JP2022091500A - Thionizing agent - Google Patents

Thionizing agent Download PDF

Info

Publication number
JP2022091500A
JP2022091500A JP2020204374A JP2020204374A JP2022091500A JP 2022091500 A JP2022091500 A JP 2022091500A JP 2020204374 A JP2020204374 A JP 2020204374A JP 2020204374 A JP2020204374 A JP 2020204374A JP 2022091500 A JP2022091500 A JP 2022091500A
Authority
JP
Japan
Prior art keywords
added
ethyl acetate
mmol
alkali metal
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020204374A
Other languages
Japanese (ja)
Inventor
典夫 利根川
Norio Tonegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Junsei Chemical Co Ltd
Original Assignee
Junsei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junsei Chemical Co Ltd filed Critical Junsei Chemical Co Ltd
Priority to JP2020204374A priority Critical patent/JP2022091500A/en
Publication of JP2022091500A publication Critical patent/JP2022091500A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide: a highly safe and industrially usable thionizing agent; and a method for manufacturing a sulfur-containing compound by using the thionizing agent.SOLUTION: A thionizing agent is composed of a reaction liquid between phosphorus sulfide and alkali metal salt in an organic solvent.SELECTED DRAWING: None

Description

本発明は、酸素含有化合物の酸素原子をイオウ原子に置換するためのチオ化剤、及び当該チオ化剤を用いるイオウ含有化合物の製造法に関する。 The present invention relates to a thiolating agent for substituting an oxygen atom of an oxygen-containing compound with a sulfur atom, and a method for producing a sulfur-containing compound using the thiolating agent.

ヒドロキシ基をチオール基に、ケトン基をチオケトン基に、アミド基をチオアミド基、エステル基をチオエステル基に、酸素含有化合物中の酸素原子をイオウ原子に置換するための試薬としては、五硫化二リンなどの硫化リン、ローソン試薬類が知られている。 A hydroxy group is a thiol group, a ketone group is a thioketone group, an amide group is a thioamide group, an ester group is a thioester group, and a reagent for substituting an oxygen atom in an oxygen-containing compound with a sulfur atom is diphosphorus pentasulfide. Such as phosphorus sulfide and Lawson reagents are known.

しかし、硫化リンは、ベンゼン、二硫化炭素以外には溶解しないため、他の有機溶剤で行うには硫化リンを固体のまま反応させなくてはならず、液体の酸素含有化合物のチオ化反応以外は工業的には向いていない。
例えば、アミドからチオアミドの合成には、五硫化二リンをベンゼン又は二硫化炭素に溶かしアミドと反応させる方法がある。しかしベンゼンや二硫化炭素は有害で引火性が高く、危険で大量の使用は困難である。そこで特許文献1にはベンゼンや二硫化炭素以外の溶剤によるチオホルムアミドの製造法が記載されているが、酸素含有化合物が液体であるホルムアミドに限定されている。実際、五硫化二リンが溶けない溶剤で使用してみると、反応に伴って粘性のあるオイル状リン化合物が固形物と絡み、撹拌困難になり反応が停止してしまう。
However, since phosphorus sulfide is insoluble in other than benzene and carbon disulfide, phosphorus sulfide must be reacted as a solid in order to be carried out with other organic solvents, except for the thiolation reaction of liquid oxygen-containing compounds. Is not industrially suitable.
For example, in the synthesis of thioamide from amide, there is a method of dissolving diphosphorus pentasulfide in benzene or carbon disulfide and reacting with amide. However, benzene and carbon disulfide are harmful and highly flammable, dangerous and difficult to use in large quantities. Therefore, Patent Document 1 describes a method for producing thioformamide using a solvent other than benzene or carbon disulfide, but the oxygen-containing compound is limited to formamide which is a liquid. In fact, when it is used in a solvent in which diphosphorus pentasulfide is insoluble, the viscous oily phosphorus compound becomes entangled with the solid substance during the reaction, making stirring difficult and the reaction stops.

ローソン試薬は、少量の合成には適しているが、反応後の後処理において残ったローソン試薬やアニソール由来の副生成物処理に問題があり、また高価であるため工業的には向いていない。
すなわち、ローソン試薬については、総説が非特許文献1に詳しく記載されている。ローソン試薬はメトキシフェニル基を持つため分子量が大きく、また4個のイオウ原子のうち1原子しか利用できないため、大量のローソン試薬を使用しなくてはならない。また反応後のメトキシフェニル化合物(有機リン化合物)の廃処理が必要になるため、工業的に好ましくない。またローソン試薬に類似のフェニルチオ基を有するジャパニーズ試薬、フェノキシフェニル基を有するベレオー試薬も同様の欠点を有する。
Although Lawesson's reagent is suitable for small-quantity synthesis, it is not industrially suitable because it has a problem in treating by-products derived from Lawesson's reagent and anisole remaining in the post-reaction post-treatment and is expensive.
That is, a review article on Lawesson's reagent is described in detail in Non-Patent Document 1. Since the Lawesson's reagent has a methoxyphenyl group, it has a large molecular weight, and only one of the four sulfur atoms can be used, so a large amount of Lawesson's reagent must be used. Further, it is industrially unfavorable because it requires waste treatment of the methoxyphenyl compound (organic phosphorus compound) after the reaction. Further, a Japanese reagent having a phenylthio group similar to Lawesson's reagent and a Beleo reagent having a phenoxyphenyl group have the same drawbacks.

特開平1-305072号公報Japanese Unexamined Patent Publication No. 1-305072

有機合成化学協会誌 第53巻12号1138-1140(1995)Journal of Synthetic Organic Chemistry Vol. 53, No. 12, 1138-1140 (1995)

前記のように、従来のチオ化剤は、一部の酸素含有化合物にしか適用できないか、あるいは反応後の後処理や高価であるなどの問題があり、いずれも工業的な製造に利用できるものではなかった。また、イオウ含有化合物の中でもチオアミド化合物は医薬、農薬および原料、中間体として重要であり、工業的に使用出来るチオ化剤が望まれている。
従って、本発明の課題は、安全性が高く、工業的にも利用できるチオ化剤、及び当該チオ化剤を用いたイオウ含有化合物の製造法を提供することにある。
As described above, conventional thiolating agents have problems such as being applicable only to some oxygen-containing compounds, post-reaction post-treatment, and being expensive, and all of them can be used for industrial production. It wasn't. Further, among sulfur-containing compounds, thioamide compounds are important as pharmaceuticals, pesticides, raw materials, and intermediates, and industrially usable thioagents are desired.
Therefore, an object of the present invention is to provide a thiolating agent which is highly safe and can be industrially used, and a method for producing a sulfur-containing compound using the thiolating agent.

そこで本発明者は、硫化リンの応用について種々検討してきた。硫化リンは前記のようにベンゼン、二硫化炭素以外には溶解せず、一方アルカリ金属塩は酢酸エチルなどの有機溶媒にはほとんど溶解しない。従って、これらの両者を用いて、酢酸エチルなどの有機溶媒溶液中で反応させることはできないと考えられてきた。
ところが、本発明者が、アルカリ金属塩と硫化リンとを、反応溶媒として汎用性のある酢酸エチルなどのエステル系溶媒、ニトリル系溶媒などの極性有機溶媒に添加して一定時間撹拌すると、全く意外にも、両者はこれらの有機溶媒中で反応し、溶解することを見出した。そして、この反応液中に酸素含有化合物を添加して反応を行うと、高収率で酸素原子がイオウ原子に置換したイオウ含有化合物が得られ、後処理も簡便であることを見出し、本発明を完成した。
Therefore, the present inventor has studied various applications of phosphorus sulfide. Phosphorus sulfide is insoluble in other than benzene and carbon disulfide as described above, while alkali metal salts are hardly soluble in organic solvents such as ethyl acetate. Therefore, it has been considered that both of these cannot be used to react in an organic solvent solution such as ethyl acetate.
However, when the present inventor added an alkali metal salt and phosphorus sulfide to an ester solvent such as ethyl acetate and a polar organic solvent such as a nitrile solvent, which are versatile as reaction solvents, and stirred for a certain period of time, it was completely unexpected. It was also found that both react and dissolve in these organic solvents. Then, they found that when an oxygen-containing compound was added to this reaction solution and the reaction was carried out, a sulfur-containing compound in which an oxygen atom was replaced with a sulfur atom was obtained in high yield, and post-treatment was easy, and the present invention was made. Was completed.

