JP2022091389A - Rope inspection system for elevator - Google Patents

Rope inspection system for elevator Download PDF

Info

Publication number
JP2022091389A
JP2022091389A JP2020204202A JP2020204202A JP2022091389A JP 2022091389 A JP2022091389 A JP 2022091389A JP 2020204202 A JP2020204202 A JP 2020204202A JP 2020204202 A JP2020204202 A JP 2020204202A JP 2022091389 A JP2022091389 A JP 2022091389A
Authority
JP
Japan
Prior art keywords
mark
rope
value
interval
inspection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020204202A
Other languages
Japanese (ja)
Other versions
JP7047050B1 (en
Inventor
好彦 中田
Yoshihiko Nakada
知洋 志岐
tomohiro Shiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Elevator and Building Systems Corp
Original Assignee
Toshiba Elevator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Elevator Co Ltd filed Critical Toshiba Elevator Co Ltd
Priority to JP2020204202A priority Critical patent/JP7047050B1/en
Priority to CN202111477902.0A priority patent/CN114620579B/en
Application granted granted Critical
Publication of JP7047050B1 publication Critical patent/JP7047050B1/en
Publication of JP2022091389A publication Critical patent/JP2022091389A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/12Checking, lubricating, or cleaning means for ropes, cables or guides
    • B66B7/1207Checking means
    • B66B7/1215Checking means specially adapted for ropes or cables
    • B66B7/1238Checking means specially adapted for ropes or cables by optical techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0087Devices facilitating maintenance, repair or inspection tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/12Checking, lubricating, or cleaning means for ropes, cables or guides
    • B66B7/1207Checking means
    • B66B7/1215Checking means specially adapted for ropes or cables
    • B66B7/1223Checking means specially adapted for ropes or cables by analysing electric variables

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

To enable measurement of a mark interval to be continued even when mark missing occurs and to carry out highly reliable strength management by determining rope elongation on the basis of the measurement result.SOLUTION: A rope inspection system for an elevator comprises a rope suspending a car and a counter weight 21 via a traction sheave 22 of a hoist and having structure the surface of which is covered with resin, and intervals between a plurality of marks provided at fixed intervals on the surface of the rope are measured. The rope inspection system has a reference value of mark intervals for the rope, and comprises control means for determining measurement results to be valid when the mark intervals acquired as the measurement results are within the permissible range defined by an integral multiple of the reference value, and determining rope elongation from the measurement results.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、エレベータのロープ検査システムに関する。 Embodiments of the present invention relate to an elevator rope inspection system.

巻上機等のエレベータ機器を昇降路内に収めることで省スペース化を図るマシンルームレスタイプのエレベータが一般的になっている。マシンルームレスタイプのエレベータでは、巻上機のシーブ(トラクションシーブ)が小型化されている。このため、曲げ疲労に強く、高強度のロープ構造を有するメインロープとして、抗張力部材の表面をポリウレタンのような耐摩耗性と高摩擦係数を有する樹脂材で被覆したワイヤロープが用いられる。 Machine roomless type elevators that save space by accommodating elevator equipment such as hoisting machines in the hoistway are becoming common. In the machine roomless type elevator, the sheave (traction sheave) of the hoist is downsized. Therefore, as a main rope that is resistant to bending fatigue and has a high-strength rope structure, a wire rope in which the surface of a tensile strength member is coated with a resin material having wear resistance and a high coefficient of friction such as polyurethane is used.

この種のワイヤロープは、内部の抗張力部材を目視できず、一般的なワイヤロープのように、素線の摩耗状態や断線数の目視点検で強度管理を行うことはできない。そこで、ロープの表面に略一定の間隔でマークを施しておき、ロープの送り量に対するマーク間隔をロープ伸びとして測定することにより、その測定結果から劣化状態を判定して強度管理を行うロープ検査システムが提案されている。 In this type of wire rope, the internal tensile strength member cannot be visually checked, and unlike a general wire rope, the strength cannot be controlled by visually inspecting the wear state of the wire and the number of broken wires. Therefore, a rope inspection system that marks the surface of the rope at substantially constant intervals and measures the mark interval with respect to the feed amount of the rope as the rope elongation, and determines the deterioration state from the measurement results and manages the strength. Has been proposed.

特許第6271680号公報Japanese Patent No. 6271680

上述したマークは、ロープが移動しているときに、光電センサによって光学的に検知される。ところが、ロープの使用環境や経年劣化などで、ロープ上の各マークの一部を光電センサで検知できない状態になる。この状態を「マーク欠損」と呼ぶ。このような場合、マーク間隔の測定結果からロープの劣化状態(ロープ伸び)を正しく判断できないので、ロープを交換するしかない。 The above-mentioned mark is optically detected by the photoelectric sensor while the rope is moving. However, due to the usage environment of the rope and deterioration over time, a part of each mark on the rope cannot be detected by the photoelectric sensor. This state is called "mark defect". In such a case, the deterioration state (rope elongation) of the rope cannot be correctly determined from the measurement result of the mark interval, so there is no choice but to replace the rope.

なお、1本のロープに対して、複数の光電センサを配置しておけば、マークの検知率が高くなるので、マーク欠損を防ぐことができる。しかし、昇降路内の限られたスペースに複数の光電センサを配置することは難しく、また、システムのコストアップにも繋がる。 If a plurality of photoelectric sensors are arranged for one rope, the mark detection rate becomes high, so that mark loss can be prevented. However, it is difficult to arrange a plurality of photoelectric sensors in the limited space in the hoistway, and it also leads to an increase in the cost of the system.

本発明が解決しようとする課題は、マーク欠損が発生した場合でも、マーク間隔の測定を継続可能とし、その測定結果からローブ伸びを判断して信頼性の高い強度管理を行うことのできるエレベータのロープ検査システムを提供することである。 The problem to be solved by the present invention is an elevator capable of continuously measuring the mark interval even when a mark defect occurs, determining lobe elongation from the measurement result, and performing highly reliable strength management. To provide a rope inspection system.

一実施形態に係るロープ検査システムは、巻上機のトラクションシーブを介して乗りかごとカウンタウェイトを吊持し、表面が樹脂被覆された構造を有するロープを備え、前記ロープの表面上に一定の間隔で設けられた複数のマークの間隔を測定する。 The rope inspection system according to one embodiment is provided with a rope having a structure in which a car and a counter weight are suspended via a traction sheave of a hoist and a surface thereof is coated with a resin, and is constant on the surface of the rope. Measure the spacing between multiple marks provided at intervals.

前記エレベータのロープ検査システムは、センサと、マーク検知手段と、マーク間隔演算手段と、制御手段とを備える。前記センサは、前記ロープの近傍に設けられる。前記マーク検知手段は、前記ロープの移動に伴い、前記センサから出力される信号と前記乗りかごの昇降位置を示すデータとに基づいて、前記各マークの位置を検知する。前記マーク間隔演算手段は、前記マーク検知手段によって検知された前記各マークの位置に基づいてマーク間隔を演算する。前記制御手段は、前記ロープに対するマーク間隔の基準値を有し、前記マーク間隔演算手段によって測定結果として得られたマーク間隔が前記基準値の整数倍で規定される許容範囲内にある場合に当該測定結果を有効とし、当該測定結果からロープ伸びを判断する。 The elevator rope inspection system includes a sensor, a mark detecting means, a mark interval calculating means, and a control means. The sensor is provided in the vicinity of the rope. The mark detecting means detects the position of each mark based on the signal output from the sensor and the data indicating the ascending / descending position of the car as the rope moves. The mark interval calculating means calculates the mark interval based on the position of each mark detected by the mark detecting means. The control means has a reference value of the mark spacing with respect to the rope, and the mark spacing obtained as a measurement result by the mark spacing calculation means is within an allowable range defined by an integral multiple of the reference value. The measurement result is valid, and the rope elongation is judged from the measurement result.

図1は第1の実施形態に係るエレベータの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an elevator according to the first embodiment. 図2は同実施形態におけるエレベータに用いられるメインロープの構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of the main rope used for the elevator in the same embodiment. 図3は同実施形態におけるエレベータに用いられるメインロープの外観を示す斜視図である。FIG. 3 is a perspective view showing the appearance of the main rope used for the elevator in the same embodiment. 図4は同実施形態におけるパルス信号とマーク間隔の関係を説明するための図であり、図4(a)はメインロープの移動に同期して出力されるパルス信号、同図(b)は据付け時のマーク間隔、同図(c)は経年変化によりロープ伸びしているときのマーク間隔である。4A and 4B are diagrams for explaining the relationship between the pulse signal and the mark interval in the same embodiment, FIG. 4A is a pulse signal output in synchronization with the movement of the main rope, and FIG. 4B is installation. The time mark interval and the figure (c) are the mark intervals when the rope is stretched due to aging. 図5は同実施形態におけるロープの劣化に伴う伸び率と残存強度と関係を示す図である。FIG. 5 is a diagram showing the relationship between the elongation rate and the residual strength due to deterioration of the rope in the same embodiment. 図6は同実施形態におけるセンサを用いたマーク間隔の測定方法を説明するための図であり、図6(a)はセンサの出力電圧、同図(b)はセンサの出力電圧とマーク位置との関係を示す図である。FIG. 6 is a diagram for explaining a method of measuring the mark interval using the sensor in the same embodiment, FIG. 6A shows the output voltage of the sensor, and FIG. 6B shows the output voltage of the sensor and the mark position. It is a figure which shows the relationship of. 図7は同実施形態におけるマーク間隔の演算結果の例を示す図であり、マーク欠損なしの場合のマーク間隔の演算結果を示している。FIG. 7 is a diagram showing an example of the calculation result of the mark interval in the same embodiment, and shows the calculation result of the mark interval when there is no mark defect. 図8は同実施形態におけるマーク間隔の演算結果の例を示す図であり、1カ所にマーク欠損が発生した場合のマーク間隔の演算結果を示している。FIG. 8 is a diagram showing an example of the calculation result of the mark interval in the same embodiment, and shows the calculation result of the mark interval when a mark defect occurs in one place. 図9は同実施形態におけるマーク間隔の演算結果の例を示す図であり、連続的にマーク欠損が発生した場合のマーク間隔の演算結果を示している。FIG. 9 is a diagram showing an example of the calculation result of the mark interval in the same embodiment, and shows the calculation result of the mark interval when the mark defect occurs continuously. 図10は同実施形態におけるロープ検査システムのメインルーチンの処理動作を説明するためのフローチャートである。FIG. 10 is a flowchart for explaining the processing operation of the main routine of the rope inspection system in the same embodiment. 図11は前記メインルーチンに含まれる測長運転処理を説明するためのフローチャートである。FIG. 11 is a flowchart for explaining the length measurement operation process included in the main routine. 図12は前記メインルーチンに含まれるマーク検知処理を説明するためのフローチャートである。FIG. 12 is a flowchart for explaining the mark detection process included in the main routine. 図13は前記メインルーチンに含まれるマーク間隔演算処理を説明するためのフローチャートである。FIG. 13 is a flowchart for explaining the mark interval calculation process included in the main routine. 図14は前記メインルーチンに含まれるマーク間隔演算処理を説明するためのフローチャートである。FIG. 14 is a flowchart for explaining the mark interval calculation process included in the main routine. 図15は第2の実施形態における閾値電圧調整方法を説明するための図であり、マーク検知数が少ない場合の閾値電圧調整方法を示す図である。FIG. 15 is a diagram for explaining the threshold voltage adjusting method in the second embodiment, and is a diagram showing a threshold voltage adjusting method when the number of detected marks is small. 図16は第2の実施形態における閾値電圧調整方法を説明するための図であり、マーク検知数が多い場合の閾値電圧調整方法を示す図である。FIG. 16 is a diagram for explaining the threshold voltage adjusting method in the second embodiment, and is a diagram showing a threshold voltage adjusting method when the number of detected marks is large. 図17は第2の実施形態におけるマーク検知処理を説明するためのフローチャートである。FIG. 17 is a flowchart for explaining the mark detection process in the second embodiment. 図18は第2の実施形態におけるマーク検知処理を説明するためのフローチャートである。FIG. 18 is a flowchart for explaining the mark detection process in the second embodiment. 図19は第3の実施形態におけるマーク検知処理を説明するためのフローチャートである。FIG. 19 is a flowchart for explaining the mark detection process in the third embodiment. 図20は第3の実施形態におけるマーク検知処理を説明するためのフローチャートである。FIG. 20 is a flowchart for explaining the mark detection process in the third embodiment.

以下、図面を参照して実施形態を説明する。 Hereinafter, embodiments will be described with reference to the drawings.

まず、本発明の実施形態をする前に、図5を参照してロープの伸び率と強度との関係について説明する。 First, before carrying out the embodiment of the present invention, the relationship between the elongation rate and the strength of the rope will be described with reference to FIG.

例えば、エレベータのメインロープなどに用いられるワイヤロープは、抗張力部材であるストランドと心綱が張力により絞られ、かつ、シーブ等から受ける曲げにより互いに擦れ合う。このため、ロープ劣化の形態は、心綱付近部の素線の摩耗と断線が支配的である。この部分の劣化によりストランドは心綱の方向(ロープ径が減少する方向)に移動するため、ロープ構造として伸びが生じる。 For example, in a wire rope used for an elevator main rope or the like, a strand and a core rope, which are tensile strength members, are squeezed by tension and rub against each other by bending received from a sheave or the like. For this reason, the form of rope deterioration is dominated by wear and disconnection of the strands in the vicinity of the core rope. Due to the deterioration of this portion, the strand moves in the direction of the core rope (the direction in which the rope diameter decreases), so that the rope structure is stretched.

