JP2022094382A - Method for producing antibody having improved antibody-dependent cellular cytotoxicity - Google Patents

Method for producing antibody having improved antibody-dependent cellular cytotoxicity Download PDF

Info

Publication number
JP2022094382A
JP2022094382A JP2020207215A JP2020207215A JP2022094382A JP 2022094382 A JP2022094382 A JP 2022094382A JP 2020207215 A JP2020207215 A JP 2020207215A JP 2020207215 A JP2020207215 A JP 2020207215A JP 2022094382 A JP2022094382 A JP 2022094382A
Authority
JP
Japan
Prior art keywords
antibody
medium
cells
culture
human
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020207215A
Other languages
Japanese (ja)
Inventor
諭 遠藤
Satoshi Endo
義晴 朝岡
Yoshiharu Asaoka
秀峰 小林
Shuho Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2020207215A priority Critical patent/JP2022094382A/en
Publication of JP2022094382A publication Critical patent/JP2022094382A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method for producing an antibody having high antibody-dependent cellular cytotoxicity.SOLUTION: A method for producing an antibody includes the steps of: culturing a mammalian cell that can express an antibody; and recovering an antibody expressed by the mammalian cell, contained in the resultant culture. The step of culturing is conducted in a medium with its pH controlled to be higher than 6.6 and lower than 7.0, to produce an antibody having improved antibody-dependent cellular cytotoxicity.SELECTED DRAWING: Figure 7

Description

本発明は、高い抗体依存性細胞傷害(ADCC)活性を有した抗体を製造する方法に関する。より詳しくは、抗体を発現可能な宿主を培養する工程を最適化することで、当該宿主が発現する抗体が有するADCC活性を向上させる方法に関する。 The present invention relates to a method for producing an antibody having high antibody-dependent cellular cytotoxicity (ADCC) activity. More specifically, the present invention relates to a method for improving ADCC activity of an antibody expressed by the host by optimizing the step of culturing the host capable of expressing the antibody.

現在、組換えタンパク質は幅広い分野で使用されている。近年の抗体医薬品に代表されるバイオ医薬品の成長によりその重要性はさらに高まっている。組換えタンパク質は主に大腸菌、酵母、昆虫細胞、哺乳細胞を宿主として製造されているが、発現させた組換えタンパク質の立体構造や、糖鎖付加といった翻訳後修飾等の理由から哺乳動物細胞を宿主として用いた組換えタンパク質発現系の重要性が増している。特にチャイニーズハムスター卵巣細胞(以下、CHO細胞)は多くの組換えタンパク質発現の宿主として用いられる。また組換えCHO細胞由来の組換えタンパク質は、医薬品として使用できる安全性が確認されていることから、抗体医薬品を製造する際の宿主として最もよく使用される哺乳動物細胞である。 Currently, recombinant proteins are used in a wide range of fields. Its importance is further increasing due to the growth of biopharmacy represented by antibody drugs in recent years. Recombinant proteins are mainly produced using Escherichia coli, yeast, insect cells, and mammalian cells as hosts. However, due to the three-dimensional structure of the expressed recombinant proteins and post-translational modifications such as sugar chain addition, mammalian cells are used. The importance of the recombinant protein expression system used as a host is increasing. In particular, Chinese hamster ovary cells (hereinafter referred to as CHO cells) are used as hosts for expression of many recombinant proteins. Further, since the recombinant protein derived from the recombinant CHO cell has been confirmed to be safe for use as a pharmaceutical product, it is the most commonly used mammalian cell as a host for producing an antibody pharmaceutical product.

抗体医薬品はモノクローナル抗体を主成分とした医薬品であるが、その治療効果には信号伝達阻害、細胞死(Apoptosis)の誘導、抗体依存性細胞傷害(ADCC)作用や補体依存性細胞傷害(CDC)作用などがある。このうちADCC活性やCDC活性はエフェクター機能と呼ばれており免疫メカニズムを誘導することで癌等の目的細胞を傷害するため重要である。特にADCC活性は抗体医薬品の細胞傷害作用には重要な活性である。 Antibody drugs are drugs containing monoclonal antibodies as the main component, but their therapeutic effects include signal transduction inhibition, induction of cell death (Apoptosis), antibody-dependent cellular cytotoxicity (ADCC) action, and complement-dependent cellular cytotoxicity (CDC). ) There is an action. Of these, ADCC activity and CDC activity are called effector functions and are important because they damage target cells such as cancer by inducing an immune mechanism. In particular, ADCC activity is an important activity for the cytotoxic action of antibody drugs.

抗体が有するADCC活性を向上させる方法として、抗体のFc領域にある特定のアミノ酸残基を他のアミノ酸残基に置換する方法と、抗体のFc領域に付加する糖鎖を改変する方法に大別される。抗体のFc領域に付加する糖鎖には、特定のアミノ酸配列(例えば、Asn-X-Ser/Thr)(Xは任意のアミノ酸残基を示す)のアスパラギン(Asn)基の側鎖に付加するN型糖鎖と、セリン(Ser)またはスレオニン(Thr)残基の側鎖に結合するO型糖鎖がある。このうちN型糖鎖のコアフコースを欠損させることでADCC活性が向上する報告がされている(非特許文献1)。 Methods for improving ADCC activity of an antibody are roughly divided into a method of substituting a specific amino acid residue in the Fc region of an antibody with another amino acid residue and a method of modifying a sugar chain added to the Fc region of an antibody. Will be done. The sugar chain added to the Fc region of the antibody is added to the side chain of the asparagine (Asn) group of a specific amino acid sequence (eg, Asn-X-Ser / Thr) (where X indicates an arbitrary amino acid residue). There are N-type sugar chains and O-type sugar chains that bind to the side chains of serine (Ser) or threonine (Thr) residues. Among these, it has been reported that ADCC activity is improved by deleting core fucose of N-type sugar chain (Non-Patent Document 1).

抗体を発現可能な哺乳動物細胞を培養し、得られた培養物中に含まれる前記哺乳動物細胞が発現した抗体を回収することで、前記抗体を製造する際、前記哺乳動物細胞の培養条件を変化させると、前記抗体のFc領域に付加するN型糖鎖の構造が変化することが知られている(特許文献1)。しかしながら、実際に抗体のFc領域へ付加する糖鎖は不均一であり、前記糖鎖の構造とADCC活性との関係を完全に結び付けることは難しい。従って、糖鎖構造を制御してADCC活性の高い抗体を製造する条件、特に前記抗体を発現可能な哺乳動物細胞を培養する条件の構築は困難であった。 By culturing a mammalian cell capable of expressing an antibody and recovering the antibody expressed by the mammalian cell contained in the obtained culture, the culture conditions of the mammalian cell are set when the antibody is produced. It is known that when the antibody is changed, the structure of the N-type sugar chain added to the Fc region of the antibody changes (Patent Document 1). However, the sugar chain actually added to the Fc region of the antibody is heterogeneous, and it is difficult to completely link the relationship between the structure of the sugar chain and ADCC activity. Therefore, it has been difficult to establish conditions for producing an antibody having high ADCC activity by controlling the sugar chain structure, particularly conditions for culturing mammalian cells capable of expressing the antibody.

特開2017-506515号公報Japanese Unexamined Patent Publication No. 2017-506515

Mori.K, et al.,Cytotechnology,55,109-114(2007)Mori. K, et al. , Cytotechnology, 55, 109-114 (2007)

本発明の課題は、抗体を発現可能な哺乳動物細胞を培養する工程と、得られた培養物中に含まれる前記哺乳動物細胞が発現した抗体を回収する工程とを含む、抗体の製造方法において、高い抗体依存性細胞傷害活性を有する抗体を製造する方法を提供することにある。 An object of the present invention is a method for producing an antibody, which comprises a step of culturing a mammalian cell capable of expressing an antibody and a step of recovering the antibody expressed by the mammalian cell contained in the obtained culture. , To provide a method for producing an antibody having high antibody-dependent cellular cytotoxicity.

本発明者らは上記の課題を解決すべく鋭意検討した結果、抗体を発現可能な哺乳動物細胞を培養する工程において、前記哺乳動物細胞を適切なpHに制御した培地で培養することで、得られた培養物中に含まれる前記哺乳動物細胞が発現した抗体の抗体依存性細胞傷害(ADCC)活性が向上することを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors obtained by culturing the mammalian cells in a medium controlled to an appropriate pH in the step of culturing the mammalian cells capable of expressing the antibody. It has been found that the antibody-dependent cytotoxicity (ADCC) activity of the antibody expressed by the mammalian cells contained in the obtained culture is improved, and the present invention has been completed.

すなわち本発明は、以下に記載の態様を包含する。 That is, the present invention includes the aspects described below.

(1)抗体を発現可能な哺乳動物細胞を培養する工程と得られた培養物中に含まれる前記哺乳動物細胞が発現した抗体を回収する工程とを含む抗体の製造方法において、前記培養工程をpH6.6より高くpH7.0より低いpHに制御した培地で行なうことで、ADCC活性が向上した抗体を製造する方法。 (1) The culture step is carried out in a method for producing an antibody, which comprises a step of culturing a mammalian cell capable of expressing an antibody and a step of recovering the antibody expressed by the mammalian cell contained in the obtained culture. A method for producing an antibody having improved ADCC activity by using a medium controlled to have a pH higher than pH 6.6 and lower than pH 7.0.

(2)抗体がヒトFc領域を含む抗体である、(1)に記載の製造方法。 (2) The production method according to (1), wherein the antibody is an antibody containing a human Fc region.

(3)(2)に記載の製造方法で得られた抗体とヒトFcγRIIIaとの親和性を評価することで、(2)に記載の製造方法における培養工程をモニタリングする方法。 (3) A method for monitoring the culture step in the production method according to (2) by evaluating the affinity between the antibody obtained by the production method according to (2) and human FcγRIIIa.

