JP2022093105A - Electronic fuel injection type diesel engine - Google Patents

Electronic fuel injection type diesel engine Download PDF

Info

Publication number
JP2022093105A
JP2022093105A JP2020206209A JP2020206209A JP2022093105A JP 2022093105 A JP2022093105 A JP 2022093105A JP 2020206209 A JP2020206209 A JP 2020206209A JP 2020206209 A JP2020206209 A JP 2020206209A JP 2022093105 A JP2022093105 A JP 2022093105A
Authority
JP
Japan
Prior art keywords
fuel injection
vortex chamber
injector
diesel engine
injection hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020206209A
Other languages
Japanese (ja)
Other versions
JP7432494B2 (en
Inventor
雄介 宮田
Yusuke Miyata
順太郎 長井
Juntaro Nagai
新吾 松延
Shingo Matsunobe
莉菜 金子
Rina Kaneko
洋樹 尾曽
Hiroki Oso
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2020206209A priority Critical patent/JP7432494B2/en
Publication of JP2022093105A publication Critical patent/JP2022093105A/en
Application granted granted Critical
Publication of JP7432494B2 publication Critical patent/JP7432494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

To provide an electronic fuel injection type diesel engine which can perform precise fuel injection control despite the accumulation of soot on the exit of a fuel injection hole of a fuel injector.SOLUTION: An electronic fuel injection type diesel engine includes a vortex chamber 2, a fuel injector 7 directed to the vortex chamber 2, a communication port led out of the vortex chamber 2, and a main combustion chamber communicated with the vortex chamber 2 via the communication port. On an injector tip surface 8 facing the vortex chamber 2, a fuel injection hole 9 is provided. The fuel injection hole 9 is formed in a flare tapered shape. When the total opening area of an inlet opening 9a of the fuel injection hole 9 of one fuel injector 7 is A square mm and the displacement of one cylinder is C cubic mm, a value of A/C which is obtained by dividing the former value A by the latter value C is 0.5×10-6-1.0×10-6.SELECTED DRAWING: Figure 2

Description

本発明は、電子燃料噴射式ディーゼルエンジンに関し、詳しくは、燃料インジェクタの燃料噴射孔の出口での煤の堆積に拘わらず、精密な燃料噴射制御が行える電子燃料噴射式ディーゼルエンジンに関する。 The present invention relates to an electronic fuel injection diesel engine, and more particularly to an electronic fuel injection diesel engine capable of precise fuel injection control regardless of the accumulation of soot at the outlet of the fuel injection hole of the fuel injector.

従来、電子燃料噴射式ディーゼルエンジンとして、渦室と、渦室に向けられた燃料インジェクタと、渦室から導出された連通口と、連通口を介して渦室と連通する主燃焼室を備えたものがある(例えば、特許文献1参照)。 Conventionally, as an electronic fuel injection diesel engine, it is equipped with a vortex chamber, a fuel injector directed to the vortex chamber, a communication port derived from the vortex chamber, and a main combustion chamber that communicates with the vortex chamber via the communication port. There are some (see, for example, Patent Document 1).

特開2020-67065号公報(図1参照)Japanese Unexamined Patent Publication No. 2020-67065 (see FIG. 1)

《問題点》 煤で燃料噴射制御の精度が低下するおそれがある。
特許文献1のエンジンでは、燃料インジェクタの燃料噴射孔が単一径の円筒形状である場合、燃料噴射孔の出口で堆積した少量の煤の堆積物で燃料噴射が邪魔され、煤で燃料噴射制御の精度が低下するおそれがある。
<< Problems >> Soot may reduce the accuracy of fuel injection control.
In the engine of Patent Document 1, when the fuel injection hole of the fuel injector has a single-diameter cylindrical shape, the fuel injection is hindered by a small amount of soot deposit deposited at the outlet of the fuel injection hole, and the fuel injection control is performed by the soot. There is a risk that the accuracy of the fuel will decrease.

本発明の課題は、燃料インジェクタの燃料噴射孔の出口での煤の堆積に拘わらず、精密な燃料噴射制御が行える電子燃料噴射式ディーゼルエンジンを提供することにある。 An object of the present invention is to provide an electronic fuel injection type diesel engine capable of precise fuel injection control regardless of the accumulation of soot at the outlet of the fuel injection hole of the fuel injector.

本願発明の主要な構成は、次の通りである。
図1(A)に例示するように、渦室(2)と、渦室(2)に向けられた燃料インジェクタ(7)と、渦室(2)から導出された連通口(5)と、連通口(5)を介して渦室(2)と連通する主燃焼室(4)を備え、
図1(B),2(B),3(B)に例示するように、渦室(2)に臨むインジェクタ先端面(8)に燃料噴射孔(9)を備え、
図2(A),3(A)に例示するように、燃料噴射孔(9)は先拡がりテーパ形状とされ、
図1(B),2(B),3(B)に例示するように、燃料インジェクタ(7)の1本につき複数個の燃料噴射孔(9)を備え、
図2(B),3(B)に例示する1本の燃料インジェクタ(7)の燃料噴射孔(9)の入口開口(9a)の総開口面積をA平方mmとし、
1気筒分の排気量をC立方mmとして、
前者の値Aを後者の値Cで除したA/Cの値が0.5×10-6~1.0×10-6となるようにした、ことを特徴とする電子燃料噴射式ディーゼルエンジン。
The main configurations of the present invention are as follows.
As illustrated in FIG. 1 (A), the vortex chamber (2), the fuel injector (7) directed to the vortex chamber (2), and the communication port (5) derived from the vortex chamber (2). It is provided with a main combustion chamber (4) that communicates with the vortex chamber (2) via the communication port (5).
As illustrated in FIGS. 1 (B), 2 (B), and 3 (B), a fuel injection hole (9) is provided on the injector tip surface (8) facing the vortex chamber (2).
As illustrated in FIGS. 2 (A) and 2 (A), the fuel injection hole (9) has a tapered shape and has a tapered shape.
As illustrated in FIGS. 1B, 2B, and 3B, each fuel injector (7) is provided with a plurality of fuel injection holes (9).
The total opening area of the inlet opening (9a) of the fuel injection hole (9) of one fuel injector (7) exemplified in FIGS. 2 (B) and 3 (B) is defined as A square mm.
With the displacement of one cylinder as C cubic mm,
An electronic fuel injection diesel engine characterized in that the value of A / C obtained by dividing the former value A by the latter value C is 0.5 × 10 -6 to 1.0 × 10 -6 . ..

本願発明は、次の効果を奏する。
《効果1》 煤の堆積に拘わらず、精密な燃料噴射制御が行える。
このエンジンでは、図2(A),3(A)に例示するように、燃料噴射孔(9)は先拡がりテーパ形状であるため、燃料噴射孔(9)の出口で煤が堆積しても、燃料噴射が邪魔され難く、燃料インジェクタ(7)の燃料噴射孔(9)の出口での煤の堆積に拘わらず、精密な燃料噴射制御が行える。
《効果2》 渦室(2)内で煤が発生し難い。
図1(B),2(B),3(B)に例示するように、このエンジンでは、燃料インジェクタ(7)の1本につき複数個の燃料噴射孔(9)を備えているため、図2(B),3(B)に示す噴射燃料(13)が渦室(2)内に広く分散し、圧縮空気と噴射燃料(13)の混合が良好になり、渦室(2)内で煤が発生し難い。
The invention of the present application has the following effects.
<< Effect 1 >> Precise fuel injection control can be performed regardless of soot accumulation.
In this engine, as illustrated in FIGS. 2 (A) and 2 (A), the fuel injection hole (9) has a tapered shape, so that even if soot is accumulated at the outlet of the fuel injection hole (9). , Fuel injection is not easily disturbed, and precise fuel injection control can be performed regardless of the accumulation of soot at the outlet of the fuel injection hole (9) of the fuel injector (7).
<< Effect 2 >> Soot is unlikely to be generated in the vortex chamber (2).
As illustrated in FIGS. 1 (B), 2 (B), and 3 (B), since this engine has a plurality of fuel injection holes (9) for each fuel injector (7), FIG. The injection fuel (13) shown in 2 (B) and 3 (B) is widely dispersed in the vortex chamber (2), the mixture of the compressed air and the injection fuel (13) becomes good, and the injection fuel (13) becomes good in the vortex chamber (2). It is hard to generate soot.

