JP2022091658A - Method for controlling polygon wear of wheel of railroad transportation vehicle - Google Patents

Method for controlling polygon wear of wheel of railroad transportation vehicle Download PDF

Info

Publication number
JP2022091658A
JP2022091658A JP2021028605A JP2021028605A JP2022091658A JP 2022091658 A JP2022091658 A JP 2022091658A JP 2021028605 A JP2021028605 A JP 2021028605A JP 2021028605 A JP2021028605 A JP 2021028605A JP 2022091658 A JP2022091658 A JP 2022091658A
Authority
JP
Japan
Prior art keywords
wheel
wear
polygon
strengthening
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021028605A
Other languages
Japanese (ja)
Other versions
JP7046300B1 (en
Inventor
徐井芒
Jingmang Xu
王平
Ping Wang
王凱
Kai Wang
陳▲ろん▼
Rong Chen
高原
Yuan Gao
銭瑶
Yao Qian
梁新縁
Xinyuan Liang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Application granted granted Critical
Publication of JP7046300B1 publication Critical patent/JP7046300B1/en
Publication of JP2022091658A publication Critical patent/JP2022091658A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2408Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring roundness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Abstract

To provide a method for controlling polygon wear of a wheel of a railroad transportation vehicle.SOLUTION: A method for controlling polygon wear of a wheel of a railroad transportation vehicle includes the steps of: collecting wheel information of polygon wear of a railroad transportation vehicle, performing a tracking test of a wheel and acquiring polygon wear data of the wheel; collectively designing a reinforcement parameter of a selection area of the wheel at a valley position in accordance with a wheel wear speed and a wear characteristic of a hardening reinforcement material of a tread surface of the wheel; using a hardening reinforcement technique of the tread surface of the wheel on the basis of the reinforcement parameter, performing selection area reinforcement processing to the valley position of the polygon wear of the wheel, and increasing a wear relative reinforcement processing to mountain and valley positions in the polygon wear of the wheel; and performing uniform selection area intensity processing to the tread surface of the wheel when amplitude between the mountain and the valley in the polygon wear of the wheel decreases to a fixed value to eliminate the wear of the reinforcement material of the valley position.SELECTED DRAWING: Figure 1

Description

本発明は、鉄道輸送の技術分野に関し、具体的に鉄道輸送車両の車輪のポリゴン摩耗の制
御方法に関する。
The present invention relates to the technical field of railway transportation, and specifically relates to a method for controlling polygon wear of wheels of a railway transportation vehicle.

従来技術では、鉄道輸送車両の車輪のポリゴン摩耗は、主に車輪の踏み面を回転修理する
ことで改善され、車輪の回転修理は短期間でしか鉄道輸送車両の車輪のポリゴン摩耗状況
を改善できなく、走行時間が経過すると、鉄道輸送車両の車輪のポリゴン摩耗が再び発生
し、車輪の回転修理は、車輪の表面材料を切断してポリゴン摩耗を解消するために使用さ
れ、車輪の耐用年数を短縮し、経済的コストが高くなる。
In the prior art, the polygon wear of the wheels of a rail transport vehicle can be improved mainly by rotationally repairing the tread surface of the wheels, and the rotational repair of the wheels can improve the polygon wear condition of the wheels of the rail transport vehicle only in a short period of time. No, over time, the wheel polygon wear of the rail transport vehicle reoccurs, and the wheel rotation repair is used to cut the wheel surface material to eliminate the polygon wear and extend the wheel's useful life. It will be shortened and the economic cost will be high.

上記の問題を解決するために、本発明は、従来技術における上記欠点を克服することがで
きる鉄道輸送車両の車輪のポリゴン摩耗の制御方法を提供し、具体的な技術的解決策は以
下の通りである。
In order to solve the above problems, the present invention provides a method for controlling polygon wear of wheels of a railway transport vehicle that can overcome the above-mentioned drawbacks in the prior art, and specific technical solutions are as follows. Is.

本発明は鉄道輸送車両の車輪のポリゴン摩耗の制御方法を提供し、
S1、鉄道輸送車両のポリゴン摩耗の車輪情報を収集し、車輪のポリゴン摩耗の追跡試験
を行い、車輪のポリゴン摩耗データを取得するステップと、
S2、車輪摩耗速度および車輪の踏み面の焼き入れ強化材料の摩耗特性に応じて、谷位置
の車輪の選択エリアの強化パラメータを合わせて設計するステップと、
S3、強化パラメータに基づいて、車輪の踏み面の選択エリアの焼き入れ強化技術を使用
して、車輪のポリゴン摩耗の谷位置に対して選択エリア強化処理を行い、車輪のポリゴン
摩耗における山と谷位置の摩耗相対的な速度比を増加させるステップと、
S4、車輪のポリゴン摩耗における山と谷間の振幅が一定値まで減少し、谷位置の強化材
料の摩耗がなくなると、車輪の踏み面に対して均一な選択エリア強度処理を行うステップ
と、を含む。
The present invention provides a method for controlling polygon wear on wheels of a railway transport vehicle.
S1, the step of collecting wheel information of the polygon wear of the railway transport vehicle, performing the tracking test of the polygon wear of the wheel, and acquiring the polygon wear data of the wheel,
S2, the step of designing according to the strengthening parameter of the selection area of the wheel at the valley position according to the wear rate of the wheel and the wear characteristics of the hardened reinforcement material of the tread surface of the wheel.
Based on S3, strengthening parameters, the selection area strengthening process is performed for the valley position of the polygon wear of the wheel using the quenching strengthening technique of the selection area of the tread surface of the wheel, and the peaks and valleys in the polygon wear of the wheel are performed. With steps to increase the wear relative speed ratio of the position,
S4, including a step of performing a uniform selection area strength treatment on the tread surface of the wheel when the amplitude of the peak and the valley in the polygon wear of the wheel is reduced to a certain value and the wear of the reinforcing material at the valley position is eliminated. ..