(4)(2)に記載の製造方法で得られた抗体とヒトFcγRIIIaとの親和性を評価することで、(2)に記載の製造方法における培地pHを評価する方法。 (4) A method for evaluating the medium pH in the production method according to (2) by evaluating the affinity between the antibody obtained by the production method according to (2) and human FcγRIIIa.

(5)(2)に記載の製造方法で得られた抗体とヒトFcγRIIIaとの親和性評価を、(2)に記載の製造方法で得られた抗体とヒトFcγRIIIa固定化分離剤との結合力に基づき行なう、(3)または(4)に記載の方法。 (5) The affinity between the antibody obtained by the production method described in (2) and human FcγRIIIa was evaluated, and the binding force between the antibody obtained by the production method described in (2) and the human FcγRIIIa immobilization separating agent. The method according to (3) or (4), which is carried out based on the above.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の製造方法は、抗体を発現可能な哺乳動物細胞を培養する際、pHをpH6.6より高くpH7.0より低いpHに制御した培地で培養することを特徴としている。培地のpHが前述した範囲であれば、細胞の増殖性や抗体の生産性が著しく阻害されることはない。培地のpHの制御は、気相の二酸化炭素濃度を調整するとともに培地にアルカリ性溶液を添加すればよい。前記アルカリ性溶液の例として、炭酸水素ナトリウム(NaHCO)溶液が例示できる。気相の二酸化炭素濃度およびアルカリ性溶液の添加量は、培地のpHが前述した範囲となるように調整すればよく、pH6.65以上pH6.95以下に調整すると好ましく、pH6.75以上pH6.95以下に調整するとより好ましく、pH6.80以上pH6.90以下に調整するとさらにより好ましい。 The production method of the present invention is characterized in that when a mammalian cell capable of expressing an antibody is cultured, it is cultured in a medium in which the pH is controlled to be higher than pH 6.6 and lower than pH 7.0. As long as the pH of the medium is in the above range, cell proliferation and antibody productivity are not significantly impaired. To control the pH of the medium, the carbon dioxide concentration in the gas phase may be adjusted and an alkaline solution may be added to the medium. As an example of the alkaline solution, a sodium hydrogen carbonate (NaHCO 3 ) solution can be exemplified. The carbon dioxide concentration in the gas phase and the amount of the alkaline solution added may be adjusted so that the pH of the medium is in the above-mentioned range, preferably pH 6.65 or more and pH 6.95 or less, and pH 6.75 or more and pH 6.95. It is more preferable to adjust the pH to the following, and even more preferable to adjust the pH to 6.80 or more and 6.90 or less.

本発明の製造方法で使用する哺乳動物細胞は、製造対象抗体を発現可能な細胞であれば特に制限はない。一例を示すと、チャイニーズハムスター卵巣(CHO)細胞(CHO-K1、CHO-S、CHO-DG44およびCHO-DXB11)、マウス骨髄腫由来細胞(SP2/0、NS0)、ヒト胎児腎臓由来細胞(HEK細胞)、ヒト白血病細胞由来細胞(HL-60細胞)、ヒト子宮頸癌由来細胞(HeLa細胞)およびアフリカミドリザルの腎細胞由来細胞(COS細胞)があげられる。中でも組換え抗体製造に汎用されるCHO細胞の使用が好ましい。 The mammalian cells used in the production method of the present invention are not particularly limited as long as they can express the antibody to be produced. As an example, Chinese hamster ovary (CHO) cells (CHO-K1, CHO-S, CHO-DG44 and CHO-DXB11), mouse myeloma-derived cells (SP2 / 0, NS0), human fetal kidney-derived cells (HEK). Cells), human leukemia cell-derived cells (HL-60 cells), human cervical cancer-derived cells (HeLa cells), and African green monkey kidney cell-derived cells (COS cells). Of these, the use of CHO cells, which are widely used for producing recombinant antibodies, is preferable.

本発明の製造方法で使用する培地は、pHが前述した範囲であり、かつ宿主である哺乳動物細胞が生育し抗体を発現可能な培地であれば、特に限定はない。一例を示すと、動物由来の血清が必要な培地(RPMI1640、D-MEM等)や化学的に成分が決定されている培地(BalanCD CHO Growth A[Irvine Scientific社]、FreeStyle CHO Expression MediumCD[Thermo Fisher社]、OptiCHO[Thermo Fisher社]、EX-CELL CD CHO Fusion/EX-CELL Advanced CHO Fed-batch Medium[Merck社]およびCHOgro[Mirus社])があげられる。さらに前述した培地に、栄養素、ホルモン、成長因子、特定イオン(ナトリウム、カリウム、カルシウム、マグネシウム等)、ビタミン、ヌクレオシド、ヌクレオチド、グルタミンのようなアミノ酸、無機塩(銅、亜鉛、コバルト、ニッケル等)、脂質、グルコースをはじめとする培地構成成分が含まれていてもよい。またG418、ピューロマイシン、ブラストサイジン、ゼオシン、ハイグロマイシン、フレオマイシン、カナマイシン、アンピシリンなどの抗生物質をさらに添加してもよい。 The medium used in the production method of the present invention is not particularly limited as long as the pH is in the above-mentioned range and the host mammalian cells can grow and express the antibody. As an example, a medium requiring animal-derived serum (RPMI1640, D-MEM, etc.), a medium whose composition is chemically determined (BalanCD CHO Growth A [Irbine Scientific], FreeStyle CHO Expression MediumCD [ThermoF]. , OptiCHO [Thermo Fisher], EX-CELL CD CHO Fusion / EX-CELL Advanced CHO Fed-batch Medium [Merck] and CHOgro [Mirus]). Furthermore, in the above-mentioned medium, nutrients, hormones, growth factors, specific ions (sodium, potassium, calcium, magnesium, etc.), vitamins, nucleosides, nucleotides, amino acids such as glutamine, inorganic salts (copper, zinc, cobalt, nickel, etc.) , Lipids, glucose and other medium constituents may be included. Further, antibiotics such as G418, puromycin, blastsidedin, zeocin, hygromycin, phleomycin, kanamycin and ampicillin may be further added.

本発明の製造方法における培養工程は、宿主として用いる哺乳動物細胞や前記細胞で発現させる抗体に応じて適宜行なえばよい。一例として、前述した範囲のpHの培地を入れたフラスコに、抗体を発現可能な哺乳動物細胞を接種後、当該フラスコを振盪させて培養してもよく、前述した範囲のpHに制御した培地を入れたバイオリアクターに、抗体を発現可能な哺乳動物細胞を接種後、回分培養、半回分培養(流加培養ともいう)、潅流培養またはそれらの組合せにより培養してもよい。哺乳動物細胞がCHO細胞の場合、5%から8%のCO存在下、温度30℃から37℃で培養することが好ましい。 The culture step in the production method of the present invention may be appropriately performed depending on the mammalian cell used as a host and the antibody expressed in the cell. As an example, a flask containing a medium having a pH in the above-mentioned range may be inoculated with mammalian cells capable of expressing an antibody, and then the flask may be shaken for culturing. The bioreactor placed may be inoculated with mammalian cells capable of expressing an antibody, and then cultured by batch culture, semi-batch culture (also referred to as culture medium), perfusion culture, or a combination thereof. When the mammalian cells are CHO cells, it is preferable to culture them at a temperature of 30 ° C. to 37 ° C. in the presence of 5% to 8% CO 2 .

本発明の方法で製造する抗体の一例として、ヒトFc領域を含む抗体があげられる。具体的には、ヒト抗体、ヒト化抗体、ヒトと他の動物(マウスなど)とのキメラ抗体、ヒトFc融合タンパク質などがあげられる。ヒトFc領域を含む抗体がイムノグロブリンG(IgG)の場合、4つのサブクラス(IgG1、IgG2、IgG3、IgG4)が知られているが、このうちIgG1とIgG3は抗体依存性細胞傷害(ADCC)活性が高い点で、本発明の方法で製造する抗体の好ましい態様といえる。さらにIgG1はADCC活性が特に高く、本発明の方法で製造する抗体の特に好ましい態様といえる。 An example of an antibody produced by the method of the present invention is an antibody containing a human Fc region. Specific examples thereof include human antibodies, humanized antibodies, chimeric antibodies between humans and other animals (such as mice), and human Fc fusion proteins. When the antibody containing the human Fc region is immunoglobulin G (IgG), four subclasses (IgG1, IgG2, IgG3, IgG4) are known, of which IgG1 and IgG3 have antibody-dependent cellular cytotoxicity (ADCC) activity. Is a preferred embodiment of the antibody produced by the method of the present invention. Further, IgG1 has particularly high ADCC activity and can be said to be a particularly preferable embodiment of the antibody produced by the method of the present invention.

本発明の製造方法で使用する、抗体を発現可能な哺乳動物細胞は、前記抗体をコードするポリヌクレオチドを含む発現ベクターで、前記哺乳動物細胞を形質転換し、作製すればよい。前記発現ベクターには、プロモーターおよび前記抗体をコードするポリヌクレオチドの他に、ポリAや、組換え抗体の分泌発現に必要な分泌シグナルや、遺伝子増幅マーカー遺伝子や、宿主選択に用いる抗生物質耐性遺伝子や、遺伝子組換えのために用いる哺乳動物細胞以外の宿主での複製開始点等をさらに含んでもよい。 The animal cell capable of expressing the antibody used in the production method of the present invention may be produced by transforming the animal cell with an expression vector containing a polynucleotide encoding the antibody. In addition to the promoter and the polynucleotide encoding the antibody, the expression vector includes polyA, a secretory signal required for secreted expression of recombinant antibody, a gene amplification marker gene, and an antibiotic resistance gene used for host selection. Or, it may further include a replication initiation site in a host other than the mammalian cell used for gene recombination.