《効果3》 必要な出力が得られると共に、渦室(2)内で煤が発生し難い。
このエンジンでは、A/Cの値が0.5×10-6~1.0×10-6となるようにするため、次の効果が得られる。
A/Cの値が0.5×10-6未満の場合には、燃料噴射孔(9)の入口開口(9a)の総開口面積Aが不足し、必要な出力が得られないことがある。A/Cの値が1.0×10-6を越える場合には、燃料噴射孔(9)の入口開口(9a)の総開口面積Aが過大になり、燃料噴射速度が遅く、渦室(2)内で噴射燃料(13)の油滴が微細化せず、圧縮空気と噴射燃料の混合が不良になり、渦室(2)内で煤が発生し易くなる。
これに対し、A/Cの値が0.5×10-6~1.0×10-6の場合には、必要な出力が得られると共に、渦室(2)内で煤が発生し難い。
<< Effect 3 >> The required output can be obtained, and soot is less likely to be generated in the vortex chamber (2).
In this engine, since the A / C value is set to 0.5 × 10 -6 to 1.0 × 10 -6 , the following effects can be obtained.
If the A / C value is less than 0.5 × 10-6 , the total opening area A of the inlet opening (9a) of the fuel injection hole (9) may be insufficient and the required output may not be obtained. .. When the value of A / C exceeds 1.0 × 10-6 , the total opening area A of the inlet opening (9a) of the fuel injection hole (9) becomes excessive, the fuel injection speed is slow, and the vortex chamber ( The oil droplets of the injected fuel (13) do not become fine in 2), the mixture of the compressed air and the injected fuel becomes poor, and soot is likely to be generated in the vortex chamber (2).
On the other hand, when the A / C value is 0.5 × 10 -6 to 1.0 × 10 -6 , the required output can be obtained and soot is less likely to be generated in the vortex chamber (2). ..

本発明の実施形態に係る電子燃料噴射式ディーゼルエンジンを説明する図で、図1(A)は渦室とその周辺部分の立断面図、図1(B)は図1(A)のB方向矢視拡大図、図1(C)は図1(A)のC方向矢視拡大図、図1(D)は図1(A)のD方向矢視拡大図である。In the figure explaining the electronic fuel injection type diesel engine which concerns on embodiment of this invention, FIG. 1A is a vertical sectional view of a vortex chamber and its peripheral portion, and FIG. An enlarged view of the arrow, FIG. 1 (C) is an enlarged view of the arrow in the C direction of FIG. 1 (A), and FIG. 1 (D) is an enlarged view of the arrow in the D direction of FIG. 1 (A). 図1のエンジンに用いる燃料インジェクタの燃料噴射孔の基本例を説明する図で、図2(A)は図1(A)のIIA-IIA線断面図、図2(B)は図1(B)相当図、図2(C)は図1(C)相当図である。It is a figure explaining the basic example of the fuel injection hole of the fuel injector used for the engine of FIG. 1, FIG. 2A is a sectional view taken along the line IIA-IIA of FIG. 1A, and FIG. ) Corresponding diagram, FIG. 2 (C) is a corresponding diagram of FIG. 1 (C). 図1のエンジンに用いる燃料インジェクタの燃料噴射孔の変形例を説明する図で、図3(A)は図2(A)相当図、図3(B)は図2(B)相当図、図3(C)は図3(C)相当図である。It is a figure explaining the deformation example of the fuel injection hole of the fuel injector used for the engine of FIG. 1, FIG. 3 (C) is a diagram corresponding to FIG. 3 (C). 燃料インジェクタの燃料噴射孔の第1比較例を説明する図2(A)相当図である。It is a figure corresponding to FIG. 2A explaining the first comparative example of the fuel injection hole of a fuel injector. 燃料インジェクタの燃料噴射孔の第2比較例を説明する図2(A)相当図である。It is a figure corresponding to FIG. 2A explaining the second comparative example of the fuel injection hole of a fuel injector. 燃料インジェクタの燃料噴射孔の第3比較例を説明する図で、図6(A)は図2(A)相当図、図6(B)は図2(B)相当図、図6(C)は図2(C)相当図である。6 (A) is a diagram corresponding to FIG. 2 (A), FIG. 6 (B) is a diagram corresponding to FIG. 2 (B), and FIG. 6 (C) is a diagram illustrating a third comparative example of a fuel injection hole of a fuel injector. Is a diagram corresponding to FIG. 2C.

図1から図3は本発明の実施形態に係る電子燃料噴射式ディーゼルエンジンを説明する図で、図1は実施形態、図2は実施形態で用いる燃料噴射孔の基本例、図3は実施形態で用いる燃料噴射孔の変形例である。
また、図4~6は、本発明の実施形態で用いる燃料噴射孔の基本例や変形例と比較する燃料噴射孔の比較例を説明する図で、図4は第1比較例、図5は第2比較例、図6は第3比較例である。
1 to 3 are views for explaining an electronic fuel injection diesel engine according to an embodiment of the present invention, FIG. 1 is an embodiment, FIG. 2 is a basic example of a fuel injection hole used in the embodiment, and FIG. 3 is an embodiment. This is a modification of the fuel injection hole used in.
4 to 6 are views for explaining a comparative example of the fuel injection hole to be compared with a basic example and a modification of the fuel injection hole used in the embodiment of the present invention, FIG. 4 is a first comparative example, and FIG. 5 is a diagram. The second comparative example and FIG. 6 are the third comparative example.

図1に示す本発明の実施形態では、立形直列多気筒の電子燃料噴射式ディーゼルエンジンが用いられている。
図1(A)に示すように、このエンジンは、シリンダ(3)と、シリンダ(3)の上部に組み付けられたシリンダヘッド(1)と、シリンダ(3)に内嵌されたピストン(14)を備えている。
In the embodiment of the present invention shown in FIG. 1, a vertical in-line multi-cylinder electronic fuel injection diesel engine is used.
As shown in FIG. 1 (A), this engine includes a cylinder (3), a cylinder head (1) assembled on the upper part of the cylinder (3), and a piston (14) fitted in the cylinder (3). It is equipped with.

図1(A)に示すように、このエンジンは、渦室(2)と、渦室(2)に向けられた燃料インジェクタ(7)と、渦室(2)から導出された連通口(5)と、連通口(5)を介して渦室(2)と連通する主燃焼室(4)を備えている。
このエンジンは、4サイクルエンジンで、このエンジンでは、圧縮行程の上死点付近で主燃焼室(4)から連通口(5)を介して渦室(2)に圧縮空気が押し込まれ、渦室(2)で発生した圧縮空気の旋回流(2a)に燃料インジェクタ(7)から図2(A)に示す噴射燃料(13)が噴射され、渦室(2)での燃焼で発生した燃焼ガスが図1(A)に示す連通口(5)から主燃焼室(4)に噴出し、燃焼ガス中に含まれる未燃燃料が主燃焼室(4)内の空気と混合されて燃焼する。
燃料インジェクタ(7)は、電子制御され、所定のタイミングで所定量の噴射燃料(13)が噴射される。
As shown in FIG. 1 (A), this engine has a vortex chamber (2), a fuel injector (7) directed to the vortex chamber (2), and a communication port (5) derived from the vortex chamber (2). ) And a main combustion chamber (4) communicating with the vortex chamber (2) via the communication port (5).
This engine is a 4-cycle engine. In this engine, compressed air is pushed from the main combustion chamber (4) to the vortex chamber (2) through the communication port (5) near the top dead point of the compression stroke, and the vortex chamber is used. The injected fuel (13) shown in FIG. 2 (A) is injected from the fuel injector (7) into the swirling flow (2a) of the compressed air generated in (2), and the combustion gas generated by combustion in the vortex chamber (2). Is ejected from the communication port (5) shown in FIG. 1 (A) into the main combustion chamber (4), and the unburned fuel contained in the combustion gas is mixed with the air in the main combustion chamber (4) and burned.
The fuel injector (7) is electronically controlled, and a predetermined amount of injection fuel (13) is injected at a predetermined timing.