本発明の一態様によれば、ステップS1において、車輪のポリゴン摩耗追跡試験を行って
、車輪のポリゴン摩耗データを取得する方法は、
S11、定期的に車輪プロファイルを測定し、車輪の標準プロファイルと比較することに
よって、車輪摩耗を取得すること、
S12、レーザプロファイル測定器または接触式プロファイル測定器を使用して、5°ご
とに車輪プロファイルを測定し車輪摩耗量を取得すること、
S13、線形補間法を使用して、全周範囲内の車輪摩耗量を取得すること、を含む。
本発明の一態様によれば、強化パラメータは、強化スポットサイズ、深さおよびピッチを
含む。
According to one aspect of the present invention, in step S1, the method of performing the polygon wear tracking test of the wheel and acquiring the polygon wear data of the wheel is
S11, Obtaining wheel wear by measuring the wheel profile on a regular basis and comparing it with the standard profile of the wheel,
Using S12, a laser profile measuring device or a contact type profile measuring device, measure the wheel profile every 5 ° to obtain the amount of wheel wear.
S13, including obtaining the wheel wear amount within the entire circumference range by using the linear interpolation method.
According to one aspect of the invention, the reinforcement parameters include the reinforcement spot size, depth and pitch.

本発明の一態様によれば、強化パラメータの設計方法は以下の通りであり:車輪円周上の
ある点の摩耗量をSとし、谷と山間の摩耗量の差をΔSとし、強化スポットの深さをhと
し、強化スポットの直径をDとすると、強化領域の材料耐摩耗性がm倍向上し、強化スポ
ットの深さhが以下の式を満たす:

Figure 2022091658000002
式では、αは調整係数であり、強化領域の位置に関連し、
強化スポットの深さhを取得した後、以下の式に従い強化スポットの直径を計算する:
D=18h
各列の強化スポットのピッチlは以下の式に従って決定され:
Figure 2022091658000003
式では、Sminは山の摩耗量を表し、βは調整係数であり、強化領域の材料耐摩耗性能
の増加量に関連する。 According to one aspect of the present invention, the method of designing the strengthening parameter is as follows: the amount of wear at a certain point on the wheel circumference is S, the difference between the amount of wear between the valley and the mountain is ΔS, and the strengthening spot is When the depth is h and the diameter of the reinforced spot is D, the material wear resistance of the reinforced region is improved by m times, and the depth h of the reinforced spot satisfies the following equation:
Figure 2022091658000002
In the equation, α is the adjustment factor, which is related to the position of the strengthening region.
After obtaining the depth h of the strengthening spot, calculate the diameter of the strengthening spot according to the following formula:
D = 18h
The pitch l of the strengthening spots in each row is determined according to the following formula:
Figure 2022091658000003
In the equation, S min represents the amount of wear of the mountain, β is the adjustment coefficient, and is related to the amount of increase in the material wear resistance performance of the reinforced region.

本発明の一態様によれば、強化スポットの列と列間のピッチは強化スポット直径の3倍で
ある。
According to one aspect of the invention, the rows of reinforcement spots and the pitch between rows is three times the diameter of the reinforcement spots.

本発明の一態様によれば、ステップS4において、均一な強化処理を行う時、強化スポッ
トの深さが0.7~0.9mmであり、直径が14.3~14.5mmであり、各列の内
部では、強化スポットのピッチが14~16mmであり、列と列間のピッチが39~41
mmである。
According to one aspect of the present invention, in step S4, when the uniform strengthening treatment is performed, the depth of the strengthening spot is 0.7 to 0.9 mm and the diameter is 14.3 to 14.5 mm, respectively. Inside the row, the pitch of the reinforcement spots is 14-16 mm and the pitch between rows is 39-41.
It is mm.

従来の車輪のポリゴン摩耗制御方法と比較すると、本発明の有益な効果は次の通りである

(1)本発明は、車輪摩耗速度および車輪の踏み面の焼き入れ強化処理材料の摩耗特性に
基づいて、車輪のポリゴン摩耗の谷位置に対して選択エリア強化処理を行い、車輪のポリ
ゴン摩耗における山と谷位置の摩耗相対速度比を増加し、ポリゴン車輪の踏み面の山と谷
間の振幅を減少して、ポリゴン摩耗の進行を制御することができる。
(2)本発明は、車輪の強度を変更せず、ポリゴン車輪の谷材料の耐磨性能を改善し、車
輪の耐用寿命を大幅に延ばし、コストが車輪の回転修理よりも大幅に低下する。
Compared with the conventional wheel polygon wear control method, the beneficial effects of the present invention are as follows.
(1) In the present invention, the selection area strengthening treatment is performed on the valley position of the polygon wear of the wheel based on the wheel wear speed and the wear characteristics of the hardened strengthening treatment material of the tread surface of the wheel, and the polygon wear of the wheel is achieved. It is possible to control the progress of polygon wear by increasing the wear relative speed ratio of the peak and valley positions and reducing the amplitude of the peak and valley of the tread of the polygon wheel.
(2) The present invention does not change the strength of the wheel, improves the polishing resistance of the valley material of the polygon wheel, greatly extends the service life of the wheel, and the cost is significantly lower than that of the rotation repair of the wheel.