前記ポリAはターミネーションシグナルを含んでいれば特に制限はなく、一例として、発現させる抗体由来のポリA、SV40ウイルスゲノム由来のポリA、ヘルペスウイルスチミジンキナーゼのポリA、ウシ成長ホルモン由来のポリA、ウサギのβ-グロビン遺伝子由来のポリAがあげられる。 The poly A is not particularly limited as long as it contains a termination signal, and as an example, poly A derived from an antibody to be expressed, poly A derived from the SV40 virus genome, poly A derived from herpesvirus thymidine kinase, and poly A derived from bovine growth hormone. , Poly A derived from the β-globin gene of rabbits.

前記分泌シグナルは発現抗体を分泌すれば特に制限はなく、その一例としては、発現させる組換え抗体由来の分泌シグナル、ヒトインターロイキン2(IL-2)の分泌シグナル、アズロシジン前駆体の分泌シグナル、ヒト血清アルブミンの分泌シグナルがあげられる。 The secretory signal is not particularly limited as long as it secretes the expressed antibody. The secretory signal of human serum albumin can be mentioned.

前記遺伝子増幅マーカー遺伝子は、遺伝子増幅させる方法に適した遺伝子を用いればよい。例えばジヒドロ葉酸レダクターゼ(dhfr)/メトトレキサート(MTX)法を用いる場合はdhfr遺伝子を、グルタミン合成酵素(GS)/メチオニンスルホキシミン(MSX)法を用いる場合はGS遺伝子を、それぞれ用いればよい。 As the gene amplification marker gene, a gene suitable for the method of gene amplification may be used. For example, the dhfr gene may be used when the dihydrofolate reductase (dhfr) / methotrexate (MTX) method is used, and the GS gene may be used when the glutamine synthetase (GS) / methionine sulfoxymin (MSX) method is used.

前記抗生物質耐性遺伝子は、宿主選択に用いる抗生物質に対応した耐性遺伝子を選択すればよく、一例として、G418耐性遺伝子、ピューロマイシン耐性遺伝子、ブラストサイジン耐性遺伝子、ゼオシン耐性遺伝子、ハイグロマイシン耐性遺伝子、フレオマイシン耐性遺伝子があげられる。 For the antibiotic resistance gene, a resistance gene corresponding to the antibiotic used for host selection may be selected. As an example, a G418 resistance gene, a puromycin resistance gene, a blastsaidin resistance gene, a zeosin resistance gene, and a hyglomycin resistance gene may be selected. , Freomycin resistance gene.

前記複製開始点は、哺乳動物細胞以外の宿主が大腸菌である場合、大腸菌内でのコピー数が高くプラスミドDNAの収量が多い、ColE1が例示できる。 The origin of replication can be exemplified by ColE1, which has a high number of copies in Escherichia coli and a high yield of plasmid DNA when the host other than the mammalian cell is Escherichia coli.

さらに前記発現ベクターには、プロモーターの働きを強めるためのエンハンサーをさらに含んでもよい。使用するエンハンサーに特に制限はなく、発現させる抗体や哺乳動物細胞を考慮し、適宜選択すればよい。一例としてサイトメガロウイルス(CMV)由来のエンハンサーがあげられる。 Further, the expression vector may further contain an enhancer for enhancing the action of the promoter. The enhancer to be used is not particularly limited, and may be appropriately selected in consideration of the antibody to be expressed and mammalian cells. An example is an enhancer derived from cytomegalovirus (CMV).

また哺乳動物に導入した遺伝子(抗体をコードするポリヌクレオチド)が発現しやすくするために、前記発現ベクターにLoxP遺伝子をさらに含ませてもよい。ゲノム中にLoxP遺伝子を含んだ宿主細胞へ発現ベクターを導入する際に、Creリコンビナーゼによる相同組換えを行なうことで宿主細胞のゲノムへ部位特異的に組換えタンパク質をコードするポリヌクレオチドを導入できる。また、宿主細胞のゲノムへ部位特異的に組換えタンパク質をコードするポリヌクレオチドを導入する方法としてCRISPR/Cas9などを用いることもできる。 Further, in order to facilitate the expression of the gene introduced into the mammal (polynucleotide encoding the antibody), the LoxP gene may be further contained in the expression vector. When an expression vector is introduced into a host cell containing the LoxP gene in the genome, a polynucleotide encoding a recombinant protein can be introduced into the genome of the host cell in a site-specific manner by performing homologous recombination with Cre recombinase. Further, CRISPR / Cas9 or the like can also be used as a method for introducing a polynucleotide encoding a recombinant protein into the genome of a host cell in a site-specific manner.

前記発現ベクターで哺乳動物細胞を形質転換するには、エレクトロポレーションやカチオニックリポソームを用いたリポフェクションなど、当業者が通常用いる形質転換法の中から、宿主として使用する哺乳動物細胞に合わせて適宜選択すればよい。 In order to transform a mammalian cell with the expression vector, among the transformation methods usually used by those skilled in the art, such as electroporation and lipofection using a cationic liposome, it is appropriate according to the mammalian cell used as a host. You can select it.

前述した方法で抗体を発現可能な哺乳動物細胞を培養後、得られた培養物中に含まれる前記哺乳動物細胞が発現した抗体を回収することで、ADCC活性が向上した抗体を製造する。抗体の回収方法の一例として、前記得られた培養物から、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、疎水クロマトグラフィー、ゲル濾過クロマトグラフィーなどのクロマトグラフィーによる精製操作を単独または組み合わせて抗体を回収する方法があげられる。前記方法は抗体を高効率かつ高純度に回収できる点で好ましい。 After culturing the mammalian cells capable of expressing the antibody by the method described above, the antibody expressed by the mammalian cells contained in the obtained culture is recovered to produce an antibody having improved ADCC activity. As an example of the method for recovering an antibody, a method for recovering an antibody from the obtained culture by a purification operation by chromatography such as affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration chromatography or the like alone or in combination. Can be given. The above method is preferable in that the antibody can be recovered with high efficiency and high purity.

本発明で製造する抗体が、ヒトFc領域を含む抗体である場合、前記抗体とヒトFcγRIIIaとの親和性を評価することで、抗体を発現可能な哺乳動物細胞の培養状態(培養工程)をモニタリングできる。ヒトFc領域を含む抗体に付加するN型糖鎖を欠損させると前記抗体とヒトFcγRIIIaとの親和性が著しく低下する。またヒトFc領域を含む抗体が有するADCC活性は、当該Fc領域と免疫細胞表面上のヒトFcγRIIIaとの親和性(結合性)と関連することが知られている(Nordstrom.J,L, et al.,Breast Cancer Res.,13,6,(2011))。従って、ヒトFc領域を含む抗体とヒトFcγRIIIaとの親和性を評価することで、製造する抗体が有するADCC活性をモニタリングでき、抗体を発現可能な哺乳細胞の培養工程をモニタリングできる。一例として、得られたヒトFc領域を含む抗体とヒトFcγRIIIaとの親和性が低下した場合、当該抗体が有するADCC活性が低下しているため、当該抗体が有するADCC活性を向上すべく、培養pH(気相の二酸化炭素濃度、アルカリ性溶液添加量など)や温度、撹拌回転数、溶存酸素濃度、培地成分、添加薬剤濃度等を適宜調整する。 When the antibody produced in the present invention is an antibody containing a human Fc region, the culture state (culture step) of mammalian cells capable of expressing the antibody is monitored by evaluating the affinity between the antibody and human FcγRIIIa. can. Deletion of the N-type sugar chain added to an antibody containing a human Fc region significantly reduces the affinity between the antibody and human FcγRIIIa. It is also known that the ADCC activity of an antibody containing a human Fc region is associated with the affinity (binding) between the Fc region and human FcγRIIIa on the surface of immune cells (Nordstrom.J, L, et al). ., Breast Cancer Res., 13, 6, (2011)). Therefore, by evaluating the affinity between the antibody containing the human Fc region and human FcγRIIIa, the ADCC activity of the produced antibody can be monitored, and the culture process of mammalian cells capable of expressing the antibody can be monitored. As an example, when the affinity between the obtained antibody containing the human Fc region and human FcγRIIIa is decreased, the ADCC activity of the antibody is decreased, so that the culture pH is improved in order to improve the ADCC activity of the antibody. (Carbon dioxide concentration in the gas phase, amount of alkaline solution added, etc.), temperature, stirring rotation speed, dissolved oxygen concentration, medium component, additive drug concentration, etc. are adjusted as appropriate.