このような構造を有するワイヤロープに対して検証を行った結果、伸び率と強度との間に図5に示すような相関性があることが判明した。図5において、横軸はロープの伸び率を表している。機密上、具体的な数値は省略するが、図中のλは数%程度であり、距離にして数mm程度である。縦軸はロープの強度率(これを残存強度率と言う)を表している。ロープが据付け時の新品の状態から経年劣化により徐々に伸びてくると、それに伴い強度も低下する。通常、強度率80%を基準強度として定められ、ロープの伸び率がλになった時点を交換時期とすることで安全性が得られる。 As a result of verification of a wire rope having such a structure, it was found that there is a correlation between the elongation rate and the strength as shown in FIG. In FIG. 5, the horizontal axis represents the elongation rate of the rope. Although specific numerical values are omitted for confidentiality purposes, λ in the figure is about several percent, and the distance is about several mm. The vertical axis represents the strength ratio of the rope (this is called the residual strength ratio). As the rope gradually grows from a new state at the time of installation due to deterioration over time, its strength also decreases. Normally, the strength rate of 80% is set as the reference strength, and safety can be obtained by setting the time when the elongation rate of the rope reaches λ as the replacement time.

ロープ伸びの測定は、点検運転によってロープを一定量送り、その間にロープの表面に付された複数のマークをセンサで検出し、その検出タイミングでエンコーダのパルス信号をカウントすることで行う。 The rope elongation is measured by feeding a fixed amount of rope by inspection operation, detecting a plurality of marks on the surface of the rope with a sensor during that period, and counting the pulse signal of the encoder at the detection timing.

マーク測定用のパルス信号を発生する方法として、例えば回転部材をガイドレールに当接させるロータリーエンコーダを用いた場合には、レール継目の段差や付着物等によって一定のロープ送り量に対するパルス数にバラつきがあり、マーク間隔の測定に誤差が生じやすい。また、調速機にエンコーダを設けておく方法もあるが、点検作業スペースも含めて余分なスペースを要する。 As a method of generating a pulse signal for mark measurement, for example, when a rotary encoder in which a rotating member is brought into contact with a guide rail is used, the number of pulses for a certain rope feed amount varies due to steps and deposits at the rail joint. Therefore, an error is likely to occur in the measurement of the mark interval. There is also a method of providing an encoder in the governor, but it requires an extra space including an inspection work space.

そこで、トラクションシーブの回転と同期する巻上機の回転制御用のエンコーダを利用することを考える。このエンコーダを用いれば、調速機にエンコーダのような余分なスペースを要することなく、コスト的にも抑えられる。 Therefore, consider using an encoder for rotation control of the hoist that synchronizes with the rotation of the traction sheave. If this encoder is used, the speed governor does not require an extra space like an encoder, and the cost can be reduced.

ところが、ロープ使用環境や経年劣化などで、マーク部の反射率が低下するとともに、マーク検知手段の出力が低下し、一定のマーク検知閾値ではマーク欠損が発生し、マーク間隔測定ができなくなる。ここで、マーク検知手段を複数設けて、マーク検知を補償することは可能だが、システムのコストアップに繋がる。また、マーク検知手段に、例えば廉価なフォト・マイクロセンサを使用する場合、センサの個体差による出力差が生じ、一定のマーク検知閾値では、マーク欠損が頻発してマーク間隔を測定できない。この対策として出力差が小さい高精度のセンサを用いると、更にコストアップする。 However, due to the rope usage environment and deterioration over time, the reflectance of the mark portion decreases, the output of the mark detection means decreases, mark defects occur at a certain mark detection threshold, and mark interval measurement becomes impossible. Here, it is possible to compensate for the mark detection by providing a plurality of mark detection means, but it leads to an increase in the cost of the system. Further, when an inexpensive photo / micro sensor is used as the mark detecting means, an output difference occurs due to an individual difference of the sensor, and at a certain mark detection threshold value, mark defects frequently occur and the mark interval cannot be measured. If a high-precision sensor with a small output difference is used as a countermeasure, the cost will be further increased.

以下では、マーク欠損が発生した場合でも、測定精度を損なうことなく、マーク間隔の測定を継続するための方法について詳しく説明する。 In the following, a method for continuing the measurement of the mark interval without impairing the measurement accuracy even if a mark defect occurs will be described in detail.

(第1の実施形態)
図1は第1の実施形態に係るエレベータの概略構成を示す図である。図1の例では、機械室を持たないマシンルームレスタイプのエレベータを想定している。
(First Embodiment)
FIG. 1 is a diagram showing a schematic configuration of an elevator according to the first embodiment. In the example of FIG. 1, a machine roomless type elevator having no machine room is assumed.

乗りかご20とカウンタウェイト21は、それぞれに昇降路10内に立設されたガイドレール11,12に昇降可能に支持されている。更に、トラクションシーブ22を有する巻上機23が昇降路10の上部に設置されている。乗りかご20およびカウンタウェイト21は、複数本のメインロープ24により昇降路10内に吊り下げられている。なお、図1では、一本のメインロープ24のみを示し、その他のメインロープ24については図示を省略している。 The car 20 and the counterweight 21 are supported by guide rails 11 and 12 erected in the hoistway 10 so as to be able to move up and down. Further, a hoisting machine 23 having a traction sheave 22 is installed above the hoistway 10. The car 20 and the counterweight 21 are suspended in the hoistway 10 by a plurality of main ropes 24. Note that FIG. 1 shows only one main rope 24, and the other main ropes 24 are not shown.

メインロープ24の両端部は、それぞれに昇降路10の上端にロープヒッチ25a,25bを介して固定されている。また、メインロープ24は中間部でカーシーブ26、トラクションシーブ22およびカウンタウェイトシーブ27に連続的に巻き掛けられている。これにより、乗りかご20とカウンタウェイト21を2:1ローピンク形式で支持している。巻上機23の駆動によりトラクションシーブ22が回転すると、そのトラクションシーブ22の回転に伴い、乗りかご20とカウンタウェイト21がメインロープ24を介して昇降路10内をつるべ式に昇降動作する。 Both ends of the main rope 24 are fixed to the upper ends of the hoistway 10 via rope hitches 25a and 25b, respectively. Further, the main rope 24 is continuously wound around the car sheave 26, the traction sheave 22 and the counterweight sheave 27 in the middle portion. As a result, the car 20 and the counterweight 21 are supported in a 2: 1 low pink format. When the traction sheave 22 is rotated by the drive of the hoisting machine 23, the car 20 and the counterweight 21 move up and down in the hoistway 10 via the main rope 24 as the traction sheave 22 rotates.

なお、機械室がないマシンルームレスタイプのエレベータでは、巻上機23が昇降路10内に設置されるが、本発明は特にこの構成に限定されるものではなく、機械室を有するエレベータであってもよい。機械室を有するエレベータでは、巻上機23が機械室に設置される。また、ローピングについても、図1に示したような2:1ローピングに限らず、例えば1:1ローピングなどの他の方式であっても良い。 In a machine roomless type elevator without a machine room, the hoisting machine 23 is installed in the hoistway 10, but the present invention is not particularly limited to this configuration, and is an elevator having a machine room. You may. In an elevator having a machine room, the hoisting machine 23 is installed in the machine room. Further, the roping is not limited to the 2: 1 roping as shown in FIG. 1, and other methods such as 1: 1 roping may be used.

ここで、本実施形態のロープ検査システムは、センサ28と、エンコーダ29と、演算装置30と、表示装置31と、制御盤40とを備える。 Here, the rope inspection system of the present embodiment includes a sensor 28, an encoder 29, an arithmetic unit 30, a display device 31, and a control panel 40.

センサ28は、検査対象とするメインロープ24の近くに設置され、このメインロープ24の長手方向に一定間隔で設けられた複数のマーク45(図3参照)を光学的に検出する。エンコーダ29は、トラクションシーブ22の回転に同期してパルス信号を発生する。このエンコーダ29は、かご位置や速度を検出するためにエレベータに組み込まれた既設のエンコーダである。このエンコーダ29をマーク間隔の測定に用いることで、例えば調速機にエンコーダを設置する構成で問題となるレイアウト上の不都合を回避できる。 The sensor 28 is installed near the main rope 24 to be inspected, and optically detects a plurality of marks 45 (see FIG. 3) provided at regular intervals in the longitudinal direction of the main rope 24. The encoder 29 generates a pulse signal in synchronization with the rotation of the traction sheave 22. The encoder 29 is an existing encoder built into the elevator to detect the car position and speed. By using this encoder 29 for measuring the mark interval, it is possible to avoid layout inconvenience, which is a problem in a configuration in which an encoder is installed in a speed governor, for example.

演算装置30は、一定周期でセンサ28の出力電圧をサンプリングしてメモリ30aに記憶するとともに、エンコーダ29が発生するパルス信号をカウントしてメモリ30aに記憶する。なお、実際にはメインロープ24が複数本のロープから構成されているので、演算装置30は、各ロープ毎に一定周期でセンサ28の出力電圧とパルス信号のカウント値をメモリ30aに記憶する。 The arithmetic unit 30 samples the output voltage of the sensor 28 at regular intervals and stores it in the memory 30a, and also counts the pulse signal generated by the encoder 29 and stores it in the memory 30a. Since the main rope 24 is actually composed of a plurality of ropes, the arithmetic unit 30 stores the output voltage of the sensor 28 and the count value of the pulse signal in the memory 30a at regular intervals for each rope.

演算装置30は、メモリ30aに記憶されたセンサ28の出力電圧Vと閾値電圧Vsとに基づいて各マーク45の位置を検知し、エンコーダ29が発生するパルス信号のカウント値からマーク間隔を演算する機能を備える。また、演算装置30は、マーク間隔からメインロープ24の伸び量を求める機能を備える。表示装置31は、演算装置30によって得られたマーク間隔やロープ伸び量などを表示する。なお、演算装置30と表示装置31は、汎用のコンピュータからなる。この演算装置30の機能を制御盤40に持たせて、制御盤40だけでマーク間隔の測定に関わる一連の処理を行う構成としても良い。 The arithmetic unit 30 detects the position of each mark 45 based on the output voltage V and the threshold voltage Vs of the sensor 28 stored in the memory 30a, and calculates the mark interval from the count value of the pulse signal generated by the encoder 29. It has a function. Further, the arithmetic unit 30 has a function of obtaining the amount of elongation of the main rope 24 from the mark interval. The display device 31 displays the mark interval, the rope elongation amount, and the like obtained by the arithmetic unit 30. The arithmetic unit 30 and the display device 31 are composed of a general-purpose computer. The function of the arithmetic unit 30 may be provided in the control panel 40, and a series of processes related to the measurement of the mark interval may be performed only by the control panel 40.

制御盤40は、巻上機23の駆動制御を含め、エレベータ全体の制御を行うための制御装置である。制御盤40は、エンコーダ29のパルス信号に基づいて乗りかご20の位置を検出し、乗りかご20を目的階まで所定の速度で移動させるなどの制御を行う。本実施形態では、演算装置30を制御盤40に接続して、演算装置30がエンコーダ29のパルス信号を制御盤40から取得するように構成されている。 The control panel 40 is a control device for controlling the entire elevator including the drive control of the hoisting machine 23. The control panel 40 detects the position of the car 20 based on the pulse signal of the encoder 29, and performs control such as moving the car 20 to the target floor at a predetermined speed. In the present embodiment, the arithmetic unit 30 is connected to the control panel 40, and the arithmetic unit 30 is configured to acquire the pulse signal of the encoder 29 from the control panel 40.

制御盤40は、通信ネットワーク50を介して監視センタ51に接続されている。監視センタ51は、監視対象とする各物件のエレベータの状態を通信ネットワーク50を介して遠隔監視しており、何らかの異常等が発生した場合に保守員を現場に派遣するなどの対応を行う。保守員は、保守点検用の端末装置52を所持している。この端末装置52には、制御盤40及び監視センタ51との間で無線通信を行う機能が備えられている。 The control panel 40 is connected to the monitoring center 51 via the communication network 50. The monitoring center 51 remotely monitors the state of the elevators of each property to be monitored via the communication network 50, and dispatches maintenance personnel to the site when any abnormality occurs. The maintenance staff possesses a terminal device 52 for maintenance and inspection. The terminal device 52 is provided with a function of performing wireless communication with the control panel 40 and the monitoring center 51.

図中の32は着床検出部材である。着床検出部材32は、「着検板」とも呼ばれ、昇降路10内に乗りかご20の昇降方向に沿って各階床毎に設けられている。着床検出部材32は、乗りかご20が各階に停止するときに、非接触スイッチ33と連動して停止位置を検出するために用いられる。 Reference numeral 32 in the figure is a landing detection member. The landing detection member 32 is also called a “landing inspection plate” and is provided in the hoistway 10 for each floor along the ascending / descending direction of the car 20. The landing detection member 32 is used to detect the stop position in conjunction with the non-contact switch 33 when the car 20 stops on each floor.

ここで、図2および図3を参照してメインロープ24の構造について説明する。
メインロープ24として、樹脂被覆されたワイヤロープが用いられる。図2に示すように、メインロープ24は、抗張力部材としてのロープ本体41と、ロープ本体41を全面的に被覆した外部被覆層42とを主要な要素として備えている。
Here, the structure of the main rope 24 will be described with reference to FIGS. 2 and 3.
As the main rope 24, a resin-coated wire rope is used. As shown in FIG. 2, the main rope 24 includes a rope main body 41 as a tensile strength member and an outer covering layer 42 that completely covers the rope main body 41 as main elements.