すなわち、本発明は、次の発明[1]~[6]を提供するものである。
[1]有機溶媒中での硫化リンとアルカリ金属塩との反応液からなるチオ化剤。
[2]アルカリ金属塩が、水酸化アルカリ金属、無機酸アルカリ金属塩及び有機酸アルカリ金属塩から選ばれるアルカリ金属塩である[1]記載のチオ化剤。
[3]有機溶媒が、極性有機溶媒である[1]又は[2]記載のチオ化剤。
[4]有機溶媒が、エステル系溶媒、ニトリル系溶媒及びエーテル系溶媒から選ばれる溶媒である[1]又は[2]記載のチオ化剤。
[5]酸素含有化合物に[1]~[4]のいずれかに記載のチオ化剤を反応させることを特徴とする、当該酸素含有化合物中の酸素原子がイオウ原子に置換されたイオウ含有化合物の製造法。
[6]酸素含有化合物が、ヒドロキシ基、ケトン基及びアミド基から選ばれる1種又は2種以上の酸素含有基を有する化合物であり、イオウ含有化合物が、チオール基、チオケトン基及びチオアミド基から選ばれる一種又は2種以上のイオウ含有基を有する化合物である[5]記載の製造法。
That is, the present invention provides the following inventions [1] to [6].
[1] A thiolating agent consisting of a reaction solution of phosphorus sulfide and an alkali metal salt in an organic solvent.
[2] The thiolating agent according to [1], wherein the alkali metal salt is an alkali metal salt selected from an alkali metal hydroxide, an inorganic acid alkali metal salt and an organic acid alkali metal salt.
[3] The thiolating agent according to [1] or [2], wherein the organic solvent is a polar organic solvent.
[4] The thiolytic agent according to [1] or [2], wherein the organic solvent is a solvent selected from an ester solvent, a nitrile solvent and an ether solvent.
[5] A sulfur-containing compound in which the oxygen atom in the oxygen-containing compound is replaced with a sulfur atom, which comprises reacting the oxygen-containing compound with the thiolating agent according to any one of [1] to [4]. Manufacturing method.
[6] The oxygen-containing compound is a compound having one or more oxygen-containing groups selected from a hydroxy group, a ketone group and an amide group, and the sulfur-containing compound is selected from a thiol group, a thioketone group and a thioamide group. The production method according to [5], which is a compound having one or more sulfur-containing groups.

本発明のチオ化剤は、硫化リンとアルカリ金属塩から容易に得られる汎用性のある有機溶媒液であり、種々の酸素含有化合物のチオ化剤として有用である。また、本発明のチオ化剤を用いれば、容易な操作により、高収率でイオウ含有化合物が得られる。
本発明のチオ化剤は、特に、アミドからチオアミドに、アルコールからチオールに、ケトンからチオケトンに、などのチオ化剤として有用である。また有機溶媒に溶解することから液体化合物だけでなく溶解しにくい固体化合物でも反応できる。
また、反応後本発明のチオ化剤は水を加えることで水溶性の無機分解物になるため後処理も簡便で、合成試薬としてまた工業的にも利用できる。また本発明チオ化剤が有機溶剤に溶解することからマイクロリアクターにも利用できるものと考えられる。
The thiolating agent of the present invention is a versatile organic solvent solution easily obtained from phosphorus sulfide and an alkali metal salt, and is useful as a thiolating agent for various oxygen-containing compounds. Further, by using the thiolating agent of the present invention, a sulfur-containing compound can be obtained in a high yield by a simple operation.
The thiolating agent of the present invention is particularly useful as a thiolating agent such as from amide to thioamide, from alcohol to thiol, from ketone to thioketone, and the like. Moreover, since it dissolves in an organic solvent, it can react not only with liquid compounds but also with solid compounds that are difficult to dissolve.
Further, after the reaction, the thiolating agent of the present invention becomes a water-soluble inorganic decomposition product by adding water, so that post-treatment is simple and it can be used industrially as a synthetic reagent. Further, since the thiolating agent of the present invention dissolves in an organic solvent, it is considered that it can also be used in a microreactor.

本発明チオ化剤のチオ化能力を、チオ化剤に含まれるイオウ原子数10原子のうち最大何原子がチオ化に使われるか実験した結果を示す図である。It is a figure which shows the result of having experimented with the thiolating ability of the thiolating agent of this invention, the maximum number of atoms among the 10 sulfur atoms contained in the thiolating agent, which are used for thiolating.

本発明のチオ化剤は、有機溶媒中での硫化リンとアルカリ金属塩との反応液である。 The thiolating agent of the present invention is a reaction solution of phosphorus sulfide and an alkali metal salt in an organic solvent.

用いる硫化リンとしては、三硫化リン(P)、五硫化リン(P)(五硫化二リン(P10)ともいう)、七硫化リン(P)、五硫化四リン(P)が挙げられ、このうち三硫化リン(P)、五硫化リン(P)が好ましく、五硫化リン(P)がより好ましい。 Phosphorus sulfide used includes phosphorus trisulfide (P 4 S 3 ), phosphorus pentasulfide (P 2 S 5 ) (also referred to as diphosphorus pentasulfide (P 4 S 10 )), phosphorus heptasulfide (P 4 S 7 ), and phosphorus sulfide. Phosphorus pentasulfide (P 4 S 5 ) is mentioned, of which phosphorus trisulfide (P 4 S 3 ) and phosphorus pentasulfide (P 2 S 5 ) are preferable, and phosphorus pentasulfide (P 2 S 5 ) is more preferable. ..

アルカリ金属塩としては、水酸化アルカリ金属、無機酸アルカリ金属塩、有機酸アリカリ金属塩が挙げられる。
アルカリ金属としては、リチウム、ナトリウム、カリウムが挙げられる。
Examples of the alkali metal salt include an alkali metal hydroxide, an inorganic acid alkali metal salt, and an organic acid alikari metal salt.
Examples of the alkali metal include lithium, sodium and potassium.

無機酸としては、硫化水素、炭酸、リン酸などが挙げられる。このうち、無機酸アルカリ金属塩として塩基性となるものが好ましく、硫化水素、炭酸、リン酸がより好ましく、硫化水素、炭酸がより好ましい。従って、無機酸アルカリ金属塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、リン酸水素2ナトリウム、硫化ナトリウムなどが好ましく、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、硫化ナトリウムがより好ましい。
また、有機酸としては、有機カルボン酸が好ましく、具体的には、酢酸が挙げられる。従って、有機酸アルカリ金属塩としては、酢酸ナトリウム、酢酸リチウム、酢酸カリウムなどが挙げられる。
また、水酸化ナトリウム、水酸化カリウムも挙げられる。
Examples of the inorganic acid include hydrogen sulfide, carbonic acid, and phosphoric acid. Of these, those that are basic as the inorganic acid alkali metal salt are preferable, hydrogen sulfide, carbonic acid, and phosphoric acid are more preferable, and hydrogen sulfide and carbonic acid are more preferable. Therefore, as the inorganic acid alkali metal salt, lithium carbonate, sodium carbonate, potassium carbonate, sodium phosphate, disodium hydrogen phosphate, sodium sulfide and the like are preferable, and lithium carbonate, sodium carbonate, potassium carbonate and sodium sulfide are more preferable.
Further, as the organic acid, an organic carboxylic acid is preferable, and specific examples thereof include acetic acid. Therefore, examples of the organic acid alkali metal salt include sodium acetate, lithium acetate, potassium acetate and the like.
Moreover, sodium hydroxide and potassium hydroxide are also mentioned.