ヒトFc領域を含む抗体とヒトFcγRIIIaとの親和性評価の好ましい態様として、ヒトFc領域を含む抗体とヒトFcγRIIIa固定化分離剤との結合力に基づく評価があげられる。ヒトFcγRIIIaを担体に固定化して得られるヒトFcγRIIIa固定化分離剤を充填したカラムに、ヒトFc領域を含む抗体をアプライすると、前記抗体が付加した糖鎖構造の違いに基づき分離され(特開2015-086216号公報、WO2018/150973号)、かつ前記抗体が有するADCC活性の違いに基づき分離される(特開2016-023152号公報、WO2018/150973号)。従って、前記分離パターンの形状に基づき、本発明における、抗体を発現可能な哺乳動物細胞の培養状態(培養工程)のモニタリングができる。具体的には、ヒトFcγRIIIa固定化分離剤を充填したカラムを用いてヒトFc領域を含む抗体を分離すると、ADCC活性が高い抗体が、ADCC活性が低い抗体よりも遅れて溶出される(すなわちヒトFcγRIIIa固定化分離剤との結合力が強い)。従って、前記分離により得られた溶出パターンのピーク面積またはピーク高さから、ADCC活性が高い抗体が溶出されるピーク(画分)の量および/または割合を算出し、当該量および/または割合が低下した場合、当該抗体が有するADCC活性が低下しているため、当該抗体が有するADCC活性を向上すべく、培養pH(気相の二酸化炭素濃度、アルカリ性溶液添加量など)や温度、撹拌回転数、溶存酸素濃度、培地成分、添加薬剤濃度等を適宜調整する。 A preferred embodiment of the affinity evaluation between the antibody containing the human Fc region and the human FcγRIIIa is the evaluation based on the binding force between the antibody containing the human Fc region and the human FcγRIIIa immobilization separating agent. When an antibody containing a human Fc region is applied to a column packed with a human FcγRIIIa-immobilized separator obtained by immobilizing human FcγRIIIa on a carrier, the antibody is separated based on the difference in sugar chain structure added to the antibody (Japanese Patent Laid-Open No. 2015). -086216, WO2018 / 150973), and separated based on the difference in ADCC activity of the antibody (Japanese Patent Laid-Open No. 2016-0223152, WO2018 / 150973). Therefore, based on the shape of the separation pattern, it is possible to monitor the culture state (culture step) of the mammalian cells capable of expressing the antibody in the present invention. Specifically, when an antibody containing a human Fc region is separated using a column packed with a human FcγRIIIa immobilized separating agent, an antibody having high ADCC activity is eluted later than an antibody having low ADCC activity (that is, human). Strong binding force to FcγRIIIa immobilization separator). Therefore, the amount and / or the ratio of the peak (fraction) in which the antibody having high ADCC activity is eluted is calculated from the peak area or the peak height of the elution pattern obtained by the separation, and the amount and / or the ratio is calculated. If it decreases, the ADCC activity of the antibody is decreased, so in order to improve the ADCC activity of the antibody, the culture pH (carbon dioxide concentration in the gas phase, amount of alkaline solution added, etc.), temperature, and stirring rotation speed are reduced. , Dissolved oxygen concentration, medium component, additive drug concentration, etc. are adjusted as appropriate.

また、培養条件や細胞株を同条件とし培地pHのみを変えて培養を行なうことで、よりADCC活性が高くなる培地pHの評価が行なえる。具体的には異なるpHの培地で培養することで得られた抗体を前記ヒトFcγRIIIa固定化分離剤により評価を行ない、得られた分離パターンの形状やピーク(画分)の量および/または割合に基づき得られた抗体のADCC活性を比較することで培地の抗体に対する評価を行なう。 Further, by culturing under the same culture conditions and cell lines and changing only the medium pH, it is possible to evaluate the medium pH at which ADCC activity becomes higher. Specifically, the antibody obtained by culturing in a medium having a different pH was evaluated by the human FcγRIIIa immobilized separator, and the shape and peak (fraction) of the obtained separation pattern were determined by the amount and / or ratio. The ADCC activity of the obtained antibody is compared to evaluate the antibody in the medium.

なお本明細書においてヒトFcγRIIIaとは、
(A)ヒトFcγRIIIa(UniProt No.P08637)のアミノ酸配列のうち17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を少なくとも含む、Fc結合性タンパク質、または
(B)ヒトFcγRIIIa(UniProt No.P08637)のアミノ酸配列のうち17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を少なくとも含み、ただし当該17番目から192番目までのアミノ酸残基において、1以上のアミノ酸残基が欠失、他のアミノ酸残基に置換、または付加されたポリペプチドを含む、Fc結合性タンパク質、
のことを意味する。また前記(B)の好ましい態様として、
特開2015-086216号公報で開示のFc結合性タンパク質、
特開2016-169197号公報で開示のFc結合性タンパク質、
特開2017-118871号公報で開示のFc結合性タンパク質、
WO2018/150973号で開示のFc結合性タンパク質、
WO2019/083048号で開示のFc結合性タンパク質、
があげられる。
In this specification, human FcγRIIIa is referred to as human FcγRIIIa.
(A) an Fc-binding protein containing at least the amino acid residue from the 17th glycine to the 192nd glutamine in the amino acid sequence of human FcγRIIIa (UniProt No. P08637), or (B) human FcγRIIIa (UniProt No. P08637). ) Contains at least the amino acid residues from the 17th glycine to the 192nd glutamine, but in the 17th to 192nd amino acid residues, one or more amino acid residues are deleted, and other amino acid residues are deleted. Fc-binding proteins, including polypeptides substituted or added to amino acid residues,
Means that. Further, as a preferred embodiment of the above (B),
Fc-binding protein disclosed in Japanese Patent Application Laid-Open No. 2015-08626,
Fc-binding protein disclosed in JP-A-2016-169197,
Fc-binding protein disclosed in JP-A-2017-118871
Fc-binding protein disclosed in WO2018 / 150973,
Fc-binding protein disclosed in WO2019 / 083048,
Can be given.

また本発明において、ADCC活性が向上した抗体とは、例えば、ヒトFcγRIIIa固定化分離剤を充填したカラムを用いた分離により得られた結果(溶出パターン)のうち、ADCC活性の高い抗体が位置するピーク面積またはピーク高さの割合が、培地のpHを前述した範囲外(例えば、pH7.1)で制御して培養したときの前記割合と比較し、2%以上、好ましくは5%以上、より好ましくは10%以上、さらに好ましくは15%以上、さらにより好ましくは20%以上向上した抗体のことを意味する。 Further, in the present invention, the antibody having improved ADCC activity is defined as, for example, an antibody having high ADCC activity among the results (elution pattern) obtained by separation using a column packed with a human FcγRIIIa immobilized separating agent. The ratio of the peak area or the peak height is 2% or more, preferably 5% or more, more than the ratio when the culture is performed by controlling the pH of the medium outside the above range (for example, pH 7.1). It means an antibody that is preferably improved by 10% or more, more preferably 15% or more, and even more preferably 20% or more.

本発明は、抗体を発現可能な哺乳動物細胞を培養する工程と得られた培養物中に含まれる前記哺乳動物細胞が発現した抗体を回収する工程とを含む抗体の製造方法において、前記培養工程をpH6.6より高くpH7.0より低いpHに制御した培地で行なうことを特徴としている。本発明により、抗癌剤など抗体依存性細胞障害活性を必要とする抗体を効率的に製造できる。 The present invention is a method for producing an antibody, which comprises a step of culturing a mammalian cell capable of expressing an antibody and a step of recovering the antibody expressed by the mammalian cell contained in the obtained culture. Is characterized in that the medium is controlled to have a pH higher than pH 6.6 and lower than pH 7.0. INDUSTRIAL APPLICABILITY According to the present invention, an antibody requiring antibody-dependent cellular cytotoxicity such as an anticancer agent can be efficiently produced.

また本発明で製造する抗体がヒトFc領域を含む抗体の場合、前記抗体とヒトFcγRIIIaとの親和性を評価することで、本発明の製造方法における培養工程のモニタリングや培地成分の評価が行なえる。
When the antibody produced by the present invention is an antibody containing a human Fc region, the affinity between the antibody and human FcγRIIIa can be evaluated to monitor the culture process and evaluate the medium components in the production method of the present invention. ..