ロープ本体41は、複数本の鋼鉄製ストランド43を所定のピッチで撚り合わせることで構成されている。外部被覆層42は、例えばポリウレタンのような耐摩耗性および高摩擦係数を有する熱可塑性の樹脂材で形成されている。外部被覆層42は、メインロープ24の外表面を規定する外周面44aを有している。外周面44aは、円形の断面形状を有するとともに、各シーブ22,26,27に巻き掛けられた際に、摩擦を伴いながら接触する。 The rope body 41 is formed by twisting a plurality of steel strands 43 at a predetermined pitch. The outer coating layer 42 is made of a thermoplastic resin material having wear resistance and a high coefficient of friction, such as polyurethane. The outer coating layer 42 has an outer peripheral surface 44a that defines the outer surface of the main rope 24. The outer peripheral surface 44a has a circular cross-sectional shape, and when it is wound around the sheaves 22, 26, 27, it comes into contact with each other with friction.

更に、外部被覆層42を形成する樹脂材は、隣り合うストランド43の間の隙間に充填されている。そのため、外部被覆層42は、ロープ本体41の周方向に隣り合うストランド43の間に入り込む複数の充填部44を有している。充填部44は、外部被覆層42の外周面44aの内側に位置されている。 Further, the resin material forming the outer coating layer 42 is filled in the gap between the adjacent strands 43. Therefore, the outer covering layer 42 has a plurality of filling portions 44 that enter between the strands 43 adjacent to each other in the circumferential direction of the rope main body 41. The filling portion 44 is located inside the outer peripheral surface 44a of the outer coating layer 42.

図3に示すように、メインロープ24の表面(つまり外部被覆層42の外周面44a)に複数のマーク45が設けられている。これらのマーク45は、メインロープ24の劣化による伸び量を検出するための要素であって、メインロープ24の全長に亘って長手方向に一定の間隔(例えば500mm間隔)で並んでいる。これらのマーク45の1つ1つは、メインロープ24の周方向に連続的な直線あるいは間欠的な点線で形成されている。 As shown in FIG. 3, a plurality of marks 45 are provided on the surface of the main rope 24 (that is, the outer peripheral surface 44a of the outer coating layer 42). These marks 45 are elements for detecting the amount of elongation due to deterioration of the main rope 24, and are arranged at regular intervals (for example, 500 mm intervals) in the longitudinal direction over the entire length of the main rope 24. Each of these marks 45 is formed by a continuous straight line or an intermittent dotted line in the circumferential direction of the main rope 24.

ところで、メインロープ24は、使用期間の経過に伴ってストランド43の間の隙間およびストランド43を構成する複数の素線間の隙間が減少する。これにより、ストランド43や素線が互いに摩擦を繰り返し、ストランド43や素線の摩耗・断線が進行する。 By the way, in the main rope 24, the gap between the strands 43 and the gap between the plurality of strands constituting the strand 43 decrease with the lapse of the period of use. As a result, the strands 43 and the strands repeatedly rub against each other, and the strands 43 and the strands are worn and broken.

特に、メインロープ24が各シーブ22,26,27と接触する部分では、摩擦を繰り返し受ける。このため、メインロープ24の摩耗・断線の進行度合いは、メインロープ24がシーブ22,26,27を通過しない部分に比べて大きく、これによりロープ径が減少したり、局部的な伸びが生じる。したがって、ロープ伸びと強度低下率との関係を明確化し、メインロープ24の中でも劣化が最大となる部分の伸びを検出することで、メインロープ24の強度を管理することができる。 In particular, the portion where the main rope 24 comes into contact with the sheaves 22, 26, 27 is repeatedly subjected to friction. Therefore, the degree of progress of wear / disconnection of the main rope 24 is larger than that of the portion where the main rope 24 does not pass through the sheaves 22, 26, 27, which causes the rope diameter to decrease or local elongation to occur. Therefore, the strength of the main rope 24 can be managed by clarifying the relationship between the rope elongation and the strength reduction rate and detecting the elongation of the portion of the main rope 24 where the deterioration is maximum.

センサ28は、例えば巻上機23の近傍でメインロープ24に対向させるようにして固定しておく。これにより、点検運転で最上階と最下階の間で乗りかご20を昇降させると、ロープヒッチ25a,25bに近い部分を除き、メインロープ24の全長の大部分はセンサ28を通過し、その通過時に連続的にマーク45を検出することができる。 The sensor 28 is fixed so as to face the main rope 24 in the vicinity of the hoist 23, for example. As a result, when the car 20 is moved up and down between the top floor and the bottom floor during inspection operation, most of the total length of the main rope 24 passes through the sensor 28 except for the parts near the rope hitches 25a and 25b. The mark 45 can be continuously detected when passing.

センサ28は、応答性に鑑みてレーザ反射光を用いた光電センサで構成することが望ましいが、より廉価なLED反射光を用いたフォト・マイクロセンサなどで構成しても良い。市販の光電センサでは、近年レーザ光などを対象物に照射し、反射光強度(反射率)の差によって表面の色(反射率)の変化を検出するセンサが普及している。 The sensor 28 is preferably configured by a photoelectric sensor using laser reflected light in view of responsiveness, but may be configured by a photo / micro sensor using cheaper LED reflected light or the like. In recent years, commercially available photoelectric sensors have become widespread by irradiating an object with laser light or the like and detecting a change in surface color (reflectance) due to a difference in reflected light intensity (reflectance).

エンコーダ29は、乗りかご20の移動に同期してパルス信号を出力するため、略ロープ送り量に応じたパルス出力となる。エレベータ据付け時には、メインロープ24の長手方向にマーク45が等間隔で配列されている。したがって、メインロープ24の劣化による伸びがない場合には、前記パルス信号のカウント値は据付け時のマーク間隔に対応した基準値と略同じになる。一方、メインロープ24の劣化によりメインロープ24が伸びている場合には、前記パルス信号のカウント値は据付け時のマーク間隔に対応した基準値を超えることになる。 Since the encoder 29 outputs a pulse signal in synchronization with the movement of the car 20, the pulse output is substantially corresponding to the rope feed amount. When installing the elevator, marks 45 are arranged at equal intervals in the longitudinal direction of the main rope 24. Therefore, when there is no elongation due to deterioration of the main rope 24, the count value of the pulse signal is substantially the same as the reference value corresponding to the mark interval at the time of installation. On the other hand, when the main rope 24 is stretched due to deterioration of the main rope 24, the count value of the pulse signal exceeds the reference value corresponding to the mark interval at the time of installation.

この様子を図4に示す。
図4はパルス信号とマーク間隔の関係を説明するためのであり、図4(a)はメインロープ24の移動に同期して出力されるパルス信号、同図(b)は据付け時のマーク間隔、同図(c)は経年劣化によりロープ伸びしているときのマーク間隔である。
This situation is shown in FIG.
4A and 4B are for explaining the relationship between the pulse signal and the mark interval, FIG. 4A is a pulse signal output in synchronization with the movement of the main rope 24, and FIG. 4B is a mark interval at the time of installation. FIG. 3C shows the mark interval when the rope is stretched due to aged deterioration.

据付け時のマーク間隔でパルス信号をカウントしたときの基準値をnパルスとすると、メインロープ24が劣化していない場合には、点検運転で得られるカウント値は据付け時のnパルスと多少の誤差を含み略同じである。しかし、劣化によりメインロープ24が伸びた状態にあると、点検運転で得られるカウント値は据付け時のマーク間隔に対応したnパルスよりも多くなる。 Assuming that the reference value when the pulse signal is counted at the mark interval at the time of installation is n pulse, if the main rope 24 is not deteriorated, the count value obtained by the inspection operation is slightly different from the n pulse at the time of installation. It is almost the same including. However, when the main rope 24 is in a stretched state due to deterioration, the count value obtained in the inspection operation becomes larger than the n pulse corresponding to the mark interval at the time of installation.

ここで、マーク間隔の測定について、図6を用いて説明する。
図6はセンサ28を用いたマーク間隔の測定方法を説明するための図であり、図6(a)はセンサ28の出力電圧、同図(b)はセンサ28の出力電圧とマーク位置Pとの関係を示す図である。
Here, the measurement of the mark interval will be described with reference to FIG.
FIG. 6 is a diagram for explaining a method of measuring the mark interval using the sensor 28, FIG. 6A shows the output voltage of the sensor 28, and FIG. 6B shows the output voltage of the sensor 28 and the mark position P. It is a figure which shows the relationship of.

いま、メインロープ24が図1に示す矢印A方向に送られているとする。センサ28は、アナログ電圧出力機能を有しており、メインロープ24の非マーク部とマーク部分の反射率に応じた出力電圧Vを出力する。このセンサ28の出力電圧Vと、エンコーダ29から出力されるパルスを積算した積算パルス数を一定周期で演算装置30のメモリ30aに記憶する。このメモリ30aに記憶された出力電圧Vと閾値電圧Vsとを比較する。そして、出力電圧Vが閾値電圧Vsを超えたときの立上りのタイミングで、その間にカウントされた積算パルス数にパルスレートを乗じた昇降位置をマーク位置P1,P2,P3…Pnとして求め、メモリ30aに順次記憶する。これにより、乗りかご20の昇降位置とマーク間隔は、以下の式(1),式(2a)~(2c)のように求められる。 Now, it is assumed that the main rope 24 is being fed in the direction of arrow A shown in FIG. The sensor 28 has an analog voltage output function, and outputs an output voltage V according to the reflectance of the non-marked portion and the marked portion of the main rope 24. The output voltage V of the sensor 28 and the integrated number of pulses obtained by integrating the pulses output from the encoder 29 are stored in the memory 30a of the arithmetic unit 30 at regular intervals. The output voltage V stored in the memory 30a and the threshold voltage Vs are compared. Then, at the rising timing when the output voltage V exceeds the threshold voltage Vs, the elevating position obtained by multiplying the integrated number of pulses counted during that time by the pulse rate is obtained as the mark positions P1, P2, P3 ... Pn, and the memory 30a is obtained. Sequentially memorize in. As a result, the elevating position and the mark interval of the car 20 are obtained as the following equations (1) and (2a) to (2c).

昇降位置=積算パルス数×パルスレート …(1)
マーク間隔L1=|P1-P2| …(2a)
マーク間隔L2=|P2-P3| …(2b)
マーク間隔Ln-1=|Pn-1-Pn| …(2c)
Elevating position = total number of pulses x pulse rate ... (1)
Mark interval L1 = | P1-P2 | ... (2a)
Mark interval L2 = | P2-P3 | ... (2b)
Mark interval Ln-1 = | Pn-1-Pn | ... (2c)

図7乃至図9にマーク間隔の演算結果の例を示す。
図7はマーク欠損なしの場合のマーク間隔の演算結果を示している。図8は1カ所にマーク欠損が発生した場合のマーク間隔の演算結果を示している。図9は連続的にマーク欠損が発生した場合のマーク間隔の演算結果を示している。
7 to 9 show an example of the calculation result of the mark interval.
FIG. 7 shows the calculation result of the mark interval when there is no mark defect. FIG. 8 shows the calculation result of the mark interval when a mark defect occurs in one place. FIG. 9 shows the calculation result of the mark interval when mark defects occur continuously.

いま、エレベータ設置時にメインロープ24の長手方向に500mm間隔で複数のマーク45が設けられていたとする。この場合、マーク間隔の基準値は、500mmに設定される。メインロープ24上の各マーク45がセンサ28によって正しく検出されていれば、図7に示すように、マーク間隔が略500mmで算出される。 Now, it is assumed that a plurality of marks 45 are provided at intervals of 500 mm in the longitudinal direction of the main rope 24 when the elevator is installed. In this case, the reference value of the mark spacing is set to 500 mm. If each mark 45 on the main rope 24 is correctly detected by the sensor 28, the mark interval is calculated to be approximately 500 mm as shown in FIG.

ここで、経年劣化などにより、各マーク45の一部がセンサ28によって検出されない状態、つまり、マーク欠損が発生することがある。図8に示すように、マーク欠損が1カ所あれば、その欠損箇所に対応したマーク間隔は500mmの略2倍になる。図9に示すように、マーク欠損が連続して3カ所あれば、その欠損箇所に対応したマーク間隔は500mmの略4倍になる。したがって、マーク欠損時には、マーク間隔が基準値の整数倍で長くなることがわかる。 Here, a state in which a part of each mark 45 is not detected by the sensor 28, that is, a mark defect may occur due to aged deterioration or the like. As shown in FIG. 8, if there is one mark defect, the mark interval corresponding to the defect portion is approximately twice as large as 500 mm. As shown in FIG. 9, if there are three consecutive mark defects, the mark spacing corresponding to the defect locations is approximately four times as large as 500 mm. Therefore, it can be seen that when the mark is missing, the mark interval becomes longer by an integral multiple of the reference value.

また、ロープ移動距離は物件毎に決まるため、ロープ1本あたりのマーク検知の期待数は、ロープ移動距離をマーク間隔の基準値で除して求めることができる。この期待数に尤度を持たせることで、測定時に得られるマーク検知数の期待範囲を以下のように定めておく。 Further, since the rope movement distance is determined for each property, the expected number of mark detections per rope can be obtained by dividing the rope movement distance by the reference value of the mark interval. By giving a likelihood to this expected number, the expected range of the number of mark detections obtained at the time of measurement is defined as follows.

検知数小<期待範囲<検知数大
なお、検知数小は、マーク検知時の測定誤差などを考慮して、前記マーク検知の期待数よりも若干少なく設定されている。検知数大は、マーク検知時の測定誤差などを考慮して、前記マーク検知の期待数よりも若干多く設定されている。
Small number of detections <Expected range <Large number of detections The small number of detections is set to be slightly smaller than the expected number of mark detections in consideration of measurement error at the time of mark detection. The large number of detections is set to be slightly larger than the expected number of mark detections in consideration of measurement error at the time of mark detection.