図1(A)に示すように、ピストン(14)にはピストンリング(14a)が外嵌され、シリンダ中心軸線(3a)側を前側、シリンダ周壁(3b)側を後側として、ピストン(14)の上面に、前側に近づくにつれて次第に浅くなるガス案内溝(14b)を備えている。
渦室(2)は、球形で、シリンダヘッド(1)内に形成されている。
連通口(5)は、シリンダヘッド(1)に内嵌された口金(15)に形成され、主燃焼室(4)から後斜め上向きで渦室(2)に向けられている。連通口(5)の主燃焼室(4)側の開口(5d)はガス案内溝(14b)の後端部(14c)の真上に配置されている。
主燃焼室(4)は、シリンダ(3)内でシリンダヘッド(1)とピストン(14)で上下から挟まれた空間で形成されている。
シリンダ(3)とシリンダヘッド(1)及び口金(15)の間にはガスケット(16)が挟み付けられている。
As shown in FIG. 1A, a piston ring (14a) is externally fitted to the piston (14), and the piston (14) has the cylinder center axis (3a) side as the front side and the cylinder peripheral wall (3b) side as the rear side. ) Is provided with a gas guide groove (14b) that gradually becomes shallower as it approaches the front side.
The vortex chamber (2) is spherical and is formed in the cylinder head (1).
The communication port (5) is formed in a base (15) fitted in the cylinder head (1), and is directed from the main combustion chamber (4) diagonally upward to the vortex chamber (2). The opening (5d) on the main combustion chamber (4) side of the communication port (5) is arranged directly above the rear end portion (14c) of the gas guide groove (14b).
The main combustion chamber (4) is formed in a space sandwiched between the cylinder head (1) and the piston (14) from above and below in the cylinder (3).
A gasket (16) is sandwiched between the cylinder (3), the cylinder head (1), and the base (15).

図1(A)に示すように、シリンダヘッド(1)には、その上面(1a)から後斜め上向きにインジェクタ挿通スリーブ(10)が突出され、インジェクタ挿通スリーブ(10)とシリンダヘッド(1)内に亘り、インジェクタ挿通スリーブ(10)の突出端部(10a)から渦室(2)に至るインジェクタ挿通孔(6)が形成されている。
図1(A)に示すように、燃料インジェクタ(7)は、径大のインジェクタ本体部(7c)と、インジェクタ本体部(7c)から渦室(2)に向けて突出する径小のノズル部(7d)と、インジェクタ本体部(7c)とノズル部(7d)の段差部分に形成された押圧部(7e)を備えている。
燃料インジェクタ(7)は、インジェクタ挿通孔(6)内に挿入され、インジェクタ先端面(8)が渦室(2)に臨んでいる。
燃料インジェクタ(7)は、押圧力(11)で挿入方向に押圧され、燃料インジェクタ(7)にかかる押圧力(11)が押圧部(7e)とスペーサ(12)を介してインジェクタ挿通スリーブ(10)の突出端部(10a)で受け止められている。
ノズル部(7d)にはガスシール(7f)が外嵌され、このガスシール(7f)によりインジェクタ挿通孔(6)内でノズル部(7d)の周囲が密封され、渦室(2)で発生した燃焼ガスがインジェクタ挿通孔(6)を経て外側に漏れないようにしている。
インジェクタ本体部(7c)には電磁コイル等の電子式動弁機構が内蔵され、ノズル部(7d)には電子式動弁機構で駆動される弁体が収容されている。
As shown in FIG. 1 (A), the injector insertion sleeve (10) protrudes diagonally upward from the upper surface (1a) of the cylinder head (1), and the injector insertion sleeve (10) and the cylinder head (1). An injector insertion hole (6) is formed from the protruding end portion (10a) of the injector insertion sleeve (10) to the vortex chamber (2).
As shown in FIG. 1A, the fuel injector (7) has a large-diameter injector main body (7c) and a small-diameter nozzle portion protruding from the injector main body (7c) toward the vortex chamber (2). It is provided with (7d) and a pressing portion (7e) formed in a stepped portion between the injector main body portion (7c) and the nozzle portion (7d).
The fuel injector (7) is inserted into the injector insertion hole (6), and the injector tip surface (8) faces the vortex chamber (2).
The fuel injector (7) is pressed in the insertion direction by the pressing force (11), and the pressing force (11) applied to the fuel injector (7) is applied to the injector insertion sleeve (10) via the pressing portion (7e) and the spacer (12). ) Is received by the protruding end portion (10a).
A gas seal (7f) is externally fitted to the nozzle portion (7d), and the circumference of the nozzle portion (7d) is sealed in the injector insertion hole (6) by this gas seal (7f), which is generated in the vortex chamber (2). The generated combustion gas is prevented from leaking to the outside through the injector insertion hole (6).
An electronic valve mechanism such as an electromagnetic coil is built in the injector main body (7c), and a valve body driven by the electronic valve mechanism is housed in the nozzle (7d).

図1(B)に示すように、燃料インジェクタ(7)は、渦室(2)に臨むインジェクタ先端面(8)に燃料噴射孔(9)を備えている。
図2(A),3(A)に示すように、燃料噴射孔(9)は先拡がりテーパ形状とされている。
図1(A)に示すように、インジェクタ先端面(8)の一部が渦室(2)内に突出している。
このエンジンでは、インジェクタ先端面(8)の全部が渦室(2)内に突出していてもよい。
As shown in FIG. 1 (B), the fuel injector (7) is provided with a fuel injection hole (9) on the injector tip surface (8) facing the vortex chamber (2).
As shown in FIGS. 2 (A) and 2 (A), the fuel injection hole (9) has a widened tapered shape.
As shown in FIG. 1 (A), a part of the injector tip surface (8) protrudes into the vortex chamber (2).
In this engine, the entire injector tip surface (8) may protrude into the vortex chamber (2).

このエンジンでは、図2(A),3(A)に示すように、燃料噴射孔(9)は先拡がりテーパ形状であるため、燃料噴射孔(9)の出口で煤が堆積しても、燃料噴射が邪魔され難く、燃料インジェクタ(7)の燃料噴射孔(9)の出口での煤の堆積に拘わらず、精密な燃料噴射制御が行える。 In this engine, as shown in FIGS. 2 (A) and 2 (A), the fuel injection hole (9) has a tapered shape, so that even if soot is accumulated at the outlet of the fuel injection hole (9), Fuel injection is not easily disturbed, and precise fuel injection control can be performed regardless of the accumulation of soot at the outlet of the fuel injection hole (9) of the fuel injector (7).

また、このエンジンでは、図1(A)に示すように、インジェクタ先端面(8)の一部または全部が渦室(2)内に突出しているため、図2(A),3(A)に示す燃料噴射孔(9)の出口付近の燃焼ガスが図1(A)に示す旋回流(2a)で吹き流され易く、燃焼ガス中の煤が燃料噴射孔(9)の出口で成長し難い。 Further, in this engine, as shown in FIG. 1 (A), a part or all of the injector tip surface (8) protrudes into the vortex chamber (2), and therefore, FIGS. 2 (A) and 3 (A). The combustion gas near the outlet of the fuel injection hole (9) shown in FIG. 1 (A) is easily blown off by the swirling flow (2a) shown in FIG. 1 (A), and soot in the combustion gas grows at the outlet of the fuel injection hole (9). hard.

図1(A)(B)に示すように、インジェクタ先端面(8)は、燃料噴射孔(9)をあけた最先端突出面(8a)と、その周囲に設けられた平坦な渦流ガイド面(8b)を備えている。
図1(A)に示すように、渦流ガイド面(8b)の一部は、渦室(2)内に突出している。
このエンジンでは、渦流ガイド面(8b)の全部が、渦室(2)内に突出していてもよい。
As shown in FIGS. 1A and 1B, the injector tip surface (8) has a cutting-edge protruding surface (8a) having a fuel injection hole (9) and a flat eddy current guide surface provided around the tip surface (8a). (8b) is provided.
As shown in FIG. 1 (A), a part of the vortex flow guide surface (8b) protrudes into the vortex chamber (2).
In this engine, the entire vortex flow guide surface (8b) may protrude into the vortex chamber (2).

図1(A)に示すように、このエンジンでは、渦流ガイド面(8b)の少なくとも一部が、渦室(2)内に突出しているため、渦室(2)内を旋回する旋回流(2a)が渦流ガイド面(8b)で案内され、旋回流(2a)が渦室(2)内をスムーズに旋回し、圧縮空気と噴射燃料(13)の混合が良好になり、渦室(2)内で煤が発生し難い。
インジェクタ先端面(8)の最先端突出面(8a)は、突球面状に形成されている。
As shown in FIG. 1 (A), in this engine, since at least a part of the vortex flow guide surface (8b) protrudes into the vortex chamber (2), the swirling flow (2) swirls in the vortex chamber (2). 2a) is guided by the vortex guide surface (8b), the swirling flow (2a) swirls smoothly in the vortex chamber (2), the mixture of the compressed air and the injected fuel (13) becomes good, and the vortex chamber (2) ) Is less likely to generate soot.
The most advanced protruding surface (8a) of the injector tip surface (8) is formed in a protruding spherical shape.

