量を導出し、複数の前記特徴量の夫々を構成要素として有する候補領域ベクトルを導出する候補領域ベクトル導出工程と、
導出した複数の前記候補領域ベクトルを、前記埋設管の候補となる埋設管候補ベクトルと前記埋設管の候補ではない非埋設管候補ベクトルとに分類する分類ルール群に基づいて分類して、前記埋設管の候補となる前記候補領域を抽出する埋設管候補抽出工程とを実行する点にある。
The method for determining the buried pipe to achieve the above purpose is
When scanned along a scanning line set in a search range including a buried pipe buried in the ground, the reflected wave of the exploration electromagnetic wave radiated toward the ground is processed and the scanning line is included. It is a buried pipe determination method capable of acquiring a cross-sectional data image showing the burial status of the buried pipe in a vertical cross-sectional view and determining the presence or absence of the buried pipe in the ground based on the cross-sectional data image. The composition is
A candidate region derivation step for deriving a candidate region including one quadratic curve candidate as a possible signal of the buried pipe from the cross-sectional data image, and
With respect to each of the plurality of candidate regions derived in the candidate region derivation step, a plurality of feature quantities for determining that the quadratic curve candidate in the candidate region is the buried pipe are derived, and a plurality of features are derived. A candidate region vector derivation step for deriving a candidate region vector having each of the feature quantities as a component, and a process for deriving the candidate region vector.
The plurality of derived candidate region vectors are classified based on a classification rule group for classifying into a buried pipe candidate vector that is a candidate for the buried pipe and a non-buried pipe candidate vector that is not a candidate for the buried pipe, and the buried pipe is used. The point is to execute the buried pipe candidate extraction step of extracting the candidate area as a pipe candidate.

上記特徴構成によれば、まずもって、候補領域導出部が、断面データ画像から埋設管の可能性のあるシグナルとしての二次曲線候補を一つ含む候補領域を導出するから、例えば、一の二次曲線候補を含む候補領域を導出し、その後の埋設管判定処理を実行することで、断面データ画像全体を用いて埋設管判定処理を実行する場合に比べて、埋設管判定処理における判定ロジックを簡素化して結果が得られるまでの演算処理量及び演算処理時間を十分に低減することができる。 According to the above feature configuration, first, the candidate region derivation unit derives a candidate region including one quadratic curve candidate as a signal that may be a buried pipe from the cross-sectional data image. By deriving a candidate area including the next curve candidate and executing the subsequent buried pipe determination process, the determination logic in the buried pipe determination process can be determined as compared with the case where the buried tube determination process is executed using the entire cross-sectional data image. It is possible to sufficiently reduce the amount of arithmetic processing and the arithmetic processing time until a result is obtained by simplification.

さて、従来の機械学習を用いた埋設管の抽出技術では、断面データ画像を直接機械学習させていたが、上記特徴構成によれば、候補領域における二次曲線候補が埋設管であることを判定するための特徴を予め定め、当該特徴に係る特徴量が候補領域においてどの程度の値であるかを算出するため、断面データ画像を直接機械学習する場合に比べて、必要とする教師データ量を低減できる。
ここで、例えば、図7の上に示すような断面データ画像の候補領域において、探査方向(矢印X方向)で略中央を通る直線Pに沿う深さ方向(矢印Z方向)に沿って、輝度値(強度)をプロットしたグラフ(図7の下)を考える。
候補領域から得られたグラフでは、一般的に、図7の下に示すように、振幅の最大値(図7の下でL1)と、当該最大の振幅が得得られる波の周波数(図7の下でL2から算出される値)とを得ることができる。
埋設管候補に対応する候補領域の複数と、埋設管の可能性があるものに対応する候補領域の複数と、非埋設管候補に対応する候補領域の複数との夫々に関し、振幅の最大値の分布をプロットしたものを図8に示し、周波数の分布をプロットしたものを図9に示す。
図8、図9に示されるように、埋設管候補及び非埋設管候補の何れにおいても、振幅の最大値及び周波数の分布は重畳している部分が多く、これらの特徴量の単体では、埋設管候補と非埋設管候補とを分離する、即ち、埋設管候補を抽出し難いことがわかる。
By the way, in the conventional machine learning technique for extracting buried pipes, the cross-sectional data image is directly machine-learned, but according to the above feature configuration, it is determined that the quadratic curve candidate in the candidate region is the buried pipe. In order to determine the features to be used in advance and calculate the value of the feature amount related to the feature in the candidate area, the required amount of teacher data is determined as compared with the case of directly machine learning the cross-sectional data image. Can be reduced.
Here, for example, in the candidate region of the cross-sectional data image as shown above in FIG. 7, the brightness is along the depth direction (arrow Z direction) along the straight line P passing substantially the center in the exploration direction (arrow X direction). Consider a graph (bottom of FIG. 7) plotting values (intensities).
In graphs obtained from the candidate regions, generally, as shown at the bottom of FIG. 7, the maximum amplitude (L1 at the bottom of FIG. 7) and the frequency of the wave at which the maximum amplitude is obtained (FIG. 7). The value calculated from L2 below) and can be obtained.
The maximum amplitude for each of the plurality of candidate regions corresponding to the buried pipe candidates, the plurality of candidate regions corresponding to the possible buried pipes, and the plurality of candidate regions corresponding to the non-buried pipe candidates. A plot of the distribution is shown in FIG. 8, and a plot of the frequency distribution is shown in FIG.
As shown in FIGS. 8 and 9, in both the buried pipe candidate and the non-buried pipe candidate, the maximum amplitude value and the frequency distribution are often overlapped, and these feature quantities alone are buried. It can be seen that it is difficult to separate the pipe candidate and the non-buried pipe candidate, that is, to extract the buried pipe candidate.

そこで、上記特徴構成によれば、候補領域ベクトル導出部が、候補領域導出部にて導出された複数の候補領域の夫々に関し、当該候補領域における二次曲線候補が埋設管であることを判定するための複数の予め定められた特徴に関する特徴量を導出し、複数の特徴量の夫々を構成要素として有する候補領域ベクトルを導出し、埋設管候補抽出部が、導出した複数の候補領域ベクトルを、埋設管の候補となる埋設管候補ベクトルと埋設管の候補ではない非埋設管候補ベクトルとに分類する分類ルール群に基づいて分類して、埋設管の候補となる候補領域を抽出する。
つまり、候補領域ベクトルには、複数の特徴に係る特徴量が構成要素として含まれており、それらの値の組み合わせにより、候補領域ベクトルが、埋設管候補に相当するか非埋設管候補に相当するかを分類するから、単一の特徴にて分類し難かった両者を、効果的に分類し得る。
また、埋設管候補と非埋設管候補とに分類する分類ルール群、即ち、候補領域ベクトルの構成要素の夫々に関する閾値を有する閾値ベクトルの複数の導出についてのみ、機械学習を用いて導出するから、断面データ画像を機械学習する場合に比べて、教師データの数を大幅に低減できる。
以上より、教師データの増加を抑制しながらも、埋設管の候補を自動で抽出する際に、埋設管の見逃し率を低減し得る埋設管判定装置を実現できる。
Therefore, according to the above feature configuration, the candidate region vector derivation unit determines that the quadratic curve candidate in the candidate region is an embedded pipe for each of the plurality of candidate regions derived by the candidate region derivation unit. Derived feature quantities related to a plurality of predetermined features for the purpose, derived a candidate region vector having each of the plurality of feature quantities as a component, and the buried pipe candidate extraction unit derived the plurality of candidate region vectors. A candidate area that is a candidate for a buried pipe is extracted by classifying based on a classification rule group that classifies a candidate buried pipe candidate vector that is a candidate for a buried pipe and a non-buried pipe candidate vector that is not a candidate for a buried pipe.
That is, the candidate region vector includes feature quantities related to a plurality of features as components, and the candidate region vector corresponds to a buried pipe candidate or a non-buried pipe candidate depending on the combination of these values. Since it is classified, it is possible to effectively classify both, which were difficult to classify by a single feature.
Further, only the classification rule group for classifying the candidate for buried pipe and the candidate for non-buried pipe, that is, a plurality of derivations of the threshold vector having a threshold for each of the components of the candidate region vector are derived by using machine learning. Compared to the case of machine learning the cross-sectional data image, the number of teacher data can be significantly reduced.
From the above, it is possible to realize a buried pipe determination device that can reduce the oversight rate of buried pipes when automatically extracting candidates for buried pipes while suppressing an increase in teacher data.

埋設管判定装置の更なる特徴構成は、
前記候補領域導出部は、
前記断面データ画像上での所定の直線に沿った輝度の変化を計算し、輝度変化が大きい領域のみを抽出する形態で前記二次曲線候補に外接する矩形領域を切り出す切出工程と、当該切出工程にて切り出された前記二次曲線候補の形状に基づく値又は前記二次曲線候補の輝度値又は前記矩形領域の周囲の輝度値に基づく値を用いて、前記二次曲線候補に含まれないものを除外し、残った前記二次曲線候補に対応する前記矩形領域を含む候補領域として導出する除外工程とを実行する第1候補領域導出処理と、
前記切出工程と、前記矩形領域に含まれる前記二次曲線候補と既知の前記埋設管に対応する反射波波形との類似度が一定以上である場合に前記矩形領域を候補領域として導出するマッチング工程とを実行する第2候補領域導出処理との少なくとも何れか一方を実行するものである点にある。
Further features of the buried pipe determination device
The candidate area derivation unit is
A cutting step of calculating a change in brightness along a predetermined straight line on the cross-sectional data image and cutting out a rectangular area circumscribing the quadratic curve candidate in a form of extracting only a region having a large change in brightness, and the cutting. A value based on the shape of the quadratic curve candidate cut out in the output step, a value based on the brightness value of the quadratic curve candidate, or a value based on the brightness value around the rectangular region is included in the quadratic curve candidate. The first candidate region derivation process for executing the exclusion step of excluding those that do not exist and deriving as a candidate region including the rectangular region corresponding to the remaining quadratic curve candidate, and
Matching that derives the rectangular region as a candidate region when the similarity between the cutting step and the quadratic curve candidate included in the rectangular region and the reflected wave waveform corresponding to the known buried pipe is equal to or higher than a certain level. The point is that at least one of the second candidate region derivation process for executing the process is executed.