以下に、本システムの動作について、(a)メインルーチン、(b)測長運転処理、(c)マーク検知処理、(d)マーク間隔演算処理に分けて詳しく説明する。 The operation of this system will be described in detail below by dividing it into (a) main routine, (b) length measurement operation processing, (c) mark detection processing, and (d) mark interval calculation processing.

(a)メインルーチン
図10は第1の実施形態におけるロープ検査システムのメインルーチンの処理動作を説明するためのフローチャートであり、メインロープ24に付された複数のマーク45の間隔を自動測定するための全体的な流れを示す。このフローチャートで示される処理は、主として制御盤40によって実行される。
(A) Main Routine FIG. 10 is a flowchart for explaining the processing operation of the main routine of the rope inspection system according to the first embodiment, and is for automatically measuring the interval between a plurality of marks 45 attached to the main rope 24. Shows the overall flow of. The process shown in this flowchart is mainly executed by the control panel 40.

なお、実際にはメインロープ24は複数本のロープから構成されているため、各ロープ毎にマーク間隔の測定処理が行われる。以下では、説明を簡単にするため、メインロープ24に含まれる任意の1本のロープに対するマーク間隔の測定処理について説明する。 Since the main rope 24 is actually composed of a plurality of ropes, the mark interval is measured for each rope. In the following, for the sake of simplicity, the process of measuring the mark spacing for any one rope included in the main rope 24 will be described.

まず、制御盤40は、初期設定として、例えば昇降範囲、運転速度などを含め、マーク間隔の測定に関わる各種条件を設定しておく(ステップS101)。マーク間隔の測定は、例えば夜間など、エレベータ利用者に対する運転サービスが終了した後に行われる。制御盤40は、巻上機23の駆動により乗りかご20を所定の速度で昇降動作させ、メインロープ24を一方向に送りながら測長運転処理を行う(ステップS102)。この測長運転処理によって、メインロープ24の移動に伴って、センサ28から出力される信号(電圧V)と、エンコーダ29から出力されるパルス信号の積算値(積算パルス数)が演算装置30のメモリ30aに一定周期毎に記憶される。詳しくは、後に図11を用いて説明する。 First, as an initial setting, the control panel 40 sets various conditions related to the measurement of the mark interval, including, for example, an ascending / descending range and an operating speed (step S101). The mark interval measurement is performed after the driving service for the elevator user is completed, for example at night. The control panel 40 moves the car 20 up and down at a predetermined speed by driving the hoisting machine 23, and performs a length measurement operation process while feeding the main rope 24 in one direction (step S102). By this length measurement operation process, the integrated value (integrated pulse number) of the signal (voltage V) output from the sensor 28 and the pulse signal output from the encoder 29 is calculated by the arithmetic unit 30 as the main rope 24 moves. It is stored in the memory 30a at regular intervals. Details will be described later with reference to FIG.

何らかの原因で乗りかご20の運転が一時停止して、測長運転処理が正常に終了しなかった場合(ステップS102のNo)、制御盤40は、リトライカウンタRCの値を更新する(ステップS103)。リトライカウンタRCは、測定運転処理のリトライ回数をカウントするためのカウンタであり、制御盤40内に設けられている。後述する各種カウンタも同様であり、制御盤40内に設けられている。 When the operation of the car 20 is temporarily stopped for some reason and the length measurement operation process is not normally completed (No in step S102), the control panel 40 updates the value of the retry counter RC (step S103). .. The retry counter RC is a counter for counting the number of retries in the measurement operation process, and is provided in the control panel 40. The same applies to various counters described later, which are provided in the control panel 40.

リトライカウンタRCを設けておくのは、測定運転処理を何度も繰り返すことを回避するためである。このリトライカウンタRCの値(リトライ回数)に対する制限値は、予め定められている。リトライカウンタRCの値が予め定めた制限内であれば(ステップS104のNo)、制御盤40は、測長運転処理を再実行する(ステップS200)。リトライカウンタRCの値が前記制限外であれば(ステップS104のYes)、制御盤40は、リトライ異常を設定し(ステップS105)、所定の発報先にリトライ異常を発報する(ステップS109)。「所定の発報先」とは、保守員が持つ端末装置52、あるいは、遠隔地の監視センタ51などが含まれる。 The retry counter RC is provided in order to avoid repeating the measurement operation process many times. The limit value for the value (number of retries) of the retry counter RC is predetermined. If the value of the retry counter RC is within the predetermined limit (No in step S104), the control panel 40 re-executes the length measurement operation process (step S200). If the value of the retry counter RC is out of the limitation (Yes in step S104), the control panel 40 sets a retry abnormality (step S105) and issues a retry abnormality to a predetermined alarm destination (step S109). .. The "predetermined alarm destination" includes a terminal device 52 owned by a maintenance person, a monitoring center 51 at a remote location, and the like.

測長運転処理が正常に終了した場合には(ステップS102のYes)、制御盤40は、演算装置30を通じてマーク検知処理を実行する(ステップS300)。このマーク検知処理では、センサ28から出力される信号(電圧V)と乗りかご20の昇降位置を示すデータ(累積パルス数)を用いて、メインロープ24上に付された各マーク45の位置と、各マーク45の数(マーク検知数)が求められる。詳しくは、後に図12を用いて説明する。 When the length measurement operation process is normally completed (Yes in step S102), the control panel 40 executes the mark detection process through the arithmetic unit 30 (step S300). In this mark detection process, the signal (voltage V) output from the sensor 28 and the data (cumulative pulse number) indicating the ascending / descending position of the car 20 are used to determine the position of each mark 45 attached on the main rope 24. , The number of each mark 45 (mark detection number) is obtained. Details will be described later with reference to FIG.

マーク検知数が異常であった場合(ステップS106のNo)、制御盤40は、測定結果(マーク検知位置)を無効として、マーク間隔演算処理を中止する。その際、制御盤40は、前記所定の発報先にマーク検知数の異常を発報する(ステップS109)。 When the number of mark detections is abnormal (No in step S106), the control panel 40 invalidates the measurement result (mark detection position) and cancels the mark interval calculation process. At that time, the control panel 40 issues an abnormality in the number of detected marks to the predetermined alarm destination (step S109).

マーク検知数が正常であった場合(ステップS106のYes)、制御盤40は、マーク間隔演算処理を実行する(ステップS400)。このマーク間隔演算処理では、前記ステップS300で検知されたマーク位置を基にマーク間隔が演算される。詳しくは、後に図13および図14を用いて説明する。 When the number of marks detected is normal (Yes in step S106), the control panel 40 executes the mark interval calculation process (step S400). In this mark interval calculation process, the mark interval is calculated based on the mark position detected in step S300. Details will be described later with reference to FIGS. 13 and 14.

前記ステップS400のマーク間隔演算処理において、マーク間隔が正常である旨が設定された場合には(ステップS107のYes)、制御盤40は、マーク間隔の測定結果を有効として、その測定結果からロープ伸びを判断する。その際、制御盤40は、前記所定の発報先に正常に測定できた旨を発報する(ステップS108)。一方、マーク間隔に異常がある場合には(ステップS107のNo)、制御盤40は、マーク間隔の測定結果を無効として、前記所定の発報先にマーク間隔の異常を発報する(ステップS109)。 When it is set that the mark interval is normal in the mark interval calculation process of step S400 (Yes in step S107), the control panel 40 makes the measurement result of the mark interval valid, and ropes from the measurement result. Judge the growth. At that time, the control panel 40 notifies the predetermined reporting destination that the measurement has been performed normally (step S108). On the other hand, when there is an abnormality in the mark interval (No in step S107), the control panel 40 invalidates the measurement result of the mark interval and notifies the predetermined notification destination of the abnormality in the mark interval (step S109). ).

(b)測長運転処理
図11は図10のステップS200で実行される測長運転処理を説明するためのフローチャートである。
(B) Length measuring operation process FIG. 11 is a flowchart for explaining the length measuring operation process executed in step S200 of FIG.

制御盤40は、初期設定として、例えば測長開始位置、測長終了位置などを含め、測長運転処理に関わる各種条件を設定しておく(ステップS201)。制御盤40は、乗りかご20を測長開始位置(例えば最下階)まで移動させた後、演算装置30に測長運転の開始を指示する(ステップS202)。 As an initial setting, the control panel 40 sets various conditions related to the length measurement operation process, including, for example, a length measurement start position and a length measurement end position (step S201). The control panel 40 moves the car 20 to the length measurement start position (for example, the lowest floor), and then instructs the arithmetic unit 30 to start the length measurement operation (step S202).

乗りかご20が所定の運転速度で測長開始位置から移動すると、エンコーダ29からパルス信号が出力され、制御盤40を介して演算装置30に与えられる。また、センサ28からメインロープ24の表面反射に応じた電圧信号が出力される。この電圧信号は、図示せぬA/D変換器を介してデジタルデータとして演算装置30に与えられる。 When the car 20 moves from the length measurement start position at a predetermined operating speed, a pulse signal is output from the encoder 29 and given to the arithmetic unit 30 via the control panel 40. Further, a voltage signal corresponding to the surface reflection of the main rope 24 is output from the sensor 28. This voltage signal is given to the arithmetic unit 30 as digital data via an A / D converter (not shown).

ここで、測長運転中に、演算装置30によって乗りかご20の昇降位置に相当するエンコーダ29の積算パルス数が演算され、センサ28の出力電圧V(デジタルデータ)と共にメモリ30aに一定の周期毎に記憶される(ステップS203)。乗りかご20が測長終了位置(例えば最上階)に到着してなければ(ステップS204のNo)、制御盤40は、所定の待機処理を行う(ステップS205)。 Here, during the length measurement operation, the arithmetic unit 30 calculates the integrated number of pulses of the encoder 29 corresponding to the elevating position of the car 20, and the output voltage V (digital data) of the sensor 28 is stored in the memory 30a at regular intervals. Is stored in (step S203). If the car 20 has not arrived at the length measurement end position (for example, the top floor) (No in step S204), the control panel 40 performs a predetermined standby process (step S205).

乗りかご20が測長終了位置に到着し、測長運転処理が正常に終了すると(ステップS206のYes)、制御盤40は、正常終了設定を行った後(ステップS207)、測長運転処理を終える。一方、何らかの原因で測長運転処理に正常に終了しなかった場合には(ステップS206のNo)、制御盤40は、異常終了設定を行った後(ステップS208)、測長運転処理を終える。 When the car 20 arrives at the length measurement end position and the length measurement operation process is normally completed (Yes in step S206), the control panel 40 performs the length measurement operation process after the normal end setting is made (step S207). Finish. On the other hand, if the length measurement operation process is not normally completed for some reason (No in step S206), the control panel 40 ends the length measurement operation process after setting the abnormal end (step S208).

図10で説明したように、測長運転処理が正常に終了しなかった場合には、予め定めた制限内で測長運転処理が再実行される。測長運転処理が正常に終了した場合には、後述するマーク検知処理が実行される。 As described with reference to FIG. 10, when the length measuring operation process is not normally completed, the length measuring operation process is re-executed within the predetermined limit. When the length measurement operation process is completed normally, the mark detection process described later is executed.

(c)マーク検知処理
図12は図10のステップS300で実行されるマーク検知処理を説明するためのフローチャートである。
(C) Mark detection process FIG. 12 is a flowchart for explaining the mark detection process executed in step S300 of FIG.

制御盤40は、初期設定として、例えば昇降範囲に対するマーク検知数の期待範囲など、マーク検知処理に関わる各種条件を設定しておく(ステップS301)。マーク検知処理は、制御盤40の制御の下で演算装置30を通じて実行される。 As an initial setting, the control panel 40 sets various conditions related to the mark detection process, such as an expected range of the number of mark detections for the ascending / descending range (step S301). The mark detection process is executed through the arithmetic unit 30 under the control of the control panel 40.

演算装置30は、メモリ30aに一定周期で記憶されたセンサ28の出力電圧Vを予め設定された閾値電圧Vsと比較することで、メインロープ24上に付されたマーク45の位置を検知する。詳しくは、演算装置30は、出力電圧Vが閾値電圧Vsを超えたときの電圧信号の立上り時刻あるいは配列指標を求め、その立上り時刻あるいは配列指標に対応したエンコーダ29の積算パルス数をメモリ30aから抽出する。そして、演算装置30は、その積算パルス数にパルスレートを乗じて得られる昇降位置をマーク45の位置として求め、メモリ30aに記憶する(ステップS302)。 The arithmetic unit 30 detects the position of the mark 45 attached to the main rope 24 by comparing the output voltage V of the sensor 28 stored in the memory 30a at a fixed cycle with the preset threshold voltage Vs. Specifically, the arithmetic unit 30 obtains a rise time or an array index of the voltage signal when the output voltage V exceeds the threshold voltage Vs, and obtains the integrated pulse number of the encoder 29 corresponding to the rise time or the array index from the memory 30a. Extract. Then, the arithmetic unit 30 obtains the elevating position obtained by multiplying the integrated number of pulses by the pulse rate as the position of the mark 45, and stores it in the memory 30a (step S302).

また、演算装置30は、マーク45の位置を検知する毎にマーク検知数を更新して、メモリ30aに記憶する(ステップS303)。検知対象とするデータが終了するまで(ステップS304のNo)、演算装置30は、上述したマーク位置の演算とマーク検知数の更新を繰り返す。 Further, the arithmetic unit 30 updates the number of mark detections every time the position of the mark 45 is detected and stores it in the memory 30a (step S303). The arithmetic unit 30 repeats the calculation of the mark position and the update of the mark detection number described above until the data to be detected is completed (No in step S304).