図1(B),2(B),3(B)に示すように、このエンジンでは、燃料インジェクタ(7)1本につき複数個の燃料噴射孔(9)を備えている。
このため、図2(B),3(B)に示す噴射燃料(13)が渦室(2)内に広く分散し、圧縮空気と噴射燃料(13)の混合が良好になり、渦室(2)内で煤が発生し難い。
As shown in FIGS. 1B, 2B, and 3B, this engine is provided with a plurality of fuel injection holes (9) for each fuel injector (7).
Therefore, the injected fuel (13) shown in FIGS. 2 (B) and 3 (B) is widely dispersed in the vortex chamber (2), the compressed air and the injected fuel (13) are mixed well, and the vortex chamber ( It is difficult for soot to be generated in 2).

図1(B),2(B),3(B)に示すように、燃料噴射孔(9)は、燃料インジェクタ(7)1本につき6個設けられている。
このエンジンでは、燃料噴射孔(9)は、燃料インジェクタ(7)1本につき2~6個設けるのが望ましい。
As shown in FIGS. 1B, 2B, and 3B, six fuel injection holes (9) are provided for each fuel injector (7).
In this engine, it is desirable to provide 2 to 6 fuel injection holes (9) for each fuel injector (7).

図1(B)に示す燃料噴射孔(9)の基本例では、1本の燃料インジェクタ(7)の燃料噴射孔(9)の入口開口(9a)6個の総開口面積をA平方mmとし、1気筒分の排気量をC立方mmとして、前者の値Aを後者の値Cで除したA/Cの値が0.75×10-6となるようにした。具体的には、燃料噴射孔(9)の入口開口(9a)6個の総開口面積Aを0.224平方mm、1気筒分の排気量Cを299000立方mmとした。
このエンジンでは、A/Cの値が0.5×10-6~1.0×10-6となるようにするのが望ましい。
In the basic example of the fuel injection hole (9) shown in FIG. 1 (B), the total opening area of the six inlet openings (9a) of the fuel injection hole (9) of one fuel injector (7) is A square mm. The amount of fuel for one cylinder is C cubic mm, and the value of A / C obtained by dividing the former value A by the latter value C is 0.75 × 10-6 . Specifically, the total opening area A of the six inlet openings (9a) of the fuel injection hole (9) was 0.224 square mm, and the displacement C for one cylinder was 299000 cubic mm.
In this engine, it is desirable that the A / C value is 0.5 × 10 -6 to 1.0 × 10 -6 .

A/Cの値が0.5×10-6未満の場合には、燃料噴射孔(9)の入口開口(9a)の総開口面積Aが不足し、必要な出力が得られないことがある。A/Cの値が1.0×10-6を越える場合には、燃料噴射孔(9)の入口開口(9a)の総開口面積Aが過大になり、燃料噴射速度が遅く、渦室(2)内で噴射燃料(13)の油滴が微細化せず、圧縮空気と噴射燃料の混合が不良になり、渦室(2)内で煤が発生し易くなる。
これに対し、A/Cの値が0.5×10-6~1.0×10-6の場合には、必要な出力が得られると共に、渦室(2)内で煤が発生し難い。
If the A / C value is less than 0.5 × 10-6 , the total opening area A of the inlet opening (9a) of the fuel injection hole (9) may be insufficient and the required output may not be obtained. .. When the value of A / C exceeds 1.0 × 10-6 , the total opening area A of the inlet opening (9a) of the fuel injection hole (9) becomes excessive, the fuel injection speed is slow, and the vortex chamber ( The oil droplets of the injected fuel (13) do not become fine in 2), the mixture of the compressed air and the injected fuel becomes poor, and soot is likely to be generated in the vortex chamber (2).
On the other hand, when the A / C value is 0.5 × 10 -6 to 1.0 × 10 -6 , the required output can be obtained and soot is less likely to be generated in the vortex chamber (2). ..

図1(B)に示す燃料噴射孔(9)の基本例では、1本の燃料インジェクタ(7)の燃料噴射孔(9)の出口開口(9b)6個の総開口面積をB平方mmとし、1本の燃料インジェクタ(7)の燃料噴射孔(9)の入口開口(9a)6個の総開口面積をA平方mmとして、前者の値Bを後者の値Aで除したB/Aの値が1.26となるようにした。具体的には、燃料噴射孔(9)の入口開口(9a)6個の総開口面積Aを上記のように、0.224平方mm、燃料噴射孔(9)の出口開口(9b)6個の総開口面積Bを0.282平方mmとした。
このエンジンでは、B/Aの値が1.08~1.44となるようにするのが望ましい。
In the basic example of the fuel injection hole (9) shown in FIG. 1 (B), the total opening area of the six outlet openings (9b) of the fuel injection hole (9) of one fuel injector (7) is set to B square mm. 1. The total opening area of 6 inlet openings (9a) of the fuel injection holes (9) of one fuel injector (7) is A square mm, and the former value B is divided by the latter value A. The value was set to 1.26. Specifically, as described above, the total opening area A of the six inlet openings (9a) of the fuel injection hole (9) is 0.224 mm2, and the six outlet openings (9b) of the fuel injection hole (9) are six. The total opening area B of the above was 0.282 mm2.
In this engine, it is desirable that the B / A value is 1.08 to 1.44.

B/Aの値が1.08未満の場合には、燃料噴射孔(9)の入口開口(9a)の総開口面積Aに対して出口開口(9b)の総開口面積Bが小さ過ぎ、燃料噴射孔(9)の出口で堆積した少量の煤で燃料噴射が邪魔され、燃料噴射制御の精度が低下するおそれがある。
B/Aの値が1.44を超える場合には、燃料噴射孔(9)の入口開口(9a)の総開口面積Aに対して出口開口(9b)の総開口面積Bが大き過ぎ、燃料噴射孔(9)の出口で煤の堆積物の成長速度が速く、多量の煤の堆積物で燃料噴射が邪魔され、燃料噴射制御の精度が低下するおそれがある。
これに対し、B/Aの値が1.08~1.44である場合には、少量の煤の堆積物では燃料噴射が邪魔されないうえ、燃料噴射孔(9)の出口での煤の堆積物の成長速度が遅く、燃料噴射制御の精度が低下し難い。
When the value of B / A is less than 1.08, the total opening area B of the outlet opening (9b) is too small with respect to the total opening area A of the inlet opening (9a) of the fuel injection hole (9), and the fuel A small amount of soot deposited at the outlet of the injection hole (9) may interfere with fuel injection and reduce the accuracy of fuel injection control.
When the B / A value exceeds 1.44, the total opening area B of the outlet opening (9b) is too large for the total opening area A of the inlet opening (9a) of the fuel injection hole (9), and the fuel The growth rate of soot deposits is high at the outlet of the injection hole (9), and a large amount of soot deposits may interfere with fuel injection, resulting in a decrease in the accuracy of fuel injection control.
On the other hand, when the B / A value is 1.08 to 1.44, the fuel injection is not hindered by a small amount of soot deposits, and the soot deposits at the outlet of the fuel injection hole (9). The growth rate of the object is slow, and the accuracy of fuel injection control does not easily decrease.

B/Aの値が1.44を超える場合に、燃料噴射孔(9)の出口で煤の堆積物の成長速度が速くなるのに対し、1.44以下でその成長速度が遅くなる理由は、次のように推定される。すなわち、前者では燃料噴射孔(9)の出口で噴射燃料(13)の周囲に形成される隙間(9)が過大になり、この隙間(9)に煤を含む燃焼ガスが多量に流入し、煤の堆積物が急速に成長するのに対し、後者では燃料噴射孔(9)の出口で噴射燃料(1)の周囲に形成される隙間(9)が適度な大きさになり、煤の堆積物の成長速度と噴射燃料(13)による煤の堆積物の除去速度が拮抗し、燃料噴射孔(9)の出口で成長した煤の堆積物が直ぐに噴射燃料で除去されるためと推定される。 The reason why the growth rate of soot deposits increases at the outlet of the fuel injection hole (9) when the B / A value exceeds 1.44, whereas the growth rate slows down at 1.44 or less. , Is estimated as follows. That is, in the former, the gap (9) formed around the injected fuel (13) at the outlet of the fuel injection hole (9) becomes excessive, and a large amount of combustion gas containing soot flows into this gap (9). While the soot deposit grows rapidly, in the latter, the gap (9) formed around the injected fuel (1) at the outlet of the fuel injection hole (9) becomes an appropriate size, and the soot deposits. It is presumed that the growth rate of the object and the removal rate of the soot deposit by the injection fuel (13) antagonize each other, and the soot deposit grown at the outlet of the fuel injection hole (9) is immediately removed by the injection fuel. ..