哺乳動物用発現プラスミドpEFdのプラスミドマップを示している。A plasmid map of the expression plasmid pEFd for mammals is shown. pH6.8、pH6.9、pH7.0およびpH7.1に制御したBalanCD CHO Growth A mediumで抗IL-6R抗体発現細胞をジャーファーメンターによりバッチ培養したときの抗体生産性の推移を示している。It shows the transition of antibody productivity when anti-IL-6R antibody-expressing cells were batch-cultured with a jar fermenter in BalanCD CHO Growth A medium controlled to pH 6.8, pH 6.9, pH 7.0 and pH 7.1. .. pH6.6、pH7.0、およびpH7.4に制御したBalanCD CHO Growth A mediumで抗IL-6R抗体発現細胞をジャーファーメンターによりバッチ培養したときの抗体生産性の推移を示している。It shows the transition of antibody productivity when anti-IL-6R antibody-expressing cells were batch-cultured with a jar fermenter in BalanCD CHO Growth A medium controlled to pH 6.6, pH 7.0, and pH 7.4. pH6.8、pH6.9、pH7.0およびpH7.1に制御したBalanCD CHO Growth A mediumで抗IL-6R抗体発現細胞をジャーファーメンターによりバッチ培養したときの生細胞密度の推移を示している。It shows the transition of the viable cell density when anti-IL-6R antibody-expressing cells were batch-cultured with a jar fermenter in BalanCD CHO Growth A medium controlled to pH 6.8, pH 6.9, pH 7.0 and pH 7.1. .. pH6.6、pH7.0、およびpH7.4に制御したBalanCD CHO Growth A mediumで抗IL-6R抗体発現細胞をジャーファーメンターによりバッチ培養したときの生細胞密度の推移を示している。It shows the transition of the viable cell density when the anti-IL-6R antibody-expressing cells were batch-cultured with a jar fermenter in BalanCD CHO Growth A medium controlled to pH 6.6, pH 7.0, and pH 7.4. pH6.8、pH6.9、pH7.0およびpH7.1に制御したBalanCD CHO Growth A mediumで抗IL-6R抗体発現細胞をジャーファーメンターによりバッチ培養したときに得られた抗IL-6R抗体のFcR9_Fカラム分析によるクロマトグラムを示している。Anti-IL-6R antibody obtained when anti-IL-6R antibody-expressing cells were batch-cultured with a jar fermenter in BalanCD CHO Growth A medium controlled to pH 6.8, pH 6.9, pH 7.0 and pH 7.1. The chromatogram by FcR9_F column analysis is shown. pH6.8、pH6.9、pH7.0およびpH7.1に制御したBalanCD CHO Growth A mediumで抗IL-6R抗体発現細胞をジャーファーメンターによりバッチ培養したときに得られた抗IL-6R抗体のFcR9_Fカラム分析による各ピークの面積割合を示している。Anti-IL-6R antibody obtained when anti-IL-6R antibody-expressing cells were batch-cultured with a jar fermenter in BalanCD CHO Growth A medium controlled to pH 6.8, pH 6.9, pH 7.0 and pH 7.1. The area ratio of each peak by FcR9_F column analysis is shown. pH6.8、pH6.9、pH7.0およびpH7.1に制御したEX-CELL Advanced CHO Fed-batch Mediumで抗IL-6R抗体発現細胞をジャーファーメンターによりバッチ培養したときの抗体生産性の推移を示している。Changes in antibody productivity when anti-IL-6R antibody-expressing cells were batch-cultured with a jar fermenter in EX-CELL Advanced CHO Fed-batch Medium controlled to pH 6.8, pH 6.9, pH 7.0 and pH 7.1. Is shown. pH6.6、pH7.0およびpH7.4に制御したEX-CELL Advanced CHO Fed-batch Mediumで抗IL-6R抗体発現細胞をジャーファーメンターによりバッチ培養したときの抗体生産性の推移を示している。It shows the transition of antibody productivity when anti-IL-6R antibody-expressing cells were batch-cultured with a jar fermenter in EX-CELL Advanced CHO Fed-batch Medium controlled to pH 6.6, pH 7.0 and pH 7.4. .. pH6.8、pH6.9、pH7.0およびpH7.1に制御したEX-CELL Advanced CHO Fed-batch Mediumで抗IL-6R抗体発現細胞をジャーファーメンターによりバッチ培養したときの生細胞密度の推移を示している。Changes in viable cell density when anti-IL-6R antibody-expressing cells were batch-cultured with a jar fermenter in EX-CELL Advanced CHO Fed-batch Medium controlled to pH 6.8, pH 6.9, pH 7.0 and pH 7.1. Is shown. pH6.6、pH7.0およびpH7.4に制御したEX-CELL Advanced CHO Fed-batch Mediumで抗IL-6R抗体発現細胞をジャーファーメンターによりバッチ培養したときの生細胞密度の推移を示している。It shows the transition of the viable cell density when anti-IL-6R antibody-expressing cells were batch-cultured by a jar fermenter in EX-CELL Advanced CHO Fed-batch Medium controlled to pH 6.6, pH 7.0 and pH 7.4. .. pH6.8、pH6.9、pH7.0およびpH7.1に制御したEX-CELL Advanced CHO Fed-batch Mediumで抗IL-6R抗体発現細胞をジャーファーメンターによりバッチ培養したときに得られた抗IL-6R抗体のFcR9_Fカラム分析によるクロマトグラムを示している。Anti-IL obtained when anti-IL-6R antibody-expressing cells were batch-cultured with a jar fermenter in EX-CELL Advanced CHO Fed-batch Medium controlled to pH 6.8, pH 6.9, pH 7.0 and pH 7.1. The chromatogram by FcR9_F column analysis of -6R antibody is shown. pH6.8、pH6.9、pH7.0およびpH7.1に制御したEX-CELL Advanced CHO Fed-batch Mediumで抗IL-6R抗体発現細胞をジャーファーメンターによりバッチ培養したときに得られた抗IL-6R抗体のFcR9_Fカラム分析による各ピークの面積割合を示している。Anti-IL obtained when anti-IL-6R antibody-expressing cells were batch-cultured with a jar fermenter in EX-CELL Advanced CHO Fed-batch Medium controlled to pH 6.8, pH 6.9, pH 7.0 and pH 7.1. The area ratio of each peak by FcR9_F column analysis of -6R antibody is shown.

以下、実施例を用いて、本発明をさらに詳細に説明するが、本発明はこれら例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

実施例1 抗インターロイキン6レセプター(IL-6R)抗体発現細胞の構築
(1)以下の方法で抗IL-6R抗体を哺乳動物細胞で発現可能なベクターを構築した。
(1-1)配列番号1に記載のジヒドロ葉酸レダクターゼ(dihydrofolate reductase、dhfr)およびSV40のPolyAをコードする遺伝子に制限酵素SacII認識配列列(CCGCGG)を5’末端および3’末端の両方に付加した遺伝子を全合成し(Integrated DNA Technologies社に委託)プラスミドにクローニングした。
(1-2)(1-1)で作製したプラスミドで大腸菌JM109株を形質転換した。得られた形質転換体を培養し、プラスミドを抽出したのち、制限酵素SacIIで消化することで、dhfr-SV40PolyAをコードする遺伝子を調製しdhfr-P1と命名した。
(1-3)pIRESベクター(Clontech社)を鋳型として、配列番号2(5’-TCC[CCGCGG]GCGGGACTCTGGGGTTCGAAATGACCG-3’)および配列番号3(5’-TCC[CCGCGG]GGTGGCTCTAGCCTTAAGTTCGAGACTG-3’)に記載の配列からなるオリゴヌクレオチドプライマー(配列番号2および3中の角かっこは制限酵素SacII認識配列を示している)を用いてPCRを行なった。具体的には、表1に示す組成の反応液を調製し、当該反応液を98℃で30秒間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で5分間の第3ステップを1サイクルとする反応を25サイクル繰り返すことで実施した。このPCRにより、pIRESベクターのうちネオマイシン耐性遺伝子を除いた領域を増幅した。
Example 1 Construction of anti-interleukin-6 receptor (IL-6R) antibody-expressing cells (1) A vector capable of expressing anti-IL-6R antibody in mammalian cells was constructed by the following method.
(1-1) Addion of restriction enzyme SacII recognition sequence (CCGCGG) to both the 5'end and 3'end to the gene encoding dihydrofolate reductase (dhfr) and SV40's PolyA set forth in SEQ ID NO: 1. All the genes were synthesized (consigned to Integrated DNA Technologies) and cloned into a plasmid.
(1-2) Escherichia coli JM109 strain was transformed with the plasmid prepared in (1-1). The obtained transformant was cultured, a plasmid was extracted, and then digested with the restriction enzyme SacII to prepare a gene encoding dhfr-SV40PolyA and named dhfr-P1.
(1-3) Described in SEQ ID NO: 2 (5'-TCC [CCGCGG] GCGGGACTCGGGGTTCGAAAATTGACCG-3') and SEQ ID NO: 3 (5'-TCC [CCGCGG] GGTGGCTAGCCTAAGTCGACTG-3') using a pIRES vector (Clontech) as a template. PCR was performed using an oligonucleotide primer consisting of the sequences of (the square brackets in SEQ ID NOs: 2 and 3 indicate the restriction enzyme SacII recognition sequence). Specifically, a reaction solution having the composition shown in Table 1 is prepared, the reaction solution is heat-treated at 98 ° C. for 30 seconds, then the first step at 98 ° C. for 10 seconds, the second step at 55 ° C. for 5 seconds, 72. The reaction was carried out by repeating 25 cycles with the third step of 5 minutes at ° C as one cycle. By this PCR, the region of the pIRES vector excluding the neomycin resistance gene was amplified.

Figure 2022094382000002
Figure 2022094382000002

(1-4)(1-3)で作製したPCR産物を精製後、制限酵素SacIIで消化し、(1-2)で調製したdhfr-P1とライゲーションした。当該ライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することでdhfr遺伝子を含んだ発現ベクターpIRES-dhfrを得た。 (1-4) The PCR product prepared in (1-3) was purified, digested with the restriction enzyme SacII, and ligated with dhfr-P1 prepared in (1-2). Escherichia coli JM109 strain was transformed with the ligation product, and a plasmid was extracted from the cultured transformant to obtain an expression vector pIRES-dhfr containing the dhfr gene.

(2)(1)で作製したpIRES-dhfrを鋳型として配列番号4(5’-TTTAAATCA[GCGGCCGC]GCAGCACCATGGCCTGAAATAACCTCTG-3’)および配列番号5(5’-GCAAGTAAAACCTCTACAAATGTGGTAAA[CGATCG]CTCCGGTGCCCGT-3’)に記載の配列からなるオリゴヌクレオチドプライマー(配列番号4中の角かっこは制限酵素NotI認識配列を、配列番号5中の角かっこは制限酵素PvuI認識配列を、それぞれ示している)を用いてPCRを行なった。具体的には、表2に示す組成の反応液を調製し、当該反応液を98℃で1分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル繰り返すことで実施した。このPCRにより増幅したPCR産物(SV40プロモーター、dhfr、SV40のPolyAまでの領域を)をdhfr-P2と命名した。 (2) Described in SEQ ID NO: 4 (5'-TTTAAATCA [GCGGCCGC] GCAGCACCATGGCCTGAATAACCTCTG-3') and SEQ ID NO: 5 (5'-GCAAGTAAAACCTACCAAAATGTGGTACGC) [CGGTCGTAC] using pIRES-dhfr prepared in (1) as a template. PCR was performed using an oligonucleotide primer consisting of the above sequences (the square brackets in SEQ ID NO: 4 indicate the limiting enzyme NotI recognition sequence, and the square brackets in SEQ ID NO: 5 indicate the limiting enzyme PvuI recognition sequence). .. Specifically, a reaction solution having the composition shown in Table 2 is prepared, the reaction solution is heat-treated at 98 ° C. for 1 minute, then the first step at 98 ° C. for 10 seconds, the second step at 55 ° C. for 5 seconds, 72. The reaction was carried out by repeating 30 cycles with the third step of 1 minute at ° C as one cycle. The PCR product amplified by this PCR (SV40 promoter, dhfr, region up to PolyA of SV40) was named dhfr-P2.