硫化リンとアルカリ金属塩との反応溶媒となる有機溶媒としては、硫化リンとアルカリ金属塩とが反応して溶解する観点から、極性有機溶媒が好ましく、エステル系溶媒、ニトリル系溶媒、エーテル系溶媒などがより好ましい。
このうち、エステル系溶媒、ニトリル系溶媒が汎用性、硫化リンとアルカリ金属塩との反応性、後処理の容易性などの観点から好ましい。具体的には、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルなどの酢酸エステル、アセトニトリル、テトラヒドロフランなどが挙げられ、酢酸エステル、アセトニトリルが好ましく、酢酸エステルがより好ましい。
As the organic solvent serving as the reaction solvent of phosphorus sulfide and the alkali metal salt, a polar organic solvent is preferable from the viewpoint of reacting and dissolving phosphorus sulfide and the alkali metal salt, and an ester solvent, a nitrile solvent, and an ether solvent are used. Etc. are more preferable.
Of these, ester-based solvents and nitrile-based solvents are preferable from the viewpoints of versatility, reactivity between phosphorus sulfide and alkali metal salts, ease of post-treatment, and the like. Specific examples thereof include acetic acid esters such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate, acetonitrile, tetrahydrofuran and the like, with acetic acid esters and acetonitrile being preferred, and acetic acid esters being more preferred.

硫化リンとアルカリ金属塩との反応は、有機溶媒中で行われる。反応温度は、20℃~30℃付近が好ましく、反応時間は3時間~24時間で十分である。
高い温度では、生成したチオ化剤が酢酸エステルをチオ化し、チオ酢酸エステルが副生する。しかし、このチオ酢酸エステルは、溶媒と一緒に除去できる。
また、水分は五硫化リンを分解させるため、有機溶媒及びアルカリ金属塩は無水のものを使用するのが好ましい。
The reaction between phosphorus sulfide and the alkali metal salt is carried out in an organic solvent. The reaction temperature is preferably around 20 ° C. to 30 ° C., and the reaction time is preferably 3 hours to 24 hours.
At high temperatures, the thioacetic acid produced thionates the acetate, and the thioacetate is by-produced. However, this thioacetic acid ester can be removed with the solvent.
Further, since water decomposes phosphorus pentasulfide, it is preferable to use an anhydrous organic solvent and alkali metal salt.

硫化リンとアルカリ金属塩との反応速度は結晶粒度と撹拌速度に大きく影響され、細かいほど、また撹拌速度が速いほどより早く反応する。炭酸ナトリウムの場合は粉末状でも顆粒状でも使用でき、五硫化リンは粒径約2mm前後のものでも反応するが、少量の製造では0.5mm以下の粉末がより好ましい。 The reaction rate of phosphorus sulfide and the alkali metal salt is greatly affected by the crystal grain size and the stirring rate, and the finer the reaction rate and the faster the stirring rate, the faster the reaction. In the case of sodium carbonate, it can be used in the form of powder or granules, and phosphorus pentasulfide reacts even if it has a particle size of about 2 mm, but powder of 0.5 mm or less is more preferable for small-quantity production.

具体的な反応例としては、五硫化二リンと炭酸ナトリウムを酢酸エチル中室温下懸濁し撹拌すると炭酸ガスを発生し溶解する。五硫化二リン(分子式P10)1モルに対して炭酸ナトリウムは1~2モルの範囲で溶解する。原料の仕込み比率によって1:1と1:2の溶液を作り分けもできる(以下1:1のチオ化剤をタイプ1と、1:2をタイプ2と略す)。タイプ1とタイプ2では反応性が著しく異なり、目的に応じ利用できる。
アルカリ金属塩の違いによりタイプ1とタイプ2の2種類作るものとタイプ1しか得られないものがある。
As a specific reaction example, when diphosphorus pentasulfide and sodium carbonate are suspended in ethyl acetate at room temperature and stirred, carbon dioxide gas is generated and dissolved. Sodium carbonate dissolves in the range of 1 to 2 mol per 1 mol of diphosphorus pentasulfide (molecular formula P4 S 10 ) . It is also possible to prepare 1: 1 and 1: 2 solutions according to the raw material charging ratio (hereinafter, 1: 1 thiolating agent is abbreviated as type 1 and 1: 2 is abbreviated as type 2). Reactivity is significantly different between type 1 and type 2, and it can be used according to the purpose.
Depending on the difference in alkali metal salt, there are two types, type 1 and type 2, and one that can only be obtained as type 1.

例えば五硫化二リンと硫化ナトリウムを1分子反応させた場合、開環し溶解する。これは次式のように反応していると考えられる。 For example, when one molecule of diphosphorus pentasulfide and sodium sulfide are reacted, the ring is opened and dissolved. This is considered to react as shown in the following equation.

Figure 2022091500000001
Figure 2022091500000001

また、五硫化二リンは、他のアルカリ金属塩でも同じように開環付加するが、炭酸ナトリウムとの反応では、二酸化炭素が等モル発生することから次式のように反応していると考えられる。 In addition, diphosphorus pentasulfide is similarly ring-opened and added to other alkali metal salts, but it is considered that the reaction with sodium carbonate is as follows because carbon dioxide is generated in equimolar amounts. Be done.

Figure 2022091500000002
Figure 2022091500000002

本発明のチオ化剤を用いれば、イオウ含有化合物が容易に製造できる。すなわち、酸素含有化合物に本発明のチオ化剤を反応させれば、当該酸素含有化合物中の酸素原子がイオウ原子に置換されたイオウ含有化合物が製造できる。
本発明の製造方法は、酸素含有化合物が、ヒドロキシ基、ケトン基及びアミド基から選ばれる1種又は2種以上の酸素含有基を有する化合物に適用するのが好ましく、この場合、得られるイオウ含有化合物は、チオール基、チオケトン基及びチオアミド基から選ばれる1種又は2種以上のイオウ含有基を有する化合物である。
By using the thiolating agent of the present invention, a sulfur-containing compound can be easily produced. That is, by reacting the oxygen-containing compound with the thiolating agent of the present invention, a sulfur-containing compound in which the oxygen atom in the oxygen-containing compound is replaced with a sulfur atom can be produced.
In the production method of the present invention, the oxygen-containing compound is preferably applied to a compound having one or more oxygen-containing groups selected from a hydroxy group, a ketone group and an amide group, and in this case, the obtained sulfur-containing compound is used. The compound is a compound having one or more sulfur-containing groups selected from a thiol group, a thioketone group and a thioamide group.