図2(C)に示すように、このエンジンでは、インジェクタ中心軸線(7a)の渦室側延長線(7b)が連通口(5)を通過し、図2(B)に示すように、複数個(6個)の燃料噴射孔(9)は、インジェクタ中心軸線(7a)の周囲に配置され、図2(C)に示すように、複数個(6個)の燃料噴射孔(9)の噴射孔中心軸線(9c)の渦室側延長線(9d)の全本数(6本)が連通口(5)を通過するようにしている。
このエンジンでは、渦室側延長線(9d)の全本数(6本)の一部のみが連通口(5)を通過するようにしてもよい。
このエンジンでは、多くの噴射燃料(13)が連通口(5)を介して主燃焼室(4)に噴射されるため、渦室(2)での過剰な燃焼が防止され、渦室(2)で煤が発生し難い。
複数個(6個)の燃料噴射孔(9)は、インジェクタ中心軸線(7a)の周囲で、インジェクタ先端面(8)の最先端突出面(8a)の周方向に一定間隔を保持して配置されている。
As shown in FIG. 2C, in this engine, the vortex chamber side extension line (7b) of the injector central axis (7a) passes through the communication port (5), and as shown in FIG. The (6) fuel injection holes (9) are arranged around the injector central axis (7a), and as shown in FIG. 2 (C), the plurality (6) fuel injection holes (9) of the plurality of (6) fuel injection holes (9). The total number (6) of the vortex chamber side extension lines (9d) of the injection hole central axis (9c) passes through the communication port (5).
In this engine, only a part of the total number (6) of the extension lines (9d) on the vortex chamber side may pass through the communication port (5).
In this engine, a large amount of injection fuel (13) is injected into the main combustion chamber (4) through the communication port (5), so that excessive combustion in the vortex chamber (2) is prevented and the vortex chamber (2) is prevented. ) Is less likely to generate soot.
A plurality (6) fuel injection holes (9) are arranged around the central axis (7a) of the injector at regular intervals in the circumferential direction of the tip protruding surface (8a) of the injector tip surface (8). Has been done.

図3に示す燃料噴射孔(9)の変形例では、図3(C)に示すように、インジェクタ中心軸線(7a)の渦室側延長線(7b)は連通口(5)を通過し、図3(B)に示すように、各燃料インジェクタ(7)の複数個(6個)の燃料噴射孔(9)は、各インジェクタ中心軸線(7a)の周囲に配置され、図3(C)に示すように、各燃料インジェクタ(7)の複数個(6個)の燃料噴射孔(9)の噴射孔中心軸線(9c)の渦室側延長線(9d)の一部本数(5本)が連通口(5)の渦室側開口(5a)の周縁部(5b)に突き当たるようにしている。残り本数(1本)は、連通口(5)を貫通している。
このエンジンでは、全本数(6本)が連通口(5)の渦室側開口(5a)の周縁部(5b)に突き当たるようにしてもよい。
このエンジンでは、多くの噴射燃料(13)が連通口(5)を介して主燃焼室(4)に噴射されるため、渦室(2)での過剰な燃焼が防止され、渦室(2)で煤が発生し難い。
In the modified example of the fuel injection hole (9) shown in FIG. 3, as shown in FIG. 3 (C), the vortex chamber side extension line (7b) of the injector central axis (7a) passes through the communication port (5). As shown in FIG. 3B, a plurality (6) fuel injection holes (9) of each fuel injector (7) are arranged around the central axis (7a) of each injector, and FIG. 3C is shown. As shown in the above, a part number (5) of the vortex chamber side extension line (9d) of the injection hole center axis (9c) of the plurality (6) fuel injection holes (9) of each fuel injector (7). Abuts on the peripheral edge (5b) of the vortex chamber side opening (5a) of the communication port (5). The remaining number (1) penetrates the communication port (5).
In this engine, the entire number (6) may abut on the peripheral edge (5b) of the vortex chamber side opening (5a) of the communication port (5).
In this engine, a large amount of injection fuel (13) is injected into the main combustion chamber (4) through the communication port (5), so that excessive combustion in the vortex chamber (2) is prevented and the vortex chamber (2) is prevented. ) Is less likely to generate soot.

図3(C)に示すように、燃料噴射孔(9)の変形例では、インジェクタ中心軸線(7a)の渦室側延長線(7b)と平行な向きに見て、相互に直交する前後方向と横方向の各寸法とをそれぞれ1.5倍ずつ拡大した渦室側開口(5a)と相似形の相似形仮想線(5c)を想定し、この相似形仮想線(5c)と渦室側開口(5a)との間の渦室内周面が、燃料噴射孔(9)の噴射孔中心軸線(9c)の渦室側延長線(9d)が突き当たる渦室側開口(5a)の周縁部(5b)とされている。
図3に示す燃料噴射孔(9)の変形例では、図2に示す燃料噴射孔(9)の基本例と同一の要素には、図2と同一の符号を付しておく。図3に示す燃料噴射孔(9)の変形例の要素は、特記しない限り、図2に示す燃料噴射孔(9)の基本例の要素と同一の構造と機能を備える。
As shown in FIG. 3C, in the modified example of the fuel injection hole (9), the front-rear direction orthogonal to each other when viewed in a direction parallel to the vortex chamber side extension line (7b) of the injector central axis (7a). Assuming a vortex chamber side opening (5a) and a similar imaginary line (5c) with each dimension in the lateral direction enlarged by 1.5 times, this similar imaginary line (5c) and the vortex chamber side The peripheral surface of the vortex chamber side opening (5a) where the peripheral surface of the vortex chamber between the opening (5a) and the vortex chamber side extension line (9d) of the injection hole center axis (9c) of the fuel injection hole (9) abuts. It is said to be 5b).
In the modified example of the fuel injection hole (9) shown in FIG. 3, the same elements as the basic example of the fuel injection hole (9) shown in FIG. 2 are designated by the same reference numerals as those in FIG. Unless otherwise specified, the elements of the modified example of the fuel injection hole (9) shown in FIG. 3 have the same structure and function as the elements of the basic example of the fuel injection hole (9) shown in FIG.

渦室(2)での煤の発生状況を調べたところ、複数個(6個)の燃料噴射孔(9)の噴射孔中心軸線(9c)の渦室側延長線(9d)の全本数(6本)が連通口(5)を通過する図2の基本例や、一部本数(5本)が連通口(5)の渦室側開口(5a)の周縁部(5b)に突き当たる図3の変形例は、全本数(6本)が渦室側開口(105a)の周縁部(105b)の外側に突き当たる図6(C)の第3比較例に比べ、渦室(2)での煤の発生量が少なかった。
図6に示す第3比較例では、図2に示す基本例や図3に示す変形例と同一の要素には、図2,3の符号に100を加算した符号を付しておく。図4に示す第1比較例や図5に示す第2比較例でも、同様にしておく。
When the state of soot generation in the vortex chamber (2) was investigated, the total number of the vortex chamber side extension lines (9d) of the injection hole center axis (9c) of the plurality (6) fuel injection holes (9) ( FIG. 3 shows a basic example of FIG. In the modified example of, the soot in the vortex chamber (2) is compared with the third comparative example of FIG. The amount of soot generated was small.
In the third comparative example shown in FIG. 6, the same elements as the basic example shown in FIG. 2 and the modified example shown in FIG. 3 are designated by adding 100 to the reference numerals of FIGS. 2 and 3. The same applies to the first comparative example shown in FIG. 4 and the second comparative example shown in FIG.