実施例4における車輪のポリゴン摩耗の制御方法の効果を示す図である。It is a figure which shows the effect of the control method of polygon wear of a wheel in Example 4. FIG. 実施例4における車輪摩耗の測定結果の概略図である。It is a schematic diagram of the measurement result of the wheel wear in Example 4. 実施例4における車輪のポリゴン抑制の概略図である。It is the schematic of the polygon suppression of the wheel in Example 4. FIG.

本発明によって達成される方法および効果をさらに説明するために、以下本発明の技術的
解決策を、添付の図面と併せて明確かつ完全に説明する。
In order to further illustrate the methods and effects achieved by the present invention, the technical solutions of the present invention will be described below clearly and completely in conjunction with the accompanying drawings.

実施例1
実施例1は主に本発明の制御方法の具体的なステップを説明し、その内容は以下の通りで
ある。
図1に示すように、本発明によって提供される鉄道輸送車両の車輪のポリゴン摩耗の制御
方法は、
S1、鉄道輸送車両のポリゴン摩耗の車輪情報を収集し、車輪のポリゴン摩耗の追跡試験
を行い、車輪のポリゴン摩耗データを取得するステップと、
S2、車輪摩耗速度および車輪の踏み面の焼き入れ強化材料の摩耗特性に応じて、谷位置
の車輪の選択エリアの強化パラメータを合わせて設計するステップと、
S3、強化パラメータに基づいて、車輪の踏み面の選択エリアの焼き入れ強化技術を使用
して、車輪のポリゴン摩耗の谷位置に対して選択エリア強化処理を行い、車輪のポリゴン
摩耗における山と谷位置の摩耗相対的な速度比を増加させるステップと、
S4、車輪のポリゴン摩耗における山と谷間の振幅が一定値まで減少し、谷位置の強化材
料の摩耗がなくなると、車輪の踏み面に対して均一な選択エリア強度処理を行うステップ
と、を含む。
本発明の一態様によれば、ステップS1において、車輪のポリゴン摩耗追跡試験を行って
、車輪のポリゴン摩耗データを取得する方法は、
S11、定期的に車輪プロファイルを測定し、車輪の標準プロファイルと比較することに
よって、車輪摩耗を取得すること、
S12、レーザプロファイル測定器または接触式プロファイル測定器を使用して、5°ご
とに車輪プロファイルを測定し車輪摩耗量を取得すること、
S13、線形補間法を使用して、全周範囲内の車輪摩耗量を取得すること、を含む。
具体的には、強化パラメータは、強化スポットサイズ、深さおよびピッチを含む。
具体的には、強化パラメータの設計方法は以下の通りであり:車輪円周上のある点の摩耗
量をSとし、谷と山間の摩耗量の差をΔSとし、強化スポットの深さをhとし、強化スポ
ットの直径をDとすると、強化領域の材料耐摩耗性がm倍向上し、強化スポットの深さh
が以下の式を満たす:

Figure 2022091658000004
式では、αは調整係数であり、強化領域の位置に関連し、
強化スポットの深さhを取得した後、以下の式に従い強化スポットの直径を計算する:
D=18h
各列の強化スポットのピッチlは以下の式に従って決定され:
Figure 2022091658000005
式では、Sminは山の摩耗量を表し、βは調整係数であり、強化領域の材料耐摩耗性能
の増加量に関連する。
具体的には、強化スポットの列と列間のピッチは強化スポット直径の3倍である。 Example 1
The first embodiment mainly describes the specific steps of the control method of the present invention, and the contents thereof are as follows.
As shown in FIG. 1, the method for controlling polygon wear of wheels of a railway transport vehicle provided by the present invention is as follows.
S1, the step of collecting wheel information of the polygon wear of the railway transport vehicle, performing the tracking test of the polygon wear of the wheel, and acquiring the polygon wear data of the wheel,
S2, the step of designing according to the strengthening parameter of the selection area of the wheel at the valley position according to the wear rate of the wheel and the wear characteristics of the hardened reinforcement material of the tread surface of the wheel.
Based on S3, strengthening parameters, the selection area strengthening process is performed for the valley position of the polygon wear of the wheel using the quenching strengthening technique of the selection area of the tread surface of the wheel, and the peaks and valleys in the polygon wear of the wheel are performed. With steps to increase the wear relative speed ratio of the position,
S4, including a step of performing a uniform selection area strength treatment on the tread surface of the wheel when the amplitude of the peak and the valley in the polygon wear of the wheel is reduced to a certain value and the wear of the reinforcing material at the valley position is eliminated. ..
According to one aspect of the present invention, in step S1, the method of performing the polygon wear tracking test of the wheel and acquiring the polygon wear data of the wheel is
S11, Obtaining wheel wear by measuring the wheel profile on a regular basis and comparing it with the standard profile of the wheel,
Using S12, a laser profile measuring device or a contact type profile measuring device, measure the wheel profile every 5 ° to obtain the amount of wheel wear.
S13, including obtaining the wheel wear amount within the entire circumference range by using the linear interpolation method.
Specifically, the strengthening parameters include the strengthening spot size, depth and pitch.
Specifically, the method of designing the strengthening parameters is as follows: the amount of wear at a certain point on the wheel circumference is S, the difference between the amount of wear between valleys and mountains is ΔS, and the depth of the strengthening spot is h. Assuming that the diameter of the reinforced spot is D, the material wear resistance of the reinforced region is improved by m times, and the depth of the reinforced spot is h.
Satisfies the following equation:
Figure 2022091658000004
In the equation, α is the adjustment factor, which is related to the position of the strengthening region.
After obtaining the depth h of the strengthening spot, calculate the diameter of the strengthening spot according to the following formula:
D = 18h
The pitch l of the strengthening spots in each row is determined according to the following formula:
Figure 2022091658000005
In the equation, S min represents the amount of wear of the mountain, β is the adjustment coefficient, and is related to the amount of increase in the material wear resistance performance of the reinforced region.
Specifically, the rows of reinforcement spots and the pitch between the rows are three times the diameter of the reinforcement spots.