上記特徴構成の如く、候補領域導出部は、断面データ画像上での所定の直線に沿った輝度の変化を計算し、輝度変化が大きい領域のみを抽出する形態で二次曲線候補に外接する矩形領域を切り出す切出工程と、当該切出工程にて切り出された二次曲線候補の形状に基づく値又は二次曲線候補の輝度値に基づく値又は前記矩形領域の周囲の輝度値を用いて、二次曲線候補に含まれないものを除外し、残った二次曲線候補に対応する矩形領域を含む候補領域として導出する除外工程とを実行する第1候補領域導出処理と、切出工程と、矩形領域に含まれる二次曲線候補と既知の埋設管に対応する反射波波形との類似度が一定以上である場合に矩形領域を候補領域として導出するマッチング工程とを実行する第2候補領域導出処理との少なくとも何れか一方を実行することで、候補領域として、明らかに埋設管に起因しない二次曲線候補を除外することができ、その後の埋設管候補導出部による埋設管候補の導出処理の効率化を図ることができる。 As in the above feature configuration, the candidate region derivation unit calculates the change in brightness along a predetermined straight line on the cross-sectional data image, and extracts only the region with a large change in brightness. Using the cutting step of cutting out the region, the value based on the shape of the quadratic curve candidate cut out in the cutting step, the value based on the brightness value of the quadratic curve candidate, or the brightness value around the rectangular region. A first candidate area derivation process, a cutting process, and an exclusion step of excluding those not included in the quadratic curve candidates and deriving them as a candidate area including a rectangular area corresponding to the remaining quadratic curve candidates. Derivation of the second candidate region for executing a matching step of deriving the rectangular region as a candidate region when the similarity between the quadratic curve candidate included in the rectangular region and the reflected wave waveform corresponding to the known buried pipe is equal to or higher than a certain level. By executing at least one of the processing, it is possible to exclude the quadratic curve candidate that is not clearly caused by the buried pipe as the candidate region, and the subsequent derivation process of the buried pipe candidate by the buried pipe candidate derivation unit is performed. Efficiency can be improved.

さて、発明者らは、候補領域ベクトルの構成要素の一つとして採用することで、埋設管候補と非埋設管候補とを分類するのに有効な特徴として、以下の特徴を見出した。 By the way, the inventors have found the following features as effective features for classifying buried pipe candidates and non-buried pipe candidates by adopting them as one of the components of the candidate region vector.

例えば、前記候補領域ベクトル導出部は、前記候補領域導出部にて導出された前記候補領域の前記断面データ画像内における位置に基づいて導出される位置情報を前記特徴の一つとし、当該特徴を数値化した特徴量を前記候補領域ベクトルの前記構成要素の一つとして導出することが好ましい。 For example, the candidate region vector derivation unit uses the position information derived based on the position of the candidate region derived by the candidate region derivation unit in the cross-sectional data image as one of the features, and uses the feature as one of the features. It is preferable to derive the quantified feature amount as one of the constituent elements of the candidate region vector.

また、例えば、前記候補領域ベクトル導出部は、前記候補領域導出部にて導出された前記候補領域の外接矩形の幅及び高さ及びそれらに関連する値、又は前記候補領域に含まれる前記二次曲線候補の二次係数及び一次係数及び二次係数と一次係数との比の少なくとも一つを前記特徴の一つとし、当該特徴を数値化した特徴量を前記候補領域ベクトルの前記構成要素の一つとして導出することが好ましい。 Further, for example, the candidate region vector derivation unit includes the width and height of the circumscribing rectangle of the candidate region derived by the candidate region derivation unit, values related thereto, or the quadratic included in the candidate region. At least one of the quadratic coefficient and the linear coefficient of the curve candidate and the ratio of the quadratic coefficient and the linear coefficient is one of the features, and the feature amount obtained by quantifying the feature is one of the constituent elements of the candidate region vector. It is preferable to derive the coefficient.

また、例えば、前記候補領域ベクトル導出部は、前記候補領域導出部にて導出された前記候補領域の外接矩形の高さ方向で所定の位置において幅方向に沿って輝度値を導出した、幅方向での位置のそれぞれにおいて輝度値をプロットしたときの波形における振幅と波長とピーク数との少なくとも一つを前記特徴の一つとし、当該特徴を数値化した特徴量を前記候補領域ベクトルの前記構成要素の一つとして導出することが好ましい。 Further, for example, the candidate region vector derivation unit derives a brightness value along the width direction at a predetermined position in the height direction of the circumscribing rectangle of the candidate region derived by the candidate region derivation unit in the width direction. At least one of the amplitude, wavelength, and number of peaks in the waveform when the brightness value is plotted at each of the positions in is one of the features, and the feature amount obtained by quantifying the feature is the configuration of the candidate region vector. It is preferable to derive it as one of the elements.

また、例えば、前記候補領域ベクトル導出部は、前記候補領域導出部にて導出された前記候補領域を、所定の大きさに規格化した規格化領域における複数のピクセルの輝度値の夫々を前記特徴の一つとし、当該特徴を数値化した特徴量を前記候補領域ベクトルの前記構成要素の一つとして導出することが好ましい。 Further, for example, the candidate region vector derivation unit features the luminance values of a plurality of pixels in a standardized region in which the candidate region derived by the candidate region derivation unit is standardized to a predetermined size. It is preferable to derive the feature quantity obtained by quantifying the feature as one of the constituent elements of the candidate region vector.

また、例えば、前記候補領域ベクトル導出部は、前記候補領域導出部にて導出された前記候補領域を対象候補領域としたときに、前記断面データ画像のうちで前記対象候補領域の周囲の所定範囲内に存在する前記候補領域の数、又は前記候補領域導出部にて導出された前記候補領域を前記対象候補領域としたときに、前記断面データ画像のうちで前記対象候補領域の周囲の所定範囲内に存在する前記候補領域と前記対象候補領域との位置関係に基づく値の何れか一つを前記特徴の一つとし、当該特徴を数値化した特徴量を前記候補領域ベクトルの前記構成要素の一つとして導出することが好ましい。 Further, for example, when the candidate region derived by the candidate region derivation unit is used as the target candidate region, the candidate region vector derivation unit has a predetermined range around the target candidate region in the cross-sectional data image. When the number of the candidate regions existing in the area or the candidate region derived by the candidate region derivation unit is used as the target candidate region, a predetermined range around the target candidate region in the cross-sectional data image. One of the values based on the positional relationship between the candidate area and the target candidate area existing in the area is set as one of the features, and the feature amount obtained by quantifying the feature is the component of the candidate area vector. It is preferable to derive it as one.

埋設管判定装置の更なる特徴構成は、
前記候補領域ベクトルに関し、ランダムな構成要素を有する閾値ベクトルを生成する閾値ベクトル生成処理と、前記埋設管であることが既知の前記候補領域ベクトルである教師データとしての埋設管ベクトルの複数及び前記埋設管でないことが既知の前記候補領域ベクトルである前記教師データとしての非埋設管ベクトルの複数を含む親集団を前記閾値ベクトルにて2つに分類したときに、一方の分類に含まれる前記候補領域ベクトルのうちの前記埋設管ベクトルの割合が、前記親集団における前記埋設管ベクトルの割合よりも多い判定割合以上である場合、前記閾値ベクトルを前記分類ルール群に加える分類ルール導出処理とを実行する分類ルール導出部を備え、
前記埋設管候補抽出部は、前記分類ルール導出部にて導出された複数の前記分類ルール群に基づいて、前記埋設管候補ベクトルと前記非埋設管候補ベクトルとを分類し、前記埋設管の候補となる前記候補領域を抽出する点にある。
Further features of the buried pipe determination device
With respect to the candidate region vector, a threshold vector generation process for generating a threshold vector having random components, a plurality of buried pipe vectors as teacher data which are the candidate region vectors known to be the buried pipe, and the buried pipe. When a parent group including a plurality of non-buried tube vectors as the teacher data, which is the candidate region vector known not to be a tube, is classified into two by the threshold vector, the candidate region included in one of the classifications. When the ratio of the buried pipe vector in the vector is greater than or equal to the determination ratio higher than the ratio of the buried pipe vector in the parent group, the classification rule derivation process of adding the threshold vector to the classification rule group is executed. Equipped with a classification rule derivation unit
The buried pipe candidate extraction unit classifies the buried pipe candidate vector and the non-buried pipe candidate vector based on the plurality of classification rule groups derived by the classification rule derivation unit, and classifies the buried pipe candidate vector. The point is to extract the candidate area.