データ終了後、制御盤40は、演算装置30からマーク検知数を取得し、そのマーク検知数が予め定めた期待範囲内にあるか否かを判定する(ステップS305)。メインロープ24上の各マーク45を検知できていれば、マーク検知数は期待範囲内にある。しかし、例えば経年劣化などで各マーク45の一部を検知できなかった場合、あるいは、ノイズの影響で誤検知が生じている場合には、マーク検知数は期待範囲外になる。 After the data is completed, the control panel 40 acquires the mark detection number from the arithmetic unit 30 and determines whether or not the mark detection number is within the predetermined expected range (step S305). If each mark 45 on the main rope 24 can be detected, the number of mark detections is within the expected range. However, if a part of each mark 45 cannot be detected due to deterioration over time, or if erroneous detection occurs due to the influence of noise, the number of mark detections is out of the expected range.

マーク検知数が期待範囲内であれば(ステップS305のYes)、制御盤40は、マーク検知数が正常であることを設定した後(ステップS306)、マーク検知処理を終了する。一方、マーク検知数が期待範囲よりも少なかった場合には(ステップS307のYes)、制御盤40は、マーク検知数小の異常を設定した後(ステップS308)、マーク検知処理を終了する。また、マーク検知数が期待範囲よりも多かった場合には(ステップS307のNo)、制御盤40は、マーク検知数大の異常を設定した後(ステップS309)、マーク検知処理を終える。 If the number of mark detections is within the expected range (Yes in step S305), the control panel 40 ends the mark detection process after setting that the number of mark detections is normal (step S306). On the other hand, when the number of mark detections is less than the expected range (Yes in step S307), the control panel 40 ends the mark detection process after setting an abnormality with a small number of mark detections (step S308). When the number of mark detections is larger than the expected range (No in step S307), the control panel 40 finishes the mark detection process after setting an abnormality with a large number of mark detections (step S309).

なお、図12では、データ終了後にマーク検知数の判定を行うシーケンスとしたが、例えばマーク検知数を更新したときに、少なくともマーク検知数がマーク検知の期待範囲よりも多いか否かを判定し、マーク検知数がマーク検知の期待範囲より多ければ、異常設定してからマーク検知処理を終了することでも良い。これにより、マーク位置を記憶するメモリ30aの容量と不必要な処理時間を抑制することができる。また、このマーク検知処理は、メインロープ24を構成する各ロープに用いられるセンサ28毎に行うことが望ましい。 In FIG. 12, a sequence is used in which the number of mark detections is determined after the data is completed. For example, when the number of mark detections is updated, it is determined whether or not the number of mark detections is at least larger than the expected range of mark detection. If the number of mark detections is larger than the expected range of mark detection, the mark detection process may be terminated after setting an abnormality. As a result, the capacity of the memory 30a for storing the mark position and unnecessary processing time can be suppressed. Further, it is desirable that this mark detection process be performed for each sensor 28 used for each rope constituting the main rope 24.

このように、マーク検知数の判定を行うことで、少なくともマーク検知数が期待範囲内であったメインロープ24に関しては、後述するマーク間隔演算処理を行うことが可能となる。一方、マーク検知数が期待範囲外であったメインロープ24に関しては、マーク45の反射率の低下や、昇降路内の粉塵、路内コンクリート紛の付着などが考えられる。したがって、異常発報を行うことで、メインロープ24の詳細点検や清掃指示などの対応を取ることができる。 By determining the number of mark detections in this way, it is possible to perform the mark interval calculation process described later for at least the main rope 24 whose number of mark detections is within the expected range. On the other hand, with respect to the main rope 24 whose number of marks detected was out of the expected range, it is considered that the reflectance of the mark 45 is lowered, dust in the hoistway, and concrete dust in the road are adhered. Therefore, by issuing an abnormality notification, it is possible to take measures such as detailed inspection of the main rope 24 and cleaning instructions.

(d)マーク間隔演算処理
図13および図14は、図10のステップS400で実行されるマーク間隔演算処理を説明するためのフローチャートである。
(D) Mark interval calculation process FIGS. 13 and 14 are flowcharts for explaining the mark interval calculation process executed in step S400 of FIG.

制御盤40は、初期設定として、例えばマーク間隔の基準値や許容範囲などを設定するとともに、マーク間隔に関する各種カウンタMC1~MC4を初期化しておく(ステップS401)。 As an initial setting, the control panel 40 sets, for example, a reference value and an allowable range of the mark interval, and initializes various counters MC1 to MC4 regarding the mark interval (step S401).

マーク間隔演算処理は、制御盤40の制御の下で演算装置30を通じて実行される。演算装置30は、前記マーク検知処理で求めた各マーク45の位置に基づいてマーク間隔を演算する(ステップS402)。制御盤40は、この演算装置30で演算されたマーク間隔のデータを読み込み、以下のような判定処理を行う。 The mark interval calculation process is executed through the arithmetic unit 30 under the control of the control panel 40. The arithmetic unit 30 calculates the mark interval based on the position of each mark 45 obtained in the mark detection process (step S402). The control panel 40 reads the mark interval data calculated by the arithmetic unit 30 and performs the following determination process.

すなわち、まず、制御盤40は、演算装置30から読み込んだマーク間隔が基準値に対して予め定められた正常範囲内にあるか否かを判定する(ステップS403)。マーク間隔が正常範囲内にあれば(ステップS403のYes)、制御盤40は、当該マーク間隔を有効と判定して、マーク間隔正常カウンタMC1の値を更新する(ステップS404)。 That is, first, the control panel 40 determines whether or not the mark interval read from the arithmetic unit 30 is within a predetermined normal range with respect to the reference value (step S403). If the mark interval is within the normal range (Yes in step S403), the control panel 40 determines that the mark interval is valid, and updates the value of the mark interval normal counter MC1 (step S404).

例えばセンサ28の出力電圧Vに閾値電圧Vs以上のノイズが含まれていると、そのノイズの影響でマーク45の位置が誤検知され、マーク間隔が正常範囲よりも短くなることがある。したがって、演算装置30から読み込んだマーク間隔が正常範囲よりも短い場合には(ステップS405のYes)、制御盤40は、当該マーク間隔を無効とし、マーク間隔小カウンタMC2の値を更新する(ステップS406)。 For example, if the output voltage V of the sensor 28 contains noise of the threshold voltage Vs or more, the position of the mark 45 may be erroneously detected due to the influence of the noise, and the mark interval may be shorter than the normal range. Therefore, when the mark interval read from the arithmetic unit 30 is shorter than the normal range (Yes in step S405), the control panel 40 invalidates the mark interval and updates the value of the mark interval small counter MC2 (step). S406).

また、各マーク45の一部が検知できない状態つまりマーク欠損が生じている場合に、マーク間隔が正常範囲よりも長くなる。一般的には、マーク欠損があった場合にはマーク間隔の測定処理が中止されていたが、本実施形態では、マーク欠損時のリカバリー用に新たに許容範囲Ltempを定めておくことで、マーク間隔の測定処理の継続を実現する。後述するように、この許容範囲Ltempは、マーク欠損が基準値の整数倍で発生することに着目して設定されている。 Further, when a part of each mark 45 cannot be detected, that is, when a mark is missing, the mark interval becomes longer than the normal range. Generally, when there is a mark defect, the measurement process of the mark interval is stopped, but in the present embodiment, the mark is newly set for the recovery at the time of the mark defect. Realize the continuation of the interval measurement process. As will be described later, this permissible range Ltemp is set by paying attention to the fact that mark defects occur in integer multiples of the reference value.

演算装置30から読み込んだマーク間隔が許容範囲Ltemp内であれば(ステップS407のYes)、制御盤40は、当該マーク間隔を有効と判定して、マーク欠損カウンタMC3の値を更新する(ステップS408)。一方、演算装置30から読み込んだマーク間隔が許容範囲Ltemp外であったならば(ステップS407のNo)、制御盤40は、当該マーク間隔を無効と判定し、マーク間隔大カウンタMC4の値を更新する(ステップS409)。 If the mark interval read from the arithmetic unit 30 is within the allowable range Ltemp (Yes in step S407), the control panel 40 determines that the mark interval is valid and updates the value of the mark loss counter MC3 (step S408). ). On the other hand, if the mark interval read from the arithmetic unit 30 is outside the allowable range Ltemp (No in step S407), the control panel 40 determines that the mark interval is invalid and updates the value of the mark interval large counter MC4. (Step S409).

ここで、許容範囲Ltempについて詳しく説明する。
前記式(2a)~(2c)により、マーク位置を基にマーク間隔が求められる。このマーク間隔は、表示装置31に表示されるとともに、図7に示したような配列で演算装置30内のメモリ30aに順次記憶される。制御盤40は、このマーク間隔が以下のように定められる許容範囲Ltemp内にあるか否かを判定する。
Here, the allowable range Ltemp will be described in detail.
From the above formulas (2a) to (2c), the mark spacing is obtained based on the mark position. This mark interval is displayed on the display device 31 and is sequentially stored in the memory 30a in the arithmetic unit 30 in an array as shown in FIG. 7. The control panel 40 determines whether or not the mark interval is within the allowable range Ltemp defined as follows.

・許容範囲Ltemp
マーク間隔の基準値をLbとする。この基準値Lbに対する縮み側マーク間隔の許容値をΔm、伸び側マーク間隔の許容値をΔpとすると、許容範囲Ltempは、下記の式(3)で表せる。
・ Tolerance range Ltemp
The reference value of the mark interval is Lb. Assuming that the permissible value of the contraction side mark interval with respect to the reference value Lb is Δm and the permissible value of the extension side mark interval is Δp, the permissible range Ltemp can be expressed by the following equation (3).

M×(Lb-Δm)<Ltemp<M×(Lb+Δp) …(3)
但し、1≦M≦Mmaxであり、Mは正の整数、Mmaxは予め定めた最大値。
M × (Lb−Δm) <Ltemp <M × (Lb + Δp)… (3)
However, 1 ≦ M ≦ Mmax, M is a positive integer, and Mmax is a predetermined maximum value.

つまり、許容範囲Ltempは、マーク間隔の基準値Lb(例えば500mm)のM倍で規定される。許容範囲Ltempの下限値は、基準値Lbに第1の許容値Δmを減算した値をM倍した値である。許容範囲Ltempの上限値は、基準値Lbに第2の許容値Δpを加算した値をM倍した値である。 That is, the allowable range Ltemp is defined by M times the reference value Lb (for example, 500 mm) of the mark interval. The lower limit of the allowable range Ltemp is a value obtained by subtracting the first allowable value Δm from the reference value Lb and multiplying it by M. The upper limit of the allowable range Ltemp is a value obtained by multiplying the reference value Lb by the value obtained by adding the second allowable value Δp.

許容値Δm,Δpは、測定誤差の範囲で任意に設定され、同じ値でも良いし、異なる値であっても良い。Mの最低値は1であり、Mの最大値(Mmax)は5~10である。最大値Mmaxは、ロープ移動距離と階床間隔との関係からマーク欠損時のマーク間隔が1階床分以内に収まるように定められる。 The permissible values Δm and Δp are arbitrarily set within the range of measurement error, and may be the same value or different values. The minimum value of M is 1, and the maximum value of M (Mmax) is 5 to 10. The maximum value Mmax is set so that the mark interval at the time of mark loss is within the first floor floor due to the relationship between the rope movement distance and the floor interval.

例えば、昇降行程100mの建物に設けられるメインロープ24の場合、図1のような2:1ロービング形式であれば、メインロープ24の移動距離は200mである。また、メインロープ24が適用される建物の階床間隔は、一般的に4m程度である。メインロープ24の移動距離200mを考慮した場合に、1階床分の4m程度のマーク欠損であれば、マーク欠損以外で連続して検知可能なマーク45の位置を用いてマーク間隔の測定処理を継続しても、特に支障はないと考えられる。 For example, in the case of the main rope 24 provided in a building having an ascending / descending stroke of 100 m, the moving distance of the main rope 24 is 200 m in the case of the 2: 1 roving type as shown in FIG. Further, the floor spacing of the building to which the main rope 24 is applied is generally about 4 m. Considering the movement distance of the main rope 24 of 200 m, if there is a mark defect of about 4 m on the first floor, the mark interval measurement process is performed using the position of the mark 45 that can be continuously detected other than the mark defect. Even if it continues, it is considered that there is no particular problem.

なお、メインロープ24の強度管理を行う上で、図5のロープの伸び率がλになった時点を交換時期とすることで、安全性が得られる。したがって、伸び側マーク間隔の許容値Δpは、下記の式(4)で求めることが望ましい。また、伸び側マーク間隔の許容値Δpを縮み側マーク間隔の許容値Δmとともに、初期設定(ステップ401)で、Mmax個のデータテーブルとして予め求めておくことでも良い。 In order to control the strength of the main rope 24, safety can be obtained by setting the time when the elongation rate of the rope in FIG. 5 becomes λ as the replacement time. Therefore, it is desirable to obtain the allowable value Δp of the extension side mark interval by the following equation (4). Further, the permissible value Δp of the extension side mark interval may be obtained in advance as an Mmax number of data tables in the initial setting (step 401) together with the permissible value Δm of the contraction side mark interval.

