JP2022089552A - Catalyst for production of syngas and device for producing syngas - Google Patents

Catalyst for production of syngas and device for producing syngas Download PDF

Info

Publication number
JP2022089552A
JP2022089552A JP2020202021A JP2020202021A JP2022089552A JP 2022089552 A JP2022089552 A JP 2022089552A JP 2020202021 A JP2020202021 A JP 2020202021A JP 2020202021 A JP2020202021 A JP 2020202021A JP 2022089552 A JP2022089552 A JP 2022089552A
Authority
JP
Japan
Prior art keywords
catalyst
synthetic gas
producing
silver
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020202021A
Other languages
Japanese (ja)
Inventor
大剛 小野寺
Taigo Onodera
晃平 吉川
Kohei Yoshikawa
昌俊 杉政
Masatoshi Sugimasa
陽之 小田
Haruyuki Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2020202021A priority Critical patent/JP2022089552A/en
Publication of JP2022089552A publication Critical patent/JP2022089552A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

To provide a catalyst for the production of syngas that can suppress formation of methane even in the temperature range of 400°C or lower and can improve the yield of carbon monoxide.SOLUTION: The inventive catalyst for the production of syngas is used to produce carbon monoxide by reacting carbon dioxide and hydrogen. The catalyst contains a catalyst metal containing platinum, and at least one selected from the group consisting of silver, copper, zinc, and gold.SELECTED DRAWING: Figure 2

Description

本発明は、二酸化炭素と水素とを反応させることで一酸化炭素を製造するために用いられる合成ガス製造用触媒及び合成ガス製造装置に関する。 The present invention relates to a catalyst for producing synthetic gas and a synthetic gas producing apparatus used for producing carbon monoxide by reacting carbon dioxide with hydrogen.

近年、世界的な経済発展に伴い、産業、工業、農業等における二酸化炭素(CO)の排出量が急激に増加している。特に先進国では二酸化炭素の排出量抑制が急務となっており、その中でも発電に伴う二酸化炭素の排出量は非常に多く、大気中の二酸化炭素を増加させないためのエネルギーシステムへの転換が必要となっている。さらに、エネルギーシステムにおいては、航空、船舶、長距離貨物、負荷調整用発電、製鉄、セメント等、電化や二酸化炭素回収貯留(CCS)による対応が困難な分野も存在しており、これらの対応には発電や燃料の利用で排出される二酸化炭素を取り除く、いわゆる「脱炭素」だけでなく、二酸化炭素を循環的に利用する「炭素循環」も求められている。この炭素循環の一つの手段として、二酸化炭素の資源化がある。二酸化炭素の資源化とは、二酸化炭素を燃料や化成品に変換し利用することである。二酸化炭素の循環利用を目的とした炭化水素への変換技術は、二酸化炭素の排出量を削減するだけでなく、排出した二酸化炭素を大気中に拡散させないという点で非常に重要な技術である。 In recent years, with the global economic development, carbon dioxide (CO 2 ) emissions in industry, industry, agriculture, etc. have increased sharply. Especially in developed countries, there is an urgent need to curb carbon dioxide emissions. Among them, carbon dioxide emissions from power generation are extremely high, and it is necessary to switch to an energy system that does not increase carbon dioxide in the atmosphere. It has become. Furthermore, in energy systems, there are some fields such as aviation, ships, long-distance cargo, load adjustment power generation, iron making, cement, etc., which are difficult to deal with by electrification and carbon dioxide capture and storage (CCS). Is required not only to remove carbon dioxide emitted from power generation and the use of fuel, so-called "decarbonization", but also to "carbon cycle" to use carbon dioxide cyclically. One means of this carbon cycle is the recycling of carbon dioxide. Recycling carbon dioxide means converting carbon dioxide into fuel and chemical products for use. The technology for converting carbon dioxide into hydrocarbons for the purpose of recycling is a very important technology not only for reducing carbon dioxide emissions but also for preventing the emitted carbon dioxide from diffusing into the atmosphere.

一酸化炭素(CO)と水素(H)の混合ガスである合成ガスは、フィッシャー・トロプシュ法により炭化水素を製造することで様々な化成品に応用できることから工業的に非常に重要である。そこで、二酸化炭素の排出量を抑制するため、二酸化炭素から一酸化炭素を製造する方法が検討されている。二酸化炭素から一酸化炭素を製造する方法としては、例えば、下記反応式(1)で示される逆シフト反応による方法が挙げられる。 Syngas, which is a mixed gas of carbon monoxide (CO) and hydrogen (H 2 ), is industrially very important because it can be applied to various chemical products by producing hydrocarbons by the Fischer-Tropsch method. Therefore, in order to suppress carbon dioxide emissions, a method for producing carbon monoxide from carbon dioxide is being studied. Examples of the method for producing carbon monoxide from carbon dioxide include a method by a reverse shift reaction represented by the following reaction formula (1).

CO+H+40.9kJ/mol→CO+HO (1) CO 2 + H 2 + 40.9kJ / mol → CO + H 2 O (1)

しかしながら、逆シフト反応は、基本的に吸熱反応であるため、700℃以上の高温で起こすことが一般的であり大量の熱が必要となる。また、逆シフト反応では、700℃以上の高温に耐えるための反応容器や断熱性の確保等が必要となるため、製造コストが高くなる。さらに、工業排熱は700℃以下が主であるため、700℃以上の高温での反応では工業排熱の利用による省エネルギー化の寄与も少ない。 However, since the reverse shift reaction is basically an endothermic reaction, it generally occurs at a high temperature of 700 ° C. or higher and requires a large amount of heat. Further, in the reverse shift reaction, it is necessary to secure a reaction vessel and heat insulating properties to withstand a high temperature of 700 ° C. or higher, so that the manufacturing cost is high. Further, since the industrial waste heat is mainly 700 ° C. or lower, the contribution of energy saving by utilizing the industrial waste heat is small in the reaction at a high temperature of 700 ° C. or higher.

このため、逆シフト反応を多くの未利用の排熱の温度領域である400℃以下の温度領域で起こすことにより一酸化炭素を製造できれば、排熱利用による省エネルギー化とともに、反応容器等にかかるコストの削減などにより一酸化炭素の製造コストを大幅に低減することが可能となる。一方、400℃以下の温度領域は、一般的に、化学平衡上、逆シフト反応での二酸化炭素及び水素からの一酸化炭素の生成よりもメタン(CH)の生成が有利となる温度領域である。このため、400℃以下の二酸化炭素及び水素の存在下では、一酸化炭素よりもメタンが多く生成され、一酸化炭素の収率が低下する問題が起こる。 Therefore, if carbon monoxide can be produced by causing a reverse shift reaction in a temperature range of 400 ° C. or lower, which is a temperature range of many unused waste heats, energy saving by utilizing waste heat and costs for reaction vessels and the like can be achieved. It is possible to significantly reduce the production cost of carbon monoxide by reducing the amount of carbon monoxide. On the other hand, the temperature region of 400 ° C. or lower is generally a temperature region in which the production of methane (CH 4 ) is more advantageous than the production of carbon monoxide from carbon dioxide and hydrogen in the reverse shift reaction in terms of chemical equilibrium. be. Therefore, in the presence of carbon dioxide and hydrogen at 400 ° C. or lower, more methane is produced than carbon monoxide, which causes a problem that the yield of carbon monoxide is lowered.

本発明は、上記課題に鑑みてなされたものであり、400℃以下の温度領域でも、メタンの生成を抑制し、一酸化炭素の収率を向上できる合成ガス製造用触媒、及び合成ガス製造装置を提供することを主目的とする。 The present invention has been made in view of the above problems, and is a catalyst for producing synthetic gas and a synthetic gas producing apparatus capable of suppressing the production of methane and improving the yield of carbon monoxide even in a temperature range of 400 ° C. or lower. The main purpose is to provide.