上記特徴構成によれば、分類ルール導出部は、ランダムに閾値ベクトルを生成するベクトル生成処理を実行すると共に、埋設管であることが既知の候補領域ベクトルである埋設管候補ベクトルの複数及び埋設管でないことが既知の候補領域ベクトルである非埋設管候補ベクトルの複数を含む親集団を閾値ベクトルにて2つに分類したときに、一方の分類に含まれる埋設管候補ベクトルのうちの埋設管ベクトルの割合が、親集団における埋設管ベクトルの割合よりも多い判定割合以上である場合、閾値ベクトルを分類ルール群に加える分類ルール導出処理とを実行するので、機械学習においては、ランダムに閾値ベクトルを生成すると共に、当該生成した閾値ベクトルが、埋設管ベクトルと非埋設管ベクトルとを優位に分類するものか否かを判断することに機械学習を採用するから、教師データとしての断面データ画像で機械学習を実行して埋設管候補を抽出する場合に比べ、必要とする教師データ(埋設管ベクトル及び非埋設管ベクトル)の数を大幅に低減できる。 According to the above feature configuration, the classification rule derivation unit executes a vector generation process for randomly generating a threshold vector, and also has a plurality of buried pipe candidate vectors and buried pipes, which are candidate region vectors known to be buried pipes. When a parent group containing a plurality of non-buried pipe candidate vectors, which are known candidate region vectors, are classified into two by a threshold vector, the buried pipe vector among the buried pipe candidate vectors included in one of the classifications. When the ratio of is greater than or equal to the judgment ratio of the buried pipe vector in the parent group, the classification rule derivation process of adding the threshold vector to the classification rule group is executed. Therefore, in machine learning, the threshold vector is randomly selected. Since machine learning is used to determine whether or not the generated threshold vector predominantly classifies the buried pipe vector and the non-buried pipe vector as well as being generated, the machine is based on the cross-sectional data image as teacher data. Compared with the case of performing learning and extracting buried pipe candidates, the number of required teacher data (buried pipe vector and non-buried pipe vector) can be significantly reduced.

また、これまで説明してきた埋設管判定装置を備えた探査装置も、これまで説明してきた作用効果を奏する探査装置として有効に働くものである。 Further, the exploration device provided with the buried pipe determination device described so far also works effectively as an exploration device that exerts the action and effect described so far.

本発明の実施形態に係る探査装置の概略構成図である。It is a schematic block diagram of the exploration apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る制御装置のブロック図である。It is a block diagram of the control device which concerns on embodiment of this invention. 候補領域導出部による処理を説明するための図である。It is a figure for demonstrating the processing by a candidate area derivation part. 候補領域導出部による処理を説明するための図である。It is a figure for demonstrating the processing by a candidate area derivation part. 候補領域導出部にて導出された領域で埋設管候補と非埋設管候補が含まれる図の例である。This is an example of a diagram in which a buried pipe candidate and a non-buried pipe candidate are included in the area derived by the candidate area derivation unit. 埋設管候補抽出部が分類ルールに基づいて埋設管候補を抽出する流れを説明するための図である。It is a figure for demonstrating the flow which the buried pipe candidate extraction part extracts a buried pipe candidate based on a classification rule. 探査データの候補領域のベクトルを構成する特徴量である反射波の振幅及び周波数を示す図である。It is a figure which shows the amplitude and frequency of the reflected wave which is a feature quantity which constitutes the vector of the candidate area of the exploration data. 埋設管候補と、埋設管の可能性のあるものと、非埋設管候補とで、振幅毎の存在確率(密度)を示すグラフ図である。It is a graph which shows the existence probability (density) for every amplitude in the candidate for a buried pipe, the candidate for a buried pipe, and the candidate for a non-buried pipe. 埋設管候補と、埋設管の可能性のあるものと、非埋設管候補とで、周波数毎の存在確率(密度)を示すグラフ図である。It is a graph which shows the existence probability (density) for each frequency of a candidate for a buried pipe, a candidate for a buried pipe, and a candidate for a non-buried pipe.

当該実施形態に係る埋設管判定装置S、それを備えた探査装置3、及び埋設管判定方法は、教師データの増加を抑制しながらも、埋設管Kの候補を自動で抽出する際に、特に、埋設管Kの見逃し率を低減し得る技術に関するものである。 The buried pipe determination device S, the exploration device 3 provided with the buried pipe determination device S, and the buried pipe determination method according to the embodiment are particularly used when automatically extracting candidates for the buried pipe K while suppressing an increase in teacher data. The present invention relates to a technique capable of reducing the oversight rate of the buried pipe K.

〔探査装置〕
図1及び図2に示すように、本発明の実施形態に係る探査装置3は、作業者により手押しされ、地中に埋設された埋設管Kを含む探索範囲SAにおいて設定された走査ラインSLに沿って走査される。探査装置3は、走査ラインSLに沿って走査されたときに、地中に向けて探査用電磁波を放射し、当該探査用電磁波の反射波を処理し、走査ラインSLを含む垂直断面視での埋設管Kの埋設状況を示す断面データ画像を取得し、当該断面データ画像に基づいて地中における埋設管の有無を判定する埋設管判定装置Sを備える。さらに、埋設管判定装置Sにより、当該断面データ画像が探査装置3の上部に設置された表示部S6に表示されるように構成される。
[Exploration device]
As shown in FIGS. 1 and 2, the exploration device 3 according to the embodiment of the present invention is set on the scanning line SL set in the search range SA including the buried pipe K buried in the ground by being pushed by an operator. It is scanned along. When the exploration device 3 is scanned along the scanning line SL, it emits an exploration electromagnetic wave toward the ground, processes the reflected wave of the exploration electromagnetic wave, and performs a vertical cross-sectional view including the scanning line SL. A buried pipe determination device S for acquiring a cross-sectional data image showing the burial status of the buried pipe K and determining the presence or absence of the buried pipe in the ground based on the cross-sectional data image is provided. Further, the buried pipe determination device S is configured so that the cross-sectional data image is displayed on the display unit S6 installed on the upper part of the exploration device 3.

より詳しくは、探査装置3は、手押し式または自走式のレーダ探査装置であり、埋設管Kの探査作業の対象となる所定の探索範囲SAにおいて設定された走査ラインSLに沿って走行する。探査装置3は走行しながら、アンテナAから探査用電磁波を地中に放射する。放射された電磁波の伝播経路に埋設管Kなどの埋設物が存在するとそこで反射される。この反射されて戻ってくる反射波が埋設管判定装置Sで処理され、目的となる埋設物(埋設管K)の存在を評価する断面データ画像が出力される。 More specifically, the exploration device 3 is a hand-push type or self-propelled radar exploration device, and travels along a scanning line SL set in a predetermined search range SA to be searched for the buried pipe K. While traveling, the exploration device 3 radiates an electromagnetic wave for exploration into the ground from the antenna A. If a buried object such as a buried pipe K exists in the propagation path of the radiated electromagnetic wave, it is reflected there. The reflected wave that is reflected and returned is processed by the buried pipe determination device S, and a cross-sectional data image for evaluating the existence of the target buried object (buried pipe K) is output.

断面データ画像は、埋設管判定装置Sにより適切な画像処理が施され、図1(b)に示すような断面データ画像として表示部S6上に可視化される。作業者は、表示部S6に表示された断面データ画像から作業対象となる埋設管Kの地中位置を把握できる。 The cross-section data image is appropriately subjected to image processing by the buried pipe determination device S, and is visualized on the display unit S6 as a cross-section data image as shown in FIG. 1 (b). The operator can grasp the underground position of the buried pipe K to be worked from the cross-sectional data image displayed on the display unit S6.

探索範囲SAは、一般的には管轄地区の歩道や道路などの特定区画であり、この探索範囲SA内で予め決められたパターンで走査ラインSLが設定される。その際、この走査ラインSLを規定する基準マーカMが指標として探索範囲SAの地表に付与される。 The search range SA is generally a specific section such as a sidewalk or a road in a jurisdiction area, and a scanning line SL is set in a predetermined pattern within the search range SA. At that time, the reference marker M defining the scanning line SL is assigned to the ground surface of the search range SA as an index.

ここでいう、走査ラインSLを規定する基準マーカMとは、例えば走査ラインSLの起点、中間点、終点などを示す文字や記号であり、チョークやペンキなどで直接地表に描画してもよいし、三角コーンなどの標識体を地面に載置してもよい。あるいは、走査ラインSLを示す線を描画する方法やロープを載置するような方法でも走査ラインSLを規定する基準マーカMを作り出すことができる。つまり、この基準マーカMの地表の位置により、実際の走査位置と、その走査位置での探査データとが関係付けられる。 The reference marker M that defines the scanning line SL as used herein is, for example, a character or symbol indicating the start point, intermediate point, end point, etc. of the scanning line SL, and may be drawn directly on the ground surface with chalk or paint. , A marker such as a traffic cone may be placed on the ground. Alternatively, the reference marker M that defines the scanning line SL can be created by a method of drawing a line indicating the scanning line SL or a method of placing a rope on the scanning line SL. That is, the actual scanning position and the exploration data at the scanning position are related to each other by the position of the reference marker M on the ground surface.

図1の例では、基準マーカM(M1、M2、M3)は、3本の走査ラインSL(SL1、SL2、SL3)の各起点に黒丸と操作方向を示す矢印とからなる、地面にチョークで描かれた指標である。 In the example of FIG. 1, the reference marker M (M1, M2, M3) is a chalk on the ground consisting of a black circle at each starting point of the three scanning lines SL (SL1, SL2, SL3) and an arrow indicating the operation direction. It is a drawn index.

本実施形態においては、探査装置3は、探索範囲SAにおいて互いに平行で、かつ、同じ長さである複数の走査ラインSLを走査する。より具体的には、少なくとも3本の走査ラインSL(SL1~SL3)を走査し、当該走査ラインSL1~SL3それぞれについて断面データ画像を取得する。 In the present embodiment, the search device 3 scans a plurality of scan lines SL parallel to each other and having the same length in the search range SA. More specifically, at least three scanning lines SL (SL1 to SL3) are scanned, and a cross-sectional data image is acquired for each of the scanning lines SL1 to SL3.

走査ラインSLの間隔Lは、探索範囲SA下に存在する埋設管Kの状態に基づいて決定される。具体的には、例えば、50cm間隔で設けられる。なお、埋設管Kの埋設状態があらかじめ分かっている場合(例えば、長距離にわたって直線に存在することが判明している場合)には、より広い間隔で設けても構わない。 The interval L of the scanning lines SL is determined based on the state of the buried pipe K existing under the search range SA. Specifically, for example, they are provided at intervals of 50 cm. If the buried state of the buried pipe K is known in advance (for example, when it is known that the buried pipe K exists in a straight line over a long distance), it may be provided at a wider interval.