チオ化反応を行うには、本発明のチオ化剤が溶液であるから、チオ化したい酸素含有化合物をチオ化剤に加え、撹拌反応すればよい。
反応温度は通常20~60℃が適している。
チオ化剤の使用量は、酸素含有化合物の構造やチオ化剤の種類により大きく相違する。本発明チオ化剤のチオ化能力を、チオ化剤に含まれるイオウ原子数10原子のうち最大何原子がチオ化に使われるか実験した結果を、図1に示す。図1に示すように、塩基性アルカリ金属塩の違いに大きく影響している。実際、種々の化合物に反応させたところ、五硫化二リン(P10)1モルに対し酸素含有化合物は実用上1モル~5モルである。
In order to carry out the thiolation reaction, since the thiolating agent of the present invention is a solution, the oxygen-containing compound to be thiolated may be added to the thiolating agent and the reaction may be performed with stirring.
The reaction temperature is usually preferably 20 to 60 ° C.
The amount of the thiolating agent used varies greatly depending on the structure of the oxygen-containing compound and the type of thiolating agent. FIG. 1 shows the results of an experiment on the thiolation ability of the thiolating agent of the present invention to determine how many of the 10 sulfur atoms contained in the thiolating agent are used for thiolation. As shown in FIG. 1, it greatly affects the difference between basic alkali metal salts. In fact, when reacted with various compounds, the oxygen-containing compound is practically 1 mol to 5 mol with respect to 1 mol of diphosphorus pentasulfide ( P4 S 10 ) .

チオ化反応終了後は、チオ化剤は水を添加すれば水溶性の無機分解物になるため、後処理が極めて簡便である。本発明チオ化剤は、有機溶媒に溶解することからマイクロリアクターにも利用できるものと考えられる。 After the completion of the thiolation reaction, the thiolating agent becomes a water-soluble inorganic decomposition product by adding water, so that the post-treatment is extremely simple. Since the thiolating agent of the present invention is soluble in an organic solvent, it is considered that it can also be used in a microreactor.

次に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例に何ら限定されない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

実施例1
N-フェニルアセトチオアミドの合成(炭酸ナトリウム タイプ1法)
Example 1
Synthesis of N-Phenylacetthioamide (sodium carbonate type 1 method)

Figure 2022091500000003
Figure 2022091500000003

五硫化二リン1.11g(2.5mmol)と炭酸ナトリウム0.28g(2.5mmol)に酢酸エチル4mLを加え、室温で一夜撹拌したところ、二酸化炭素が約30mL発生し溶解した。次にアセトアニリド1.69g(12.5mmol)と酢酸エチル2mLを加え、40℃で24時間撹拌した。このとき反応率は99.2%であった。水冷下10%炭酸ナトリウム水溶液10mLを加えて水層を分液し、水層は酢酸エチル2mLで2回抽出し、抽出した酢酸エチル層をまとめ水洗後濃縮乾固した。次にヘキサンを加えてスラリー洗浄し、減圧乾燥し褐色結晶を得た。
収量1.63g 収率86.2% HPLC単純面積純度99.0%
When 4 mL of ethyl acetate was added to 1.11 g (2.5 mmol) of diphosphorus pentasulfide and 0.28 g (2.5 mmol) of sodium carbonate and stirred overnight at room temperature, about 30 mL of carbon dioxide was generated and dissolved. Next, 1.69 g (12.5 mmol) of acetanilide and 2 mL of ethyl acetate were added, and the mixture was stirred at 40 ° C. for 24 hours. At this time, the reaction rate was 99.2%. The aqueous layer was separated by adding 10 mL of a 10% aqueous sodium carbonate solution under water cooling, the aqueous layer was extracted twice with 2 mL of ethyl acetate, the extracted ethyl acetate layers were combined, washed with water, and concentrated to dryness. Next, hexane was added, the slurry was washed, and the mixture was dried under reduced pressure to obtain brown crystals.
Yield 1.63g Yield 86.2% HPLC Simple Area Purity 99.0%

実施例2
N-フェニルアセトチオアミドの合成(炭酸リチウム タイプ1法)
Example 2
Synthesis of N-Phenylacetthioamide (lithium carbonate type 1 method)

Figure 2022091500000004
Figure 2022091500000004

実施例1の炭酸ナトリウムを炭酸リチウム0.19g(2.5mmol)に換え、同様に合成した。24時間の反応率は96.5%であった。後処理後、褐色結晶を得た。
収量1.70g 収率89.9% HPLC単純面積純度98.1%
The sodium carbonate of Example 1 was replaced with 0.19 g (2.5 mmol) of lithium carbonate, and the same synthesis was performed. The reaction rate for 24 hours was 96.5%. After post-treatment, brown crystals were obtained.
Yield 1.70g Yield 89.9% HPLC Simple Area Purity 98.1%

実施例3
N-フェニルアセトチオアミドの合成(硫化ナトリウム タイプ1法)
Example 3
Synthesis of N-Phenylacetthioamide (sodium sulfide type 1 method)

Figure 2022091500000005
Figure 2022091500000005

実施例1の炭酸ナトリウムを硫化ナトリウム0.20g(2.5mmol)に換え、同様に合成した。24時間の反応率は98.8%であった。後処理後、褐色結晶を得た。
収量1.72g 収率91.0% HPLC単純面積純度98.3%
The sodium carbonate of Example 1 was replaced with 0.20 g (2.5 mmol) of sodium sulfide, and the same synthesis was performed. The reaction rate for 24 hours was 98.8%. After post-treatment, brown crystals were obtained.
Yield 1.72g Yield 91.0% HPLC Simple Area Purity 98.3%

実施例4
N-フェニルアセトチオアミドの合成(炭酸ナトリウム タイプ2法)
Example 4
Synthesis of N-Phenylacetthioamide (sodium carbonate type 2 method)

Figure 2022091500000006
Figure 2022091500000006

五硫化二リン1.67g(3.76mmol)と炭酸ナトリウム0.84g(7.54mmol)に酢酸エチル6mLを加え、室温で一夜撹拌したところ、二酸化炭素が約93mL発生し溶解した。次にアセトアニリド1.02g(7.55mmol)を加え、50℃で48時間撹拌した。水冷下10%炭酸ナトリウム水溶液8mLを加えて抽出洗浄し、水層は酢酸エチルで2回抽出し、抽出した酢酸エチル層をまとめ水洗後濃縮乾固した。次にヘキサンを加えスラリー洗浄し、減圧乾燥し白色結晶を得た。
収量1.03g 収率90.3% HPLC単純面積純度99.2%
When 6 mL of ethyl acetate was added to 1.67 g (3.76 mmol) of diphosphorus pentasulfide and 0.84 g (7.54 mmol) of sodium carbonate and stirred overnight at room temperature, about 93 mL of carbon dioxide was generated and dissolved. Next, 1.02 g (7.55 mmol) of acetanilide was added, and the mixture was stirred at 50 ° C. for 48 hours. 8 mL of a 10% sodium carbonate aqueous solution was added under water cooling for extraction and washing. The aqueous layer was extracted twice with ethyl acetate, and the extracted ethyl acetate layers were combined and washed with water and then concentrated to dryness. Next, hexane was added, the slurry was washed, and the mixture was dried under reduced pressure to obtain white crystals.
Yield 1.03g Yield 90.3% HPLC Simple Area Purity 99.2%

実施例5
ベンズチオアミドの合成(炭酸ナトリウム タイプ2法)
Example 5
Synthesis of benzthioamide (sodium carbonate type 2 method)