上記課題を解決するために、本発明の合成ガス製造用触媒は、二酸化炭素と水素とを反応させることで一酸化炭素を製造するために用いられる合成ガス製造用触媒であって、白金と、銀、銅、亜鉛、及び金からなる群から選択される少なくとも1種とを含有する触媒金属を含むことを特徴とする。 In order to solve the above problems, the catalyst for producing synthetic gas of the present invention is a catalyst for producing synthetic gas used for producing carbon monoxide by reacting carbon dioxide with hydrogen, and platinum and platinum are used. It is characterized by containing a catalytic metal containing at least one selected from the group consisting of silver, copper, zinc, and gold.

上記合成ガス製造用触媒によれば、400℃以下の温度領域でも、メタンの生成を抑制し、一酸化炭素の収率を向上できる。 According to the catalyst for producing synthetic gas, the production of methane can be suppressed and the yield of carbon monoxide can be improved even in a temperature range of 400 ° C. or lower.

また、本発明の合成ガス製造装置は、二酸化炭素と水素とを反応させる反応容器に白金と、銀、銅、亜鉛、及び金からなる群から選択される少なくとも1種とを含有する触媒金属を含む合成ガス製造用触媒を備えることを特徴とする。 Further, in the synthetic gas production apparatus of the present invention, a catalyst metal containing platinum and at least one selected from the group consisting of silver, copper, zinc, and gold in a reaction vessel for reacting carbon dioxide and hydrogen is contained. It is characterized by comprising a catalyst for producing a synthetic gas containing the catalyst.

上記合成ガス製造装置によれば、400℃以下の温度領域でも、メタンの生成を抑制し、一酸化炭素の収率を向上できる。 According to the above synthetic gas production apparatus, it is possible to suppress the production of methane and improve the yield of carbon monoxide even in the temperature range of 400 ° C. or lower.

本発明によれば、400℃以下の温度領域でも、メタンの生成を抑制し、一酸化炭素の収率を向上できる。 According to the present invention, it is possible to suppress the production of methane and improve the yield of carbon monoxide even in the temperature range of 400 ° C. or lower.

以上に説明した内容以外の本発明の課題、構成、及び効果は、以下の発明を実施するための形態の説明により明らかにされる。 Issues, configurations, and effects of the present invention other than those described above will be clarified by the following description of embodiments for carrying out the invention.

実施例1で得た合成ガス製造用触媒の結晶構造のX線回折パターンである。It is an X-ray-diffraction pattern of the crystal structure of the catalyst for syngas production obtained in Example 1. 実施例及び比較例で得た合成ガス製造用触媒における白金(Pt)と銀(Ag)又は金(Au)との合計含有量に対する銀又は金の含有量と350℃での一酸化炭素の生成量(物質量)に対するメタンの生成量(物質量)の比(CH/CO)との関係を示すグラフである。The content of silver or gold and the formation of carbon monoxide at 350 ° C. with respect to the total content of platinum (Pt) and silver (Ag) or gold (Au) in the synthetic gas production catalysts obtained in Examples and Comparative Examples. It is a graph which shows the relationship with the ratio (CH 4 / CO) of the production amount (material amount) of methane to the amount (material amount). 実施例及び比較例で得た合成ガス製造用触媒における白金と銀又は金との合計含有量に対する銀又は金の含有量と350℃でのCOの転化率の関係を示すグラフである。3 is a graph showing the relationship between the content of silver or gold and the conversion rate of CO 2 at 350 ° C. with respect to the total content of platinum and silver or gold in the catalysts for producing synthetic gas obtained in Examples and Comparative Examples.

以下、図面等を用いて、本発明に係る実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明は、これらの説明に限定されるものではなく、本明細書で開示されている技術的思想の範囲内において当業者による様々な変更及び修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings and the like. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these explanations, and is made by those skilled in the art within the scope of the technical ideas disclosed in the present specification. Various changes and modifications are possible. Further, in all the drawings for explaining the present invention, those having the same function may be designated by the same reference numerals, and the repeated description thereof may be omitted.

本明細書に記載される「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的に記載されている上限値又は下限値に置き換えてもよい。本明細書に記載される数値範囲の上限値又は下限値は、実施例中に示されている値に置き換えてもよい。 "-" Described in the present specification is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value described in another stepwise. The upper or lower limit of the numerical range described herein may be replaced with the values shown in the examples.

以下で例示している材料群から材料を選択する場合、本明細書で開示されている内容と矛盾しない範囲で、材料を単独で選択してもよく、複数組み合わせて選択してもよい、また、本明細書で開示されている内容と矛盾しない範囲で、以下で例示している材料群以外の材料を選択してもよい。 When selecting a material from the material group exemplified below, the material may be selected alone or in combination of two or in combination within the range not inconsistent with the contents disclosed in the present specification. , Materials other than the material group exemplified below may be selected as long as they do not contradict the contents disclosed in the present specification.

<合成ガス製造用触媒>
実施形態に係る合成ガス製造用触媒は、二酸化炭素(CO)と水素(H)とを反応させることで一酸化炭素(CO)を製造するために用いられる合成ガス製造用触媒であって、白金(Pt)と、銀(Ag)、銅(Cu)、亜鉛(Zn)、及び金(Au)からなる群から選択される少なくとも1種とを含有する触媒金属を含むことを特徴とするものである。この合成ガス製造用触媒では、白金触媒に対して、例えば、銀、銅、亜鉛、金等の金属元素を添加することでメタンの生成量を低減でき、一酸化炭素の選択率を向上できる。これにより、400℃以下の温度領域でも、メタンの生成を抑制し、一酸化炭素の収率を向上できる。
<Catalyst for producing synthetic gas>
The catalyst for producing synthetic gas according to the embodiment is a catalyst for producing synthetic gas used for producing carbon monoxide (CO) by reacting carbon dioxide (CO 2 ) with hydrogen (H 2 ). , Platinum (Pt) and at least one selected from the group consisting of silver (Ag), copper (Cu), zinc (Zn), and gold (Au). It is a thing. In this synthetic gas production catalyst, the amount of methane produced can be reduced and the selectivity of carbon monoxide can be improved by adding metal elements such as silver, copper, zinc, and gold to the platinum catalyst. As a result, the production of methane can be suppressed and the yield of carbon monoxide can be improved even in the temperature range of 400 ° C. or lower.

400℃以下の温度領域は、一般的に、化学平衡上、逆シフト反応での二酸化炭素及び水素からの一酸化炭素の生成よりもメタンの生成が有利な温度領域である。このため、400℃以下の二酸化炭素及び水素の存在下では、一酸化炭素よりもメタンが多く生成され、一酸化炭素の収率が低下する問題が起こる。本発明者らは、白金触媒が、400℃以下の温度領域で一般的な銅触媒よりも高い二酸化炭素の転化率を示すことを見出すとともに、白金触媒では一般的な銅触媒と比較するとメタンが多く生成されてしまい一酸化炭素の選択率が低下することを明らかにした。その上で、本発明者らは、鋭意検討を重ねた結果、白金触媒に対して、例えば、銀、銅、亜鉛、金等の金属元素を添加することにより、メタンの生成量を劇的に低減できることを新たに見出した。これらの金属元素の添加によるメタンの生成量の低減は、白金の5d電子軌道がこれらの金属元素により埋められることで白金表面に吸着する二酸化炭素又は一酸化炭素の解離吸着が抑制されたこと、白金とこれらの金属元素との2相間の反応、白金とこれらの金属元素と後述する担体との3相間の反応などが起因していると考えられる。 The temperature region of 400 ° C. or lower is generally a temperature region in which methane production is more advantageous than carbon monoxide production from carbon dioxide and hydrogen in a reverse shift reaction in terms of chemical equilibrium. Therefore, in the presence of carbon dioxide and hydrogen at 400 ° C. or lower, more methane is produced than carbon monoxide, which causes a problem that the yield of carbon monoxide is lowered. The present inventors have found that platinum catalysts exhibit a higher carbon dioxide conversion rate than general copper catalysts in the temperature range of 400 ° C. or lower, and platinum catalysts contain methane as compared with general copper catalysts. It was clarified that a large amount of carbon monoxide was produced and the selectivity of carbon monoxide decreased. Then, as a result of diligent studies, the present inventors dramatically increased the amount of methane produced by adding metal elements such as silver, copper, zinc, and gold to the platinum catalyst. We have newly found that it can be reduced. The reduction in the amount of methane produced by the addition of these metal elements was due to the fact that the 5d electron orbitals of platinum were filled with these metal elements, and the dissociative adsorption of carbon dioxide or carbon monoxide adsorbed on the platinum surface was suppressed. It is considered that the cause is the reaction between the two phases of platinum and these metal elements, and the reaction between the three phases of platinum and these metal elements and the carrier described later.