図2に示すように、探査装置3は、大きく分けて、アンテナA、埋設管判定装置S、表示部S6を備える。埋設管判定装置Sは、アンテナAで受信した電磁波を信号処理し、表示部S6は、埋設管判定装置Sで信号処理された断面データ画像を可視化した画像等を、作業者に表示する。 As shown in FIG. 2, the exploration device 3 is roughly divided into an antenna A, a buried pipe determination device S, and a display unit S6. The buried pipe determination device S signals the electromagnetic wave received by the antenna A, and the display unit S6 displays an image or the like that visualizes the cross-sectional data image signal-processed by the buried pipe determination device S to the operator.

探査装置3のアンテナAは、好ましくは複数のアンテナ素子から構成されると良い。探査装置3は、アンテナAを通じてマイクロ波領域のパルス状の電磁波を地中に向けて所定の繰り返し周波数で放射するための高周波電源と送信部(いずれも図示せず)、及びアンテナAを通じて地中から反射してきた反射波を受信する受信部(図示せず)を備える。 The antenna A of the exploration device 3 is preferably composed of a plurality of antenna elements. The exploration device 3 has a high-frequency power supply and a transmitter (neither shown) for radiating a pulsed electromagnetic wave in the microwave region toward the ground through the antenna A at a predetermined repeating frequency, and the probe 3 in the ground through the antenna A. It is provided with a receiving unit (not shown) for receiving the reflected wave reflected from the antenna.

ところで、探査装置3は、チョークで地面に描画された指標である基準マーカMを起点として、又は基準マーカMから所定の位置を起点として設定される走査ラインSLに沿って移動させられる。探査装置3には、その移動距離ないしは移動点を検出する位置検出センサユニット(図示せず)が装備されている。当該位置検出センサユニットにて検出された位置データは埋設管判定装置Sに送られ、地中から反射してきた反射波と合わされ、断面データ画像を作成するために利用される。位置検出センサユニットは、簡単には走行車輪に連結したロータリエンコーダによって構築することができるが、GPSやジャイロによって構築しても良い。 By the way, the exploration device 3 is moved from the reference marker M, which is an index drawn on the ground with chalk, as a starting point, or along a scanning line SL set from a predetermined position as a starting point. The exploration device 3 is equipped with a position detection sensor unit (not shown) that detects the moving distance or the moving point. The position data detected by the position detection sensor unit is sent to the buried pipe determination device S, combined with the reflected wave reflected from the ground, and used to create a cross-sectional data image. The position detection sensor unit can be easily constructed by a rotary encoder connected to a traveling wheel, but may be constructed by a GPS or a gyro.

表示部S6は、断面データ画像を作業者が視覚的に確認できる形態で表示するフラットパネルディスプレイからなる。図1(b)に示すように、フラットパネルディスプレイは、探査装置3の上面に、探査装置3を手押しする作業者から良く見えるように傾斜姿勢で設けられる。 The display unit S6 comprises a flat panel display that displays a cross-sectional data image in a form that can be visually confirmed by an operator. As shown in FIG. 1 (b), the flat panel display is provided on the upper surface of the exploration device 3 in an inclined posture so as to be clearly visible to the operator who pushes the exploration device 3.

探査装置3は、受信部で受け取った受信信号を適宜増幅し、増幅された受信信号を、表示部S6に表示できる形態とするように埋設管判定装置Sによって信号処理する。
さて、当該埋設管判定装置Sは、教師データの増加を抑制しながらも、埋設管Kの候補を自動で抽出する際に、埋設管Kの見逃し率を低減するべく、以下の埋設管判定方法を実行する構成を有する。
即ち、当該埋設管判定装置Sは、断面データ画像から埋設管Kの可能性のあるシグナルとしての二次曲線候補を一つ含む候補領域を導出する候補領域導出処理を実行する候補領域導出部S3と、候補領域導出部S3にて導出された複数の候補領域の夫々に関し、当該候補領域における二次曲線候補が埋設管Kであることを判定するための複数の予め定められた特徴を数値化した特徴量を導出し、複数の特徴量の夫々を構成要素として有する候補領域ベクトルを導出する候補領域ベクトル導出工程を実行する候補領域ベクトル導出部S2と、導出した複数の候補領域ベクトルを、埋設管Kの候補となる埋設管候補ベクトルと埋設管Kの候補ではない非埋設管候補ベクトルとに分類する分類ルール群に基づいて分類して、埋設管Kの候補となる候補領域を抽出する埋設管候補抽出工程を実行する埋設管候補抽出部S1とを備えて構成されている。
The exploration device 3 appropriately amplifies the received signal received by the receiving unit, and performs signal processing by the embedded pipe determination device S so that the amplified received signal can be displayed on the display unit S6.
By the way, the buried pipe determination device S has the following buried pipe determination method in order to reduce the oversight rate of the buried pipe K when automatically extracting candidates for the buried pipe K while suppressing the increase in teacher data. Has a configuration to execute.
That is, the buried pipe determination device S is a candidate area deriving unit S3 that executes a candidate area deriving process for deriving a candidate area including one quadratic curve candidate as a possible signal of the buried pipe K from the cross-sectional data image. And, with respect to each of the plurality of candidate regions derived by the candidate region derivation unit S3, a plurality of predetermined features for determining that the quadratic curve candidate in the candidate region is the buried pipe K are quantified. The candidate area vector derivation unit S2 for executing the candidate area vector derivation process for deriving the candidate area vector having each of the plurality of feature amounts as a component, and the plurality of derived candidate area vectors are embedded. Buried to extract candidate areas that are candidates for buried pipe K by classifying them based on a classification rule group that classifies them into a buried pipe candidate vector that is a candidate for pipe K and a non-buried pipe candidate vector that is not a candidate for buried pipe K. It is configured to include a buried pipe candidate extraction unit S1 that executes a pipe candidate extraction step.

当該候補領域導出部S3は、第1候補領域導出処理として、断面データ画像上での所定の直線に沿ったの輝度の変化を計算し、輝度変化が大きい領域のみを抽出する形態で二次曲線候補に外接する矩形領域を切り出す切出工程と、当該切出工程にて切り出された二次曲線候補の形状に基づく値又は二次曲線候補の輝度値又は矩形領域の周囲の輝度値に基づく値を用いて、二次曲線候補に含まれないものを除外し、残った二次曲線候補に対応する矩形領域を含む候補領域として導出する除外工程とを実行する。
尚、ここで、矩形領域及び候補領域には、一の二次曲線候補だけでなく、他の二次曲線が含まれていても構わない。
当該切出工程では、図3(a)に示す反射波画像から、図3(b)に示す高輝度(シグナル振幅の大きな)の領域を検出し、当該検出した領域から図3(c)に示す二次曲線に近い形状を切り出す処理を実行する。説明を追加すると、図3(b)では、微分フィルタや平滑フィルタの差を利用する。その際、所定のサイズ範囲(行・列ともに5~25ピクセル)の畳み込み行列を用いる。図3(c)では、図3(b)で得られる線構造上の点の集まりの中で、2次曲線候補として確率的に尤もらしい点集合を抽出する。具体的には、二次曲線でフィッティングした際に、平均の位置誤差が6ピクセル以内(より好ましくは、3ピクセル以内)となる点集合を抽出する。
更に、上記除外工程では、二次曲線候補の形状に基づく値として、二次曲線候補の外接矩形の幅や高さ(図4において破線で示す矩形の幅や高さ)、二次曲線候補の係数の少なくとも1つを用いて、これらの値と閾値とを比較的して、対象外のものを二次曲線候補(候補領域)から除外する。
一例をあげると、二次曲線の幅(二次曲線候補の外接矩形の幅)は、200ピクセルを超えるものを除外し、二次係数の範囲が0.002未満及び0.02を超えるものについては除外する。
The candidate region derivation unit S3 calculates the change in brightness along a predetermined straight line on the cross-sectional data image as the first candidate region derivation process, and extracts only the region having a large change in brightness. A cutting process for cutting out a rectangular area circumscribing the candidate, and a value based on the shape of the quadratic curve candidate cut out in the cutting process, or a value based on the brightness value of the quadratic curve candidate or the brightness value around the rectangular area. Is used to exclude those not included in the quadratic curve candidates, and execute the exclusion step of deriving as a candidate region including the rectangular region corresponding to the remaining quadratic curve candidates.
Here, the rectangular area and the candidate area may include not only one quadratic curve candidate but also another quadratic curve candidate.
In the cutting step, a high-luminance (large signal amplitude) region shown in FIG. 3B is detected from the reflected wave image shown in FIG. 3A, and the detected region is shown in FIG. 3C. The process of cutting out a shape close to the quadratic curve shown is executed. To add an explanation, in FIG. 3B, the difference between the differential filter and the smoothing filter is used. At that time, a convolution matrix having a predetermined size range (5 to 25 pixels for both rows and columns) is used. In FIG. 3 (c), a probabilistically plausible point set is extracted as a quadratic curve candidate from the set of points on the line structure obtained in FIG. 3 (b). Specifically, when fitting with a quadratic curve, a point set having an average position error of 6 pixels or less (more preferably 3 pixels or less) is extracted.
Further, in the above exclusion step, as values based on the shape of the quadratic curve candidate, the width and height of the circumscribing rectangle of the quadratic curve candidate (width and height of the rectangle shown by the broken line in FIG. 4) and the quadratic curve candidate. At least one of the coefficients is used to compare these values with the threshold, and the non-target ones are excluded from the quadratic curve candidates (candidate regions).
As an example, the width of the quadratic curve (width of the circumscribing rectangle of the quadratic curve candidate) excludes those exceeding 200 pixels, and the range of the quadratic coefficient is less than 0.002 and more than 0.02. Exclude.