図2(A)に示すように、燃料噴射孔(9)の基本例では、インジェクタ中心軸線(7a)に対する各噴射孔中心軸線(9c)(またはその渦室側延長線(9d))の拡開角度(α)は、4°とされている。
図3(A)に示すように、燃料噴射孔(9)の変形例では、インジェクタ中心軸線(7a)に対する各噴射孔中心軸線(9c)(またはその渦室側延長線(9d))の拡開角度(α)は、7°とされている。
このエンジンでは、インジェクタ中心軸線(7a)に対する各噴射孔中心軸線(9c)(またはその渦室側延長線(9d))の拡開角度(α)は、4°~7°とするのが望ましい。
As shown in FIG. 2A, in the basic example of the fuel injection hole (9), the expansion of each injection hole center axis (9c) (or its vortex chamber side extension line (9d)) with respect to the injector center axis (7a). The opening angle (α) is 4 °.
As shown in FIG. 3A, in the modified example of the fuel injection hole (9), the expansion of each injection hole center axis (9c) (or its vortex chamber side extension line (9d)) with respect to the injector center axis (7a). The opening angle (α) is 7 °.
In this engine, it is desirable that the expansion angle (α) of each injection hole center axis (9c) (or its vortex chamber side extension line (9d)) with respect to the injector center axis (7a) is 4 ° to 7 °. ..

拡開角度(α)が4°未満である場合には、複数の噴射燃料(13)の一部同士が重なり合い易く、渦室(2)内で煤が発生し易くなる。
拡開角度(α)が7°を越える場合には、噴射燃料(13)の多くが連通口(5)を通過せずに渦室(2)の内面に衝突し、渦室(2)内での過剰な燃焼で煤が発生し易い。
これに対し、拡開角度(α)が4°~7°である場合には、渦室(2)内で煤が発生し難い。
When the expansion angle (α) is less than 4 °, some of the plurality of injected fuels (13) are likely to overlap each other, and soot is likely to be generated in the vortex chamber (2).
When the expansion angle (α) exceeds 7 °, most of the injected fuel (13) collides with the inner surface of the vortex chamber (2) without passing through the communication port (5), and enters the vortex chamber (2). Soot is likely to be generated due to excessive combustion in.
On the other hand, when the expansion angle (α) is 4 ° to 7 °, soot is unlikely to be generated in the vortex chamber (2).

渦室(2)内での煤の発生状況を調べたところ、拡開角度(α)が4°の基本例(図2)や7°の変形例(図3)では、0°の第1比較例(図4)や1°の第2比較例(図5)や10°の第3比較例(図6)に比べ、渦室(2)内での煤の発生が少なかった。 When the state of soot generation in the vortex chamber (2) was investigated, in the basic example (Fig. 2) where the expansion angle (α) was 4 ° and the modified example (Fig. 3) where the expansion angle (α) was 7 °, the first of 0 °. Compared with the comparative example (FIG. 4), the second comparative example at 1 ° (FIG. 5), and the third comparative example at 10 ° (FIG. 6), soot was generated less in the vortex chamber (2).

図2(A)に示すように、燃料噴射孔(9)の基本例では、各燃料噴射孔(9)のテーパ角度(β)は、12°とされている。
図3(A)に示すように、燃料噴射孔(9)の変形例では、各燃料噴射孔(9)のテーパ角度(β)は、18°とされている。
このエンジンでは、テーパ角度(β)は、12°~18°とするのが望ましい。
As shown in FIG. 2A, in the basic example of the fuel injection hole (9), the taper angle (β) of each fuel injection hole (9) is set to 12 °.
As shown in FIG. 3A, in the modified example of the fuel injection hole (9), the taper angle (β) of each fuel injection hole (9) is set to 18 °.
In this engine, the taper angle (β) is preferably 12 ° to 18 °.

テーパ角度(β)が12°未満の場合には、燃料噴射孔(9)の入口開口(9a)に対して出口開口(9b)が小さ過ぎ、燃料噴射孔(9)の出口で堆積した少量の煤で燃料噴射が邪魔され、燃料噴射制御の精度が低下するおそれがある。
テーパ角度(β)が18°を超える場合には、燃料噴射孔(9)の入口開口(9a)に対して出口開口(9b)が大き過ぎ、燃料噴射孔(9)の出口で煤の堆積物の成長速度が速く、多量の煤の堆積物で燃料噴射が邪魔され、燃料噴射制御の精度が低下するおそれがある。
これに対し、テーパ角度(β)が12°~18°の場合には、少量の煤の堆積物では燃料噴射が邪魔されないうえ、燃料噴射孔(9)の出口での煤の堆積物の成長速度が遅く、燃料噴射制御の精度が低下し難い。
When the taper angle (β) is less than 12 °, the outlet opening (9b) is too small for the inlet opening (9a) of the fuel injection hole (9), and a small amount deposited at the outlet of the fuel injection hole (9). The soot may interfere with fuel injection and reduce the accuracy of fuel injection control.
When the taper angle (β) exceeds 18 °, the outlet opening (9b) is too large for the inlet opening (9a) of the fuel injection hole (9), and soot is deposited at the outlet of the fuel injection hole (9). The growth rate of objects is high, and a large amount of soot deposits interfere with fuel injection, which may reduce the accuracy of fuel injection control.
On the other hand, when the taper angle (β) is 12 ° to 18 °, a small amount of soot deposits do not interfere with fuel injection, and soot deposits grow at the outlet of the fuel injection hole (9). The speed is slow and the accuracy of fuel injection control does not easily decrease.

燃料噴射孔(9)の出口での煤の堆積物の成長速度を調べたところ、テーパ角度(β)が12°の基本例(図2)や18°の変形例(図3)では、0°の第1比較例(図4)や1°の第2比較例(図5)や24°の第3比較例(図6)に比べ、燃料噴射孔(9)の出口での煤の堆積物の成長速度が遅かった。 When the growth rate of soot deposits at the outlet of the fuel injection hole (9) was investigated, it was 0 in the basic example (Fig. 2) where the taper angle (β) was 12 ° and the modified example (Fig. 3) where the taper angle (β) was 18 °. Soot deposits at the outlet of the fuel injection hole (9) compared to the first comparative example of ° (FIG. 4), the second comparative example of 1 ° (FIG. 5), and the third comparative example of 24 ° (FIG. 6). The growth rate of things was slow.

図6の第3比較例のように、テーパ角度(β)が18°を超える場合に、燃料噴射孔(109)の出口で煤の堆積物の成長速度が速くなるのに対し、図2,3の基本例や変形例のように、テーパ角度(β)が18°以下では、その成長速度が遅くなる理由は、次のように推定される。すなわち、前者では燃料噴射孔(109)の出口で噴射燃料(113)の周囲に比較的大きな隙間(109h)が形成され、この大きな隙間(109h)に煤を含む燃焼ガスが多量に流入し、煤の堆積物が急速に成長するのに対し、後者では燃料噴射孔(9)の出口で噴射燃料(13)の周囲の隙間(9h)が適度な大きさになり、煤の堆積物の成長速度と噴射燃料(13)による煤の堆積物の除去速度が拮抗し、燃料噴射孔(9)の出口で成長した煤の堆積物が直ぐに噴射燃料で除去されるためと推定される。 As in the third comparative example of FIG. 6, when the taper angle (β) exceeds 18 °, the growth rate of soot deposits increases at the outlet of the fuel injection hole (109), whereas the growth rate of soot deposits increases in FIG. When the taper angle (β) is 18 ° or less as in the basic example and the modified example of No. 3, the reason why the growth rate becomes slow is presumed as follows. That is, in the former, a relatively large gap (109h) is formed around the injected fuel (113) at the outlet of the fuel injection hole (109), and a large amount of combustion gas containing soot flows into this large gap (109h). While the soot deposit grows rapidly, in the latter, the gap (9h) around the injected fuel (13) becomes an appropriate size at the outlet of the fuel injection hole (9), and the soot deposit grows. It is presumed that the speed and the removal rate of the soot deposit by the injection fuel (13) antagonize each other, and the soot deposit grown at the outlet of the fuel injection hole (9) is immediately removed by the injection fuel.

図2(A)に示すように、燃料噴射孔(9)の基本例では、インジェクタ中心軸線(7a)と、インジェクタ中心軸線(7a)に沿う各噴射孔内周面(9g)との挟角(γ)は、1°とされている。
図3(A)に示すように、燃料噴射孔(9)の変形例では、インジェクタ中心軸線(7a)と、インジェクタ中心軸線(7a)に沿う各噴射孔内周面(9g)との挟角(γ)は、3°とされている。
このエンジンでは、挟角(γ)は、1°~3°とするのが望ましい。
As shown in FIG. 2A, in the basic example of the fuel injection hole (9), the angle between the injector center axis (7a) and the inner peripheral surface (9g) of each injection hole along the injector center axis (7a). (γ) is 1 °.
As shown in FIG. 3A, in the modified example of the fuel injection hole (9), the angle between the injector center axis (7a) and the inner peripheral surface (9g) of each injection hole along the injector center axis (7a). (γ) is set to 3 °.
In this engine, the narrowing angle (γ) is preferably 1 ° to 3 °.