上記触媒金属としては、上記白金と上記銀とを含有するものが好ましい。400℃以下の温度領域において、メタンの生成を効果的に抑制し、一酸化炭素の収率を顕著に向上できるからである。上記白金と上記銀とを含有する上記触媒金属としては、上記触媒金属における上記白金と上記銀との合計含有量に対する上記銀の含有量が、1原子%以上25原子%以下の範囲内であるものが好ましい。白金と銀との合計含有量に対する銀の含有量が1原子%以上であることにより、メタンの生成を特に効果的に抑制できるからであり、白金と銀との合計含有量に対する銀の含有量が25原子%以下であることにより、二酸化炭素の転化率の低下を抑制できるからである。 The catalyst metal preferably contains the platinum and the silver. This is because the production of methane can be effectively suppressed and the yield of carbon monoxide can be significantly improved in the temperature range of 400 ° C. or lower. As the catalyst metal containing the platinum and the silver, the content of the silver with respect to the total content of the platinum and the silver in the catalyst metal is in the range of 1 atomic% or more and 25 atomic% or less. Those are preferable. This is because the production of methane can be suppressed particularly effectively when the silver content with respect to the total content of platinum and silver is 1 atomic% or more, and the silver content with respect to the total content of platinum and silver. This is because when the amount is 25 atomic% or less, the decrease in the conversion rate of carbon dioxide can be suppressed.

なお、二酸化炭素と水素とを反応させることで一酸化炭素を製造するために用いられる合成ガス製造用触媒としては、白金と、銀、銅、亜鉛、及び金からなる群から選択される少なくとも1種とを含有する触媒金属の代わりに、白金、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、ニッケル(Ni)、鉄(Fe)、コバルト(Co)、銅、亜鉛、イリジウム(Ir)、金、及び銀からなる群から選択される少なくとも2種を含有する触媒金属を含むものであっても、400℃以下の温度領域でも、メタンの生成を抑制し、一酸化炭素の収率を向上できるものがある。これは、一方の金属元素の電子軌道が他方の金属元素により埋められることで一方の金属元素の表面に吸着する二酸化炭素又は一酸化炭素の解離吸着が抑制されること、一方の金属元素と他方の金属元素との2相間の反応、一方の金属元素と他方の金属元素と後述する担体との3相間の反応などが起因するものと考えられる。具体的には、例えば、ニッケルと、銀及び銅からなる群から選択される少なくとも1種とを含有する触媒金属を含む合成ガス製造用触媒等が挙げられる。この合成ガス製造用触媒では、ニッケル触媒が、400℃以下の温度領域で一般的な銅触媒よりも高い二酸化炭素の転化率を示し、ニッケルの電子軌道が銀、銅等より埋められることでニッケル表面に吸着する二酸化炭素又は一酸化炭素の解離吸着が抑制されるため、400℃以下の温度領域でも、メタンの生成を抑制し、一酸化炭素の収率を向上できる。 The catalyst for producing synthetic gas used for producing carbon monoxide by reacting carbon dioxide with hydrogen is at least one selected from the group consisting of platinum, silver, copper, zinc, and gold. Instead of the catalyst metal containing seeds, platinum, ruthenium (Ru), rhodium (Rh), palladium (Pd), nickel (Ni), iron (Fe), cobalt (Co), copper, zinc, iridium (Ir) ), Gold, and silver, even those containing a catalytic metal containing at least two selected from the group, suppress the production of methane even in the temperature range of 400 ° C. or lower, and the yield of carbon monoxide. There is something that can be improved. This is because the electron orbits of one metal element are filled with the other metal element, so that the dissociative adsorption of carbon dioxide or carbon monoxide adsorbed on the surface of the other metal element is suppressed. It is considered that the reaction between the two phases of the metal element and the reaction between the three phases of one metal element and the other metal element and the carrier described later is caused. Specific examples thereof include a catalyst for producing a synthetic gas containing a catalyst metal containing nickel and at least one selected from the group consisting of silver and copper. In this synthetic gas production catalyst, the nickel catalyst exhibits a higher carbon dioxide conversion rate than a general copper catalyst in the temperature range of 400 ° C. or lower, and the electron orbit of nickel is filled with silver, copper, etc. to make nickel. Since the dissociation and adsorption of carbon dioxide or carbon monoxide adsorbed on the surface is suppressed, the production of methane can be suppressed and the yield of carbon monoxide can be improved even in the temperature range of 400 ° C. or lower.

合成ガス製造用触媒は、白金と、銀、銅、亜鉛、及び金からなる群から選択される少なくとも1種とを含有する触媒金属を含むものであれば特に限定されないが、担体をさらに含み、上記触媒金属が上記担体に担持されているものが好ましい。 The catalyst for producing synthetic gas is not particularly limited as long as it contains a catalyst metal containing platinum and at least one selected from the group consisting of silver, copper, zinc, and gold, but further includes a carrier. It is preferable that the catalyst metal is supported on the carrier.

担体の材料は、特に限定されるものではなく、一般的な担体の材料の中から適宜選択できるが、例えば、金属酸化物等が挙げられる。金属酸化物としては、例えば、SiO、Al、ZrO、TiO、MgO、酸化セリウム(CeO)、La、ZnO、GeO、SnO、V、Y、Nb、MoO、WO、ゼオライト等が挙げられる。担体は、これらの金属酸化物うちの1種を単独で含有するものでもよいし、2種以上を含有するものでもよい。上記担体としては、酸化セリウムを含有するものが好ましい。担体の比表面積が大きくなるからである。 The material of the carrier is not particularly limited and may be appropriately selected from general carrier materials, and examples thereof include metal oxides and the like. Examples of the metal oxide include SiO 2 , Al 2 O 3 , ZrO 2 , TIO 2 , MgO, cerium oxide (CeO 2 ), La 2 O 3 , ZnO, GeO 2 , SnO 2 , V 2 O 5 , Y. Examples thereof include 2 O 3 , Nb 2 O 5 , MoO 3 , WO 3 , and zeolite. The carrier may contain one of these metal oxides alone, or may contain two or more of them. The carrier containing cerium oxide is preferable. This is because the specific surface area of the carrier becomes large.

担体の形状は、特に限定されるものではなく、一般的な担体の形状でよいが、例えば、球状、柱状等の粒状、ハニカム等の異形状のものなどが挙げられる。担体の形状としては、通常、粒状のものが好適に用いられる。 The shape of the carrier is not particularly limited, and may be a general shape of the carrier, and examples thereof include granules such as spherical and columnar, and irregular shapes such as honeycomb. As the shape of the carrier, a granular one is usually preferably used.