M×Lb×λ … (4)
また、一般的には、交換時期に到達する前に、交換作業の作業員割当や、ロープ調達期間などを考慮した作業日程調整が必要なため、これらを考慮して、伸び率λより小さい係数を要観察用の係数αとして定めておき、λ及びαでロープ伸びを管理しても良い。
M × Lb × λ… (4)
In addition, in general, before the replacement time is reached, it is necessary to allocate workers for replacement work and adjust the work schedule in consideration of the rope procurement period, etc., so taking these into consideration, a coefficient smaller than the elongation rate λ May be set as a coefficient α for observation required, and the rope elongation may be controlled by λ and α.

メインロープ24が伸びていなければ、演算装置30で算出されたマーク間の距離は据付け時にメインロープ24に付されたマーク間隔(例えば500mm)と同じである。経年劣化によりメインロープ24が伸びると、演算装置30で算出されたマーク間の距離は据付け時のマーク間隔(例えば500mm)よりも長くなる。 If the main rope 24 is not extended, the distance between the marks calculated by the arithmetic unit 30 is the same as the mark spacing (for example, 500 mm) attached to the main rope 24 at the time of installation. When the main rope 24 is stretched due to aged deterioration, the distance between the marks calculated by the arithmetic unit 30 becomes longer than the mark spacing (for example, 500 mm) at the time of installation.

ここで、エレベータ据付け時には、メインロープ24の長手方向にマーク45が等間隔で配列されている。したがって、メインロープ24の劣化による伸びがない場合には、前記パルス信号のカウント値は据付け時のマーク間隔に対応した基準値と略同じになる。一方、メインロープ24の劣化により伸びている場合には、前記パルス信号のカウント値は据付け時のマーク間隔に対応した基準値を超えることになる(図4参照)。 Here, at the time of installing the elevator, the marks 45 are arranged at equal intervals in the longitudinal direction of the main rope 24. Therefore, when there is no elongation due to deterioration of the main rope 24, the count value of the pulse signal is substantially the same as the reference value corresponding to the mark interval at the time of installation. On the other hand, when the main rope 24 is stretched due to deterioration, the count value of the pulse signal exceeds the reference value corresponding to the mark interval at the time of installation (see FIG. 4).

マーク間隔の判定処理後、判定対象となるマーク位置のデータが残っている場合には(ステップS410のNo)、マーク間隔の演算から判定までの処理が繰り返される(ステップS402~ステップS409)。すべてのデータに対する処理が終了すると(ステップS410のYes)は、制御盤40は、マーク間隔小カウンタMC2の値とマーク間隔大カウンタM4の値をチェックする(ステップS411)。カウンタMC2,M4がともに初期値のままであったならば(ステップS411のYes)、制御盤40は、マーク間隔の測定結果が正常である旨を設定した後(ステップS412)、マーク間隔演算処理を終了する。 If the data of the mark position to be determined remains after the mark interval determination process (No in step S410), the process from the mark interval calculation to the determination is repeated (step S402 to step S409). When the processing for all the data is completed (Yes in step S410), the control panel 40 checks the value of the mark interval small counter MC2 and the value of the mark interval large counter M4 (step S411). If the counters MC2 and M4 both remain at the initial values (Yes in step S411), the control panel 40 sets that the measurement result of the mark interval is normal (step S412), and then performs the mark interval calculation process. To finish.

一方、カウンタMC2,MC4がともに初期値でなければ(ステップS411のNo)、制御盤40は、マーク間隔の測定結果に異常がある旨を設定した後(ステップS413)、マーク間隔演算処理を終了する。 On the other hand, if both the counters MC2 and MC4 are not initial values (No in step S411), the control panel 40 ends the mark interval calculation process after setting that there is an abnormality in the mark interval measurement result (step S413). do.

マーク間隔演算処理が終了すると、演算装置30は、メモリ30aに測定結果として記憶された各マーク間隔の距離に基づいてメインロープ24の伸び量を算出し、その結果を表示装置31に表示する。その際、前記許容範囲Ltemp内でマーク欠損が生じている場合には、マーク欠損部分を除いた各マーク間隔の距離に基づいて伸び量を算出すれば、伸び量の測定精度を上げることができる。マーク欠損部分(図8の例ではL22,図9の例ではL23)は、マーク欠損カウンタMC3が更新されるタイミングから判断できる。 When the mark interval calculation process is completed, the arithmetic unit 30 calculates the elongation amount of the main rope 24 based on the distance of each mark interval stored as the measurement result in the memory 30a, and displays the result on the display device 31. At that time, when the mark defect occurs within the allowable range Ltemp, the measurement accuracy of the elongation amount can be improved by calculating the elongation amount based on the distance of each mark interval excluding the mark defect portion. .. The mark defect portion (L22 in the example of FIG. 8 and L23 in the example of FIG. 9) can be determined from the timing at which the mark defect counter MC3 is updated.

なお、演算装置30で伸び量を算出せずに、マーク間隔だけを表示装置31に表示することでも良い。この場合、マーク間隔の測定結果に応じて、図10のステップS108では正常発報がなされ、図10のステップS109では異常発報がなされる。異常発報時には、どの箇所のマーク間隔に異常が発生しているのかを具体的に知らせるようにしても良い。マーク間隔の異常箇所は、マーク間隔小カウンタMC2が更新されるタイミングと、マーク間隔大カウンタMC4が更新されるタイミングから判断できる。 It is also possible to display only the mark interval on the display device 31 without calculating the elongation amount by the arithmetic unit 30. In this case, according to the measurement result of the mark interval, a normal alarm is issued in step S108 of FIG. 10, and an abnormal alarm is issued in step S109 of FIG. At the time of an abnormality notification, it may be possible to specifically inform which part of the mark interval the abnormality has occurred. The abnormal portion of the mark interval can be determined from the timing at which the mark interval small counter MC2 is updated and the timing at which the mark interval large counter MC4 is updated.

また、例えばマーク間隔が基準値を超えていた場合に、例えば表示装置31に警告メッセージを表示したり、アラーム音を発するなどして、保守員にロープ交換時期が近付いている旨を知らせるようにしても良い。制御盤40から保守員が持つ端末装置52に警告メッセージを送ることでも良い。これにより、保守員による点検作業を削減でき、ロープ交換が必要な時期を把握して対処することができる。 Further, for example, when the mark interval exceeds the reference value, for example, a warning message is displayed on the display device 31 or an alarm sound is emitted to notify the maintenance staff that the rope replacement time is approaching. May be. A warning message may be sent from the control panel 40 to the terminal device 52 owned by the maintenance staff. As a result, the inspection work by the maintenance staff can be reduced, and the time when the rope needs to be replaced can be grasped and dealt with.

また、マーク間隔の測定結果を遠隔地の監視センタ51に定期的に送るようにすれば、監視センタ51側では各物件のメインロープ24の劣化状態を一元管理できるようになり、ロープ交換時期が近い物件を保守員に知らせることができる。 Further, if the measurement result of the mark interval is periodically sent to the monitoring center 51 in a remote location, the monitoring center 51 can centrally manage the deterioration state of the main rope 24 of each property, and the rope replacement time can be set. You can inform the maintenance staff of nearby properties.

なお、前記実施形態では、マーク間隔の基準値をLbとし、2個のマーク間隔を基本として、マーク欠損補償とマーク間隔を演算する構成としたが、予め定めた2個以上のマーク間隔を基本とし、移動平均を求めてマーク欠損補償とマーク間隔を演算する構成としても良い。これにより、測定誤差を抑制して、マーク間隔の測定精度向上が見込める。 In the above embodiment, the reference value of the mark interval is Lb, and the mark defect compensation and the mark interval are calculated based on the two mark intervals. However, the mark interval is basically two or more predetermined marks. The moving average may be obtained and the mark defect compensation and the mark interval may be calculated. As a result, the measurement error can be suppressed and the measurement accuracy of the mark interval can be expected to be improved.

また、前記実施形態では、測長運転処理(ステップS200)の後に、マーク検知処理(ステップS300)及びマーク間隔演算処理(ステップS400)を行う構成としたが、予め定めた昇降範囲に対するメモリ30aに記憶されたデータブロック単位で一連の処理を分割して行っても良い。これにより、演算装置30に実装するメモリ30aの容量を抑制できる。 Further, in the above-described embodiment, the mark detection process (step S300) and the mark interval calculation process (step S400) are performed after the length measurement operation process (step S200), but the memory 30a for the predetermined elevating range is used. A series of processes may be divided into stored data blocks. As a result, the capacity of the memory 30a mounted on the arithmetic unit 30 can be suppressed.

また、マーク検知処理に関し、例えば比較素子を用いてセンサ28の出力電圧Vとマーク検知の閾値電圧Vsとを比較し、その比較素子の出力の立上りをトリガにして、エンコーダ29の積算パルス数をメモリ30aに記憶し、その積算パルス数から昇降位置をマーク位置として求める構成としても良い。これにより、センサ28の出力電圧Vとエンコーダ29からの積算パルスを一定周期毎に記憶する必要がなくなり、演算装置30の負荷が軽減されて高速処理可能になるとともに、メモリ30aの容量をさらに抑制できる。 Further, regarding the mark detection process, for example, the output voltage V of the sensor 28 and the threshold voltage Vs of the mark detection are compared using a comparison element, and the rising edge of the output of the comparison element is used as a trigger to calculate the integrated pulse number of the encoder 29. It may be stored in the memory 30a, and the ascending / descending position may be obtained as the mark position from the integrated number of pulses. As a result, it is no longer necessary to store the output voltage V of the sensor 28 and the integrated pulse from the encoder 29 at regular intervals, the load on the arithmetic unit 30 is reduced, high-speed processing becomes possible, and the capacity of the memory 30a is further suppressed. can.

このように第1の実施形態によれば、ロープの経年劣化などでマーク欠損が発生した場合であっても、予め定めた許容範囲内でマーク間隔の測定を継続でき、高精度な測定結果を得ることができる。また、ロープの周囲に複数のセンサ28を配置しなくても、マーク欠損に対応でき、コスト増加を抑制できる。 As described above, according to the first embodiment, even if a mark defect occurs due to aged deterioration of the rope, the measurement of the mark interval can be continued within a predetermined allowable range, and a highly accurate measurement result can be obtained. Obtainable. Further, even if a plurality of sensors 28 are not arranged around the rope, it is possible to deal with the mark defect and suppress the cost increase.

(第2の実施形態)
次に、第2の実施形態について説明する。
前記第1の実施形態では、マーク検知処理で得られたマーク検知数が予め定めた期待範囲外であった場合に異常として判断して処理を終えていた(図12のステップS308,S309参照)。これに対し、第2の実施形態では、マーク検知数が予め定めた期待範囲外であった場合に閾値電圧Vsを微調整して、マーク検知処理を再実行する構成としたものである。
(Second embodiment)
Next, the second embodiment will be described.
In the first embodiment, when the number of mark detections obtained by the mark detection process is out of the predetermined expected range, it is determined as an abnormality and the process is completed (see steps S308 and S309 in FIG. 12). .. On the other hand, in the second embodiment, when the number of mark detections is out of the predetermined expected range, the threshold voltage Vs is finely adjusted and the mark detection process is re-executed.

図15および図16は第2の実施形態における閾値電圧調整方法を説明するための図であり、図15はマーク検知数が少ない場合の閾値電圧調整方法、図16はマーク検知数が多い場合の閾値電圧調整方法を示している。 15 and 16 are diagrams for explaining the threshold voltage adjusting method in the second embodiment, FIG. 15 is a threshold voltage adjusting method when the number of mark detections is small, and FIG. 16 is a diagram when the number of mark detections is large. The threshold voltage adjustment method is shown.

マーク検知数が期待範囲より少ない場合には、図15に示すように、マーク検知の閾値電圧Vsを所定の電圧値分だけ減少させて、新たな閾値電圧Vs1に調整する。また、マーク検知数が期待範囲より多い場合には、マーク検知の閾値電圧Vsを所定の電圧値分だけ増加させて、新たな閾値電圧Vs1に調整する。 When the number of mark detections is less than the expected range, as shown in FIG. 15, the threshold voltage Vs for mark detection is reduced by a predetermined voltage value to adjust to a new threshold voltage Vs1. When the number of mark detections is larger than the expected range, the mark detection threshold voltage Vs is increased by a predetermined voltage value to adjust to a new threshold voltage Vs1.

図17および図18は第2の実施形態におけるマーク検知処理を説明するためのフローチャートである。このマーク検知処理(ステップS500)は、図10のステップS300に代えて実行される。なお、メインルーチン(図10)、測長運転処理(図11)、マーク間隔演算処理(図13)に関しては、前記第1の実施形態と同様であるため、ここではその説明を省略する。 17 and 18 are flowcharts for explaining the mark detection process in the second embodiment. This mark detection process (step S500) is executed in place of step S300 in FIG. Since the main routine (FIG. 10), the length measurement operation process (FIG. 11), and the mark interval calculation process (FIG. 13) are the same as those in the first embodiment, the description thereof will be omitted here.

制御盤40は、初期設定として、例えば昇降範囲に対するマーク検知数の期待範囲の他、閾値電圧Vsの調整範囲や閾値電圧変更カウンタVCなど、マーク検知処理に関わる各種条件を設定しておく(ステップS501)。マーク検知処理は、制御盤40の制御の下で演算装置30を通じて実行される。 As an initial setting, the control panel 40 sets various conditions related to the mark detection process, such as the expected range of the number of mark detections for the ascending / descending range, the adjustment range of the threshold voltage Vs, and the threshold voltage change counter VC (step). S501). The mark detection process is executed through the arithmetic unit 30 under the control of the control panel 40.