挟角(γ)が1°未満である場合には、複数の噴射燃料(13)の一部同士が重なり合い易く、渦室(2)内で煤が発生し易くなる。拡開角度(α)が3°を越える場合には、噴射燃料(13)の多くが連通口(5)を通過せずに渦室(2)の内面に衝突し、渦室(2)内での過剰な燃焼で煤が発生し易い。
これに対し、挟角(γ)が1°~3°である場合には、渦室(2)内で煤が発生し難い。
When the sandwiching angle (γ) is less than 1 °, some of the plurality of injected fuels (13) are likely to overlap each other, and soot is likely to be generated in the vortex chamber (2). When the expansion angle (α) exceeds 3 °, most of the injected fuel (13) collides with the inner surface of the vortex chamber (2) without passing through the communication port (5), and enters the vortex chamber (2). Soot is likely to be generated due to excessive combustion in.
On the other hand, when the sandwiching angle (γ) is 1 ° to 3 °, soot is unlikely to be generated in the vortex chamber (2).

渦室(2)内での煤の発生状況を調べたところ、挟角(γ)が1°の基本例(図2)や3°の変形例(図3)では、0°の第1比較例(図4)や4°の比較例(図示せず)に比べ渦室(2)内での煤の発生量が少なかった。 When the state of soot generation in the vortex chamber (2) was investigated, the first comparison of 0 ° was performed in the basic example (Fig. 2) with a pinch angle (γ) of 1 ° and the modified example (Fig. 3) with a pinch angle (γ) of 1 °. The amount of soot generated in the vortex chamber (2) was smaller than that of the example (FIG. 4) and the comparative example of 4 ° (not shown).

図2(A)に示すように、燃料噴射孔(9)の基本例では、燃料噴射孔(9)の入口開口縁(9e)は、面取り仕上げされていない先鋭なピン角(9f)を備えている。
図3(A)に示すように、燃料噴射孔(9)の変形例でも、燃料噴射孔(9)の入口開口縁(9e)は、面取り仕上げされていない先鋭なピン角(9f)を備えている。
As shown in FIG. 2A, in the basic example of the fuel injection hole (9), the inlet opening edge (9e) of the fuel injection hole (9) has a sharp pin angle (9f) that is not chamfered. ing.
As shown in FIG. 3A, even in the modified example of the fuel injection hole (9), the inlet opening edge (9e) of the fuel injection hole (9) has a sharp pin angle (9f) that is not chamfered. ing.

このエンジンでは、燃料噴射孔(9)の入口開口縁(9e)は、面取り仕上げされていない先鋭なピン角(9f)を残すことにより、面取り仕上げが不要になり、燃料インジェクタ(7)の製作が容易になる。
また、このエンジンでは、燃料インジェクタ(7)は渦室(2)に燃料を噴射するため、直噴式のものに比べ、燃料噴射圧が低くて済み、燃料の噴射圧によるピン角(9f)の摩耗が起こり難く、これに起因する燃料噴射精度の低下は起こり難い。
In this engine, the inlet opening edge (9e) of the fuel injection hole (9) is left with a sharp pin angle (9f) that has not been chamfered, so that chamfering is not required, and the fuel injector (7) is manufactured. Will be easier.
Further, in this engine, since the fuel injector (7) injects fuel into the vortex chamber (2), the fuel injection pressure can be lower than that of the direct injection type, and the pin angle (9f) due to the fuel injection pressure can be increased. Wear is unlikely to occur, and the resulting deterioration in fuel injection accuracy is unlikely to occur.

上記ピン角(9f)はRが0.1mm以下の先鋭形状の開口縁である。 The pin angle (9f) is a sharp opening edge having an R of 0.1 mm or less.

(2)…渦室、(4)…主燃焼室、(5)…連通口、(5a)…渦室側開口、(5b)…渦室側開口の周縁部、(7)…燃料インジェクタ、(7a)…インジェクタ中心軸線、(7b)…インジェクタ中心軸線の渦室側延長線、(9)…燃料噴射孔、(9a)…入口開口、(9b)…出口開口、(9c)…噴射孔中心軸線、(9d)…噴射孔中心軸線の渦室側延長線、(9e)…入口開口縁、(9f)…ピン角、(9g)…インジェクタ中心軸線に沿う噴射孔内周面、(α)…拡開角度、(β)…テーパ角度、(γ)…挟角。 (2) ... vortex chamber, (4) ... main combustion chamber, (5) ... communication port, (5a) ... vortex chamber side opening, (5b) ... vortex chamber side opening peripheral edge, (7) ... fuel injector, (7a) ... Injector center axis, (7b) ... Injector center axis extension on the vortex chamber side, (9) ... Fuel injection hole, (9a) ... Inlet opening, (9b) ... Outlet opening, (9c) ... Injection hole Central axis, (9d) ... Extension of the central axis of the injection hole on the vortex chamber side, (9e) ... Inlet opening edge, (9f) ... Pin angle, (9g) ... Inner peripheral surface of the injection hole along the central axis of the injector, (α) ) ... Expansion angle, (β) ... Tapered angle, (γ) ... Narrow angle.

Claims (11)