担体の比表面積は、特に限定されるものではなく、一般的な担体の比表面積でよいが、例えば、30m/g以上が好ましく、中でも100m/g以上が好ましい。担体に担持されている触媒金属の分散性及び表面積を増大させることで、触媒活性を一酸化炭素の生成に十分なものにできるからである。 The specific surface area of the carrier is not particularly limited and may be a general specific surface area of the carrier, but for example, 30 m 2 / g or more is preferable, and 100 m 2 / g or more is preferable. This is because by increasing the dispersibility and surface area of the catalytic metal supported on the carrier, the catalytic activity can be made sufficient for the production of carbon monoxide.

触媒金属を担体に担持する場合には、触媒金属の前駆体を、水、エタノール等の溶媒に溶解、混合することで得られる触媒前駆体溶液を用い、触媒金属を担体に担持する。触媒金属の前駆体としては、特に限定されないが、例えば、塩化物、硝酸塩、硫酸塩、炭酸塩等の金属塩が挙げられる。触媒金属を担体に担持する方法としては、特に限定されず、一般的な方法を用いることができるが、例えば、含侵法、共沈法、ポリオール法、無電解めっき法等が挙げられる。 When the catalyst metal is supported on the carrier, the catalyst precursor solution obtained by dissolving and mixing the catalyst metal precursor in a solvent such as water or ethanol is used, and the catalyst metal is supported on the carrier. The precursor of the catalyst metal is not particularly limited, and examples thereof include metal salts such as chlorides, nitrates, sulfates, and carbonates. The method of supporting the catalyst metal on the carrier is not particularly limited, and a general method can be used, and examples thereof include an impregnation method, a coprecipitation method, a polyol method, and an electroless plating method.

担体への触媒金属の担持量は、特に限定されないが、通常、担体及び触媒金属の合計重量に対する触媒金属の重量比は、0.05重量%~30重量%の範囲内が好ましく、特に1.0重量%~10重量%の範囲内が好ましい。担体及び触媒金属の合計重量に対する触媒金属の重量比がこれらの範囲の下限以上であることにより、例えば、触媒活性が一酸化炭素の生成に十分なものとなるからである。担体及び触媒金属の合計重量に対する触媒金属の重量比がこれらの範囲の上限以下であることにより、例えば、担体へ担持した触媒金属の粒子同士が凝集し比表面積が低下することで所望の触媒活性が得られなくなることを抑制できるからである。 The amount of the catalyst metal supported on the carrier is not particularly limited, but the weight ratio of the catalyst metal to the total weight of the carrier and the catalyst metal is usually preferably in the range of 0.05% by weight to 30% by weight, and particularly 1. It is preferably in the range of 0% by weight to 10% by weight. This is because, for example, the catalytic activity is sufficient for the production of carbon monoxide when the weight ratio of the catalytic metal to the total weight of the carrier and the catalytic metal is equal to or higher than the lower limit of these ranges. When the weight ratio of the catalyst metal to the total weight of the carrier and the catalyst metal is not more than the upper limit of these ranges, for example, the particles of the catalyst metal carried on the carrier aggregate with each other and the specific surface area decreases, so that the desired catalytic activity is obtained. This is because it is possible to suppress the inability to obtain.

合成ガス製造用触媒の構造及び組成は、例えば、X線光電子分光法、蛍光X線分析、X線回折分析、電子顕微鏡観察等の方法により特定することができる。 The structure and composition of the syngas production catalyst can be specified by, for example, methods such as X-ray photoelectron spectroscopy, fluorescent X-ray analysis, X-ray diffraction analysis, and electron microscope observation.

<合成ガス製造用触媒の製造方法>
実施形態に係る合成ガス製造用触媒の製造方法は、実施形態に係る合成ガス製造用触媒を製造できる方法であれば特に限定されるものではなく、合成ガス製造用触媒が、白金(Pt)と銀(Ag)とを含有する触媒金属と、酸化セリウム(CeO)を含有する担体とを含み、触媒金属が担体に担持されているものである場合、合成ガス製造用触媒の製造方法としては、例えば、以下の製造方法が用いられる。
<Manufacturing method of catalyst for producing synthetic gas>
The method for producing the synthetic gas production catalyst according to the embodiment is not particularly limited as long as it is a method capable of producing the synthetic gas production catalyst according to the embodiment, and the synthetic gas production catalyst is platinum (Pt). When a catalyst metal containing silver (Ag) and a carrier containing cerium oxide (CeO 2 ) are contained and the catalyst metal is supported on the carrier, the method for producing a catalyst for producing synthetic gas is as follows. For example, the following manufacturing method is used.

まず、塩化白金酸水溶液及び硝酸銀4水和物を、白金及び銀の原子%での比率が所望の比率になるよう秤量し、ナスフラスコに入れた後、30mlの純水を加える。次に、所望の量のCeO粉末を担体として加え、エバポレータにて20分間撹拌する。次に、100mbarまで減圧し、撹拌しながら80℃の湯浴中で溶媒を除去することで合成ガス製造用触媒前駆体粉末を得る。次に、合成ガス製造用触媒前駆体粉末を乳鉢で均一に粉砕し、石英ボートへ入れた後、ボックス炉にて大気雰囲気下500℃で2時間保持する。これにより、合成ガス製造用触媒を得る。この際、昇温速度は10℃/min、冷却は自然冷却とする。以上のようにして、白金と銀とを含有する触媒金属と、酸化セリウムを含有する担体とを含み、触媒金属が担体に担持されている合成ガス製造用触媒を製造することができる。 First, an aqueous solution of platinum chloride and silver nitrate tetrahydrate are weighed so that the ratio of platinum and silver in atomic% is a desired ratio, placed in a eggplant flask, and then 30 ml of pure water is added. Next, a desired amount of CeO 2 powder is added as a carrier, and the mixture is stirred with an evaporator for 20 minutes. Next, the pressure is reduced to 100 mbar, and the solvent is removed in a hot water bath at 80 ° C. with stirring to obtain a catalyst precursor powder for synthetic gas production. Next, the catalyst precursor powder for producing synthetic gas is uniformly crushed in a mortar, placed in a quartz boat, and then held in a box furnace at 500 ° C. for 2 hours in an air atmosphere. As a result, a catalyst for producing synthetic gas is obtained. At this time, the rate of temperature rise is 10 ° C./min, and the cooling is natural cooling. As described above, it is possible to produce a catalyst for producing synthetic gas, which comprises a catalyst metal containing platinum and silver and a carrier containing cerium oxide, and the catalyst metal is supported on the carrier.

<合成ガス製造用触媒の触媒特性評価方法>
実施形態に係る合成ガス製造用触媒の触媒特性は、触媒活性点評価装置(マイクロトラック・ベル株式会社製触媒分析装置)及び質量分析計(PFEIFFER VACUUM社製Thermo Star(登録商標))を用いることにより評価することができる。
<Catalyst characteristic evaluation method for catalysts for producing synthetic gas>
For the catalyst characteristics of the catalyst for producing synthetic gas according to the embodiment, a catalyst activity point evaluation device (catalyst analyzer manufactured by Microtrac Bell Co., Ltd.) and a mass analyzer (Thermo Star (registered trademark) manufactured by PFEIFFER VACUUM) are used. Can be evaluated by.

以下、具体的に説明する。まず、約0.015gのグラスウールを丸めてガラス反応管に入れた後、合成ガス製造用触媒を約0.6cc秤量してガラス反応管に入れ、ガラス反応管を触媒活性点評価装置に設置する。 Hereinafter, a specific description will be given. First, about 0.015 g of glass wool is rolled and placed in a glass reaction tube, then a catalyst for producing synthetic gas is weighed by about 0.6 cc and placed in the glass reaction tube, and the glass reaction tube is installed in a catalytic activity evaluation device. ..