Figure 2022091500000007
Figure 2022091500000007

五硫化二リン2.22g(5.0mmol)と炭酸ナトリウム0.56g(5.0mmol)に酢酸エチル8mLを加え、室温で2時間撹拌したところ、二酸化炭素が約80mL発生した。さらに炭酸ナトリウム0.56g(5.0mmol)を追加投入し3時間反応したところ、二酸化炭素が約80mL発生した。次にベンズアミド1.21g(10mmol)と酢酸エチル2mLを加え、50℃で72時間撹拌した。このとき反応率は99.0%であった。水冷下10%炭酸ナトリウム水溶液10mLを加えて撹拌後、水10mLを加え、酢酸エチルを減圧濃縮した。結晶をろ過し、水で洗浄後減圧乾燥し淡黄色結晶を得た。
収量1.24g 収率90.4% HPLC単純面積純度99.7%
When 8 mL of ethyl acetate was added to 2.22 g (5.0 mmol) of diphosphorus pentasulfide and 0.56 g (5.0 mmol) of sodium carbonate and stirred at room temperature for 2 hours, about 80 mL of carbon dioxide was generated. Further, when 0.56 g (5.0 mmol) of sodium carbonate was additionally added and reacted for 3 hours, about 80 mL of carbon dioxide was generated. Next, 1.21 g (10 mmol) of benzamide and 2 mL of ethyl acetate were added, and the mixture was stirred at 50 ° C. for 72 hours. At this time, the reaction rate was 99.0%. After water cooling, 10 mL of a 10% aqueous sodium carbonate solution was added and stirred, then 10 mL of water was added, and ethyl acetate was concentrated under reduced pressure. The crystals were filtered, washed with water and dried under reduced pressure to obtain pale yellow crystals.
Yield 1.24g Yield 90.4% HPLC Simple Area Purity 99.7%

実施例6
N,N-ジメチルベンズチオアミドの合成(リン酸ナトリウム法 タイプ1法)
Example 6
Synthesis of N, N-dimethylbenzthioamide (sodium phosphate method type 1 method)

Figure 2022091500000008
Figure 2022091500000008

五硫化二リン0.60g(1.35mmol)とリン酸ナトリウム0.33g(2.0mmol)に酢酸エチル3mLを加え、室温で3時間撹拌したところ、五硫化二リンは溶解し、過剰なリン酸ナトリウムが溶けずに残った。次にN,N-ジメチルベンズアミド1.01g(6.77mmol)と酢酸エチル2mLを加え、40℃で48時間撹拌した。このとき反応率は99.2%であった。水冷下10%炭酸ナトリウム水溶液5mL加えて抽出洗浄し、次に5%炭酸ナトリウム水溶液で洗浄分液し、酢酸エチル層に水5mLを加え、酢酸エチルを減圧濃縮した。結晶をろ過、水洗浄し、減圧乾燥して淡褐色結晶を得た。
収量1.06g 収率94.7% HPLC単純面積純度99.7%
When 3 mL of ethyl acetate was added to 0.60 g (1.35 mmol) of diphosphorus pentasulfide and 0.33 g (2.0 mmol) of sodium phosphate and stirred at room temperature for 3 hours, diphosphorus pentasulfide was dissolved and excess phosphorus was added. Sodium phosphate remained undissolved. Next, 1.01 g (6.77 mmol) of N, N-dimethylbenzamide and 2 mL of ethyl acetate were added, and the mixture was stirred at 40 ° C. for 48 hours. At this time, the reaction rate was 99.2%. Under water cooling, 5 mL of a 10% sodium carbonate aqueous solution was added for extraction and washing, then the solution was washed and separated with a 5% sodium carbonate aqueous solution, 5 mL of water was added to the ethyl acetate layer, and ethyl acetate was concentrated under reduced pressure. The crystals were filtered, washed with water, and dried under reduced pressure to obtain light brown crystals.
Yield 1.06g Yield 94.7% HPLC Simple Area Purity 99.7%

実施例7
N,N-ジメチルベンズチオアミドの合成(炭酸ナトリウム タイプ1法)
Example 7
Synthesis of N, N-dimethylbenzthioamide (sodium carbonate type 1 method)

Figure 2022091500000009
Figure 2022091500000009

五硫化二リン1.11g(2.5mmol)と炭酸ナトリウム0.28g(2.5mol)に酢酸エチル4mLを加え、室温で一夜撹拌したところ、炭酸ガスを発生し溶解した。次にN,N-ジメチルベンズアミド0.75g(5.0mmol)と酢酸エチル2mLを加え、50℃で2時間撹拌した。このとき反応率は98.8%であった。10%炭酸ナトリウム水溶液8mLを加え抽出洗浄し、水10mLを加え、酢酸エチルを減圧濃縮した。結晶をろ過、水洗しヘキサン洗浄後、減圧乾燥して淡黄緑色結晶を得た。
収量0.77g 収率92.6% HPLC単純面積純度99.5%
Ethyl acetate (4 mL) was added to 1.11 g (2.5 mmol) of diphosphorus pentasulfide and 0.28 g (2.5 mol) of sodium carbonate, and the mixture was stirred overnight at room temperature to generate and dissolve carbon dioxide gas. Next, 0.75 g (5.0 mmol) of N, N-dimethylbenzamide and 2 mL of ethyl acetate were added, and the mixture was stirred at 50 ° C. for 2 hours. At this time, the reaction rate was 98.8%. 8 mL of a 10% aqueous sodium carbonate solution was added for extraction and washing, 10 mL of water was added, and ethyl acetate was concentrated under reduced pressure. The crystals were filtered, washed with water, washed with hexane, and dried under reduced pressure to obtain pale yellowish green crystals.
Yield 0.77g Yield 92.6% HPLC Simple Area Purity 99.5%

実施例8
フェニルアセトチオアミドの合成(リン酸ナトリウム法 タイプ1法)
Example 8
Synthesis of phenylacetthioamide (sodium phosphate method type 1 method)

Figure 2022091500000010
Figure 2022091500000010

五硫化二リン0.60g(1.35mmol)とリン酸ナトリウム0.33g(2.0mmol)に酢酸エチル3mLを加え、室温で3時間撹拌したところ、五硫化二リンは溶解し、過剰なリン酸ナトリウム分は溶けずに残った。次にフェニルアセトアミド1.10g(8.14mmol)と酢酸エチル2mLを加え、40℃で21時間撹拌した。このとき反応率は98.2%であった。水冷下10%炭酸ナトリウム水溶液5mLを加え抽出洗浄し、次に5%炭酸ナトリウム水溶液5mLで洗浄した。次に酢酸エチル層に水5mLを加え、酢酸エチルを減圧濃縮して結晶をろ過し、水洗浄後、減圧乾燥し橙色結晶を得た。
収量1.12g 収率91.0% HPLC単純面積純度99.6%
When 3 mL of ethyl acetate was added to 0.60 g (1.35 mmol) of diphosphorus pentasulfide and 0.33 g (2.0 mmol) of sodium phosphate and stirred at room temperature for 3 hours, diphosphorus pentasulfide was dissolved and excess phosphorus was added. The sodium acid content remained undissolved. Next, 1.10 g (8.14 mmol) of phenylacetamide and 2 mL of ethyl acetate were added, and the mixture was stirred at 40 ° C. for 21 hours. At this time, the reaction rate was 98.2%. Under water cooling, 5 mL of a 10% sodium carbonate aqueous solution was added for extraction and washing, and then 5 mL of a 5% sodium carbonate aqueous solution was washed. Next, 5 mL of water was added to the ethyl acetate layer, ethyl acetate was concentrated under reduced pressure, the crystals were filtered, washed with water, and dried under reduced pressure to obtain orange crystals.
Yield 1.12g Yield 91.0% HPLC Simple Area Purity 99.6%

実施例9
トリフェニルメタンチオールの合成(炭酸ナトリウム タイプ2法)
Example 9
Synthesis of triphenylmethanethiol (sodium carbonate type 2 method)