図4を用いて説明すると、(a)は二次係数が0.02より大きいため除外、(b)は二次係数が0.002未満且つ横幅が200ピクセルを超えるため除外、(c)と(d)のみを二次曲線候補(候補領域)として残す。 Explaining with reference to FIG. 4, (a) is excluded because the quadratic coefficient is larger than 0.02, and (b) is excluded because the quadratic coefficient is less than 0.002 and the width exceeds 200 pixels. Only (d) is left as a quadratic curve candidate (candidate area).

次に、候補領域ベクトル導出部S2は、候補領域導出部S3にて導出された複数の二次曲線候補(候補領域)の夫々に関し、当該候補領域における二次曲線候補が埋設管であることを判定するための複数の予め定められた特徴を数値化した特徴量を導出し、複数の特徴量の夫々を構成要素として有する候補領域ベクトルを導出する。
候補領域ベクトル導出部S2が導出する候補領域ベクトルの構成要素としての特徴量としては、以下の少なくとも2つ以上を含むことが好ましい。
Next, the candidate region vector derivation unit S2 determines that the quadratic curve candidate in the candidate region is an embedded pipe with respect to each of the plurality of quadratic curve candidates (candidate regions) derived by the candidate region derivation unit S3. A feature quantity that quantifies a plurality of predetermined features for determination is derived, and a candidate region vector having each of the plurality of feature quantities as a component is derived.
The feature quantity as a component of the candidate region vector derived by the candidate region vector derivation unit S2 preferably includes at least two or more of the following.

例えば、候補領域ベクトル導出部S2は、候補領域導出部S3にて導出された候補領域の断面データ画像内における位置に基づいて導出される位置情報を特徴の一つとし、当該特徴を数値化した特徴量を候補領域ベクトルの構成要素の一つとして導出する。
具体的には、断面データ画像内における候補領域の中央位置のX座標Z座標、当該候補領域の中央位置に関し、複数の断面データ画像の並び方向(図1(a)で基準マーカMの並び方向)での座標等が挙げられる。
尚、当該特徴に関しては、候補領域のみからは抽出できないので、当該特徴を候補領域ベクトルの構成要素として用いる場合、候補領域を抽出した断面データ画像についても候補領域と併せて記憶部S5に保持しておくことになる。
また、位置情報としては、二次曲線候補の外接矩形内の領域のみならず、その周囲の領域を含む候補領域内にある位置を含むものである。
また、位置情報としては、二次曲線候補をマイグレーションした位置を含むものである。
For example, the candidate area vector derivation unit S2 uses the position information derived based on the position in the cross-sectional data image of the candidate area derived by the candidate area derivation unit S3 as one of the features, and quantifies the feature. The feature quantity is derived as one of the components of the candidate region vector.
Specifically, with respect to the X coordinate Z coordinate of the center position of the candidate area in the section data image and the center position of the candidate area, the arrangement direction of a plurality of section data images (the arrangement direction of the reference marker M in FIG. 1A). ), Etc. are mentioned.
Since the feature cannot be extracted only from the candidate region, when the feature is used as a component of the candidate region vector, the cross-sectional data image from which the candidate region is extracted is also stored in the storage unit S5 together with the candidate region. I will keep it.
Further, the position information includes not only the area in the circumscribed rectangle of the quadratic curve candidate but also the position in the candidate area including the surrounding area.
Further, the position information includes the position where the quadratic curve candidate is migrated.

例えば、候補領域ベクトル導出部S2は、候補領域導出部S3にて導出された候補領域の外接矩形の幅及び高さ及びそれらに関連する値、又は候補領域に含まれる二次曲線候補の二次係数及び一次係数及び二次係数と一次係数との比の少なくとも一つを特徴の一つとし、当該特徴を数値化した特徴量を候補領域ベクトルの構成要素の一つとして導出する。 For example, the candidate region vector derivation unit S2 is the width and height of the circumscribing rectangle of the candidate region derived by the candidate region derivation unit S3 and the values related to them, or the quadratic curve candidate included in the candidate region. At least one of the coefficient, the linear coefficient, and the ratio of the quadratic coefficient to the linear coefficient is set as one of the features, and the feature quantity obtained by quantifying the feature is derived as one of the components of the candidate region vector.

また、例えば、候補領域ベクトル導出部S2は、候補領域導出部S3にて導出された候補領域の外接矩形の高さ方向で所定の位置において幅方向に沿って輝度値を導出した、幅方向での位置のそれぞれにおいて輝度値をプロットしたときの波形における振幅と波長とピーク数との少なくとも一つを特徴の一つとし、当該特徴を数値化した特徴量を候補領域ベクトルの構成要素の一つとして導出する。
具体的には、図7の上に示すような断面データ画像の候補領域において、深さ方向(矢印Z方向)で所定の位置(例えば、中央位置)を通る直線に沿う幅方向(矢印X方向)に沿って、輝度値(強度)をプロットしたグラフにおいて、輝度値としてのシグナルの振幅・周波数・ピーク値の少なくとも一つを、特徴の一つとしても構わない。
Further, for example, the candidate region vector derivation unit S2 derives the luminance value along the width direction at a predetermined position in the height direction of the circumscribing rectangle of the candidate region derived by the candidate region derivation unit S3 in the width direction. One of the features is at least one of the amplitude, wavelength, and number of peaks in the waveform when the luminance value is plotted at each of the positions of, and the feature quantity that quantifies the feature is one of the components of the candidate region vector. Derived as.
Specifically, in the candidate region of the cross-sectional data image as shown above in FIG. 7, the width direction (arrow X direction) along a straight line passing through a predetermined position (for example, the center position) in the depth direction (arrow Z direction). ), At least one of the amplitude, frequency, and peak value of the signal as the brightness value may be one of the features in the graph in which the brightness value (intensity) is plotted.

更に、例えば、候補領域ベクトル導出部S2は、候補領域導出部S3にて導出された候補領域を、所定の大きさに規格化した規格化領域における複数のピクセルの輝度値の夫々を特徴の一つとし、当該特徴を数値化した特徴量を候補領域ベクトルの構成要素の一つとして導出する。
ここで、規格化領域とは、2×2の窓枠を用いて、矩形上を走査しながら、窓枠中の最大輝度の1ピクセルで2×2と置き換えることで、画像を1/2×1/2のサイズに変換する処理を、最終的に、4×4のサイズになるまで繰り返して得られる領域である。
Further, for example, the candidate area vector derivation unit S2 is characterized by having the luminance values of a plurality of pixels in the standardized area in which the candidate area derived by the candidate area derivation unit S3 is standardized to a predetermined size. Then, the feature quantity obtained by quantifying the feature is derived as one of the constituent elements of the candidate region vector.
Here, the standardized area is a 2 × 2 window frame, and while scanning on a rectangle, the image is replaced with 2 × 2 by 1 pixel of the maximum brightness in the window frame to make the image 1/2 ×. This is an area obtained by repeating the process of converting to a size of 1/2 until the size is finally 4 × 4.

また、例えば、候補領域ベクトル導出部S2は、候補領域の周囲の所定範囲に存在する二次曲線候補(候補領域)の数や、候補領域を対象候補領域としたときに断面データ画像のうちで対象候補領域の周囲の所定範囲内に存在する二次曲線候補と対象候補領域との位置関係を、特徴の一つとしても構わない。 Further, for example, the candidate area vector derivation unit S2 includes the number of quadratic curve candidates (candidate areas) existing in a predetermined range around the candidate area and the cross-sectional data image when the candidate area is set as the target candidate area. The positional relationship between the quadratic curve candidate existing within a predetermined range around the target candidate area and the target candidate area may be one of the features.

さて、このように得られた候補領域ベクトルを、埋設管Kに対応するか非埋設管に対応するものかを分類するべく、分類ルール導出部S4が設けられる。
当該分類ルール導出部S4は、候補領域ベクトルに関し、ランダムな構成要素を有する閾値ベクトルZ~Zを生成する閾値ベクトル生成処理と、埋設管Kであることが既知の候補領域ベクトルである教師データとしての埋設管ベクトルX~X(n=2以上の整数)の複数及び埋設管Kでないことが既知の候補領域ベクトルである教師データとしての非埋設管ベクトルY~Y(n=2以上の整数)の複数を含む親集団を閾値ベクトルZ~Zにて2つに分類したときに、一方の分類に含まれる候補領域ベクトルX~X、Y~Yのうちの埋設管ベクトルX~Xの割合が、親集団における埋設管ベクトルX~Xの割合よりも多い判定割合以上である場合、閾値ベクトルZ~Zを分類ルール群に加える分類ルール導出処理とを実行する。
判定割合は、土壌条件等に応じて分類ルールを導出する際に任意に決定される割合である。
Now, a classification rule derivation unit S4 is provided in order to classify whether the candidate region vector thus obtained corresponds to the buried pipe K or the non-buried pipe.
The classification rule derivation unit S4 has a threshold vector generation process for generating threshold vectors Z1 to Zn having random components with respect to the candidate region vector, and a teacher which is a candidate region vector known to be a buried pipe K. Multiple buried pipe vectors X 1 to X n (integer of n = 2 or more) as data and non-buried pipe vectors Y 1 to Y n (n) as teacher data which are candidate region vectors known not to be buried pipe K. When a parent group containing a plurality of (= integers of 2 or more) is classified into two by the threshold vectors Z 1 to Zn , the candidate region vectors X 1 to X n and Y 1 to Y n included in one of the classifications. When the ratio of the buried pipe vectors X 1 to X n is greater than or equal to the judgment ratio higher than the ratio of the buried pipe vectors X 1 to X n in the parent group, the threshold vectors Z 1 to Z n are set as the classification rule group. Executes the classification rule derivation process to be added.
The determination ratio is a ratio arbitrarily determined when deriving a classification rule according to soil conditions and the like.