次に、ガラス反応管にHeガスを流量100ccmで流通させながら、10℃/minで400℃まで昇温し400℃で10min保持する。次に、HeガスをAr+3%Hガスに変更し、流量60ccmで流通させながら、60min保持することにより、合成ガス製造用触媒を還元する。 Next, while flowing He gas through the glass reaction tube at a flow rate of 100 ccm, the temperature is raised to 400 ° C. at 10 ° C./min and maintained at 400 ° C. for 10 min. Next, the catalyst for producing synthetic gas is reduced by changing the He gas to Ar + 3 % H2 gas and holding it for 60 minutes while circulating it at a flow rate of 60 ccm.

次に、Ar+3%HガスをHeガスに変更し、流量100ccmで流通させながら、10℃/minで200℃まで降温する。次に、Heガスを流量60ccmのAr+3%Hガス及び流量20ccmのAr+3%COガスの混合ガスに変更し、ガス流通経路をガラス反応管からガラス反応管を通さないバイパスに変更することで、バイパスに混合ガスを流通させる。そして、このように混合ガスをバイパス経由で流通させた上で、バイパスの出口における混合ガス中の各m/zのイオン電流値を質量分析計により測定することで、触媒反応の影響を受けない混合ガス中の各m/zのイオン電流値を得る。なお、質量分析計は、予め150℃に保持しておく。 Next, the Ar + 3 % H2 gas is changed to He gas, and the temperature is lowered to 200 ° C. at 10 ° C./min while circulating at a flow rate of 100 ccm. Next, by changing the He gas to a mixed gas of Ar + 3% H 2 gas with a flow rate of 60 ccm and Ar + 3% CO 2 gas with a flow rate of 20 c cm, and changing the gas flow path from a glass reaction tube to a bypass that does not pass through the glass reaction tube. , Pass the mixed gas through the bypass. Then, after the mixed gas is circulated via the bypass in this way, the ion current value of each m / z in the mixed gas at the outlet of the bypass is measured by a mass analyzer so that it is not affected by the catalytic reaction. The ionic current value of each m / z in the mixed gas is obtained. The mass spectrometer is kept at 150 ° C. in advance.

次に、上述のように触媒反応の影響を受けない混合ガス中の各m/zのイオン電流値を得た後、ガス流通経路をバイパスから触媒が配置されたガラス反応管に戻し、ガラス反応管の出口における混合ガス中の各m/zのイオン電流値を質量分析計により測定する。これにより、200℃での合成ガス製造用触媒の触媒特性を評価する。さらに、各m/zのイオン電流値が安定した後、5℃/minで250℃、300℃、350℃、400℃と段階的に昇温し、合成ガス製造用触媒の各温度での触媒特性を評価する。これにより、合成ガス製造用触媒により各温度で生成される一酸化炭素の物質量及びメタンの物質量などを測定でき、一酸化炭素の生成量(物質量)に対するメタンの生成量(物質量)の比(CH/CO)、COの転化率などを求めることができる。 Next, after obtaining the ion current value of each m / z in the mixed gas that is not affected by the catalytic reaction as described above, the gas flow path is returned from the bypass to the glass reaction tube in which the catalyst is arranged, and the glass reaction is performed. The ionic current value of each m / z in the mixed gas at the outlet of the tube is measured by a mass analyzer. Thereby, the catalytic property of the catalyst for producing a synthetic gas at 200 ° C. is evaluated. Further, after the ion current value of each m / z stabilizes, the temperature is gradually raised to 250 ° C., 300 ° C., 350 ° C., and 400 ° C. at 5 ° C./min, and the catalyst at each temperature of the syngas production catalyst is used. Evaluate the characteristics. This makes it possible to measure the amount of substance of carbon monoxide and the amount of substance of methane produced at each temperature by the catalyst for producing synthetic gas, and the amount of methane produced (material amount) relative to the amount of carbon monoxide produced (material amount). Ratio (CH 4 / CO), conversion rate of CO 2 and the like can be obtained.

<合成ガス製造装置>
本発明の逆シフト反応を用いた合成ガス製造装置は、二酸化炭素と水素とを供給する導入路と、二酸化炭素と水素とを逆シフト反応させる反応容器と、反応容器の温度を調整する加温手段とを有し、反応容器に上述の本発明の合成ガス製造用触媒を備える。
<Syngas production equipment>
The syngas production apparatus using the reverse shift reaction of the present invention has an introduction path for supplying carbon dioxide and hydrogen, a reaction vessel for performing a reverse shift reaction between carbon dioxide and hydrogen, and heating for adjusting the temperature of the reaction vessel. The reaction vessel is provided with the above-mentioned catalyst for producing synthetic gas of the present invention.

加温手段は、電熱、燃焼熱等、適宜選択可能である。導入路は、二酸化炭素供給設備や水素供給設備と接続されていてもよく、ガス組成を所望の比率に調整する制御装置を設けてもよい。 The heating means can be appropriately selected from electric heating, combustion heat and the like. The introduction path may be connected to a carbon dioxide supply facility or a hydrogen supply facility, and a control device for adjusting the gas composition to a desired ratio may be provided.

逆シフト反応で一酸化炭素を生成する際、副生成物としてメタンガスが生成する。本発明の合成ガス製造用触媒を適用することで、メタンの生成を抑制することが可能となる。特に、本発明の合成ガス製造用触媒は400℃以下の低温でのCOの収率を向上させる。従って、合成ガス製造装置の反応容器の温度を400℃以下で設定可能であり、従来よりも低温なため必要なエネルギー量が少ない。また、加温手段として、反応容器に他の機器の排熱を供給する手段を適用できる。他の機器より供給される700℃以下の排熱を利用して反応容器の加温が可能であり、その結果、さらに合成ガス製造装置に必要なエネルギーコストが低減できる。 When carbon monoxide is produced by the reverse shift reaction, methane gas is produced as a by-product. By applying the catalyst for producing synthetic gas of the present invention, it is possible to suppress the production of methane. In particular, the catalyst for producing synthetic gas of the present invention improves the yield of CO at a low temperature of 400 ° C. or lower. Therefore, the temperature of the reaction vessel of the synthetic gas production apparatus can be set at 400 ° C. or lower, and the temperature is lower than before, so that the amount of energy required is small. Further, as the heating means, a means for supplying the waste heat of other equipment to the reaction vessel can be applied. The reaction vessel can be heated by using the exhaust heat of 700 ° C. or lower supplied from other equipment, and as a result, the energy cost required for the syngas production apparatus can be further reduced.

以下、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明の技術的範囲はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the technical scope of the present invention is not limited to these Examples.

[実施例1]
まず、塩化白金酸水溶液及び硝酸銀4水和物を、白金(Pt)及び銀(Ag)の原子%での比率がPt:Ag=50:50になるよう秤量し、ナスフラスコに入れた後、30mlの純水を加えた。次に、3.6gのCeO粉末を担体として加え、エバポレータにて20分間撹拌した。次に、100mbarまで減圧し、撹拌しながら80℃の湯浴中で溶媒を除去することで合成ガス製造用触媒前駆体粉末を得た。次に、合成ガス製造用触媒前駆体粉末を乳鉢で均一に粉砕し、石英ボートへ入れた後、ボックス炉にて大気雰囲気下500℃で2時間保持した。これにより、担体及び触媒金属の合計重量に対する触媒金属の重量比が10重量%で約4.0gの合成ガス製造用触媒を得た。
[Example 1]
First, an aqueous solution of platinum chloride and silver nitrate tetrahydrate are weighed so that the ratio of platinum (Pt) and silver (Ag) in atomic% is Pt: Ag = 50: 50, and then placed in a eggplant flask. 30 ml of pure water was added. Next, 3.6 g of CeO 2 powder was added as a carrier, and the mixture was stirred with an evaporator for 20 minutes. Next, the pressure was reduced to 100 mbar, and the solvent was removed in a hot water bath at 80 ° C. with stirring to obtain a catalyst precursor powder for synthetic gas production. Next, the catalyst precursor powder for producing synthetic gas was uniformly pulverized in a mortar, placed in a quartz boat, and then held in a box furnace at 500 ° C. for 2 hours in an air atmosphere. As a result, a catalyst for producing a synthetic gas having a weight ratio of the catalyst metal to the total weight of the carrier and the catalyst metal of 10% by weight was about 4.0 g was obtained.