ここで、第2の実施形態におけるマーク検知処理において、図17のステップS502~S506までの処理は、図12のステップS302~S306までの処理と同様である。すなわち、演算装置30は、メモリ30aに一定周期で記憶されたセンサ28の出力電圧Vを閾値電圧Vsと比較することで、メインロープ24上に付されたマーク45の位置を検知して、メモリ30aに記憶する(ステップS502)。また、演算装置30は、マーク45の位置を検知する毎にマーク検知数を更新する(ステップS503)。検知対象とするデータが終了するまで、演算装置30は、上述したマーク位置の演算とマーク検知数の更新を繰り返す(ステップS504)。 Here, in the mark detection process in the second embodiment, the processes in steps S502 to S506 in FIG. 17 are the same as the processes in steps S302 to S306 in FIG. That is, the arithmetic unit 30 detects the position of the mark 45 attached to the main rope 24 by comparing the output voltage V of the sensor 28 stored in the memory 30a with the threshold voltage Vs, and the memory. Store in 30a (step S502). Further, the arithmetic unit 30 updates the number of mark detections every time the position of the mark 45 is detected (step S503). The arithmetic unit 30 repeats the calculation of the mark position and the update of the mark detection number described above until the data to be detected is completed (step S504).

データ終了後、制御盤40は、演算装置30からマーク検知数を取得し、そのマーク検知数が予め定めた期待範囲内にあるか否かを判定する(ステップS505)。その結果、マーク検知数が期待範囲内であれば(ステップS505のYes)、制御盤40は、マーク検知数が適正であることを示す正常状態情報を設定する。 After the data is completed, the control panel 40 acquires the mark detection number from the arithmetic unit 30 and determines whether or not the mark detection number is within the predetermined expected range (step S505). As a result, if the number of mark detections is within the expected range (Yes in step S505), the control panel 40 sets normal state information indicating that the number of mark detections is appropriate.

ここで、第2の実施形態では、マーク検知数が期待範囲外であったとき、制御盤40は、演算装置30に現在設定されているマーク検知の閾値電圧Vsを微調整する(ステップS507)。「閾値電圧Vsの微調整」とは、閾値電圧Vsを一定の電圧単位で段階的に増減する調整のことを言う。 Here, in the second embodiment, when the number of mark detections is out of the expected range, the control panel 40 finely adjusts the mark detection threshold voltage Vs currently set in the arithmetic unit 30 (step S507). .. "Fine adjustment of the threshold voltage Vs" refers to an adjustment in which the threshold voltage Vs is gradually increased or decreased in a fixed voltage unit.

詳しくは、マーク検知数が期待範囲より少ない場合(検知数小の場合)、制御盤40は、閾値電圧Vsを所定の電圧値分だけ減少させて、新たな閾値電圧Vs1に調整する(図15参照)。また、マーク検知数が期待範囲より多い場合(検知数大の場合)、制御盤40は、閾値電圧Vsを所定の電圧値分だけ増加させて、新たな閾値電圧Vs1に調整する(図16参照)。 Specifically, when the number of mark detections is less than the expected range (when the number of detections is small), the control panel 40 reduces the threshold voltage Vs by a predetermined voltage value and adjusts to a new threshold voltage Vs1 (FIG. 15). reference). When the number of mark detections is larger than the expected range (when the number of detections is large), the control panel 40 increases the threshold voltage Vs by a predetermined voltage value and adjusts to a new threshold voltage Vs1 (see FIG. 16). ).

このようにして、閾値電圧Vsを新たな閾値電圧Vs1に微調整したとき、制御盤40は、その閾値電圧Vs1が予め定めた調整範囲内にあるか否かを判定する(ステップS508)。閾値電圧Vs1が調整範囲外であった場合(ステップS508のNo)、制御盤40は、閾値電圧の調整処理に関する異常を設定した後(ステップS509)、マーク検知処理を終了する。 In this way, when the threshold voltage Vs is finely adjusted to the new threshold voltage Vs1, the control panel 40 determines whether or not the threshold voltage Vs1 is within the predetermined adjustment range (step S508). When the threshold voltage Vs1 is out of the adjustment range (No in step S508), the control panel 40 ends the mark detection process after setting an abnormality related to the threshold voltage adjustment process (step S509).

一方、閾値電圧Vs1が調整範囲内であった場合には(ステップS508のYes)、制御盤40は、マーク検知数を初期値に戻した後(ステップS510)、閾値電圧変更カウンタVCを更新するとともに(ステップS511)、新たな閾値電圧Vs1を演算装置30に設定する(ステップS512)。 On the other hand, when the threshold voltage Vs1 is within the adjustment range (Yes in step S508), the control panel 40 updates the threshold voltage change counter VC after returning the mark detection number to the initial value (step S510). At the same time (step S511), a new threshold voltage Vs1 is set in the arithmetic unit 30 (step S512).

このとき、制御盤40は、閾値電圧変更カウンタVCの値が予め定めた制限範囲内であるか否かを判定する(ステップS513)。閾値電圧変更カウンタVCの値が制限範囲内であれば(ステップS513のYes)、制御盤40は、演算装置30に新たな閾値電圧Vs1を用いたマーク検知処理を実行させる(ステップS502)。一方、閾値電圧変更カウンタVCの値が制限範囲外ならば(ステップS513のNo)、制御盤40は、マーク検知数の異常を設定した後(ステップS514)、マーク検知処理を終了する。 At this time, the control panel 40 determines whether or not the value of the threshold voltage change counter VC is within the predetermined limit range (step S513). If the value of the threshold voltage change counter VC is within the limit range (Yes in step S513), the control panel 40 causes the arithmetic unit 30 to execute the mark detection process using the new threshold voltage Vs1 (step S502). On the other hand, if the value of the threshold voltage change counter VC is out of the limit range (No in step S513), the control panel 40 ends the mark detection process after setting an abnormality in the number of mark detections (step S514).

このように第2の実施形態によれば、マーク検知処理時に、マーク検知数が予め定めたマーク検知数範囲を外れた場合に閾値電圧Vsが微調整される。これにより、センサ28の個体差による検知精度を調整でき、乗りかご20を再運転しなくても、メモリ30aに既記憶済みの積算パルス数と出力電圧Vを用いてマーク検知処理を再実行できる。 As described above, according to the second embodiment, the threshold voltage Vs is finely adjusted when the mark detection number is out of the predetermined mark detection number range during the mark detection process. As a result, the detection accuracy due to the individual difference of the sensor 28 can be adjusted, and the mark detection process can be re-executed using the integrated pulse number and the output voltage V already stored in the memory 30a without restarting the car 20. ..

(第3の実施形態)
次に、第3の実施形態について説明する。
第3の実施形態では、前記第2の実施形態で説明した閾値電圧Vsの微調整の前に、閾値電圧Vsを概調整しておく構成としたものである。「閾値電圧Vsの概調整」とは、閾値電圧Vsを段階的に微調整するのではなく、ある程度定めた値に調整することを言う。
(Third embodiment)
Next, a third embodiment will be described.
In the third embodiment, the threshold voltage Vs is roughly adjusted before the fine adjustment of the threshold voltage Vs described in the second embodiment. "Approximate adjustment of the threshold voltage Vs" means adjusting the threshold voltage Vs to a predetermined value rather than finely adjusting it step by step.

図19および図20は第3の実施形態におけるマーク検知処理を説明するためのフローチャートである。このマーク検知処理(ステップS500)は、図10のステップS300に代えて実行される。なお、メインルーチン(図10)、測長運転処理(図11)、マーク間隔演算処理(図13)に関しては、前記第1の実施形態と同様であるため、ここではその説明を省略する。また、前記第2の実施形態と重複する処理に関しては、同じステップ番号を付して、その説明を省略するものとする。 19 and 20 are flowcharts for explaining the mark detection process in the third embodiment. This mark detection process (step S500) is executed in place of step S300 in FIG. Since the main routine (FIG. 10), the length measurement operation process (FIG. 11), and the mark interval calculation process (FIG. 13) are the same as those in the first embodiment, the description thereof will be omitted here. Further, regarding the processing that overlaps with the second embodiment, the same step number will be assigned and the description thereof will be omitted.

制御盤40は、初期設定として、例えば昇降範囲に対するマーク検知数の期待範囲の他、閾値電圧Vsの調整範囲や閾値電圧変更カウンタVCなど、マーク検知処理に関わる各種条件を設定しておく(ステップS501)。 As an initial setting, the control panel 40 sets various conditions related to the mark detection process, such as the expected range of the number of mark detections for the ascending / descending range, the adjustment range of the threshold voltage Vs, and the threshold voltage change counter VC (step). S501).

ここで、第3の実施形態におけるマーク検知処理では、まず、図20に示すように閾値電圧調整処理が実行される(ステップS600)。
すなわち、制御盤40は、メモリ30aに一定周期毎に記憶されている出力電圧Vの平均値Vaを演算する(ステップS601)。制御盤40は、出力電圧Vの平均値Vaが予め定めた電圧変化の許容範囲内であるか否かを判定する(ステップS602)。出力電圧Vの平均値Vaが電圧変化の許容範囲内であれば(ステップS602のYes)、制御盤40は、閾値電圧(初期設定時の閾値電圧Vs)が正常である旨を設定して(ステップS606)、閾値電圧調整処理を終了する。
Here, in the mark detection process in the third embodiment, first, the threshold voltage adjustment process is executed as shown in FIG. 20 (step S600).
That is, the control panel 40 calculates the average value Va of the output voltage V stored in the memory 30a at regular intervals (step S601). The control panel 40 determines whether or not the average value Va of the output voltage V is within a predetermined allowable range of voltage change (step S602). If the average value Va of the output voltage V is within the allowable range of voltage change (Yes in step S602), the control panel 40 sets that the threshold voltage (threshold voltage Vs at the time of initial setting) is normal (Yes). Step S606), the threshold voltage adjustment process is terminated.

一方、出力電圧Vの平均値Vaが電圧変化の許容範囲外であれば(ステップS602のNo)、制御盤40は、以下のようにして閾値電圧Vsを概調整する(ステップS603)。 On the other hand, if the average value Va of the output voltage V is out of the allowable range of voltage change (No in step S602), the control panel 40 roughly adjusts the threshold voltage Vs as follows (step S603).

・閾値電圧Vsの概調整
出力電圧Vの平均値Vaには、メインロープ24上のマーク45の長さ分の電圧が含まれる。理想的には、出力電圧Vの平均値Vaは、マーク45の長さ分の電圧を除いた範囲で演算することが望ましい。しかし、マーク間隔に対し、マーキングされるマーク45の長さは微小であり、図3に示したマーク45と外周面44aとのセンサ28の出力電圧Vの比を考慮しても、マーク45の長さ分の電圧については略無視することができる。
-Approximate adjustment of threshold voltage Vs The average value Va of the output voltage V includes a voltage corresponding to the length of the mark 45 on the main rope 24. Ideally, the average value Va of the output voltage V should be calculated in the range excluding the voltage corresponding to the length of the mark 45. However, the length of the marked mark 45 is very small with respect to the mark interval, and even when the ratio of the output voltage V of the sensor 28 to the mark 45 shown in FIG. 3 and the outer peripheral surface 44a is taken into consideration, the mark 45 is marked. The voltage for the length can be ignored.

ここで、図15に示した出力電圧Vに含まれるピーク電圧(マーク45の部分に対応した電圧)をVp、ピーク電圧Vpの平均値Vpa、閾値電圧の調整係数をkとした場合に、新たな閾値電圧Vs1は下記の式(5)で求められる。 Here, when the peak voltage (voltage corresponding to the portion of the mark 45) included in the output voltage V shown in FIG. 15 is Vp, the average value Vpa of the peak voltage Vp, and the adjustment coefficient of the threshold voltage is k, it is new. The threshold voltage Vs1 can be obtained by the following equation (5).

Vs1=Va+k×(Vpa-Va)/2 …(5)
なお、ピーク電圧Vpの算出が困難な場合には、式(6)に示すように、出力電圧Vの平均値Vpaに調整係数kを乗じて新たな閾値電圧Vs1を求めても良い。
Vs1 = Va + k × (Vpa-Va) / 2 ... (5)
If it is difficult to calculate the peak voltage Vp, as shown in the equation (6), the average value Vpa of the output voltage V may be multiplied by the adjustment coefficient k to obtain a new threshold voltage Vs1.

Vs1=k×Vpa …(6)
また、ここではピーク電圧Vpの平均値Vpaあるいは出力電圧Vの平均値Vaを使用して閾値電圧Vs1を演算したが、ピーク電圧Vpと出力電圧Vの分散値を考慮して、例えばピーク電圧Vpの中央値あるいは出力電圧Vの中央値を使用して閾値電圧Vs1を演算することでも良い。
Vs1 = k × Vpa… (6)
Further, here, the threshold voltage Vs1 is calculated using the average value Vpa of the peak voltage Vp or the average value Va of the output voltage V, but in consideration of the dispersion values of the peak voltage Vp and the output voltage V, for example, the peak voltage Vp. The threshold voltage Vs1 may be calculated using the median value of or the median value of the output voltage V.

このような概調整によって新たな閾値電圧Vs1が求められると、制御盤40は、その閾値電圧Vs1が予め定めた閾値電圧変更範囲内であるか否かを判定する(ステップS604)。閾値電圧Vs1が電圧変更範囲内であれば(ステップS604のYes)、制御盤40は、閾値電圧Vsを閾値電圧Vs1に更新し(ステップS605)、閾値電圧(更新後の閾値電圧Vs1)が正常である旨を設定して(ステップS606)、閾値電圧調整処理を終了する。 When a new threshold voltage Vs1 is obtained by such rough adjustment, the control panel 40 determines whether or not the threshold voltage Vs1 is within a predetermined threshold voltage change range (step S604). If the threshold voltage Vs1 is within the voltage change range (Yes in step S604), the control panel 40 updates the threshold voltage Vs to the threshold voltage Vs1 (step S605), and the threshold voltage (updated threshold voltage Vs1) is normal. (Step S606), the threshold voltage adjustment process is terminated.