ここで、まず、埋設管ベクトルと非埋設管ベクトルについて、図5に基づいて説明を加える。図5に示すように、埋設管Kであることが既知の候補領域と、埋設管Kでないことが既知の候補領域との夫々に対し、候補領域ベクトルX~X、Y~Yを導出する。
候補領域ベクトルX~X、Y~Yは、上述した複数の特徴に対応する特徴量を数値化したものを構成要素として有するものであり、例として、候補領域ベクトルXについて説明すると、二次曲線候補の二次係数(X11)、二次曲線候補の一次係数(X12)、規格化領域における複数のピクセルの輝度値の一つ(X13)を特徴とする場合、それらを数値化した値を構要素として、候補領域ベクトルは以下の〔式1〕のようになる。
=(X11、X12、X13)・・・・〔式1〕
Here, first, the buried pipe vector and the non-buried pipe vector will be described with reference to FIG. As shown in FIG. 5, for each of the candidate region known to be the buried pipe K and the candidate region known not to be the buried pipe K, the candidate region vectors X 1 to X n and Y 1 to Y n . Is derived.
The candidate region vectors X 1 to X n and Y 1 to Y n have numerical values of the feature quantities corresponding to the above-mentioned plurality of features as constituent elements, and the candidate region vectors X 1 will be described as an example. Then, when the quadratic coefficient of the quadratic curve candidate (X 11 ), the linear coefficient of the quadratic curve candidate (X 12 ), and one of the brightness values of a plurality of pixels in the standardized region (X 13 ) are featured, The candidate region vector is as shown in [Equation 1] below, with the numerical values of them as structural elements.
X 1 = (X 11 , X 12 , X 13 ) ... [Equation 1]

当該候補領域ベクトルX~X、Y~Yを、埋設管Kであることが既知の候補領域に対して導出したものを埋設管ベクトルX~Xとし、埋設管Kでないことが既知の候補領域に対して導出したものを非埋設管ベクトルY~Yとする。 The candidate region vectors X 1 to X n and Y 1 to Y n derived from the candidate regions known to be the buried pipe K are defined as the buried pipe vectors X 1 to X n , and are not the buried pipe K. Let the non-buried pipe vectors Y 1 to Y n be derived from the known candidate regions.

分類ルール導出部S4は、さらに、上述の候補領域ベクトルに関し、ランダムな構成要素を有する閾値ベクトルZ~Z(n=1以上の整数)を生成する。当該閾値ベクトルZ~Zは、上述した候補領域ベクトルX~X、Y~Yに対応する構成要素数を有するものであり、当該構成要素に対応する数値がランダムに自動で生成されたものである。 The classification rule derivation unit S4 further generates threshold vectors Z 1 to Zn (integer of n = 1 or more) having random components with respect to the above-mentioned candidate region vector. The threshold vectors Z 1 to Zn have the number of components corresponding to the above-mentioned candidate region vectors X 1 to X n and Y 1 to Y n , and the numerical values corresponding to the components are randomly and automatically calculated. It was generated.

分類ルール導出部S4は、分類ルール群を自動生成するべく、図6に示すように、埋設管ベクトルX~Xと非埋設管ベクトルY~Yとを含む親集団を、ランダムに生成された閾値ベクトルZ~Zのうちの一つ(図6でルール1)にて2つに分類する。ここで、分類の仕方は、分類ルール導出部S4により、任意に設定され、例えば、埋設管ベクトルXを閾値ベクトルZにて分類する場合、(X<Z、X<Z、X>Z)の条件をすべて満たすものと、少なくとも1つ以上を満たさないものに分類する。
その後、分類ルール導出部S4は、親集団を、閾値ベクトルZ~Zにて2つに分類したときに、一方の分類に含まれる候補領域ベクトルX~X、Y~Yうちの埋設管ベクトルX~Xの割合(図6でα)が、親集団における埋設管ベクトルX~Xの割合(図6でδ)よりも多い判定割合θ以上である場合、閾値ベクトルZ~Zのうちの一つ(図6でルール1)を分類ルール群に加える分類ルール導出処理を実行する。
As shown in FIG. 6, the classification rule derivation unit S4 randomly generates a parent group including the buried pipe vectors X 1 to X n and the non-buried pipe vectors Y 1 to Y n in order to automatically generate the classification rule group. It is classified into two by one of the generated threshold vectors Z 1 to Zn (rule 1 in FIG. 6). Here, the classification method is arbitrarily set by the classification rule derivation unit S4. For example, when the buried pipe vector X 1 is classified by the threshold vector Z 1 , (X 1 <Z 1 , X 2 <Z 2 ). , X 3 > Z 3 ) are classified into those that satisfy all the conditions and those that do not satisfy at least one or more.
After that, when the parent group is classified into two by the threshold vectors Z 1 to Zn , the classification rule derivation unit S4 classifies the candidate region vectors X 1 to X n and Y 1 to Y n included in one of the classifications. When the ratio of the buried pipe vectors X 1 to X n (α in FIG. 6) is greater than the ratio of the buried pipe vectors X 1 to X n in the parent group (δ in FIG. 6), the determination ratio θ or more. The classification rule derivation process of adding one of the threshold vectors Z 1 to Zn (rule 1 in FIG. 6) to the classification rule group is executed.

ここで、図6に示すように、閾値ベクトルZ~Zを振り分ける際の親集団は、すべての教師データを含むものであっても構わないし、他の閾値ベクトルZ~Zにて、分類された後の集団であっても構わない。したがって、図6で言えば、ルール2に相当する閾値ベクトルZ~Zについても、一方の分類に含まれる候補領域ベクトルX~X、Y~Yうちの埋設管ベクトルX~Xの割合(図6でβ又はγ)が、判定割合θよりも多い場合、当該ルール2が分類ルール群に加えられることになり、判定割合θよりも少ない場合、分類ルール群に加えられないことになる。 Here, as shown in FIG. 6, the parent group for allocating the threshold vectors Z 1 to Zn may include all the teacher data, and the other threshold vectors Z 1 to Zn may be used. , It may be a group after being classified. Therefore, in FIG. 6, regarding the threshold vectors Z 1 to Zn corresponding to rule 2, the buried pipe vectors X 1 among the candidate region vectors X 1 to X n and Y 1 to Y n included in one of the classifications. When the ratio of ~ Xn (β or γ in FIG. 6) is larger than the judgment ratio θ, the rule 2 is added to the classification rule group, and when the ratio is less than the judgment ratio θ, it is added to the classification rule group. It will not be possible.

埋設管候補抽出部S1は、分類ルール導出部S4にて導出された複数の分類ルール群に基づいて、即ち、分類ルール群に含まれる複数のルールとしての閾値ベクトルZ~Zにより、埋設管候補ベクトルと非埋設管候補ベクトルとを分類し、埋設管の候補となる候補領域を抽出する。 The buried pipe candidate extraction unit S1 is buried based on the plurality of classification rule groups derived by the classification rule derivation unit S4, that is, by the threshold vectors Z 1 to Zn as a plurality of rules included in the classification rule group. The pipe candidate vector and the non-buried pipe candidate vector are classified, and the candidate area that is a candidate for the buried pipe is extracted.

〔別実施形態〕
(1)上記実施形態において、埋設管判定装置Sは、探査装置3と一体で設けられている構成例を示したが、当該埋設管判定装置Sの単体が、外部の探査装置3から取得された断面データ画像を、通信手段等を介して取得し、上述した候補領域導出工程と、候補領域ベクトル度導出工程と、埋設管候補抽出工程とを実行する構成を採用しても構わない。
即ち、埋設管判定装置Sの単体も、本願の権利範囲に含まれるものである。
[Another Embodiment]
(1) In the above embodiment, the buried pipe determination device S is provided integrally with the exploration device 3, but a single unit of the buried pipe determination device S is acquired from the external exploration device 3. A configuration may be adopted in which the cross-sectional data image is acquired via a communication means or the like, and the above-mentioned candidate region derivation step, the candidate region vector degree derivation step, and the buried pipe candidate extraction step are executed.
That is, the simple substance of the buried pipe determination device S is also included in the scope of rights of the present application.

(2)上記実施形態において、候補領域導出部S3は、第1候補領域導出処理を実行する例を示したが、他の処理を実行しても構わない。
例えば、候補領域導出部S3は、上記実施形態にて実行した切出工程と、矩形領域に含まれる二次曲線候補と既知の埋設管Kに対応する反射波波形との類似度が一定以上である場合に矩形領域を候補領域として導出するマッチング工程とを実行する第2候補領域導出処理と実行する構成を採用しても構わない。
また、候補領域導出部S3は、第1候補領域導出処理と第2候補領域導出処理との双方を実行する形態で、他候補領域を導出しても構わない。
(2) In the above embodiment, the candidate area derivation unit S3 has shown an example of executing the first candidate area derivation process, but other processes may be executed.
For example, in the candidate region derivation unit S3, the similarity between the cutting process executed in the above embodiment and the quadratic curve candidate included in the rectangular region and the reflected wave waveform corresponding to the known buried pipe K is at least a certain level. In some cases, a second candidate area derivation process for executing a matching process for deriving a rectangular area as a candidate area and a configuration for executing the process may be adopted.
Further, the candidate area derivation unit S3 may derive another candidate area in a form of executing both the first candidate area derivation process and the second candidate area derivation process.