[実施例2]
塩化白金酸水溶液及び硝酸銀4水和物を、Pt及びAgの原子%での比率がPt:Ag=70:30になるよう秤量し、担体とともに撹拌した点を除いて、実施例1と同様に合成ガス製造用触媒を得た。
[Example 2]
The same as in Example 1 except that the platinum chloride aqueous solution and the silver nitrate tetrahydrate were weighed so that the ratio of Pt and Ag in atomic% was Pt: Ag = 70:30 and stirred together with the carrier. A catalyst for producing synthetic gas was obtained.

[実施例3]
塩化白金酸水溶液及び硝酸銀4水和物を、Pt及びAgの原子%での比率がPt:Ag=90:10になるよう秤量し、担体とともに撹拌した点を除いて、実施例1と同様に合成ガス製造用触媒を得た。
[Example 3]
The same as in Example 1 except that the platinum chloride aqueous solution and the silver nitrate tetrahydrate were weighed so that the ratio of Pt and Ag in atomic% was Pt: Ag = 90:10 and stirred together with the carrier. A catalyst for producing synthetic gas was obtained.

[実施例4]
塩化白金酸水溶液及び硝酸銀4水和物を、Pt及びAgの原子%での比率がPt:Ag=99:1になるよう秤量し、担体とともに撹拌した点を除いて、実施例1と同様に合成ガス製造用触媒を得た。
[Example 4]
The same as in Example 1 except that the platinum chloride aqueous solution and the silver nitrate tetrahydrate were weighed so that the ratio of Pt and Ag in atomic% was Pt: Ag = 99: 1 and stirred together with the carrier. A catalyst for producing synthetic gas was obtained.

[実施例5]
まず、塩化白金酸水溶液及び塩化金酸水溶液を、Pt及び金(Au)の原子%での比率がPt:Au=50:50になるよう秤量し、ナスフラスコに入れた後、実施例1と同様に純水を加え担体とともに撹拌し、さらに実施例1と同様に溶媒を除去することで合成ガス製造用触媒前駆体粉末を得た点を除いて、実施例1と同様に合成ガス製造用触媒を得た。
[Example 5]
First, the chloroplatinic acid aqueous solution and the gold chloride aqueous solution were weighed so that the ratio of Pt and gold (Au) in atomic% was Pt: Au = 50: 50, placed in a eggplant flask, and then in Example 1. Similarly, for synthetic gas production as in Example 1, except that pure water was added, the mixture was stirred with the carrier, and the solvent was removed in the same manner as in Example 1 to obtain a catalyst precursor powder for synthetic gas production. Obtained a catalyst.

[実施例6]
塩化白金酸水溶液及び塩化金酸水溶液を、Pt及びAuの原子%での比率がPt:Au=70:30になるよう秤量し、担体とともに撹拌した点を除いて、実施例5と同様に合成ガス製造用触媒を得た。
[Example 6]
Platinum chloride acid aqueous solution and gold chloride aqueous solution were weighed so that the ratio of Pt and Au in atomic% was Pt: Au = 70: 30, and synthesized in the same manner as in Example 5 except that the mixture was stirred with the carrier. A catalyst for gas production was obtained.

[実施例7]
塩化白金酸水溶液及び塩化金酸水溶液を、Pt及びAuの原子%での比率がPt:Au=90:10になるよう秤量し、担体とともに撹拌した点を除いて、実施例5と同様に合成ガス製造用触媒を得た。
[Example 7]
Platinum chloride acid aqueous solution and gold chloride aqueous solution were weighed so that the ratio of Pt and Au in atomic% was Pt: Au = 90:10, and synthesized in the same manner as in Example 5 except that the mixture was stirred with the carrier. A catalyst for gas production was obtained.

[実施例8]
塩化白金酸水溶液及び塩化金酸水溶液を、Pt及びAuの原子%での比率がPt:Au=99:1になるよう秤量し、担体とともに撹拌した点を除いて、実施例5と同様に合成ガス製造用触媒を得た。
[Example 8]
Platinum chloride acid aqueous solution and chloroauric acid aqueous solution were weighed so that the ratio of Pt and Au in atomic% was Pt: Au = 99: 1, and synthesized in the same manner as in Example 5 except that the mixture was stirred with the carrier. A catalyst for gas production was obtained.

[比較例1]
塩化白金酸水溶液及び硝酸銀4水和物を、Pt及びAgの原子%での比率がPt:Ag=100:0になるよう秤量し、担体とともに撹拌した点を除いて、実施例1と同様に合成ガス製造用触媒を得た。
[Comparative Example 1]
The same as in Example 1 except that the platinum chloride aqueous solution and the silver nitrate tetrahydrate were weighed so that the ratio of Pt and Ag in atomic% was Pt: Ag = 100: 0 and stirred together with the carrier. A catalyst for producing synthetic gas was obtained.

[比較例2]
塩化白金酸水溶液及び硝酸銀4水和物を、Pt及びAgの原子%での比率がPt:Ag=0:100になるよう秤量し、担体とともに撹拌した点を除いて、実施例1と同様に合成ガス製造用触媒を得た。
[Comparative Example 2]
The same as in Example 1 except that the platinum chloride aqueous solution and the silver nitrate tetrahydrate were weighed so that the ratio of Pt and Ag in atomic% was Pt: Ag = 0: 100 and stirred together with the carrier. A catalyst for producing synthetic gas was obtained.

[評価]
実施例1で得た合成ガス製造用触媒の結晶構造を、X線回折(X-ray Diffraction)測定により同定した。なお、X線回折測定は、下記条件で行った。
[evaluation]
The crystal structure of the catalyst for producing synthetic gas obtained in Example 1 was identified by X-ray Diffraction measurement. The X-ray diffraction measurement was performed under the following conditions.

測定範囲:2θ=10°~80°
測定幅:0.02°
管電圧:48kV
管電流:25mA
Measurement range: 2θ = 10 ° to 80 °
Measurement width: 0.02 °
Tube voltage: 48kV
Tube current: 25mA

図1は、実施例1で得た合成ガス製造用触媒の結晶構造のX線回折パターンである。図1に示すX線回折パターンでは、2θ=28.5°、33.1°、47.8°、56.5°、59.1°、69.4°、76.7°、及び79.0°付近にCeOに由来するピーク、2θ=41.0°付近に白金(Pt)の(111)面に由来する非常にブロードなピークが示されている。また、図1に示すX線回折パターンでは、銀(Ag)のピークが示されていないこと、及び白金の(111)面に由来するピークが高角度側にシフトしていることから、実施例1で得た合成ガス製造用触媒の触媒金属において、銀が白金に固溶している可能性が示唆されている。 FIG. 1 is an X-ray diffraction pattern of the crystal structure of the catalyst for producing synthetic gas obtained in Example 1. In the X-ray diffraction pattern shown in FIG. 1, 2θ = 28.5 °, 33.1 °, 47.8 °, 56.5 °, 59.1 °, 69.4 °, 76.7 °, and 79. A peak derived from CeO 2 is shown near 0 °, and a very broad peak derived from the (111) plane of platinum (Pt) is shown near 2θ = 41.0 °. Further, in the X-ray diffraction pattern shown in FIG. 1, the peak of silver (Ag) is not shown, and the peak derived from the (111) plane of platinum is shifted to the high angle side. It is suggested that silver may be dissolved in platinum in the catalyst metal of the syngas production catalyst obtained in 1.