実施例2
実施例2は実施例1に記載の方法に基づいて強化パラメータを設計したものであり、具体
的な内容は以下の通りである。
ステップS4において、均一な強化処理を行う時、強化スポットの深さが0.7mmであ
り、直径が14.3mmであり、各列の内部では、強化スポットのピッチが14mmであ
り、列と列間のピッチが39mmである。
以上の内容を除いて、実施例2は実施例1の他の部分と同じである。
Example 2
In the second embodiment, the strengthening parameters are designed based on the method described in the first embodiment, and the specific contents are as follows.
In step S4, when the uniform strengthening treatment is performed, the depth of the strengthening spots is 0.7 mm, the diameter is 14.3 mm, and inside each row, the pitch of the strengthening spots is 14 mm, and the rows and rows. The pitch between them is 39 mm.
Except for the above contents, Example 2 is the same as the other parts of Example 1.

実施例3
実施例3は実施例1に記載の方法に基づいて強化パラメータを設計したものであり、具体
的な内容は以下の通りである。
ステップS4において、均一な強化処理を行う時、強化スポットの深さが0.9mmであ
り、直径が14.5mmであり、各列の内部では、強化スポットのピッチが16mmであ
り、列と列間のピッチが41mmである。
以上の内容を除いて、実施例3は実施例1の他の部分と同じである。
Example 3
In the third embodiment, the strengthening parameters are designed based on the method described in the first embodiment, and the specific contents are as follows.
In step S4, when the uniform strengthening treatment is performed, the depth of the strengthening spots is 0.9 mm and the diameter is 14.5 mm, and inside each row, the pitch of the strengthening spots is 16 mm, and the rows and rows. The pitch between them is 41 mm.
Except for the above contents, Example 3 is the same as the other parts of Example 1.

実施例4
実施例4は実施例1に記載の方法に基づいて説明したものであり、具体的な実施例を通じ
て本発明の実際の車輪の修復効果を説明し、図1は本実施例の効果を示す図である。
強化パラメータに基づいて、車輪の踏み面の選択エリアの焼き入れ強化技術により、車輪
のポリゴン摩耗の谷位置に対して選択エリア強化処理を行い、車輪のポリゴン摩耗におけ
る山と谷位置の摩耗相対速度比を増加させ、図2に示すように、このとき、谷位置の車輪
材料の摩耗速度が大幅に低下し、谷以外の位置の車輪材料の摩耗速度が変更せず、車両の
走行時間が経過すると、車輪の山と谷間の振幅が減少する。
図3に示すように、線形補間法を使用して、車両が15万km走行しているときの車輪の
全周範囲内の摩耗量を取得し、図3のデータから分かるように、車輪の山と谷の摩耗速度
比が穏やかであり、これは、本発明によって設計された制御方法は車輪のポリゴン摩耗の
進行を効果的に抑制することを示す。
Example 4
Example 4 has been described based on the method described in Example 1, and the actual wheel repair effect of the present invention will be described through specific examples, and FIG. 1 is a diagram showing the effect of the present embodiment. Is.
Based on the strengthening parameters, the selection area strengthening process is performed for the valley position of the polygon wear of the wheel by the quenching strengthening technology of the selection area of the tread surface of the wheel, and the wear relative speed of the peak and valley position in the polygon wear of the wheel. As shown in FIG. 2, the ratio is increased, and at this time, the wear rate of the wheel material at the valley position is significantly reduced, the wear rate of the wheel material at the position other than the valley is not changed, and the traveling time of the vehicle elapses. Then, the amplitude of the peaks and valleys of the wheels decreases.
As shown in FIG. 3, the linear interpolation method is used to obtain the amount of wear within the entire circumference range of the wheel when the vehicle is traveling 150,000 km, and as can be seen from the data of FIG. 3, the wheel The wear rate ratio between peaks and valleys is mild, indicating that the control method designed by the present invention effectively suppresses the progression of wheel polygon wear.