Figure 2022091500000011
Figure 2022091500000011

五硫化二リン1.11g(2.5mmol)と炭酸ナトリウム0.56g(5.0mmol)に酢酸エチル4mlを加え、室温で一夜撹拌したところ、二酸化炭素が約68mL発生し溶解した。次にトリフェニルメタノール1.00g(0.384mmol)と酢酸エチル2mLを加え、50℃で一夜撹拌した。水冷下酢酸エチル5mLと10%炭酸ナトリウム水溶液5mLを加え抽出洗浄し、水層は酢酸エチル2mLで回収し、抽出した酢酸エチル層をまとめて0.5N塩酸3mLで洗浄した。飽和食塩水で洗浄、硫酸ナトリウムで乾燥後、濃縮乾固した。次にヘキサンを加えスラリー洗浄し、減圧乾燥し淡黄白色結晶を得た。
収量0.96g 収率90.4% HPLC単純面積純度99.9%
When 4 ml of ethyl acetate was added to 1.11 g (2.5 mmol) of diphosphorus pentasulfide and 0.56 g (5.0 mmol) of sodium carbonate and stirred overnight at room temperature, about 68 mL of carbon dioxide was generated and dissolved. Next, 1.00 g (0.384 mmol) of triphenylmethanol and 2 mL of ethyl acetate were added, and the mixture was stirred at 50 ° C. overnight. 5 mL of ethyl acetate and 5 mL of a 10% aqueous sodium carbonate solution were added under water cooling for extraction and washing. The aqueous layer was recovered with 2 mL of ethyl acetate, and the extracted ethyl acetate layers were collectively washed with 3 mL of 0.5N hydrochloric acid. The cells were washed with saturated brine, dried over sodium sulfate, and then concentrated to dryness. Next, hexane was added, the slurry was washed, and the mixture was dried under reduced pressure to obtain pale yellowish white crystals.
Yield 0.96g Yield 90.4% HPLC Simple Area Purity 99.9%

実施例10
チオベンゾフェノンの合成(炭酸ナトリウム タイプ2法)
Example 10
Synthesis of thiobenzophenone (sodium carbonate type 2 method)

Figure 2022091500000012
Figure 2022091500000012

五硫化二リン1.11g(2.5mmol)と炭酸ナトリウム0.56g(5.0mmol)に酢酸エチル4mLを加え、室温で一夜撹拌したところ、二酸化炭素が約36mL発生し溶解した。ベンゾフェノン0.91g(5mmol)と内部標準として安息香酸イソブチル0.11g(0.62mmol)を加え、50℃で72時間撹拌した。反応が進むにつれチオベンゾフェノン(3量体)特有の濃い青色になった。内部標準を基にHPLCにて反応率を求めたところ8時間で62%、14時間で90%、24時間で94%、72時間で97%の反応率であった。 When 4 mL of ethyl acetate was added to 1.11 g (2.5 mmol) of diphosphorus pentasulfide and 0.56 g (5.0 mmol) of sodium carbonate and stirred overnight at room temperature, about 36 mL of carbon dioxide was generated and dissolved. 0.91 g (5 mmol) of benzophenone and 0.11 g (0.62 mmol) of isobutyl benzoate as an internal standard were added, and the mixture was stirred at 50 ° C. for 72 hours. As the reaction proceeded, it became a deep blue color peculiar to thiobenzophenone (trimer). When the reaction rate was determined by HPLC based on the internal standard, the reaction rate was 62% at 8 hours, 90% at 14 hours, 94% at 24 hours, and 97% at 72 hours.

実施例11
4-チオカルバモイルピペリジン-1-カルボン酸tert-ブチルの合成(炭酸ナトリウム タイプ2法)
Example 11
Synthesis of 4-thiocarbamoylpiperidin-1-carboxylate tert-butyl (sodium carbonate type 2 method)

Figure 2022091500000013
Figure 2022091500000013

五硫化二リン1.76g(4mmol)と炭酸ナトリウム0.84g(8.0mmol)に酢酸エチル8mLを加え、室温で一夜撹拌したところ、二酸化炭素が発生し溶解した。次に4-カルバモイルピペリジン-1-カルボン酸tert-ブチル1.00g(4.38mmol)と炭酸ナトリウム0.1g(1mmol)を加え、50℃で20時間撹拌した。水冷下10%炭酸ナトリウム水溶液を10mL加えてよく撹拌後、分液し、有機層に水10mLを加え、酢酸エチルを濃縮した。結晶をろ過し水洗して減圧乾燥し淡黄白色結晶を得た。
収量0.97g 収率90.6% HPLC単純面積純度99.7%
When 8 mL of ethyl acetate was added to 1.76 g (4 mmol) of diphosphorus pentasulfide and 0.84 g (8.0 mmol) of sodium carbonate, and the mixture was stirred overnight at room temperature, carbon dioxide was generated and dissolved. Next, 1.00 g (4.38 mmol) of tert-butyl 4-carbamoylpiperidin-1-carboxylate and 0.1 g (1 mmol) of sodium carbonate were added, and the mixture was stirred at 50 ° C. for 20 hours. 10 mL of a 10% aqueous sodium carbonate solution was added under water cooling, and the mixture was stirred well, separated, and 10 mL of water was added to the organic layer to concentrate ethyl acetate. The crystals were filtered, washed with water and dried under reduced pressure to obtain pale yellowish white crystals.
Yield 0.97g Yield 90.6% HPLC Simple Area Purity 99.7%

実施例12
炭酸tert-ブチル=4-チオカルバモイルフェニル(リン酸ナトリウム法 タイプ1法)
Example 12
Tert-Butyl carbonate = 4-thiocarbamoylphenyl (sodium phosphate method type 1 method)

Figure 2022091500000014
Figure 2022091500000014

五硫化二リン0.60g(1.35mmol)とリン酸ナトリウム0.33g(2.0mmol)に酢酸エチル3mLを加え、室温で3時間撹拌したところ、五硫化二リンは溶解し、過剰なリン酸ナトリウム分は溶けずに残った。次に炭酸tert-ブチル=4-カルバモイルフェニル1.07g(4.51mmol)と酢酸エチル5mLを加え、40℃で48時間撹拌した。このとき反応率は97.5%であった。水冷下10%炭酸ナトリウム水溶液5mL加え抽出し、酢酸エチル層は水5mLを加え、酢酸エチルを減圧濃縮した。結晶をろ過、水洗後、減圧乾燥し黄色結晶を得た。
収量0.872g 収率76.3% HPLC単純面積純度91.9%
When 3 mL of ethyl acetate was added to 0.60 g (1.35 mmol) of diphosphorus pentasulfide and 0.33 g (2.0 mmol) of sodium phosphate and stirred at room temperature for 3 hours, diphosphorus pentasulfide was dissolved and excess phosphorus was added. The sodium acid content remained undissolved. Next, 1.07 g (4.51 mmol) of tert-butyl carbonate = 4-carbamoylphenyl and 5 mL of ethyl acetate were added, and the mixture was stirred at 40 ° C. for 48 hours. At this time, the reaction rate was 97.5%. Under water cooling, 5 mL of a 10% aqueous sodium carbonate solution was added for extraction, and 5 mL of water was added to the ethyl acetate layer, and ethyl acetate was concentrated under reduced pressure. The crystals were filtered, washed with water, and dried under reduced pressure to obtain yellow crystals.
Yield 0.872g Yield 76.3% HPLC Simple Area Purity 91.9%

実施例13
2-(3-フルオロ-4-フェニルフェニル)プロピオン酸4-チオカルバモイルフェニルの合成(炭酸ナトリウム タイプ1法)
Example 13
Synthesis of 2- (3-fluoro-4-phenylphenyl) propionic acid 4-thiocarbamoylphenyl (sodium carbonate type 1 method)