実施例1~8並びに比較例1及び2で得た合成ガス製造用触媒の350℃での触媒特性について、上述した合成ガス製造用触媒の触媒特性評価方法により評価した。これにより、各例の合成ガス製造用触媒により350℃で生成された一酸化炭素(CO)の物質量及びメタン(CH)の物質量を測定し、各例の合成ガス製造用触媒の350℃での一酸化炭素の生成量(物質量)に対するメタンの生成量(物質量)の比(CH/CO)を求めた。また、各例の合成ガス製造用触媒の350℃でのCOの転化率を求めた。図2は、実施例及び比較例で得た合成ガス製造用触媒における白金(Pt)と銀(Ag)又は金(Au)との合計含有量に対する銀又は金の含有量と350℃での一酸化炭素の生成量(物質量)に対するメタンの生成量(物質量)の比(CH/CO)との関係を示すグラフである。また、図3は、実施例及び比較例で得た合成ガス製造用触媒における白金と銀又は金との合計含有量に対する銀又は金の含有量と350℃でのCOの転化率の関係を示すグラフである。図3では、現在用いられている銅(Cu)触媒のCOの転化率である30%が点線で一緒に示されている。 The catalytic properties of the synthetic gas production catalysts obtained in Examples 1 to 8 and Comparative Examples 1 and 2 at 350 ° C. were evaluated by the above-mentioned catalyst characteristic evaluation method for the synthetic gas production catalyst. Thereby, the substance amount of carbon monoxide (CO) and the substance amount of methane (CH 4 ) produced at 350 ° C. by the synthetic gas production catalyst of each example were measured, and 350 of the synthetic gas production catalyst of each example. The ratio (CH 4 / CO) of the amount of methane produced (material amount) to the amount of carbon monoxide produced (material amount) at ° C was determined. In addition, the conversion rate of CO 2 at 350 ° C. of the catalyst for producing synthetic gas in each example was determined. FIG. 2 shows the content of silver or gold with respect to the total content of platinum (Pt) and silver (Ag) or gold (Au) in the synthetic gas production catalysts obtained in Examples and Comparative Examples at 350 ° C. It is a graph which shows the relationship with the ratio (CH 4 / CO) of the production amount (material amount) of methane to the production amount (material amount) of carbon oxide. Further, FIG. 3 shows the relationship between the silver or gold content and the CO 2 conversion rate at 350 ° C. with respect to the total content of platinum and silver or gold in the synthetic gas production catalysts obtained in Examples and Comparative Examples. It is a graph which shows. In FIG. 3, the conversion rate of CO 2 of the copper (Cu) catalyst currently used, which is 30%, is also shown by the dotted line.

図2及び図3に示すように、比較例1で得た触媒では、COの転化率が38%と高くなっているものの、CH/COが1.2と高くなっており、COよりも副生成物であるCHが多く生成されている。一方、比較例2で得た触媒では、CH/COが0.02と低くなっており、CHがほとんど生成していないものの、COの転化率が9%と低くなっている。 As shown in FIGS. 2 and 3, in the catalyst obtained in Comparative Example 1, the conversion rate of CO 2 is as high as 38%, but CH 4 / CO is as high as 1.2, which is higher than that of CO. Also, a large amount of CH 4 which is a by-product is produced. On the other hand, in the catalyst obtained in Comparative Example 2, CH 4 / CO is as low as 0.02, and although CH 4 is hardly produced, the conversion rate of CO 2 is as low as 9%.

これに対して、実施例1~3及び5~7で得た触媒では、CH/COがそれぞれ0.01、0.02、0.09、0.01、0.02、及び0.09となっており、CHの生成がほぼ抑制されている。また、実施例4及び実施例8で得た触媒でも、CH/COがいずれも0.2となっており、CHよりもCOが多く生成されている。さらに、実施例1~8で得た触媒では、COの転化率が、それぞれ30%、28%、37%、38%、30%、30%、37%、及び38%となっており、現在用いられているCu触媒と同等程度又は同等以上の高い値を示している。これらの結果から、実施例で得た触媒は、PtにAg又はAuが添加されることで、高いCOの転化率を示しつつ、CHの生成量を低減できたことがわかる。これは、Ptの5d電子軌道がAg又はAuにより埋められることでPt表面に吸着するCO又はCOの解離吸着が抑制されたこと、PtとAg又はAuとの2相間の反応、PtとAg又はAuとCeOとの3相間の反応などが起因していると考えらえる。 On the other hand, in the catalysts obtained in Examples 1 to 3 and 5 to 7, CH 4 / CO was 0.01, 0.02, 0.09, 0.01, 0.02, and 0.09, respectively. The production of CH 4 is almost suppressed. Further, even in the catalysts obtained in Examples 4 and 8, CH 4 / CO is 0.2 in both cases, and more CO is produced than CH 4 . Further, in the catalysts obtained in Examples 1 to 8, the conversion rates of CO 2 are 30%, 28%, 37%, 38%, 30%, 30%, 37%, and 38%, respectively. It shows a high value equal to or higher than that of the Cu catalyst currently used. From these results, it can be seen that the catalyst obtained in the example was able to reduce the amount of CH 4 produced while exhibiting a high CO 2 conversion rate by adding Ag or Au to Pt. This is because the 5d electron orbit of Pt is filled with Ag or Au to suppress the dissociation adsorption of CO 2 or CO adsorbed on the Pt surface, the reaction between Pt and Ag or Au, and Pt and Ag. Alternatively, it is considered that the reaction between Au and CeO 2 between the three phases is the cause.

現在用いられているCu触媒は、COの転化率が30%であり、CH/COが0、すなわちCOの選択率が100%であるから、COの収率が30%である。これに対して、図2に示すPtとAg又はAuとの合計含有量に対するAg又はAuの含有量と350℃でのCH/COとの関係、及び図3に示すPtとAg又はAuとの合計含有量に対するAg又はAuの含有量と350℃でのCOの転化率との関係から、PtとAg又はAuとの合計含有量に対するAg又はAuの含有量が1原子%以上25原子%以下の範囲内である場合には、COの転化率がCu触媒のCOの転化率である30%以上となり、COの収率がCu触媒のCOの収率である30%以上となり得ると考えられる。すなわち、CHの生成を特に効果的に抑制でき、COの転化率の低下を抑制することでCOの収率を特に効果的に向上できると考えられる。 The Cu catalyst currently used has a conversion rate of CO 2 of 30% and CH 4 / CO of 0, that is, a selectivity of CO of 100%, so that the yield of CO is 30%. On the other hand, the relationship between the content of Ag or Au and CH 4 / CO at 350 ° C. with respect to the total content of Pt and Ag or Au shown in FIG. 2, and the relationship between Pt and Ag or Au shown in FIG. From the relationship between the content of Ag or Au with respect to the total content of Pt and the conversion rate of CO 2 at 350 ° C., the content of Ag or Au with respect to the total content of Pt and Ag or Au is 1 atomic% or more and 25 atoms. When it is within the range of% or less, the conversion rate of CO 2 is 30% or more, which is the conversion rate of CO 2 of the Cu catalyst, and the yield of CO is 30% or more, which is the yield of CO 2 of the Cu catalyst. It is thought that it can be. That is, it is considered that the production of CH 4 can be suppressed particularly effectively, and the yield of CO can be particularly effectively improved by suppressing the decrease in the conversion rate of CO 2 .