実験例
本実験例は上記の実施例1に記載の測定方法に基づいて説明したものであり、シミュレー
ション法によってこの方法によるポリゴン車輪摩耗の修復効果を調べることを目的とする

以下、本発明の具体的な実施効果を説明する。
本実験例で使用される車両の走行安定性の評価式は以下の通りである。

Figure 2022091658000006
Wは安定性指数であり、Aは振動加速度(g)であり、fは振動周波数(Hz)であり、
F(f)は周波数修正係数である。
本実験例で使用される車両の走行安定性の評価標準は表1に示される。
表1車両の走行安定性のレベル Experimental Example This experimental example has been described based on the measurement method described in Example 1 above, and an object of the present invention is to investigate the repair effect of polygon wheel wear by this method by a simulation method.
Hereinafter, specific implementation effects of the present invention will be described.
The evaluation formula for the running stability of the vehicle used in this experimental example is as follows.
Figure 2022091658000006
W is the stability index, A is the vibration acceleration (g), f is the vibration frequency (Hz), and
F (f) is a frequency correction coefficient.
Table 1 shows the evaluation standards for the running stability of the vehicle used in this experimental example.
Table 1 Level of vehicle running stability

Figure 2022091658000007
Figure 2022091658000007

1、車輪のポリゴンパラメータ
本実験のシミュレーションでは、車両の走行中に、車輪の多角化によって車両に垂直方向
の振動が与えられ、サスペンションシステムによって減衰された後車体に伝達される。未
処理のポリゴン車輪の場合、速度と高調波次数が異なるポリゴンによって引き起こされる
対応する振動周波数は表2に示される。
表2強化処理されていない車輪のポリゴンによって引き起こされる振動周波数
1. Wheel polygon parameters In the simulation of this experiment, while the vehicle is running, the diversification of the wheels gives the vehicle vertical vibration, which is attenuated by the suspension system and then transmitted to the vehicle body. For unprocessed polygon wheels, the corresponding vibration frequencies caused by polygons with different velocities and harmonic orders are shown in Table 2.
Table 2 Vibration frequencies caused by unreinforced wheel polygons

Figure 2022091658000008
Figure 2022091658000008

未処理のポリゴン車輪について、波の深さと車速の場合、15次の車輪のポリゴンを選択
して安定性を測定し、安定性の結果が表3-1および表3-2に示される。
表3-1未処理のポリゴン車輪の垂直方向の安定性
For unprocessed polygon wheels, for wave depth and vehicle speed, 15th order wheel polygons are selected and stability is measured and the stability results are shown in Tables 3-1 and 3-2.
Table 3-1 Vertical stability of unprocessed polygon wheels

Figure 2022091658000009
Figure 2022091658000009

表3-2未処理のポリゴン車輪の横方向の安定性 Table 3-2 Lateral stability of unprocessed polygon wheels

Figure 2022091658000010
Figure 2022091658000010

表1の評価標準を合わせて、表3-1および表3-2から分かるように、シミュレーション
された車両の走行速度が50km/h未満の時、車輪の安定性が優秀レベルに達する可能
性があり、シミュレーションされた車両の走行速度が50~150km/hである時、車
輪の安定性が基本的に合格であるが、シミュレーションされた車両の走行速度が150k
m/hを超える時、車輪の安定性が合格標準を満たさない。
摩耗のシミュレーション過程中、制御された摩耗の限界はそれぞれ0.1mm、0.05
mm、0.02mmであり、速度100km/h、15次の車輪のポリゴン、波の深さ0
.05mmの未処理ポリゴン車輪の摩耗進行傾向を計算して表4に示される。
表4 未処理のポリゴン車輪の真円でないオフセット値
Combined with the evaluation criteria in Table 1, as can be seen from Table 3-1 and Table 3-2, when the simulated vehicle speed is less than 50 km / h, the wheel stability may reach an excellent level. Yes, when the running speed of the simulated vehicle is 50-150km / h, the stability of the wheels is basically acceptable, but the running speed of the simulated vehicle is 150k.
When it exceeds m / h, the stability of the wheel does not meet the acceptance standard.
During the wear simulation process, the controlled wear limits are 0.1 mm and 0.05, respectively.
mm, 0.02 mm, velocity 100 km / h, 15th-order wheel polygon, wave depth 0
.. The wear progress tendency of the 05 mm untreated polygon wheel is calculated and shown in Table 4.
Table 4 Non-circular offset values for unprocessed polygon wheels

Figure 2022091658000011
Figure 2022091658000011

表4のデータから分かるように、最大の摩耗量が0.05mmから0.1mmに変更する
過程中に、車輪の円周プロファイルが大幅に変化する。そして車両走行の初期階段ではポ
リゴン車輪の山と谷の摩耗速度が小さいが、車両の走行距離が長くなると、谷の摩耗速度
が明らかに増加し、長期間の摩耗の後車両に顕著な谷が形成される。
As can be seen from the data in Table 4, the circumferential profile of the wheel changes significantly during the process of changing the maximum wear from 0.05 mm to 0.1 mm. And while the wear speed of the peaks and valleys of the polygon wheels is small in the initial stairs of vehicle running, the wear speed of the valleys clearly increases as the mileage of the vehicle increases, and after a long period of wear, the vehicle has noticeable valleys. It is formed.