(3)上記候補領域導出部S3の第1候補領域導出処理における除外工程では、二次曲線候補の輝度値に基づく値として、切り出した二次曲線の外接矩形内あるいはその周囲も含んだ領域の輝度値、より具体的には、例えば、図7の上に示すような断面データ画像の候補領域において、探査方向(矢印X方向)で略中央を通る直線Pに沿う深さ方向(矢印Z方向)に沿って、輝度値(強度)をプロットしたグラフ(図7下)において、輝度値がなすシグナルの振幅・周波数・シグナルの平均値などと、閾値とを比較して、所定のものを、二次曲線候補(候補領域)から除外する構成を採用しても構わない。 (3) In the exclusion step in the first candidate area derivation process of the candidate area derivation unit S3, the area including the inside of the circumscribing rectangle of the cut out quadratic curve or its surroundings is used as a value based on the brightness value of the quadratic curve candidate. The brightness value, more specifically, for example, in the candidate region of the cross-sectional data image as shown above in FIG. 7, the depth direction (arrow Z direction) along the straight line P passing substantially the center in the exploration direction (arrow X direction). ), In a graph (bottom of FIG. 7) in which the brightness value (intensity) is plotted, the amplitude, frequency, average value of the signal, etc. of the signal formed by the brightness value are compared with the threshold value, and a predetermined one is obtained. A configuration that excludes from the quadratic curve candidates (candidate areas) may be adopted.

(4)上記実施形態では、分類ルール導出部S4が設けられる構成例を示したが、埋設管判定装置Sとは別の他の演算装置に分類ルール導出部S4を設け、当該分類ルール導出部S4にて分類ルール群を導出し、導出された分類ルール群のみを、埋設管判定装置Sの記憶部S5に記憶して、必要に応じて利用する構成を採用しても構わない。 (4) In the above embodiment, a configuration example in which the classification rule derivation unit S4 is provided is shown, but the classification rule derivation unit S4 is provided in another arithmetic unit different from the buried pipe determination device S, and the classification rule derivation unit is provided. A configuration may be adopted in which the classification rule group is derived in S4, and only the derived classification rule group is stored in the storage unit S5 of the buried pipe determination device S and used as necessary.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 It should be noted that the configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in other embodiments as long as there is no contradiction. The embodiments disclosed in the present specification are examples, and the embodiments of the present invention are not limited thereto, and can be appropriately modified without departing from the object of the present invention.

本発明の埋設管判定装置、探査装置、及び埋設管判定方法は、教師データの増加を抑制しながらも、埋設管の候補を自動で抽出する際に、埋設管の見逃し率を低減し得る技術を提供する埋設管判定装置、探査装置、及び埋設管判定方法として、有効に利用可能である。 The buried pipe determination device, the exploration device, and the buried pipe determination method of the present invention are techniques that can reduce the oversight rate of buried pipes when automatically extracting candidates for buried pipes while suppressing an increase in teacher data. Can be effectively used as a buried pipe determination device, an exploration device, and a buried pipe determination method.

3 :探査装置
K :埋設管
S :埋設管判定装置
S1 :埋設管候補抽出部
S2 :候補領域ベクトル導出部
S3 :候補領域導出部
S4 :分類ルール導出部
X :候補領域ベクトル
Y :非埋設管ベクトル
Z :閾値ベクトル
θ :判定割合
3: Exploration device K: Buried pipe S: Buried pipe determination device S1: Buried pipe candidate extraction unit S2: Candidate area vector derivation unit S3: Candidate area derivation unit S4: Classification rule derivation unit X: Candidate area vector Y: Non-buried pipe Vector Z: Threshold vector θ: Judgment ratio

Claims (10)