本発明は、上記実施形態及び上記実施例に限定されるものではなく、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含され、様々な変形例が含む。例えば、上記実施形態及び上記実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態及び実施例の構成の一部を他の実施形態及び実施例の構成に置き換えることが可能であり、また、ある実施形態及び実施例の構成に他の実施形態及び実施例の構成を加えることも可能である。また、各実施形態及び各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment and the above-mentioned embodiment, but has substantially the same configuration as the technical idea described in the claims of the present invention, and exhibits the same function and effect. Anything is included in the technical scope of the invention and includes various modifications. For example, the above-described embodiment and the above-mentioned embodiment have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment and embodiment with the configuration of another embodiment and embodiment, and the configuration of one embodiment and example can be replaced with the configuration of another embodiment and embodiment. It is also possible to add configurations. Further, it is possible to add / delete / replace other configurations with respect to a part of the configurations of each embodiment and each embodiment.

Claims (8)

二酸化炭素と水素とを反応させることで一酸化炭素を製造するために用いられる合成ガス製造用触媒であって、白金と、銀、銅、亜鉛、及び金からなる群から選択される少なくとも1種とを含有する触媒金属を含むことを特徴とする合成ガス製造用触媒。 A catalyst for producing synthetic gas used for producing carbon monoxide by reacting carbon dioxide with hydrogen, at least one selected from the group consisting of platinum and silver, copper, zinc, and gold. A catalyst for producing synthetic gas, which comprises a catalyst metal containing and. 担体をさらに含み、前記触媒金属が前記担体に担持されていることを特徴とする請求項1に記載の合成ガス製造用触媒。 The catalyst for producing a synthetic gas according to claim 1, further comprising a carrier, wherein the catalyst metal is supported on the carrier. 前記担体は、酸化セリウムを含有することを特徴とする請求項2に記載の合成ガス製造用触媒。 The catalyst for producing a synthetic gas according to claim 2, wherein the carrier contains cerium oxide. 前記触媒金属は、前記白金と前記銀又は金とを含有することを特徴とする請求項1~3のいずれか1項に記載の合成ガス製造用触媒。 The catalyst for producing synthetic gas according to any one of claims 1 to 3, wherein the catalyst metal contains the platinum and the silver or gold. 前記触媒金属における前記白金と前記銀又は金との合計含有量に対する前記銀又は金の含有量は、1原子%以上25原子%以下の範囲内であることを特徴とする請求項4に記載の合成ガス製造用触媒。 The fourth aspect of claim 4, wherein the content of the silver or gold with respect to the total content of the platinum and the silver or gold in the catalyst metal is in the range of 1 atomic% or more and 25 atomic% or less. Catalyst for synthetic gas production. 二酸化炭素と水素とを供給する導入路と、二酸化炭素と水素とを反応させる反応容器と、前記反応容器の温度を調整する加温手段とを有する合成ガス製造装置であって、
前記反応容器に請求項1~5のいずれか1項に記載の合成ガス製造用触媒を備えることを特徴とする合成ガス製造装置。
A synthetic gas production apparatus having an introduction path for supplying carbon dioxide and hydrogen, a reaction vessel for reacting carbon dioxide and hydrogen, and a heating means for adjusting the temperature of the reaction vessel.
A synthetic gas production apparatus comprising the catalyst for producing synthetic gas according to any one of claims 1 to 5 in the reaction vessel.
前記反応容器の加温に他の機器の排熱を使用することを特徴とする請求項6に記載の合成ガス製造装置。 The synthetic gas production apparatus according to claim 6, wherein the waste heat of another device is used for heating the reaction vessel. 前記反応容器の合成反応の温度が400℃以下に設定されていることを特徴とする請求項6又は7に記載の合成ガス製造装置。
The synthetic gas production apparatus according to claim 6 or 7, wherein the temperature of the synthetic reaction in the reaction vessel is set to 400 ° C. or lower.
JP2020202021A 2020-12-04 2020-12-04 Catalyst for production of syngas and device for producing syngas Pending JP2022089552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020202021A JP2022089552A (en) 2020-12-04 2020-12-04 Catalyst for production of syngas and device for producing syngas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020202021A JP2022089552A (en) 2020-12-04 2020-12-04 Catalyst for production of syngas and device for producing syngas

Publications (1)

Publication Number Publication Date
JP2022089552A true JP2022089552A (en) 2022-06-16

Family

ID=81989059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020202021A Pending JP2022089552A (en) 2020-12-04 2020-12-04 Catalyst for production of syngas and device for producing syngas

Country Status (1)

Country Link
JP (1) JP2022089552A (en)

Similar Documents

Publication Publication Date Title
Zhao et al. Bimetallic Ni-Co nanoparticles on SiO2 as robust catalyst for CO methanation: Effect of homogeneity of Ni-Co alloy
Park et al. Effect of supports on the performance of Co-based catalysts in methane dry reforming
Wang et al. Manganese promoting effects on the Co–Ce–Zr–Ox nano catalysts for methane dry reforming with carbon dioxide to hydrogen and carbon monoxide
Li et al. Influence of zirconia crystal phase on the catalytic performance of Au/ZrO2 catalysts for low-temperature water gas shift reaction
Fu et al. Enhanced NH3 decomposition for H2 production over bimetallic M (M= Co, Fe, Cu) Ni/Al2O3
TWI600468B (en) Preparation of copper oxide-cerium oxide-supported nano-gold catalysts and its application in removal of carbon monoxide in hydrogen stream
Jha et al. Hydrogen production from water–gas shift reaction over Ni–Cu–CeO2 oxide catalyst: The effect of preparation methods
Ranjbar et al. Reverse water gas shift reaction and CO2 mitigation: nanocrystalline MgO as a support for nickel based catalysts
Tseng et al. Synthesis, characterization, and promoter effect of Cu-Zn/γ-Al2O3 catalysts on NO reduction with CO
Gao et al. Synthesis of higher alcohols by CO hydrogenation over catalysts derived from LaCo1-xMnxO3 perovskites: Effect of the partial substitution of Co by Mn
Zhao et al. High syngas selectivity and near pure hydrogen production in perovskite oxygen carriers for chemical looping steam methane reforming
Jiang et al. Highly stable and selective CoxNiyTiO3 for CO2 methanation: Electron transfer and interface interaction
Shen et al. Effects of B-site Al doping on microstructure characteristics and hydrogen production performance of novel LaNixAl1-xO3-δ perovskite in methanol steam reforming
Zou et al. Preparation adjacent Ni-Co bimetallic nano catalyst for dry reforming of methane
Liu et al. Dynamic oxygen migration and reaction over ceria-supported nickel oxides in chemical looping partial oxidation of methane
Zhang et al. Morphology effect of Pd/In2O3/CeO2 catalysts on methanol steam reforming for hydrogen production
Dong et al. Transition metal (Ni, Cu, Ga, Fe) doped LaCoO3 improve surface hydrogen activation to promote low-temperature CO2 methanation
Ding et al. Boosted photothermal synergistic CO2 methanation over Ru doped Ni/ZrO2 catalyst: From experimental to DFT studies
Li et al. Facile synthesis of multi-shelled hollow CuCeO2 microspheres with promoted catalytic performance for preferential oxidation of CO
Wang et al. Coke-resistant NdFe0. 7Ni0. 3O3 perovskite catalyst with superior stability for dry reforming of ethane
Wang et al. Effect of pretreatment conditions on structure/performance of MOF-derived CoCeOx nanocomposite for CO2 reforming with ethanol
Shah et al. Partial oxidation of surrogate Jet-A fuel over SiO2 supported MoO2
JP2022089552A (en) Catalyst for production of syngas and device for producing syngas
Li et al. Regulation of catalytic reaction performance of CO2 with ethane by metal cation substitution on CeO2 support
Zhang et al. Efficient photo-thermal catalytic CO2 methanation and dynamic structural evolution over Ru/Mg-CeO2 single-atom catalyst