2、車輪のポリゴンの強化処理
上記の実施例のステップS4に記載の方法により、ポリゴン車輪に対して均一な強化処理
を行い、強化スポットの深さが0.8mmであり、直径が14.4mmであり、各列の内
部では、強化スポットのピッチが15mmであり、列と列間のピッチが40mmである。
処理されたポリゴン車輪について、速度と高調波次数が異なるポリゴンによって引き起こ
される対応する振動周波数が表5に示される。
表5 強化処理された車輪のポリゴンによって引き起こされる振動周波数
2. Reinforcement processing of polygons of wheels By the method described in step S4 of the above embodiment, the polygon wheels are uniformly strengthened, the depth of the reinforcement spot is 0.8 mm, and the diameter is 14.4 mm. Inside each row, the pitch of the reinforcement spots is 15 mm and the pitch between rows is 40 mm.
For the treated polygon wheels, the corresponding vibration frequencies caused by polygons with different velocities and harmonic orders are shown in Table 5.
Table 5 Vibration frequencies caused by reinforced wheel polygons

Figure 2022091658000012
Figure 2022091658000012

処理されたポリゴン車輪について、波の深さと車速が異なる場合、15次の車輪のポリゴ
ンを選択して安定性を測定し、安定性の結果が表6-1および表6-2に示される。
表6-1 処理されたポリゴン車輪の垂直方向の安定性
For the treated polygon wheels, if the wave depth and vehicle speed are different, the polygons of the 15th order wheels are selected and the stability is measured and the stability results are shown in Tables 6-1 and 6-2.
Table 6-1 Vertical stability of treated polygon wheels

Figure 2022091658000013
表6-2 処理されたポリゴン車輪の横方向の安定性
Figure 2022091658000013
Table 6-2 Lateral stability of treated polygon wheels

Figure 2022091658000014
Figure 2022091658000014

表1の評価標準を合わせて、表6-1および表6-2から分かるように、シミュレーション
された車両の走行速度が50~250km/hである時、車輪の安定性が優秀レベルに達
する可能性がある。
Combined with the evaluation criteria in Table 1, as can be seen from Tables 6-1 and 6-2, wheel stability can reach excellent levels when the simulated vehicle speed is 50-250 km / h. There is sex.

摩耗のシミュレーション過程中に、制御された摩耗の限界がそれぞれ0.1mm、0.0
5mm、0.02mmであり、速度100km/h、15次の車輪のポリゴン、波の深さ
0.05mmの処理されたポリゴン車輪の摩耗進行傾向を計算して表7に示される。
表7 処理されたポリゴン車輪の真円でないオフセット値
During the wear simulation process, the controlled wear limits are 0.1 mm and 0.0, respectively.
Table 7 calculates the wear progress tendency of the treated polygon wheels having a speed of 5 mm and 0.02 mm, a speed of 100 km / h, a polygon of the 15th-order wheel, and a wave depth of 0.05 mm.
Table 7 Non-circular offset values for processed polygon wheels

Figure 2022091658000015
Figure 2022091658000015

表7のデータから分かるように、最大の摩耗量が0.05mmから0.1mmに変更する
過程中に、車輪の円周プロファイルが大幅に変化しない。そして車両走行の初期階段では
ポリゴン車輪の山と谷の摩耗速度が小さく、車両の走行距離が増加すると、谷の摩耗速度
が増加するがそれほど顕著ではない。これは、車輪の踏み面の選択エリアの焼き入れ強化
技術により、ポリゴン摩耗の進行を効果的に制御することができるのを示す。
表5と表2、表6-1と表3-1、表6-2と表3-2、表7と表4中のデータをそれぞれ比
較して分かるように、本発明は車輪の踏み面の選択エリアの焼き入れ強化技術により、車
輪のポリゴン摩耗の谷位置に対して選択エリア強化処理を行い、車輪のポリゴン摩耗にお
ける山と谷位置の摩耗相対速度比を増加させ、山位置の車輪材料の摩耗速度を増加して谷
位置の車輪材料の摩耗速度を減少することで車輪のポリゴン摩耗の進行を総合的に制御し
、ポリゴン車輪の安定性を高める。
As can be seen from the data in Table 7, the circumference profile of the wheel does not change significantly during the process of changing the maximum wear amount from 0.05 mm to 0.1 mm. In the initial stairs of vehicle running, the wear speed of the peaks and valleys of the polygon wheels is small, and as the mileage of the vehicle increases, the wear speed of the valleys increases, but it is not so remarkable. This indicates that the progress of polygon wear can be effectively controlled by the quenching strengthening technique of the selection area of the tread surface of the wheel.
As can be seen by comparing the data in Table 5 and Table 2, Table 6-1 and Table 3-1 and Table 6-2 and Table 3-2, and Table 7 and Table 4, respectively, the present invention has a wheel tread surface. The selection area strengthening technology is used to strengthen the selection area for the valley position of the polygon wear of the wheel, increase the wear relative speed ratio of the peak and valley position in the polygon wear of the wheel, and the wheel material of the mountain position. By increasing the wear rate of the wheel material at the valley position and decreasing the wear rate of the wheel material, the progress of polygon wear of the wheel is comprehensively controlled, and the stability of the polygon wheel is improved.