Figure 2022094382000003
Figure 2022094382000003

(3)ヒト抗体の重鎖定常領域を含んだpFUSEss-CHIg-hG1(InvivoGen社)、ヒト抗体の軽鎖定常領域を含んだpFUSE2ss-CLIg-hk(InvivoGen社)および(2)で作製したdhfr-P2をそれぞれ制限酵素NotIおよびPvuIで消化した後、精製しライゲーションした。当該ライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することでSV40プロモーター、dhfr、SV40のPolyAを含んだpFUSEss-CHIg-hG1およびpFUSE2ss-CLIg-hkを得た。pFUSEss-CHIg-hG1にSV40プロモーター、dhfrおよびSV40のPolyAを組込んだプラスミドをpFU-CHIg-dhfrと命名し、pFUSE2ss-CLIg-hkにSV40プロモーター、dhfrおよびSV40のPolyAを組込んだプラスミドをpFU-CLIg-dhfrと命名した。 (3) pFUSEss-CHIg-hG1 (InvivoGen) containing a heavy chain constant region of a human antibody, pFUSE2ss-CLIg-hk (InvivoGen) containing a light chain constant region of a human antibody, and dhfr prepared in (2). -P2 was digested with restriction enzymes NotI and PvuI, respectively, then purified and ligated. Escherichia coli JM109 strain was transformed with the ligation product, and the plasmid was extracted from the cultured transformant to obtain pFUSEss-CHIg-hG1 and pFUSE2ss-CLIg-hk containing SV40 promoter, dhfr, and PolyA of SV40. The plasmid in which pFUUSEs-CHIg-hG1 was integrated with the SV40 promoter, dhfr and SV40 PolyA was named pFU-CHIg-dhfr, and the plasmid in which the SV40 promoter, dhfr and SV40 PolyA were integrated into pFUSE2ss-CLIg-hk was pFU. It was named -CLIg-dhfr.

(4)配列番号6に記載のアミノ酸配列からなる抗インターロイキン6レセプター(以下、IL-6R)抗体の重鎖可変領域をコードする配列番号7に記載のポリヌクレオチドの5’末端に制限酵素EcoRI認識配列(GAATTC)とフレームシフト抑制のためグアニン(G)を付加し、3’末端に制限酵素NheI認識配列(GCTAGC)を付加した遺伝子を全合成しプラスミドにクローニングした(FASMAC社に委託)。作製したプラスミドをpUC-VH6Rと命名した。また、配列番号8に記載のアミノ酸配列からなる抗IL-6R抗体の軽鎖可変領域をコードする配列番号9に記載のポリヌクレオチドの5‘末端に制限酵素EcoRI認識配列(GAATTC)とフレームシフト抑制のためグアニン(G)を付加し、3’末端に制限酵素BsiWI認識配列(CGTACG)を付加した遺伝子を全合成しプラスミドにクローニングした(FASMAC社に委託)。作製したプラスミドをpUC-VL6Rと命名した。 (4) Restriction enzyme EcoRI at the 5'end of the polynucleotide set forth in SEQ ID NO: 7, which encodes the heavy chain variable region of an anti-interleukin 6 receptor (hereinafter, IL-6R) antibody consisting of the amino acid sequence set forth in SEQ ID NO: 6. A gene with a recognition sequence (GAATTC) and guanine (G) added to suppress the frame shift and a restriction enzyme NheI recognition sequence (GCTAGC) added to the 3'end was totally synthesized and cloned into a plasmid (consigned to FASMAC). The prepared plasmid was named pUC-VH6R. In addition, a restriction enzyme EcoRI recognition sequence (GAATTC) and a frame shift inhibition were added to the 5'end of the polynucleotide set forth in SEQ ID NO: 9, which encodes the light chain variable region of the anti-IL-6R antibody consisting of the amino acid sequence set forth in SEQ ID NO: 8. Therefore, a gene with guanine (G) added and a restriction enzyme BsiWI recognition sequence (CGTACG) added to the 3'end was totally synthesized and cloned into a plasmid (consigned to FASMAC). The prepared plasmid was named pUC-VL6R.

(5)(4)で作製したpUC-VH6Rおよび(3)で作製したpFU-CHIg-dhfrをそれぞれ制限酵素EcoRI、NheIで消化後、精製し、ライゲーションした。当該ライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することで、抗IL-6R抗体の重鎖(H鎖)を発現するプラスミドpFU-6RH-dhfrを得た。また(4)で作製したpUC-VL6Rおよび(3)で作製したpFU-CLIg-dhfrをそれぞれ制限酵素EcoRI、BsiWIで消化後、精製し、ライゲーションした。当該ライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することで、抗IL-6R抗体の軽鎖(L鎖)を発現するプラスミドpFU-6RL-dhfrを得た。 (5) The pUC-VH6R prepared in (4) and the pFU-CHIg-dhfr prepared in (3) were digested with restriction enzymes EcoRI and NheI, respectively, purified and ligated. Escherichia coli JM109 strain was transformed with the ligation product, and a plasmid was extracted from the cultured transformant to obtain a plasmid pFU-6RH-dhfr expressing the heavy chain (H chain) of the anti-IL-6R antibody. Further, pUC-VL6R prepared in (4) and pFU-CLIg-dhfr prepared in (3) were digested with restriction enzymes EcoRI and BsiWI, respectively, purified and ligated. Escherichia coli JM109 strain was transformed with the ligation product, and a plasmid was extracted from the cultured transformant to obtain a plasmid pFU-6RL-dhfr expressing the light chain (L chain) of the anti-IL-6R antibody.

実施例2 抗IL-6R抗体高発現細胞の構築
(1)実施例1で作製したpFU-6RH-dhfrおよびpFU-6RL-dhfrを、CHO細胞(DG44株)にNeon Transfection System(Thermo Fisher Scientific社)を用いて遺伝子導入した。その後、50μg/mLのカナマイシン、40mL/LのGlutaMAX(Thermo Fisher Scientific社)を含んだCD OptiCHO Medium(Thermo Fisher Scientific社)で形質転換細胞を培養抗IL-6R抗体発現細胞を得た。その後、培地に50ng/mLのメトトレキサート
(MTX)を添加することで遺伝子増幅を行なった。
Example 2 Construction of cells highly expressing anti-IL-6R antibody (1) The pFU-6RH-dhfr and pFU-6RL-dhfr prepared in Example 1 were applied to CHO cells (DG44 strain) in Neon Transfection System (Thermo Fisher Scientific). ) Was used to introduce the gene. Then, the transformed cells were cultured with CD OptiCHO Medium (Thermo Fisher Scientific) containing 50 μg / mL kanamycin and 40 mL / L GlutaMAX (Thermo Fisher Scientific) to obtain cultured anti-IL-6R antibody-expressing cells. Then, gene amplification was performed by adding 50 ng / mL methotrexate (MTX) to the medium.

(2)(1)でMTX処理をした細胞を限外希釈法により単クローン化し、下記に記載のELISA(Enzyme-Linked ImmunoSorbent Assay)を用いて、抗IL-6R抗体を安定的に高生産可能な細胞を選択した。
(2-1)抗ヒトFab抗体(Bethyl社)を、96穴マイクロプレートのウェルに1μg/wellで固定化した(4℃で一晩)。固定化終了後、2%(w/v)のSKIM MILK(Becton Dickinson社)および150mM塩化ナトリウムを含んだ20mMのトリス塩酸緩衝液(pH7.4)によりブロッキングした。
(2-2)洗浄緩衝液(0.05%[w/v]のTween 20(商品名)と150mMのNaClとを含む20mM Tris-HCl緩衝液(pH8.0))で洗浄後、抗体を含んだ培養上清を添加し、抗体と固定化タンパク質とを反応させた(30℃で1時間)。
(2-3)反応終了後、前記洗浄緩衝液で洗浄し、100ng/mLに希釈したペルオキシターゼで標識された抗ヒトFc抗体(Bethyl社)を100μL/wellで添加した。
(2-4)30℃で1時間反応し、前記洗浄緩衝液で洗浄した後、TMB Peroxidase Substrate(KPL社)を50μL/wellで添加した。その後、1Mのリン酸を50μL/wellで添加することで発色を止め、マイクロプレートリーダー(テカン社)を用いて450nmの吸光度を測定し、測定値の高い抗IL-6R抗体高生産細胞株を選択した。
(2) The cells treated with MTX in (1) can be single-cloned by the ultra-dilution method, and the anti-IL-6R antibody can be stably and highly produced by using the ELISA (Enzyme-Linked Immunosorbent Assay) described below. Cells were selected.
(2-1) Anti-human Fab antibody (Bethyl) was immobilized at 1 μg / well in a well of a 96-well microplate (overnight at 4 ° C.). After completion of immobilization, blocking was performed with 20 mM Tris-hydrochloric acid buffer (pH 7.4) containing 2% (w / v) SKIM MILK (Becton Dickinson) and 150 mM sodium chloride.
(2-2) After washing with a washing buffer (20 mM Tris-HCl buffer (pH 8.0) containing 0.05% [w / v] Protein 20 (trade name) and 150 mM NaCl), the antibody is used. The containing culture supernatant was added, and the antibody was reacted with the immobilized protein (at 30 ° C. for 1 hour).
(2-3) After completion of the reaction, the reaction was washed with the washing buffer, and an anti-human Fc antibody (Bethyl) labeled with peroxidase diluted to 100 ng / mL was added at 100 μL / well.
(2-4) After reacting at 30 ° C. for 1 hour and washing with the washing buffer, TMB Peroxidase Substrate (KPL) was added at 50 μL / well. After that, color development was stopped by adding 1 M phosphoric acid at 50 μL / well, and the absorbance at 450 nm was measured using a microplate reader (Tekan) to obtain a highly measured anti-IL-6R antibody-producing cell line. Selected.