渦室(2)と、渦室(2)に向けられた燃料インジェクタ(7)と、渦室(2)から導出された連通口(5)と、連通口(5)を介して渦室(2)と連通する主燃焼室(4)を備え、
渦室(2)に臨むインジェクタ先端面(8)に燃料噴射孔(9)を備え、
燃料噴射孔(9)は先拡がりテーパ形状とされ、燃料インジェクタ(7)の1本につき複数個の燃料噴射孔(9)を備え、
1本の燃料インジェクタ(7)の燃料噴射孔(9)の入口開口(9a)の総開口面積をA平方mmとし、
1気筒分の排気量をC立方mmとして、
前者の値Aを後者の値Cで除したA/Cの値が0.5×10-6~1.0×10-6となるようにした、ことを特徴とする電子燃料噴射式ディーゼルエンジン。
The vortex chamber (2), the fuel injector (7) directed to the vortex chamber (2), the communication port (5) derived from the vortex chamber (2), and the vortex chamber (5) via the communication port (5). Equipped with a main combustion chamber (4) that communicates with 2)
A fuel injection hole (9) is provided on the injector tip surface (8) facing the vortex chamber (2).
The fuel injection hole (9) has a tapered shape and is provided with a plurality of fuel injection holes (9) for each fuel injector (7).
The total opening area of the inlet opening (9a) of the fuel injection hole (9) of one fuel injector (7) is A square mm.
With the displacement of one cylinder as C cubic mm,
An electronic fuel injection diesel engine characterized in that the value of A / C obtained by dividing the former value A by the latter value C is 0.5 × 10 -6 to 1.0 × 10 -6 . ..
請求項1に記載された電子燃料噴射式ディーゼルエンジンにおいて、
1本の燃料インジェクタ(7)の燃料噴射孔(9)の出口開口(9b)の総開口面積をB平方mmとし、
1本の燃料インジェクタ(7)の燃料噴射孔(9)の入口開口(9a)の総開口面積をA平方mmとして、
前者の値Bを後者の値Aで除したB/Aの値が1.08~1.44となるようにした、ことを特徴とする電子燃料噴射式ディーゼルエンジン。
In the electronic fuel injection diesel engine according to claim 1,
The total opening area of the outlet opening (9b) of the fuel injection hole (9) of one fuel injector (7) is set to B square mm.
Let the total opening area of the inlet opening (9a) of the fuel injection hole (9) of one fuel injector (7) be A square mm.
An electronic fuel injection diesel engine characterized in that the value of B / A obtained by dividing the former value B by the latter value A is 1.08 to 1.44.
請求項1または請求項2に記載された電子燃料噴射式ディーゼルエンジンにおいて、
燃料噴射孔(9)は、燃料インジェクタ(7)1本につき2~6個設けられている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。
In the electronic fuel injection diesel engine according to claim 1 or 2.
An electronic fuel injection type diesel engine characterized in that 2 to 6 fuel injection holes (9) are provided for each fuel injector (7).
請求項1から請求項3のいずれかに記載された電子燃料噴射式ディーゼルエンジンにおいて、
インジェクタ中心軸線(7a)の渦室側延長線(7b)が連通口(5)を通過し、
複数個の燃料噴射孔(9)は、インジェクタ中心軸線(7a)の周囲に配置され、
複数個の燃料噴射孔(9)の噴射孔中心軸線(9c)の渦室側延長線(9d)の全本数または一部本数が連通口(5)を通過するようにした、ことを特徴とする電子燃料噴射式ディーゼルエンジン。
In the electronic fuel injection type diesel engine according to any one of claims 1 to 3.
The vortex chamber side extension line (7b) of the injector central axis (7a) passes through the communication port (5), and
A plurality of fuel injection holes (9) are arranged around the injector center axis (7a).
The feature is that all or part of the vortex chamber side extension lines (9d) of the injection hole central axis (9c) of the plurality of fuel injection holes (9) pass through the communication port (5). Electronic fuel injection diesel engine.
請求項1から請求項3のいずれかに記載された電子燃料噴射式ディーゼルエンジンにおいて、
インジェクタ中心軸線(7a)の渦室側延長線(7b)は連通口(5)を通過し、
各燃料インジェクタ(7)の複数個の燃料噴射孔(9)は、各インジェクタ中心軸線(7a)の周囲に配置され、
各燃料インジェクタ(7)の複数個の燃料噴射孔(9)の噴射孔中心軸線(9c)の渦室側延長線(9d)の一部本数または全本数が連通口(5)の渦室側開口(5a)の周縁部(5b)に突き当たるようにした、ことを特徴とする電子燃料噴射式ディーゼルエンジン。
In the electronic fuel injection type diesel engine according to any one of claims 1 to 3.
The vortex chamber side extension line (7b) of the injector central axis (7a) passes through the communication port (5) and passes through the communication port (5).
A plurality of fuel injection holes (9) of each fuel injector (7) are arranged around the central axis (7a) of each injector.
A part or all of the vortex chamber side extension lines (9d) of the injection hole center axis (9c) of the plurality of fuel injection holes (9) of each fuel injector (7) are on the vortex chamber side of the communication port (5). An electronic fuel-injection diesel engine characterized in that it abuts on the peripheral edge (5b) of the opening (5a).
請求項5に記載された電子燃料噴射式ディーゼルエンジンにおいて、
インジェクタ中心軸線(7a)の渦室側延長線(7b)と平行な向きに見て、相互に直交する前後方向と横方向の各寸法とをそれぞれ1.5倍ずつ拡大した渦室側開口(5a)と相似形仮想線(5c)を想定し、この相似形仮想線(5c)と渦室側開口(5a)との間の渦室内周面が、燃料噴射孔(9)の噴射孔中心軸線(9c)の渦室側延長線(9d)が突き当たる渦室側開口(5a)の周縁部(5b)とされている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。
In the electronic fuel injection diesel engine according to claim 5.
When viewed in a direction parallel to the vortex chamber side extension line (7b) of the injector center axis (7a), the vortex chamber side openings (each of which are orthogonal to each other in the anteroposterior direction and the lateral direction are enlarged by 1.5 times, respectively. Assuming 5a) and a similar virtual line (5c), the peripheral surface of the vortex chamber between the similar virtual line (5c) and the vortex chamber side opening (5a) is the center of the injection hole of the fuel injection hole (9). An electronic fuel injection type diesel engine characterized in that the peripheral portion (5b) of the vortex chamber side opening (5a) to which the vortex chamber side extension line (9d) of the axis line (9c) abuts is formed.
請求項4から請求項6のいずれかに記載された電子燃料噴射式ディーゼルエンジンにおいて、
インジェクタ中心軸線(7a)に対する各噴射孔中心軸線(9c)の拡開角度(α)は、4°~7°とされている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。
In the electronic fuel injection type diesel engine according to any one of claims 4 to 6.
An electronic fuel injection diesel engine characterized in that the expansion angle (α) of each injection hole center axis (9c) with respect to the injector center axis (7a) is 4 ° to 7 °.
請求項4から請求項7のいずれかに記載された電子燃料噴射式ディーゼルエンジンにおいて、
各燃料噴射孔(9)のテーパ角度(β)は、12°~18°とされている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。
In the electronic fuel injection diesel engine according to any one of claims 4 to 7.
An electronic fuel injection type diesel engine characterized in that the taper angle (β) of each fuel injection hole (9) is 12 ° to 18 °.
請求項4から請求項8のいずれかのいずれかに記載された電子燃料噴射式ディーゼルエンジンにおいて、
インジェクタ中心軸線(7a)と、インジェクタ中心軸線(7a)に沿う各噴射孔内周面(9g)との挟角(γ)は、1°~3°とされている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。
The electronic fuel injection diesel engine according to any one of claims 4 to 8.
An electron having an angle (γ) between the injector central axis (7a) and the inner peripheral surface (9 g) of each injection hole along the injector central axis (7a) is 1 ° to 3 °. Fuel injection diesel engine.
請求項1から請求項9のいずれかに記載された電子燃料噴射式ディーゼルエンジンにおいて、
燃料噴射孔(9)の入口開口縁(9e)は、面取り仕上げされていない先鋭なピン角(9f)を備えている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。
In the electronic fuel injection diesel engine according to any one of claims 1 to 9.
An electronic fuel injection diesel engine characterized in that the inlet opening edge (9e) of the fuel injection hole (9) has a sharp pin angle (9f) that is not chamfered.
請求項10に記載された電子燃料噴射式ディーゼルエンジンにおいて、
ピン角(9f)はRが0.1mm以下の先鋭形状の開口縁である、ことを特徴とする電子燃料噴射式ディーゼルエンジン。
In the electronic fuel injection diesel engine according to claim 10.
An electronic fuel injection type diesel engine characterized in that the pin angle (9f) is a sharp opening edge having an R of 0.1 mm or less.
JP2020206209A 2020-12-11 2020-12-11 electronic fuel injection diesel engine Active JP7432494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020206209A JP7432494B2 (en) 2020-12-11 2020-12-11 electronic fuel injection diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020206209A JP7432494B2 (en) 2020-12-11 2020-12-11 electronic fuel injection diesel engine

Publications (2)

Publication Number Publication Date
JP2022093105A true JP2022093105A (en) 2022-06-23
JP7432494B2 JP7432494B2 (en) 2024-02-16

Family

ID=82068965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020206209A Active JP7432494B2 (en) 2020-12-11 2020-12-11 electronic fuel injection diesel engine

Country Status (1)

Country Link
JP (1) JP7432494B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125101A (en) 1977-01-03 1978-11-14 Hector L. Garcia Fuel injection system
JP5668984B2 (en) 2011-05-31 2015-02-12 株式会社デンソー Fuel injection device
JP2019090388A (en) 2017-11-16 2019-06-13 株式会社豊田中央研究所 Fuel injection device
JP7068157B2 (en) 2018-12-28 2022-05-16 株式会社クボタ diesel engine

Also Published As

Publication number Publication date
JP7432494B2 (en) 2024-02-16

Similar Documents

Publication Publication Date Title
US8291881B2 (en) Piston for internal combustion engine
US6045063A (en) Fuel injector
US5934571A (en) Two-stage fuel-injection nozzle for internal combustion engines
US6883491B2 (en) Fuel injection system
JPWO2015060236A1 (en) Sub-chamber gas engine
US9915190B2 (en) Ducted combustion systems utilizing Venturi ducts
EP2108810A2 (en) Fuel Injection Tip
JP2003534495A (en) Fuel injection system
EP0879944A3 (en) Cylinder direct injection spark-ignition engine
JP2007291934A (en) Multi-hole injector
KR20010030845A (en) Combustion chamber for direct injected reciprocating piston internal combustion engine
JPS5830093Y2 (en) Internal combustion engine intake system
JP2022093105A (en) Electronic fuel injection type diesel engine
JP2022093106A (en) Electronic fuel injection type diesel engine
JP4662755B2 (en) Fuel injection system
JP2022093104A (en) Electronic fuel injection type diesel engine
JP2008082193A (en) Fuel injection nozzle
EP2063081B1 (en) Piston crown with double re-entrant piston bowl
DE19621635A1 (en) Diesel IC-engine cylinder head
JP2016169668A (en) Internal combustion engine
US20190003438A1 (en) Fuel injector for internal combustion engines
GB2057057A (en) Fuel injector for diesel engine
US6676040B2 (en) Variable swirl type GDI injector
US20030116653A1 (en) Fuel injector tip
KR100293551B1 (en) Fuel injection nozzle having double injection angles for diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240205

R150 Certificate of patent or registration of utility model

Ref document number: 7432494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150