Claims (6)

S1、鉄道輸送車両のポリゴン摩耗の車輪情報を収集し、車輪のポリゴン摩耗の追跡試験
を行い、車輪のポリゴン摩耗データを取得するステップと、
S2、車輪摩耗速度および車輪の踏み面の焼き入れ強化材料の摩耗特性に応じて、谷位置
の車輪の選択エリアの強化パラメータを合わせて設計するステップと、
S3、強化パラメータに基づいて、車輪の踏み面の選択エリアの焼き入れ強化技術を使用
して、車輪のポリゴン摩耗の谷位置に対して選択エリア強化処理を行い、車輪のポリゴン
摩耗における山と谷位置の摩耗相対的な速度比を増加させるステップと、
S4、車輪のポリゴン摩耗における山と谷間の振幅が一定値まで減少し、谷位置の強化材
料の摩耗がなくなると、車輪の踏み面に対して均一な選択エリア強度処理を行うステップ
と、
を含むことを特徴とする鉄道輸送車両の車輪のポリゴン摩耗の制御方法。
S1, the step of collecting wheel information of the polygon wear of the railway transport vehicle, performing the tracking test of the polygon wear of the wheel, and acquiring the polygon wear data of the wheel,
S2, the step of designing according to the strengthening parameter of the selection area of the wheel at the valley position according to the wear rate of the wheel and the wear characteristics of the hardened reinforcement material of the tread surface of the wheel.
Based on S3, strengthening parameters, the selection area strengthening process is performed for the valley position of the polygon wear of the wheel using the quenching strengthening technique of the selection area of the tread surface of the wheel, and the peaks and valleys in the polygon wear of the wheel are performed. With steps to increase the wear relative speed ratio of the position,
S4, when the amplitude of the peaks and valleys in the polygon wear of the wheel is reduced to a certain value and the wear of the reinforcing material at the valley position is eliminated, a step of performing a uniform selection area strength treatment on the tread surface of the wheel, and
A method of controlling polygon wear on wheels of a rail transport vehicle, comprising:
ステップS1において、車輪のポリゴン摩耗追跡試験を行って、車輪のポリゴン摩耗デー
タを取得するステップは、
S11、定期的に車輪プロファイルを測定し、車輪の標準プロファイルと比較することに
よって、車輪摩耗を取得すること、
S12、レーザプロファイル測定器または接触式プロファイル測定器を使用して、5°ご
とに車輪プロファイルを測定し車輪摩耗量を取得すること、
S13、線形補間法を使用して、全周範囲内の車輪摩耗量を取得すること、
を含むことを特徴とする請求項1に記載の鉄道輸送車両の車輪のポリゴン摩耗の制御方法
In step S1, the step of performing the wheel polygon wear tracking test and acquiring the wheel polygon wear data is
S11, Obtaining wheel wear by measuring the wheel profile on a regular basis and comparing it with the standard profile of the wheel,
Using S12, a laser profile measuring device or a contact type profile measuring device, measure the wheel profile every 5 ° to obtain the amount of wheel wear.
S13, Obtaining the amount of wheel wear within the entire circumference using the linear interpolation method,
The method for controlling polygon wear of wheels of a railway transport vehicle according to claim 1, wherein the method comprises.
強化パラメータは、強化スポットサイズ、深さおよびピッチを含む、ことを特徴とする請
求項1に記載の鉄道輸送車両の車輪のポリゴン摩耗の制御方法。
The method for controlling polygon wear on wheels of a rail transport vehicle according to claim 1, wherein the reinforcement parameters include a reinforcement spot size, depth and pitch.
強化パラメータの設計方法は、車輪円周上のある点の摩耗量をSとし、谷と山間の摩耗量
の差をΔSとし、強化スポットの深さをhとし、強化スポットの直径をDとすると、強化
領域の材料耐摩耗性がm倍向上し、強化スポットの深さhが以下の式を満たし、
Figure 2022091658000016
式では、αは調整係数であり、強化領域の位置に関連し、
強化スポットの深さhを取得した後、以下の式に従い強化スポットの直径を計算する:
D=18h
各列の強化スポットのピッチlは以下の式に従って決定され:
Figure 2022091658000017
式では、Sminは山の摩耗量を表し、βは調整係数であり、強化領域の材料耐摩耗性能
の増加量に関連する、ことを特徴とする請求項3に記載の鉄道輸送車両の車輪のポリゴン
摩耗の制御方法。
The method of designing the reinforcement parameter is that the amount of wear at a certain point on the wheel circumference is S, the difference in the amount of wear between valleys and mountains is ΔS, the depth of the reinforcement spot is h, and the diameter of the reinforcement spot is D. , The material wear resistance of the reinforced area is improved by m times, and the depth h of the reinforced spot satisfies the following formula.
Figure 2022091658000016
In the equation, α is the adjustment factor, which is related to the position of the strengthening region.
After obtaining the depth h of the strengthening spot, calculate the diameter of the strengthening spot according to the following formula:
D = 18h
The pitch l of the strengthening spots in each row is determined according to the following formula:
Figure 2022091658000017
In the formula, S min represents the amount of wear of the mountain, β is an adjustment coefficient, and is related to the amount of increase in the material wear resistance performance of the reinforced region. How to control polygon wear.
強化スポットの列と列間のピッチは強化スポット直径の3倍である、ことを特徴とする請
求項4に記載の鉄道輸送車両の車輪のポリゴン摩耗の制御方法。
The method for controlling polygon wear of wheels of a railway transport vehicle according to claim 4, wherein the rows of the strengthening spots and the pitch between the rows are three times the diameter of the strengthening spots.
ステップS4において、均一な強化処理を行う時、強化スポットの深さが0.7~0.9
mmであり、直径が14.3~14.5mmであり、各列の内部では、強化スポットのピ
ッチが14~16mmであり、列と列間のピッチが39~41mmである、ことを特徴と
する請求項1に記載の鉄道輸送車両の車輪のポリゴン摩耗の制御方法。
In step S4, when the uniform strengthening treatment is performed, the depth of the strengthening spot is 0.7 to 0.9.
It is mm, has a diameter of 14.3 to 14.5 mm, and inside each row, the pitch of the strengthening spots is 14 to 16 mm, and the pitch between rows is 39 to 41 mm. The method for controlling polygon wear of wheels of a railway transport vehicle according to claim 1.
JP2021028605A 2020-12-09 2021-02-25 How to control polygon wear on wheels of railway transportation vehicles Active JP7046300B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011449154.0A CN112749441B (en) 2020-12-09 2020-12-09 Control method for polygonal abrasion of wheels of rail transit vehicle
CN202011449154.0 2020-12-09