一方、閾値電圧Vs1が電圧変更範外であれば(ステップS604のNo)、制御盤40は、閾値電圧(更新後の閾値電圧Vs1)が異常である旨を設定して(ステップS607)、閾値電圧調整処理を終了する。 On the other hand, if the threshold voltage Vs1 is out of the voltage change range (No in step S604), the control panel 40 sets that the threshold voltage (updated threshold voltage Vs1) is abnormal (step S607), and sets the threshold. The voltage adjustment process is finished.

図19に戻って、閾値電圧が正常に設定されていれば(ステップS601のNo)、ステップS502~S507の処理が実行される。ステップS502~S507の処理については、前記第2の実施形態で説明済みのため、ここでは省略する。 Returning to FIG. 19, if the threshold voltage is normally set (No in step S601), the processes of steps S502 to S507 are executed. Since the processes of steps S502 to S507 have already been described in the second embodiment, they will be omitted here.

このように第3の実施形態によれば、出力電圧Vの平均値や中央値などを用いて、マーカ検知に必要な閾値電圧Vsを事前に調整しておくことで、昇降範囲に対するマーク検知数の過大や過小が発生したときの閾値電圧の微調整回数を抑制することができる。 As described above, according to the third embodiment, the number of mark detections for the ascending / descending range is performed by adjusting the threshold voltage Vs required for marker detection in advance by using the average value or the median value of the output voltage V. It is possible to suppress the number of fine adjustments of the threshold voltage when the overshoot or undershoot occurs.

以上述べた少なくとも1つの実施形態によれば、マーク欠損が発生した場合でも、マーク間隔の測定を継続可能とし、その測定結果からローブ伸びを判断して信頼性の高い強度管理を行うことのできるエレベータのロープ検査システムを提供することができる。 According to at least one embodiment described above, even if a mark defect occurs, it is possible to continue the measurement of the mark interval, determine the rope elongation from the measurement result, and perform highly reliable strength management. An elevator rope inspection system can be provided.

なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

10…昇降路、11,12…ガイドレール、20…乗りかご、21…カウンタウェイト、22…トラクションシーブ、23…巻上機、24…メインロープ、25a,25b…ロープヒッチ、26…カーシーブ、27…カウンタウェイトシーブ、28…センサ、29…エンコーダ、30…演算装置、30a…メモリ、31…表示装置、32…着床検出部材、33…非接触スイッチ、40…制御盤、50…通信ネットワーク、51…監視センタ、52…端末装置。 10 ... hoistway, 11, 12 ... guide rail, 20 ... car, 21 ... counter weight, 22 ... traction sheave, 23 ... hoist, 24 ... main rope, 25a, 25b ... rope hitch, 26 ... car sheave, 27 ... counter weight sheave, 28 ... sensor, 29 ... encoder, 30 ... arithmetic device, 30a ... memory, 31 ... display device, 32 ... landing detection member, 33 ... non-contact switch, 40 ... control panel, 50 ... communication network, 51 ... Monitoring center, 52 ... Terminal equipment.

Claims (10)

巻上機のトラクションシーブを介して乗りかごとカウンタウェイトを吊持し、表面が樹脂被覆された構造を有するロープを備え、前記ロープの表面上に一定の間隔で設けられた複数のマークの間隔を測定するエレベータのロープ検査システムにおいて、
前記ロープの近傍に設けられたセンサと、
前記ロープの移動に伴い、前記センサから出力される信号と前記乗りかごの昇降位置を示すデータとに基づいて、前記各マークの位置を検知するマーク検知手段と、
前記マーク検知手段によって検知された前記各マークの位置に基づいてマーク間隔を演算するマーク間隔演算手段と、
前記ロープに対するマーク間隔の基準値を有し、前記マーク間隔演算手段によって測定結果として得られたマーク間隔が前記基準値の整数倍で規定される許容範囲内にある場合に当該測定結果を有効とし、当該測定結果からロープ伸びを判断する制御手段と
を具備したことを特徴とするエレベータのロープ検査システム。
A rope having a structure in which a car and a counterweight are suspended via a traction sheave of a hoist and the surface of which is coated with resin is provided, and the spacing between a plurality of marks provided at regular intervals on the surface of the rope. In the elevator rope inspection system to measure
A sensor provided near the rope and
A mark detecting means for detecting the position of each mark based on the signal output from the sensor and the data indicating the ascending / descending position of the car with the movement of the rope.
A mark interval calculation means that calculates a mark interval based on the position of each mark detected by the mark detection means, and a mark interval calculation means.
The measurement result is valid when it has a reference value of the mark spacing for the rope and the mark spacing obtained as a measurement result by the mark spacing calculation means is within the allowable range defined by an integral multiple of the reference value. , A rope inspection system for elevators, characterized by being equipped with a control means for determining rope elongation from the measurement results.
前記許容範囲の下限値は、前記基準値に第1の許容値を減算した値を前記整数倍した値であり、
前記許容範囲の上限値は、前記基準値に第2の許容値を加算した値を前記整数倍した値であることを特徴とする請求項1記載のエレベータのロープ検査システム。
The lower limit value of the permissible range is a value obtained by subtracting the first permissible value from the reference value and multiplying the value by an integer.
The rope inspection system for an elevator according to claim 1, wherein the upper limit value of the allowable range is a value obtained by adding a second allowable value to the reference value and multiplying the value by an integer.
前記整数倍の最低値は、1であり、
前記整数倍の最大値は、前記ロープの移動距離と階床間隔との関係からマーク欠損時のマーク間隔が1階床分以内に収まるように定められることを特徴とする請求項1記載のエレベータのロープ検査システム。
The lowest value of the integer multiple is 1.
The elevator according to claim 1, wherein the maximum value of the integral multiple is determined so that the mark interval at the time of mark loss is within the range of the first floor from the relationship between the moving distance of the rope and the floor interval. Rope inspection system.
前記制御手段は、
前記マーク間隔が前記許容範囲外であった場合に異常発報を行うことを特徴とする請求項1記載のエレベータのロープ検査システム。
The control means is
The rope inspection system for an elevator according to claim 1, wherein an abnormal alarm is issued when the mark interval is out of the permissible range.
前記マーク検知手段によって検知された前記各マークの数をカウントするカウント手段を備え、
前記制御手段は、
前記ロープの移動距離と前記基準値との関係から求められるマーク検知の期待数を有し、前記カウント手段によって得られた前記各マークの数が前記期待数に尤度を持たせた期待範囲内にある場合に、前記マーク間隔演算手段によるマーク間隔の演算処理を実行することを特徴とする請求項1記載のエレベータのロープ検査システム。
A counting means for counting the number of each mark detected by the mark detecting means is provided.
The control means is
It has an expected number of mark detections obtained from the relationship between the moving distance of the rope and the reference value, and the number of each mark obtained by the counting means is within the expected range in which the expected number has a likelihood. The rope inspection system for an elevator according to claim 1, wherein the mark interval calculation process is executed by the mark interval calculation means.
前記制御手段は、
前記各マークの数が前記期待範囲外であった場合に異常発報を行うことを特徴とする請求項5記載のエレベータのロープ検査システム。
The control means is
The rope inspection system for an elevator according to claim 5, wherein an abnormality is reported when the number of each mark is out of the expected range.
前記制御手段は、
前記各マークの数が前記期待範囲外であった場合に、前記センサの信号レベルに対する閾値を予め定めた許容範囲内で微調整することを特徴とする請求項6記載のエレベータのロープ検査システム。
The control means is
The rope inspection system for an elevator according to claim 6, wherein when the number of each mark is out of the expected range, the threshold value for the signal level of the sensor is finely adjusted within a predetermined allowable range.
前記制御手段は、
前記閾値を微調整する前に、前記センサの信号レベルの平均値あるいは中央値に基づいて前記閾値を概調整することを特徴とする請求項7記載のエレベータのロープ検査システム。
The control means is
The rope inspection system for an elevator according to claim 7, wherein the threshold value is roughly adjusted based on the average value or the median value of the signal levels of the sensor before the threshold value is finely adjusted.
前記制御手段は、
前記閾値を微調整する前に、前記センサの信号レベルに含まれるピーク値の平均値あるいは中央値に基づいて前記閾値を概調整することを特徴とする請求項7記載のエレベータのロープ検査システム。
The control means is
The rope inspection system for an elevator according to claim 7, wherein the threshold value is roughly adjusted based on the average value or the median value of the peak values included in the signal level of the sensor before the threshold value is finely adjusted.
少なくとも、前記センサから出力される信号と前記乗りかごの昇降位置を示すデータを一定周期毎に記憶する記憶手段を具備したことを特徴とする請求項1記載のエレベータのロープ検査システム。 The rope inspection system for an elevator according to claim 1, further comprising a storage means for storing at least a signal output from the sensor and data indicating an elevating position of the car at regular intervals.
JP2020204202A 2020-12-09 2020-12-09 Elevator rope inspection system Active JP7047050B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020204202A JP7047050B1 (en) 2020-12-09 2020-12-09 Elevator rope inspection system
CN202111477902.0A CN114620579B (en) 2020-12-09 2021-12-06 Elevator rope inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020204202A JP7047050B1 (en) 2020-12-09 2020-12-09 Elevator rope inspection system

Publications (2)

Publication Number Publication Date
JP7047050B1 JP7047050B1 (en) 2022-04-04
JP2022091389A true JP2022091389A (en) 2022-06-21

Family

ID=81256638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020204202A Active JP7047050B1 (en) 2020-12-09 2020-12-09 Elevator rope inspection system

Country Status (2)

Country Link
JP (1) JP7047050B1 (en)
CN (1) CN114620579B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204977A (en) * 2017-05-30 2018-12-27 東芝エレベータ株式会社 Rope inspection device
JP2019112155A (en) * 2017-12-21 2019-07-11 東芝エレベータ株式会社 elevator
JP2019119555A (en) * 2018-01-04 2019-07-22 東芝エレベータ株式会社 Inspection system of elevator rope

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201549259U (en) * 2009-12-09 2010-08-11 杨金元 Cable with scales
JP4907725B2 (en) * 2010-03-23 2012-04-04 シャープ株式会社 Calibration device, defect detection device, defect repair device, display panel, display device, calibration method
JP5190127B2 (en) * 2011-02-02 2013-04-24 ヤマハ発動機株式会社 Substrate processing equipment
CN202304651U (en) * 2011-10-17 2012-07-04 中钢集团邢台机械轧辊有限公司 Abrasion-proof measuring tape
JP2015037997A (en) * 2013-07-31 2015-02-26 東芝エレベータ株式会社 Rope deterioration diagnostic method and elevator device
CN203998761U (en) * 2014-01-28 2014-12-10 新乡职业技术学院 A kind of hand-operated cable hoist of measuring unwrapping wire length
JP6449376B2 (en) * 2017-06-09 2019-01-09 東芝エレベータ株式会社 elevator
JP6445657B1 (en) * 2017-11-08 2018-12-26 東芝エレベータ株式会社 Elevator rope inspection system
JP6538215B1 (en) * 2018-02-08 2019-07-03 東芝エレベータ株式会社 elevator
JP6505890B1 (en) * 2018-03-02 2019-04-24 東芝エレベータ株式会社 Diagnostic device
JP6716751B1 (en) * 2019-05-15 2020-07-01 東芝エレベータ株式会社 Elevator rope inspection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204977A (en) * 2017-05-30 2018-12-27 東芝エレベータ株式会社 Rope inspection device
JP2019112155A (en) * 2017-12-21 2019-07-11 東芝エレベータ株式会社 elevator
JP2019119555A (en) * 2018-01-04 2019-07-22 東芝エレベータ株式会社 Inspection system of elevator rope

Also Published As

Publication number Publication date
CN114620579B (en) 2024-02-23
JP7047050B1 (en) 2022-04-04
CN114620579A (en) 2022-06-14

Similar Documents

Publication Publication Date Title
JP6271680B1 (en) Elevator rope inspection system
JP6449376B2 (en) elevator
JP6716751B1 (en) Elevator rope inspection system
JP6445657B1 (en) Elevator rope inspection system
CN112850422B (en) Rope inspection system for elevator
US9643816B2 (en) Method and device for determining the replacement state of wear of a support means of an elevator
KR101979945B1 (en) Calibration of wear detection system
CN109941859B (en) Method and system for measuring absolute position of elevator car
JP2011195253A (en) Sheave wear amount measuring device for elevator
US20200180910A1 (en) Method and an elevator system for defining an elongation of an elevator car suspension means
JP2012056698A (en) Elevator control device
JP6491365B1 (en) Elevator rope inspection system
CN106927327A (en) A kind of elevator safety detection method and device
JP7047050B1 (en) Elevator rope inspection system
JP6538215B1 (en) elevator
JP2013227115A (en) Elevator
JP2016060550A (en) Life diagnosis method of elevator main rope
ES2883340T3 (en) A method, an elevator safety control unit, and an elevator system for defining the state of the suspension means of an elevator car
JP7053190B2 (en) Elevator control device
JP5607126B2 (en) Elevator monitoring device
JP2013184775A (en) Counter clearance measuring device and counter clearance measuring method
JP6828125B1 (en) Deterioration judgment method
KR200490163Y1 (en) Oil consumption prediction device and the remaining oil display device for Elevator car guide shoe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220323

R150 Certificate of patent or registration of utility model

Ref document number: 7047050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150