地中に埋設された埋設管を含む探索範囲において設定された走査ラインに沿って走査されたときに、前記地中に向けて放射した探査用電磁波の反射波を処理し、前記走査ラインを含む垂直断面視での前記埋設管の埋設状況を示す断面データ画像を取得し、当該断面データ画像に基づいて前記地中における前記埋設管の有無を判定可能な埋設管判定装置であって、
前記断面データ画像から前記埋設管の可能性のあるシグナルとしての二次曲線候補を一つ含む候補領域を導出する候補領域導出部と、
前記候補領域導出部にて導出された複数の前記候補領域の夫々に関し、当該候補領域における前記二次曲線候補が前記埋設管であることを判定するための複数の予め定められた特徴を数値化した特徴量を導出し、複数の前記特徴量の夫々を構成要素として有する候補領域ベクトルを導出する候補領域ベクトル導出部と、
導出した複数の前記候補領域ベクトルを、前記埋設管の候補となる埋設管候補ベクトルと前記埋設管の候補ではない非埋設管候補ベクトルとに分類する分類ルール群に基づいて分類して、前記埋設管の候補となる前記候補領域を抽出する埋設管候補抽出部とを備える埋設管判定装置。
When scanned along a scanning line set in a search range including a buried pipe buried in the ground, the reflected wave of the exploration electromagnetic wave radiated toward the ground is processed and the scanning line is included. A buried pipe determination device capable of acquiring a cross-sectional data image showing the burial status of the buried pipe in a vertical cross-sectional view and determining the presence or absence of the buried pipe in the ground based on the cross-sectional data image.
A candidate region derivation unit for deriving a candidate region including one quadratic curve candidate as a possible signal of the buried pipe from the cross-sectional data image, and a candidate region derivation unit.
With respect to each of the plurality of candidate regions derived by the candidate region derivation unit, a plurality of predetermined features for determining that the quadratic curve candidate in the candidate region is the buried pipe are quantified. A candidate region vector derivation unit for deriving the created feature quantity and deriving a candidate region vector having each of the plurality of the feature quantities as a component.
The plurality of derived candidate region vectors are classified based on a classification rule group for classifying into a buried pipe candidate vector that is a candidate for the buried pipe and a non-buried pipe candidate vector that is not a candidate for the buried pipe, and the buried pipe is used. A buried pipe determination device including a buried pipe candidate extraction unit that extracts the candidate area that is a candidate for a pipe.
前記候補領域導出部は、
前記断面データ画像上での所定の直線に沿った輝度の変化を計算し、輝度変化が大きい領域のみを抽出する形態で前記二次曲線候補に外接する矩形領域を切り出す切出工程と、当該切出工程にて切り出された前記二次曲線候補の形状に基づく値又は前記二次曲線候補の輝度値又は前記矩形領域の周囲の輝度値に基づく値を用いて、前記二次曲線候補に含まれないものを除外し、残った前記二次曲線候補に対応する前記矩形領域を含む候補領域として導出する除外工程とを実行する第1候補領域導出処理と、
前記切出工程と、前記矩形領域に含まれる前記二次曲線候補と既知の前記埋設管に対応する反射波波形との類似度が一定以上である場合に前記矩形領域を候補領域として導出するマッチング工程とを実行する第2候補領域導出処理との少なくとも何れか一方を実行するものである請求項1に記載の埋設管判定装置。
The candidate area derivation unit is
A cutting step of calculating a change in brightness along a predetermined straight line on the cross-sectional data image and cutting out a rectangular area circumscribing the quadratic curve candidate in a form of extracting only a region having a large change in brightness, and the cutting. A value based on the shape of the quadratic curve candidate cut out in the output step, a value based on the brightness value of the quadratic curve candidate, or a value based on the brightness value around the rectangular region is included in the quadratic curve candidate. The first candidate region derivation process for executing the exclusion step of excluding those that do not exist and deriving as a candidate region including the rectangular region corresponding to the remaining quadratic curve candidate, and
Matching that derives the rectangular region as a candidate region when the similarity between the cutting step and the quadratic curve candidate included in the rectangular region and the reflected wave waveform corresponding to the known buried pipe is equal to or higher than a certain level. The buried pipe determination device according to claim 1, wherein at least one of the second candidate region derivation process for executing the process is executed.
前記候補領域ベクトル導出部は、前記候補領域導出部にて導出された前記候補領域の前記断面データ画像内における位置に基づいて導出される位置情報を前記特徴の一つとし、当該特徴を数値化した特徴量を前記候補領域ベクトルの前記構成要素の一つとして導出する請求項1又は2に記載の埋設管判定装置。 The candidate region vector derivation unit uses the position information derived based on the position of the candidate region derived by the candidate region derivation unit in the cross-sectional data image as one of the features, and digitizes the feature. The buried pipe determination device according to claim 1 or 2, wherein the feature amount is derived as one of the constituent elements of the candidate region vector. 前記候補領域ベクトル導出部は、前記候補領域導出部にて導出された前記候補領域の外接矩形の幅及び高さ及びそれらに関連する値、又は前記候補領域に含まれる前記二次曲線候補の二次係数及び一次係数及び二次係数と一次係数との比の少なくとも一つを前記特徴の一つとし、当該特徴を数値化した特徴量を前記候補領域ベクトルの前記構成要素の一つとして導出する請求項1~3の何れか一項に記載の埋設管判定装置。 The candidate region vector derivation unit is the width and height of the circumscribing rectangle of the candidate region derived by the candidate region derivation unit and the values related thereto, or the quadratic curve candidate included in the candidate region. At least one of the next-order coefficient, the first-order coefficient, and the ratio of the quadratic coefficient and the first-order coefficient is set as one of the features, and the feature quantity obtained by quantifying the feature is derived as one of the constituent elements of the candidate region vector. The buried pipe determination device according to any one of claims 1 to 3. 前記候補領域ベクトル導出部は、前記候補領域導出部にて導出された前記候補領域の外接矩形の高さ方向で所定の位置において幅方向に沿って輝度値を導出した、幅方向での位置のそれぞれにおいて輝度値をプロットしたときの波形における振幅と波長とピーク数との少なくとも一つを前記特徴の一つとし、当該特徴を数値化した特徴量を前記候補領域ベクトルの前記構成要素の一つとして導出する請求項1~4の何れか一項に記載の埋設管判定装置。 The candidate region vector derivation unit derives a luminance value along the width direction at a predetermined position in the height direction of the circumscribing rectangle of the candidate region derived by the candidate region derivation unit, and is a position in the width direction. At least one of the amplitude, wavelength, and number of peaks in the waveform when the luminance value is plotted is one of the features, and the feature amount obtained by quantifying the feature is one of the constituent elements of the candidate region vector. The buried pipe determination device according to any one of claims 1 to 4, which is derived as described above. 前記候補領域ベクトル導出部は、前記候補領域導出部にて導出された前記候補領域を、所定の大きさに規格化した規格化領域における複数のピクセルの輝度値の夫々を前記特徴の一つとし、当該特徴を数値化した特徴量を前記候補領域ベクトルの前記構成要素の一つとして導出する請求項1~5の何れか一項に記載の埋設管判定装置。 The candidate area vector derivation unit has one of the features of each of the luminance values of a plurality of pixels in the standardized area in which the candidate area derived by the candidate area derivation unit is standardized to a predetermined size. The buried pipe determination device according to any one of claims 1 to 5, wherein a feature amount obtained by quantifying the feature is derived as one of the constituent elements of the candidate region vector. 前記候補領域ベクトル導出部は、前記候補領域導出部にて導出された前記候補領域を対象候補領域としたときに、前記断面データ画像のうちで前記対象候補領域の周囲の所定範囲内に存在する前記候補領域の数、又は前記候補領域導出部にて導出された前記候補領域を前記対象候補領域としたときに、前記断面データ画像のうちで前記対象候補領域の周囲の所定範囲内に存在する前記候補領域と前記対象候補領域との位置関係に基づく値の何れか一つを前記特徴の一つとし、当該特徴を数値化した特徴量を前記候補領域ベクトルの前記構成要素の一つとして導出する請求項1~6の何れか一項に記載の埋設管判定装置。 The candidate area vector derivation unit exists within a predetermined range around the target candidate area in the cross-sectional data image when the candidate area derived by the candidate area derivation unit is used as the target candidate area. When the number of the candidate regions or the candidate region derived by the candidate region derivation unit is used as the target candidate region, the candidate region exists within a predetermined range around the target candidate region in the cross-sectional data image. One of the values based on the positional relationship between the candidate area and the target candidate area is set as one of the features, and the feature amount obtained by quantifying the feature is derived as one of the constituent elements of the candidate area vector. The buried pipe determination device according to any one of claims 1 to 6. 前記候補領域ベクトルに関し、ランダムな構成要素を有する閾値ベクトルを生成する閾値ベクトル生成処理と、前記埋設管であることが既知の前記候補領域ベクトルである教師データとしての埋設管ベクトルの複数及び前記埋設管でないことが既知の前記候補領域ベクトルである前記教師データとしての非埋設管ベクトルの複数を含む親集団を前記閾値ベクトルにて2つに分類したときに、一方の分類に含まれる前記候補領域ベクトルのうちの前記埋設管ベクトルの割合が、前記親集団における前記埋設管ベクトルの割合よりも多い判定割合以上である場合、前記閾値ベクトルを前記分類ルール群に加える分類ルール導出処理とを実行する分類ルール導出部を備え、
前記埋設管候補抽出部は、前記分類ルール導出部にて導出された複数の前記分類ルール群に基づいて、前記埋設管候補ベクトルと前記非埋設管候補ベクトルとを分類し、前記埋設管の候補となる前記候補領域を抽出する請求項1~7の何れか一項に記載の埋設管判定装置。
With respect to the candidate region vector, a threshold vector generation process for generating a threshold vector having random components, a plurality of buried pipe vectors as teacher data which are the candidate region vectors known to be the buried pipe, and the buried pipe. When a parent group including a plurality of non-buried tube vectors as the teacher data, which is the candidate region vector known not to be a tube, is classified into two by the threshold vector, the candidate region included in one of the classifications. When the ratio of the buried pipe vector in the vector is greater than or equal to the determination ratio higher than the ratio of the buried pipe vector in the parent group, the classification rule derivation process of adding the threshold vector to the classification rule group is executed. Equipped with a classification rule derivation unit
The buried pipe candidate extraction unit classifies the buried pipe candidate vector and the non-buried pipe candidate vector based on the plurality of classification rule groups derived by the classification rule derivation unit, and the buried pipe candidate extraction unit. The buried pipe determination device according to any one of claims 1 to 7, wherein the candidate area is extracted.
請求項1~8の何れか一項に記載の埋設管判定装置を備えた探査装置。 An exploration device provided with the buried pipe determination device according to any one of claims 1 to 8. 地中に埋設された埋設管を含む探索範囲において設定された走査ラインに沿って走査されたときに、前記地中に向けて放射した探査用電磁波の反射波を処理し、前記走査ラインを含む垂直断面視での前記埋設管の埋設状況を示す断面データ画像を取得し、当該断面データ画像に基づいて前記地中における前記埋設管の有無を判定可能な埋設管判定方法であって、
前記断面データ画像から前記埋設管の可能性のあるシグナルとしての二次曲線候補を一つ含む候補領域を導出する候補領域導出工程と、
前記候補領域導出工程にて導出された複数の前記候補領域の夫々に関し、当該候補領域における前記二次曲線候補が前記埋設管であることを判定するための複数の特徴量を導出し、複数の前記特徴量の夫々を構成要素として有する候補領域ベクトルを導出する候補領域ベクトル導出工程と、
導出した複数の前記候補領域ベクトルを、前記埋設管の候補となる埋設管候補ベクトルと前記埋設管の候補ではない非埋設管候補ベクトルとに分類する分類ルール群に基づいて分類して、前記埋設管の候補となる前記候補領域を抽出する埋設管候補抽出工程とを実行する埋設管判定方法。
When scanned along a scanning line set in a search range including a buried pipe buried in the ground, the reflected wave of the exploration electromagnetic wave radiated toward the ground is processed and the scanning line is included. It is a buried pipe determination method capable of acquiring a cross-sectional data image showing the burial status of the buried pipe in a vertical cross-sectional view and determining the presence or absence of the buried pipe in the ground based on the cross-sectional data image.
A candidate region derivation step for deriving a candidate region including one quadratic curve candidate as a possible signal of the buried pipe from the cross-sectional data image, and
With respect to each of the plurality of candidate regions derived in the candidate region derivation step, a plurality of feature quantities for determining that the quadratic curve candidate in the candidate region is the buried pipe are derived, and a plurality of features are derived. A candidate region vector derivation step for deriving a candidate region vector having each of the feature quantities as a component, and a process for deriving the candidate region vector.
The plurality of derived candidate region vectors are classified based on a classification rule group for classifying into a buried pipe candidate vector that is a candidate for the buried pipe and a non-buried pipe candidate vector that is not a candidate for the buried pipe, and the buried pipe is used. A method for determining a buried pipe, which executes a buried pipe candidate extraction step of extracting the candidate area as a candidate for a pipe.
JP2020212823A 2020-12-22 2020-12-22 Buried pipe determination apparatus, exploration apparatus, and buried pipe determination method Pending JP2022099068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020212823A JP2022099068A (en) 2020-12-22 2020-12-22 Buried pipe determination apparatus, exploration apparatus, and buried pipe determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020212823A JP2022099068A (en) 2020-12-22 2020-12-22 Buried pipe determination apparatus, exploration apparatus, and buried pipe determination method

Publications (1)

Publication Number Publication Date
JP2022099068A true JP2022099068A (en) 2022-07-04

Family

ID=82261611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020212823A Pending JP2022099068A (en) 2020-12-22 2020-12-22 Buried pipe determination apparatus, exploration apparatus, and buried pipe determination method

Country Status (1)

Country Link
JP (1) JP2022099068A (en)

Similar Documents

Publication Publication Date Title
Kamaliardakani et al. Sealed-crack detection algorithm using heuristic thresholding approach
Liu et al. GPR-based detection of internal cracks in asphalt pavement: A combination method of DeepAugment data and object detection
CN105182328B (en) A kind of GPR buried target detection method based on two-dimensional empirical mode decomposition
Tarussov et al. Condition assessment of concrete structures using a new analysis method: Ground-penetrating radar computer-assisted visual interpretation
Xie et al. An automatic recognition algorithm for GPR images of RC structure voids
CN104049245A (en) Urban building change detection method based on LiDAR point cloud spatial difference analysis
CN111025286B (en) Ground penetrating radar map self-adaptive selection method for water damage detection
CN107870621B (en) Autonomous underwater robot collision prevention method in unknown complex sea-floor relief environment
Tsai et al. Automating the crack map detection process for machine operated crack sealer
Bazzoffi Measurement of rill erosion through a new UAV-GIS methodology
CN111160204B (en) Geological radar image recognition method and system based on principal component analysis BP neural network
US20140022117A1 (en) Merged Ground Penetrating Radar Display for Multiple Antennas
Ma et al. Automatic detection of steel rebar in bridge decks from ground penetrating radar data
CN104755956A (en) Method and apparatus for inspection of cooling towers
CN104282026A (en) Distribution uniformity assessment method based on watershed algorithm and minimum spanning tree
CN103217673A (en) CFAR detecting method under inhomogeneous Weibull clutter background
EP2288937B1 (en) Method and device for the computer-assisted segmentation of an environment into individual objects
CN110554409B (en) Concave obstacle detection method and system
Liu et al. The target detection for GPR images based on curve fitting
CN107835998A (en) For identifying the layering Tiling methods of the surface type in digital picture
Zhu et al. TunGPR: Enhancing data-driven maintenance for tunnel linings through synthetic datasets, deep learning and BIM
JP2022099068A (en) Buried pipe determination apparatus, exploration apparatus, and buried pipe determination method
Milisavljević et al. Improving mine recognition through processing and Dempster–Shafer fusion of ground-penetrating radar data
CN107564024B (en) SAR image aggregation region extraction method based on single-side aggregation line segment
Jing et al. Novel algorithm for landmine detection using C-scan ground penetrating radar signals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402