Figure 2022091500000015
Figure 2022091500000015

五硫化二リン1.11g(2.5mmol)と炭酸ナトリウム0.28g(2.5mmol)に酢酸エチル4mLを加え、室温で一夜撹拌したところ、二酸化炭素が約30mL発生し溶解した。次に2-(3-フルオロ-4-フェニルフェニル)プロピオン酸4-カルバモイルフェニル1.82g(5.0mmol)と酢酸エチル2mLを加え、40℃で5時間撹拌した。このとき反応率は99.8%であった。水冷下10%炭酸ナトリウム水溶液10mLを加え抽出分液し、水層は酢酸エチル2mLで2回抽出回収し、酢酸エチル層をまとめ水洗後濃縮乾固した。次にジイソプロピルエーテル5mLを加えスラリー洗浄し、減圧乾燥し淡黄色結晶を得た。
収量1.80g 収率94.8% HPLC単純面積純度98.7%
酢酸エチルで再結晶したものは、比較例3のカラム精製したものと熱分析(TG-DTA)が一致した。
When 4 mL of ethyl acetate was added to 1.11 g (2.5 mmol) of diphosphorus pentasulfide and 0.28 g (2.5 mmol) of sodium carbonate and stirred overnight at room temperature, about 30 mL of carbon dioxide was generated and dissolved. Next, 1.82 g (5.0 mmol) of 4-carbamoylphenyl 2- (3-fluoro-4-phenylphenyl) propionic acid and 2 mL of ethyl acetate were added, and the mixture was stirred at 40 ° C. for 5 hours. At this time, the reaction rate was 99.8%. Under water cooling, 10 mL of a 10% aqueous sodium carbonate solution was added to extract and separate the liquid, and the aqueous layer was extracted and recovered twice with 2 mL of ethyl acetate. The ethyl acetate layer was combined with water and then concentrated to dryness. Next, 5 mL of diisopropyl ether was added, the slurry was washed, and the mixture was dried under reduced pressure to obtain pale yellow crystals.
Yield 1.80g Yield 94.8% HPLC Simple Area Purity 98.7%
The recrystallized product with ethyl acetate was consistent with the column-purified product of Comparative Example 3 by thermal analysis (TG-DTA).

実施例14
2-(3-フルオロ-4-フェニルフェニル)プロピオン酸4-チオカルバモイルフェニルの合成(炭酸ナトリウム タイプ2法)
Example 14
Synthesis of 2- (3-fluoro-4-phenylphenyl) propionic acid 4-thiocarbamoylphenyl (sodium carbonate type 2 method)

Figure 2022091500000016
Figure 2022091500000016

五硫化二リン1.11g(2.5mmol)と炭酸ナトリウム0.56g(5.0mmol)に酢酸エチル4mLを加え、室温で4時間撹拌したところ、二酸化炭素が約60mL発生し溶解した。次に2-(3-フルオロ-4-フェニルフェニル)プロピオン酸4-カルバモイルフェニル0.91g(2.5mmol)と酢酸エチル2mLを加え、50℃で72時間撹拌した。このとき反応率は98.8%であった。水冷下10%炭酸ナトリウム水溶液を9mL加えよく撹拌後、水10mLを加え、酢酸エチルを濃縮した。結晶をろ過し水洗し減圧乾燥し淡黄色結晶を得た。
収量0.91g 収率95.9% HPLC単純面積純度99.5%
酢酸エチルで再結晶したものは、比較例3のカラム精製したものと熱分析(TG-DTA)が一致した。
When 4 mL of ethyl acetate was added to 1.11 g (2.5 mmol) of diphosphorus pentasulfide and 0.56 g (5.0 mmol) of sodium carbonate and stirred at room temperature for 4 hours, about 60 mL of carbon dioxide was generated and dissolved. Next, 0.91 g (2.5 mmol) of 4-carbamoylphenyl 2- (3-fluoro-4-phenylphenyl) propionic acid and 2 mL of ethyl acetate were added, and the mixture was stirred at 50 ° C. for 72 hours. At this time, the reaction rate was 98.8%. After cooling well with 9 mL of a 10% aqueous sodium carbonate solution under water cooling, 10 mL of water was added to concentrate ethyl acetate. The crystals were filtered, washed with water and dried under reduced pressure to obtain pale yellow crystals.
Yield 0.91g Yield 95.9% HPLC Simple Area Purity 99.5%
The recrystallized product with ethyl acetate was consistent with the column-purified product of Comparative Example 3 by thermal analysis (TG-DTA).

実施例15
4-チオカルバモイルピリジンの合成(炭酸ナトリウム タイプ2法)
Example 15
Synthesis of 4-thiocarbamoylpyridine (sodium carbonate type 2 method)

Figure 2022091500000017
Figure 2022091500000017

五硫化二リン2.22g(5.0mmol)と炭酸ナトリウム1.11g(10.0mmol)に酢酸エチル10mlを加え、室温で一夜撹拌したところ、二酸化炭素が発生し溶解した。次に4―ピリジンカルボキサミド0.611g(5.0mmol)と酢酸エチル4mLを加え、50℃で72時間撹拌した。このとき反応率は98.4%であった。水冷下5%炭酸ナトリウム水溶液を20mL加えよく撹拌後、酢酸エチルを濃縮した。結晶をろ過し水洗して減圧乾燥し黄色結晶を得た。
収量0.558g 収率80.8% HPLC単純面積純度98.6%
When 10 ml of ethyl acetate was added to 2.22 g (5.0 mmol) of diphosphorus pentasulfide and 1.11 g (10.0 mmol) of sodium carbonate, and the mixture was stirred overnight at room temperature, carbon dioxide was generated and dissolved. Next, 0.611 g (5.0 mmol) of 4-pyridinecarboxamide and 4 mL of ethyl acetate were added, and the mixture was stirred at 50 ° C. for 72 hours. At this time, the reaction rate was 98.4%. After adding 20 mL of a 5% aqueous sodium carbonate solution under water cooling and stirring well, ethyl acetate was concentrated. The crystals were filtered, washed with water and dried under reduced pressure to obtain yellow crystals.
Yield 0.558g Yield 80.8% HPLC Simple Area Purity 98.6%

比較例1
N-フェニルアセトチオアミドの合成(五硫化二リンとの反応)
Comparative Example 1
Synthesis of N-Phenylacetthioamide (reaction with diphosphorus pentasulfide)

Figure 2022091500000018
Figure 2022091500000018

五硫化二リン1.11g(2.5mmol)とアセトアニリド1.69g(7.5mmol)に酢酸エチル6mLを加え、40℃で24時間反応した。このときの反応率は91.8%であった。しかし、反応1時間後に発生したオイルで未反応の五硫化二リンは固化沈殿し、撹拌不能で、反応が遅くなり停止した。また、固化した沈殿物の水での分解は簡単ではなかった。 Ethyl acetate (6 mL) was added to 1.11 g (2.5 mmol) of diphosphorus pentasulfide and 1.69 g (7.5 mmol) of acetanilide, and the reaction was carried out at 40 ° C. for 24 hours. The reaction rate at this time was 91.8%. However, unreacted diphosphorus pentasulfide solidified and precipitated with the oil generated 1 hour after the reaction, and could not be stirred, and the reaction was delayed and stopped. Moreover, the decomposition of the solidified precipitate with water was not easy.