Publications (2)

Publication Number Publication Date
JP7046300B1 JP7046300B1 (en) 2022-04-04
JP2022091658A true JP2022091658A (en) 2022-06-21

Family

ID=75648401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021028605A Active JP7046300B1 (en) 2020-12-09 2021-02-25 How to control polygon wear on wheels of railway transportation vehicles

Country Status (2)

Country Link
JP (1) JP7046300B1 (en)
CN (1) CN112749441B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216618B (en) * 2022-06-08 2023-03-10 西南交通大学 Method and device for controlling abrasion of railway steel rail weld joint
CN116952765B (en) * 2023-09-19 2023-12-12 西南交通大学 Method for inhibiting and quantitatively evaluating polygonal abrasion of wagon wheels

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206922A (en) * 2001-01-09 2002-07-26 Daifuku Co Ltd Device for inspecting wheel abrasion in moving body
WO2016089570A1 (en) * 2014-12-04 2016-06-09 Robert Bosch Gmbh Integrated wheel speed and brake pad wear monitoring system
CN110245415B (en) * 2019-06-12 2023-02-07 中国神华能源股份有限公司 Wheel tread concave abrasion threshold value determining method and device
CN110979390B (en) * 2019-12-05 2021-10-26 中车株洲电力机车有限公司 Method and system for repairing polygonal wheel of rail transit vehicle
CN110904311B (en) * 2019-12-06 2021-08-03 马鞍山钢铁股份有限公司 Anti-out-of-roundness wheel steel, wheel and preparation method of wheel

Also Published As

Publication number Publication date
JP7046300B1 (en) 2022-04-04
CN112749441B (en) 2023-06-30
CN112749441A (en) 2021-05-04

Similar Documents

Publication Publication Date Title
JP7046300B1 (en) How to control polygon wear on wheels of railway transportation vehicles
Cai et al. Experimental and numerical analysis of the polygonal wear of high-speed trains
CN112131678B (en) Railway steel rail polishing profile design method
Montanino et al. Making NGSIM data usable for studies on traffic flow theory: Multistep method for vehicle trajectory reconstruction
CN108562446B (en) Wheel polygon detection method based on axle box vibration time-frequency domain characteristics and terminal equipment
JP6141669B2 (en) Suspension control device
Markov Laboratory tests for wear of rail and wheel steels
CN103674582B (en) Movement stability of railway vehicle bogie determination methods and device
CN111582656A (en) Quantitative evaluation method for shallow layer state of high-speed railway steel rail
Sichani et al. Differential wear modelling–Effect of weld-induced material inhomogeneity on rail surface quality
CN110245415B (en) Wheel tread concave abrasion threshold value determining method and device
CN110592367A (en) Point-like treatment method for steel rail surface by laminar plasma technology
Spangenberg et al. The effect of rolling contact fatigue mitigation measures on wheel wear and rail fatigue
CN106647634A (en) Cavity processing locus generation method integrated with ring-incision locus and variable-radius cycloidal locus
US11554799B2 (en) Method and apparatus for controlling anti-yaw damper
CN109033635B (en) Optimal design method for S-shaped spoke plate wheel
CN115310217A (en) Wheel wear prediction method based on non-Hertz wheel-rail rolling contact theory
Yang et al. A numerical study on tread wear and fatigue damage of railway wheels subjected to anti-slip control
RU2734737C2 (en) Axis for rail vehicles
KR20130084211A (en) Method of improving tread noise
WO2023065978A1 (en) Motor torque control method and apparatus, storage medium and motor controller
Kou et al. Effect of the worn status of wheel/rail profiles on wheel wear over curved tracks
CN112765728B (en) Shimmy optimization control method for single-axle bogie straddle type monorail vehicle
CN108755285B (en) Method for designing and manufacturing fixed frog and fixed frog
CN115577446A (en) Wheel profile optimization method, device and equipment based on composite equivalent taper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210225

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220209

R150 Certificate of patent or registration of utility model

Ref document number: 7046300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150