(3)MTX濃度を段階的(50nM、500nM、1μM、2μM、4μM、8μM、16μM、32μM、64μM)に上昇させながら、限外希釈を行ない(2)に記載のELISAでクローン選択を行なうことを繰り返した。その結果、抗IL-6R抗体高生産細胞株を得た。 (3) Extradilution is performed while increasing the MTX concentration stepwise (50 nM, 500 nM, 1 μM, 2 μM, 4 μM, 8 μM, 16 μM, 32 μM, 64 μM), and clone selection is performed by the ELISA described in (2). Was repeated. As a result, an anti-IL-6R antibody high-producing cell line was obtained.

実施例3 ジャーファーメンターを用いたバッチ培養におけるpH制御の効果(その1)
(1)50μg/mLのカナマイシン、30mL/LのGlutaMAX(Thermo Fisher Scientific社)を含んだ50mLのBalanCD CHO Growth A medium(Irvine Scientific社)を入れた250mLの三角フラスコ(Corning社)に、実施例2で作製した抗IL-6R抗体高発現細胞を接種し、130rpm、37℃、8%COの条件下で振盪培養した。
Example 3 Effect of pH control in batch culture using jar fermenter (Part 1)
(1) A 250 mL Erlenmeyer flask (C.) containing 50 mL of BalanCD CHO Grotth A medium (Irvine Scientific) containing 50 μg / mL canamycin and 30 mL / L of GlutaMAX (Thermo Fisher Scientific). The anti-IL-6R antibody high-expressing cells prepared in No. 2 were inoculated and cultured with shaking under the conditions of 130 rpm, 37 ° C., and 8% CO 2 .

(2)校正したpH計、溶存酸素(DO)計をセットした3器の250mLの滅菌済みジャーファーメンター(バイオット社)に、50μg/mLのカナマイシン、30mL/LのGlutaMAXを含んだ100mLのBalanCD CHO Growth A mediumを入れ、(1)で培養した抗IL-6R抗体高発現細胞を0.2×10cells/mLとなるよう接種後、全量を110mLとなるよう前述の培地を追加した。 (2) 100 mL BalanCD containing 50 μg / mL canamycin and 30 mL / L GlutaMAX in 3 250 mL sterilized Jarfermenters (Biot) set with a calibrated pH meter and dissolved oxygen (DO) meter. CHO Growth A medium was added, and the anti-IL-6R antibody high-expressing cells cultured in (1) were inoculated to 0.2 × 10 6 cells / mL, and then the above-mentioned medium was added so that the total volume was 110 mL.

(3)培地および細胞を加えたジャーファーメンターを制御装置(Bio Jr.8:バイオット社)にセットし、気相に空気を100mL/分で流しながら、37℃、130rpmで12日間バッチ培養した。なお培養中、pHは気相の二酸化炭素濃度を調整するのと同時に0.5Mの炭酸水素ナトリウム水溶液を添加することでpH6.6からpH7.4までの指定の値に制御し、DOは37℃での飽和溶存酸素量の50%量を保つよう制御した。培養途中で培養液を1から2mLサンプリングし、生細胞密度をVi-CELL XR(ベックマン・コールター社)を使用して測定し、抗体生産性をCedex Bio(ロシュ・ダイアグノスティックス社)を使用して測定した。 (3) A jar fermenter containing a medium and cells was set in a control device (Bio Jr. 8: Biot), and batch-cultured at 37 ° C. and 130 rpm for 12 days while flowing air at 100 mL / min in the gas phase. .. During the culture, the pH was controlled to the specified value from pH 6.6 to pH 7.4 by adding a 0.5 M aqueous sodium hydrogen carbonate solution at the same time as adjusting the carbon dioxide concentration in the gas phase, and the DO was 37. It was controlled to maintain 50% of the saturated dissolved oxygen content at ° C. During the culture, 1 to 2 mL of the culture medium was sampled, the viable cell density was measured using Vi-CELL XR (Beckman Coulter), and the antibody productivity was measured using Cedex Bio (Roche Diagnostics). And measured.

(4)培養終了後の培養液を遠心分離によって細胞および不純物を除去し、得られた上清を、1.0mLのMabSelect SuRe LX(GEヘルスケア社)をオープンカラムに充填し作製した分離カラム(150mMの塩化ナトリウムを含んだ20mMのTris-HCl(pH7.4)で平衡化済)にアプライした。 (4) Separation column prepared by centrifuging the culture solution after completion of culture to remove cells and impurities, and filling the obtained supernatant with 1.0 mL of MabSelect SuRe LX (GE Healthcare) in an open column. Applied to (equalized with 20 mM Tris-HCl (pH 7.4) containing 150 mM sodium chloride).

(5)前記平衡化に用いた緩衝液10mLで前記分離カラムを洗浄後、0.1Mのグリシン塩酸緩衝液(pH3.0)5mLで前記分離カラムに吸着した抗体を溶出した。溶出液に1mLの1M Tris-HCl(pH8.0)を加えることでpHを中性領域に戻し、限外ろ過膜で濃縮しながら150mMの塩化ナトリウムを含んだ50mMのクエン酸緩衝液(pH6.5)に緩衝液交換することで、培地の制御pHが異なる、高純度な抗IL-6R抗体を得た。 (5) The separation column was washed with 10 mL of the buffer used for the equilibration, and then the antibody adsorbed on the separation column was eluted with 5 mL of 0.1 M glycine-hydrochloric acid buffer (pH 3.0). The pH was returned to the neutral region by adding 1 mL of 1 M Tris-HCl (pH 8.0) to the eluent, and 50 mM citric acid buffer (pH 6.) containing 150 mM sodium chloride while concentrating with an ultrafiltration membrane. By exchanging the buffer solution in 5), a high-purity anti-IL-6R antibody having a different controlled pH of the medium was obtained.

培地の制御pHの違いによる、抗IL-6R抗体の生産性の推移を図2および図3に、抗IL-6R抗体発現細胞の生細胞密度の推移を図4および図5に、それぞれ示す。図2から図5より、培地pHをpH6.6より高くpH7.4より低いpHに制御すれば、抗体生産性および細胞増殖への影響はないといえる。 The changes in the productivity of the anti-IL-6R antibody due to the difference in the controlled pH of the medium are shown in FIGS. 2 and 3, and the changes in the viable cell density of the anti-IL-6R antibody-expressing cells are shown in FIGS. 4 and 5, respectively. From FIGS. 2 to 5, it can be said that if the medium pH is controlled to be higher than pH 6.6 and lower than pH 7.4, there is no effect on antibody productivity and cell proliferation.

実施例4 ジャーファーメンターを用いたバッチ培養におけるpH制御の効果(その2)
実施例3(5)で得られた抗体のうち、培地pHをpH6.8、pH6.9、pH7.0およびpH7.1に制御して培養し、得られた抗体について、ヒトFcγRIIIaを固定化した担体(分離剤)を充填したカラム(FcR9_Fカラム、WO2018/150973号の実施例5に記載)を用いて、下記の方法により分析した。
Example 4 Effect of pH control in batch culture using jar fermenter (Part 2)
Among the antibodies obtained in Example 3 (5), the medium pH was controlled to pH 6.8, pH 6.9, pH 7.0 and pH 7.1 for culturing, and human FcγRIIIa was immobilized on the obtained antibodies. Analysis was performed by the following method using a column (FcR9_F column, described in Example 5 of WO2018 / 150973) packed with the carrier (separator).

(1)FcR9_Fカラムを高速液体クロマトグラフィー装置(島津製作所社)に接続し、カラムオーブンで前記カラムを25℃の恒温状態に維持し、150mMの塩化ナトリウムを含んだ50mMのクエン酸緩衝液(pH6.5)を流速1.0mL/minで10分間流すことにより前記カラムを平衡化した。 (1) The FcR9_F column was connected to a high performance liquid chromatography device (Shimadzu Corporation), the column was maintained at a constant temperature of 25 ° C. in a column oven, and a 50 mM citric acid buffer (pH 6) containing 150 mM sodium chloride was added. The column was equilibrated by running (5) at a flow rate of 1.0 mL / min for 10 minutes.

(2)実施例3(5)で得た抗IL-6R抗体を(1)で用いた緩衝液で1.0mg/mLに希釈し、当該希釈抗体溶液を流速1.0mL/minにて10μL添加した。 (2) The anti-IL-6R antibody obtained in Example 3 (5) is diluted to 1.0 mg / mL with the buffer solution used in (1), and the diluted antibody solution is 10 μL at a flow rate of 1.0 mL / min. Added.

(3)(1)で用いた緩衝液を流速1.0mL/minで2分間流した後、150mMの塩化ナトリウムを含んだ50mMのクエン酸緩衝液(pH4.5)によるpHグラジエント(18分間で150mMの塩化ナトリウムを含んだ50mMのクエン酸緩衝液(pH4.5)が100%となるグラジエント)でFcR9_Fカラムに吸着した抗体を溶出した。 (3) After flowing the buffer solution used in (1) at a flow rate of 1.0 mL / min for 2 minutes, a pH gradient (at 18 minutes) with a 50 mM citric acid buffer solution (pH 4.5) containing 150 mM sodium chloride. The antibody adsorbed on the FcR9_F column was eluted with a 50 mM citric acid buffer (pH 4.5) containing 150 mM sodium chloride as a 100% gradient).