比較例2
4-チオカルバモイルピペリジン-1-カルボン酸tert-ブチルの合成(チオ化剤を作らずに反応)
Comparative Example 2
Synthesis of 4-thiocarbamoylpiperidin-1-carboxylate tert-butyl (reaction without making thioagent)

Figure 2022091500000019
Figure 2022091500000019

五硫化二リン0.88g(2.0mmol)と炭酸ナトリウム0.42g(4.0mmol)と4-カルバモイルピペリジン-1-カルボン酸tert-ブチル0.50g(2.2mmol)に酢酸エチル4mLを加え、50℃で撹拌したところ、すぐに炭酸ガスが発生し30分で24mL発生した。3時間反応し、HPLC測定したところ、原料のアミド化合物および目的物のチオアミド化合物は0%であった。生成したものは脱BOC化した4-カルバモイルピペリジンと未知化合物であった。 Add 4 mL of ethyl acetate to 0.88 g (2.0 mmol) of diphosphorus pentasulfide, 0.42 g (4.0 mmol) of sodium carbonate, and 0.50 g (2.2 mmol) of tert-butyl 4-carbamoylpiperidin-1-carboxylate. When the mixture was stirred at 50 ° C., carbon dioxide gas was immediately generated and 24 mL was generated in 30 minutes. After reacting for 3 hours and measuring by HPLC, the raw material amide compound and the target thioamide compound were 0%. What was produced was a de-BOC denatured 4-carbamoylpiperidin and an unknown compound.

比較例3
2-(3-フルオロ-4-フェニルフェニル)プロピオン酸4-チオカルバモイルフェニルの合成(ローソン試薬使用)
Comparative Example 3
Synthesis of 2- (3-fluoro-4-phenylphenyl) propionic acid 4-thiocarbamoylphenyl (using Lawesson's reagent)

Figure 2022091500000020
Figure 2022091500000020

2-(3-フルオロ-4-フェニルフェニル)プロピオン酸4-カルバモイルフェニル0.36g(0.99mmol)とローソン試薬0.41g(1.0mmol)に酢酸エチル2mLを加え、50℃で2時間撹拌した。このとき反応率は99.3%であった。水冷下10%炭酸ナトリウム水溶液を3mL加え、酢酸エチルを減圧濃縮し、結晶をろ過し水洗し減圧乾燥し淡黄色結晶を得た。
収量0.37g 収率98.5% HPLC単純面積純度80%
このものは再結晶しても純度が上がらないため、シリカゲルカラムで精製し比較のための標準品とした。
Add 2 mL of ethyl acetate to 0.36 g (0.99 mmol) of 4-carbamoylphenyl 2- (3-fluoro-4-phenylphenyl) propionic acid and 0.41 g (1.0 mmol) of Lawesson's reagent, and stir at 50 ° C. for 2 hours. did. At this time, the reaction rate was 99.3%. 3 mL of a 10% aqueous sodium carbonate solution was added under water cooling, ethyl acetate was concentrated under reduced pressure, the crystals were filtered, washed with water and dried under reduced pressure to obtain pale yellow crystals.
Yield 0.37g Yield 98.5% HPLC Simple Area Purity 80%
Since the purity of this product does not increase even if it is recrystallized, it was purified on a silica gel column and used as a standard product for comparison.

Claims (6)

有機溶媒中での硫化リンとアルカリ金属塩との反応液からなるチオ化剤。 A thiolating agent consisting of a reaction solution of phosphorus sulfide and an alkali metal salt in an organic solvent. アルカリ金属塩が、水酸化アルカリ金属、無機酸アルカリ金属塩及び有機酸アルカリ金属塩から選ばれるものである請求項1記載のチオ化剤。 The thiolating agent according to claim 1, wherein the alkali metal salt is selected from an alkali metal hydroxide, an inorganic acid alkali metal salt and an organic acid alkali metal salt. 有機溶媒が、極性有機溶媒である請求項1又は2記載のチオ化剤。 The thiolating agent according to claim 1 or 2, wherein the organic solvent is a polar organic solvent. 有機溶媒が、エステル系溶媒、ニトリル系溶媒及びエーテル系溶媒から選ばれる溶媒である請求項1又は2記載のチオ化剤。 The thiolytic agent according to claim 1 or 2, wherein the organic solvent is a solvent selected from an ester solvent, a nitrile solvent and an ether solvent. 酸素含有化合物に請求項1~4のいずれか1項記載のチオ化剤を反応させることを特徴とする、当該酸素含有化合物中の酸素原子がイオウ原子に置換されたイオウ含有化合物の製造法。 A method for producing a sulfur-containing compound in which an oxygen atom in the oxygen-containing compound is replaced with a sulfur atom, which comprises reacting the oxygen-containing compound with the thiolating agent according to any one of claims 1 to 4. 酸素含有化合物が、ヒドロキシ基、ケトン基及びアミド基から選ばれる1種又は2種以上の酸素含有基を有する化合物であり、イオウ含有化合物が、チオール基、チオケトン基及びチオアミド基から選ばれる1種又は2種以上のイオウ含有基を有する化合物である請求項5記載の製造法。
The oxygen-containing compound is a compound having one or more oxygen-containing groups selected from a hydroxy group, a ketone group and an amide group, and the sulfur-containing compound is one selected from a thiol group, a thioketone group and a thioamide group. The production method according to claim 5, wherein the compound has two or more kinds of sulfur-containing groups.
JP2020204374A 2020-12-09 2020-12-09 Thionizing agent Pending JP2022091500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020204374A JP2022091500A (en) 2020-12-09 2020-12-09 Thionizing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020204374A JP2022091500A (en) 2020-12-09 2020-12-09 Thionizing agent

Publications (1)

Publication Number Publication Date
JP2022091500A true JP2022091500A (en) 2022-06-21

Family

ID=82067347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020204374A Pending JP2022091500A (en) 2020-12-09 2020-12-09 Thionizing agent

Country Status (1)

Country Link
JP (1) JP2022091500A (en)

Similar Documents

Publication Publication Date Title
Brzezinska et al. Disulfides. 1. Syntheses using 2, 2'-dithiobis (benzothiazole)
Salvatore et al. A mild and highly convenient chemoselective alkylation of thiols using Cs2CO3–TBAI
IL167315A (en) Synthesis of thiophenecarboxylic acid esters for the production of ranelic acid salts
CA2180533C (en) Process for producing aromatic or heteroaromatic sulfur compounds
JPH01172378A (en) Novel 2-guanidine-thiazole compound, its production and use thereof as intermediate of phamotidine method
JP2022091500A (en) Thionizing agent
JP3337728B2 (en) Method for producing 2-acetylbenzo [b] thiophene
KR20060088037A (en) Process for the production of bis-dmtd
US7244865B2 (en) Process for preparing benzhydrylthioacetamide
JPH07196599A (en) Production of trifluoroethyl sulfur compound from thiolate and 1-chloro-2,2,2-trifluoroethane
US2312878A (en) Alkali metal salts of beta-sulphopropionitrile and method of preparation
RU2400474C1 (en) Alkylsulfochloride synthesis method
NZ204235A (en) Nucleophilic substitution on unactivated aromatic substrates
US3308132A (en) 6, 8-dithiooctanoyl amides and intermediates
JPS6354712B2 (en)
JP4021760B2 (en) Method for producing thiophenol
EP0219446B1 (en) Process for the preparation of n-tetrathiodimorpholine
Aizina et al. Synthesis of 2-methyl-N-(2, 2, 2-trichloroethylidene)-and 2-methyl-N-(2, 2, 2-trichloroethyl) benzenesulfonamides from N, N-dichloro-2-methylbenzenesulfonamide and trichloroethylene
Stasevych et al. Sulfur‐containing derivatives of 1, 4‐naphthoquinone, part 2: Sulfenyl derivative synthesis
JPH02169561A (en) Production of 3-trifluoromethylbenzene sulfonyl chlorides
JPS591460A (en) Production of 2-mercaptoethylamine hydrohalide salt
JPH0253764A (en) Production of dithiobisphenol
KR960016117B1 (en) A process for preparing pyrazoledisulfide compound
GB2323595A (en) Preparation of 2-Mercaptothiazole
KR840001373B1 (en) Process for the preparation of 2-dimethylmino-1,3-dithio cyanatopropane