得られたクロマトグラムを図6に、当該クロマトグラムより算出した各ピークの面積割合を図7および表3に、それぞれ示す。ADCC(抗体依存性細胞傷害)活性の高い抗体ほど、FcγRIIIa固定化分離剤との結合力は強まる(特開2016-023152号公報、WO2018/150973号)。すなわち図6におけるピーク3の面積割合が高いほど、ADCC活性が高い抗体といえる。培地pHをpH6.8およびpH6.9に制御して培養したときは、ピーク3の面積割合が30%を超えていた(pH6.8:33.9%、pH6.9:34.7%)。一方、培地pHをpH7.0およびpH7.1に制御して培養すると、ピーク3の面積割合が30%を下回った(pH7.0:22.6%、pH7.1:26.7%)。 The obtained chromatogram is shown in FIG. 6, and the area ratio of each peak calculated from the chromatogram is shown in FIG. 7 and Table 3, respectively. The higher the ADCC (antibody-dependent cellular cytotoxicity) activity, the stronger the binding force to the FcγRIIIa-immobilized separating agent (Japanese Patent Laid-Open No. 2016-0223152, WO2018 / 150973). That is, it can be said that the higher the area ratio of the peak 3 in FIG. 6, the higher the ADCC activity. When the culture medium was cultured with the pH controlled to pH 6.8 and pH 6.9, the area ratio of peak 3 exceeded 30% (pH 6.8: 33.9%, pH 6.9: 34.7%). .. On the other hand, when the medium pH was controlled to pH 7.0 and pH 7.1 for culturing, the area ratio of peak 3 was less than 30% (pH 7.0: 22.6%, pH 7.1: 26.7%).

以上の結果から、培地pHをpH6.8およびpH6.9に制御して培養することで、抗体を発現可能な哺乳動物細胞が発現した抗体が有するADCC活性が向上することがわかる。 From the above results, it can be seen that the ADCC activity of the antibody expressed by the mammalian cell capable of expressing the antibody is improved by controlling the medium pH to pH 6.8 and pH 6.9 and culturing.

Figure 2022094382000004
Figure 2022094382000004

実施例5 ジャーファーメンターを用いたバッチ培養におけるpH制御の効果(その3)
培地をEX-CELL Advanced CHO Fed-batch Medium(Merck社)とした他は、実施例3と同様な方法で、実施例2で作製した抗IL-6R抗体高発現細胞の培養ならびに抗体生産性および生細胞数の測定をし、実施例4と同様な方法で、前記細胞が発現した抗体のFcR9_Fカラムによる分析をした。
Example 5 Effect of pH control in batch culture using jar fermenter (Part 3)
Culturing and antibody productivity of anti-IL-6R antibody high-expressing cells prepared in Example 2 by the same method as in Example 3 except that the medium was EX-CELL Advanced CHO Fed-batch Medium (Merck). The number of living cells was measured, and the antibody expressed by the cells was analyzed by the FcR9_F column in the same manner as in Example 4.

培地の制御pHの違いによる、抗IL-6R抗体の生産性の推移を図8および図9に、抗IL-6R抗体発現細胞の生細胞密度の推移を図10および図11に、それぞれ示す。BalanCDを培地としたとき(実施例3)と同様、培地pHをpH6.6より高くpH7.4より低いpHに制御すれば、抗体生産性および細胞増殖への影響はないといえる。 The changes in the productivity of the anti-IL-6R antibody due to the difference in the controlled pH of the medium are shown in FIGS. 8 and 9, and the changes in the viable cell density of the anti-IL-6R antibody-expressing cells are shown in FIGS. 10 and 11, respectively. As in the case of using BalanCD as a medium (Example 3), if the medium pH is controlled to a pH higher than pH 6.6 and lower than pH 7.4, it can be said that there is no effect on antibody productivity and cell proliferation.

FcR9_Fカラムによる分析で得られたクロマトグラムを図12に、当該クロマトグラムより算出した各ピークの面積割合を図13および表4に、それぞれ示す。培地pHをpH6.8およびpH6.9に制御して培養したときは、ピーク3の面積割合は約40%を占めていた(pH6.8:40.0%、pH6.9:39.2%)。一方、培地pHをpH7.0およびpH7.1に制御して培養すると、pH6.8およびpH6.9に制御して培養したときと比較し、ピーク3の面積割合が減少した(pH7.0:36.5%、pH7.1:31.4%)。 The chromatogram obtained by the analysis by the FcR9_F column is shown in FIG. 12, and the area ratio of each peak calculated from the chromatogram is shown in FIGS. 13 and 4, respectively. When culturing with the medium pH controlled to pH 6.8 and pH 6.9, the area ratio of peak 3 occupied about 40% (pH 6.8: 40.0%, pH 6.9: 39.2%). ). On the other hand, when the culture medium pH was controlled to pH 7.0 and pH 7.1 and cultured, the area ratio of peak 3 was reduced as compared with the case where the culture medium was controlled to pH 6.8 and pH 6.9 (pH 7.0 :). 36.5%, pH 7.1: 31.4%).

以上の結果から、BalanCDを培地としたとき(実施例4)と同様、培地pHをpH6.8およびpH6.9に制御して培養することで、抗体を発現可能な哺乳動物細胞が発現した抗体が有するADCC活性が向上することがわかる。 From the above results, as in the case of using BalanCD as a medium (Example 4), the antibody expressed by mammalian cells capable of expressing the antibody by controlling the medium pH to pH 6.8 and pH 6.9 and culturing the medium. It can be seen that the ADCC activity of the cells is improved.

Figure 2022094382000005
Figure 2022094382000005

Claims (5)

抗体を発現可能な哺乳動物細胞を培養する工程と、得られた培養物中に含まれる前記哺乳動物細胞が発現した抗体を回収する工程とを含む、抗体の製造方法において、
前記培養工程をpH6.6より高くpH7.0より低いpHに制御した培地で行なうことで、抗体依存性細胞傷害活性が向上した抗体を製造する方法。
In a method for producing an antibody, which comprises a step of culturing a mammalian cell capable of expressing an antibody and a step of recovering the antibody expressed by the mammalian cell contained in the obtained culture.
A method for producing an antibody having improved antibody-dependent cellular cytotoxicity by performing the culture step in a medium controlled to have a pH higher than pH 6.6 and lower than pH 7.0.
抗体がヒトFc領域を含む抗体である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the antibody is an antibody containing a human Fc region. 請求項2に記載の製造方法で得られた抗体とヒトFcγRIIIaとの親和性を評価することで、請求項2に記載の製造方法における培養工程をモニタリングする方法。 A method for monitoring a culture step in the production method according to claim 2, by evaluating the affinity between the antibody obtained by the production method according to claim 2 and human FcγRIIIa. 請求項2に記載の製造方法で得られた抗体とヒトFcγRIIIaとの親和性を評価することで、請求項2に記載の製造方法における培地pHを評価する方法。 A method for evaluating a medium pH in the production method according to claim 2, by evaluating the affinity between the antibody obtained by the production method according to claim 2 and human FcγRIIIa. 請求項2に記載の製造方法で得られた抗体とヒトFcγRIIIaとの親和性評価を、請求項2に記載の製造方法で得られた抗体とヒトFcγRIIIa固定化分離剤との結合力に基づき行なう、請求項3または請求項4に記載の方法。 The affinity between the antibody obtained by the production method according to claim 2 and human FcγRIIIa is evaluated based on the binding force between the antibody obtained by the production method according to claim 2 and the human FcγRIIIa immobilization separating agent. , The method according to claim 3 or 4.
JP2020207215A 2020-12-15 2020-12-15 Method for producing antibody having improved antibody-dependent cellular cytotoxicity Pending JP2022094382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020207215A JP2022094382A (en) 2020-12-15 2020-12-15 Method for producing antibody having improved antibody-dependent cellular cytotoxicity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020207215A JP2022094382A (en) 2020-12-15 2020-12-15 Method for producing antibody having improved antibody-dependent cellular cytotoxicity

Publications (1)

Publication Number Publication Date
JP2022094382A true JP2022094382A (en) 2022-06-27

Family

ID=82162554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020207215A Pending JP2022094382A (en) 2020-12-15 2020-12-15 Method for producing antibody having improved antibody-dependent cellular cytotoxicity

Country Status (1)

Country Link
JP (1) JP2022094382A (en)

Similar Documents

Publication Publication Date Title
JP7083802B2 (en) How to prepare glycosylated immunoglobulin
US10508154B2 (en) Process and methods for efficient manufacturing of highly pure asymmetric antibodies in mammalian cells
CA2829110C (en) Low fucose cell lines and uses thereof
CA2905180C (en) Temperature shift for high yield expression of polypeptides in yeast and other transformed cells
JP2018512431A (en) Method for purifying heterodimeric multispecific antibodies from parent homodimeric antibody species
AU2020306672B2 (en) Mammalian cell lines with SIRT-1 gene knockout
US9243053B2 (en) Heterologous intron within an immunoglobulin domain
TWI781973B (en) Method for in vitro glycoengineering of antibodies
JP2020188737A (en) Production method of antibody with improved antibody dependent cell mediated cytotoxicity activity
JP7469593B2 (en) Method for producing an antibody having improved antibody-dependent cellular cytotoxicity
JP2022094382A (en) Method for producing antibody having improved antibody-dependent cellular cytotoxicity
WO2014102101A1 (en) Novel intron sequences
US20140248660A1 (en) Heterologous intron within a signal peptide
JP7081139B2 (en) New promoter and expression vector containing it
JP5512514B2 (en) Heavy chain variants resulting in improved immunoglobulin production
Jung Engineering mammalian cell line for N-linked glycosylation control
Bennun et al. 4 Engineering of the Product
JP2023522417A (en) Enzyme and pathway regulation using sulfhydryl compounds and their derivatives
AU2018203733A1 (en) Method for the production of a glycosylated immunoglobulin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231113