JP2022089023A - Antibacterial member - Google Patents

Antibacterial member Download PDF

Info

Publication number
JP2022089023A
JP2022089023A JP2020201230A JP2020201230A JP2022089023A JP 2022089023 A JP2022089023 A JP 2022089023A JP 2020201230 A JP2020201230 A JP 2020201230A JP 2020201230 A JP2020201230 A JP 2020201230A JP 2022089023 A JP2022089023 A JP 2022089023A
Authority
JP
Japan
Prior art keywords
copper
antibacterial member
antibacterial
moisture absorbing
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020201230A
Other languages
Japanese (ja)
Inventor
優樹 伊藤
Yuki Ito
俊彦 幸
Toshihiko Saiwai
義幸 長友
Yoshiyuki Nagatomo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2020201230A priority Critical patent/JP2022089023A/en
Publication of JP2022089023A publication Critical patent/JP2022089023A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

To provide an antibacterial member which can stably express an excellent antibacterial action.SOLUTION: An antibacterial member 10 has a copper part 11 composed of copper or a copper alloy, and a moisture absorption part 12 composed of a moisture absorption material, in which the moisture absorption part 12 is exposed to the surface of the antibacterial member 10. Preferably, an exposure area ratio of the moisture absorption part 12 exposed to the surface of the antibacterial member 10 is within a range of 1% or more and 80% or less. Preferably, the moisture absorption part 12 is arranged in an island shape in the copper part 11 on the surface of the antibacterial member 10. Preferably, when relative humidity is changed from 40% to 50%, the moisture absorption part 12 is composed of a moisture absorption material whose moisture absorption rate is changed by 1% or more. Preferably, the copper part 11 is composed of a copper alloy that contains 0.1 mass% or more of one or two or more kinds selected from Zn, Sn, Ni, Al and Mn as an additive element in total, and has a content of Cu of 30 mass% or more.SELECTED DRAWING: Figure 1

Description

本発明は、優れた抗菌作用を安定して発現させることが可能な抗菌部材に関するものである。 The present invention relates to an antibacterial member capable of stably exhibiting an excellent antibacterial action.

一般に、医療機関、公共施設、衛生管理に厳しい研究施設(例えば食品、化粧品、医薬品等)において使用される机、椅子、棚等の什器や、手すり、ドアノブ等においては、不特定多数の人が触れるおそれがあるため、伝染病の予防、ウィルスや細菌の拡散防止の観点からも抗菌性を有していることが望ましい。 In general, an unspecified number of people use furniture such as desks, chairs, and shelves used in medical institutions, public facilities, and research facilities with strict hygiene management (for example, food, cosmetics, pharmaceuticals, etc.), handrails, door knobs, etc. Since there is a risk of touching it, it is desirable to have antibacterial properties from the viewpoint of preventing infectious diseases and preventing the spread of viruses and bacteria.

ここで、銅又は銅合金においては、抗菌・抗ウィルス性を有することが知られている。
このため、例えば特許文献1,2には、机、椅子、棚等の什器や、手すり、ドアノブ等の各種製品に抗菌・抗ウィルス性のある銅又は銅合金を使用することで、様々な菌、ウィルスによる感染を予防することが開示されている。
また、既存の製品の表面に抗菌性を付与するものとして、例えば特許文献3,4に示すように、フィルムの表面に、銅又は銅合金の膜を成膜した抗菌フィルムが提案されている。
Here, copper or a copper alloy is known to have antibacterial and antiviral properties.
Therefore, for example, in Patent Documents 1 and 2, various bacteria are used by using copper or a copper alloy having antibacterial and antiviral properties for furniture such as desks, chairs and shelves, and various products such as handrails and door knobs. , It is disclosed to prevent infection by virus.
Further, as a substance for imparting antibacterial properties to the surface of an existing product, for example, as shown in Patent Documents 3 and 4, an antibacterial film having a copper or copper alloy film formed on the surface of the film has been proposed.

特許第5245015号公報Japanese Patent No. 5245015 特許第6177441号公報Japanese Patent No. 6177441 特開2010-247450号公報Japanese Unexamined Patent Publication No. 2010-247450 特開2018-134753号公報Japanese Unexamined Patent Publication No. 2018-134753

ところで、上述の抗菌部材においては、使用環境によっては、抗菌作用を十分に発現させることができず、抗菌性が低下してしまうことがあった。
特に、近年では、各種菌やウィルスを原因とする感染症が広く蔓延することがあり、従来にも増して、優れた抗菌作用を安定して発現させること望まれている。
By the way, in the above-mentioned antibacterial member, the antibacterial action may not be sufficiently exhibited depending on the usage environment, and the antibacterial property may be deteriorated.
In particular, in recent years, infectious diseases caused by various bacteria and viruses may spread widely, and it is desired to stably develop an excellent antibacterial action more than before.

本発明は、以上のような事情を背景としてなされたものであって、優れた抗菌作用を安定して発現させることが可能な抗菌部材を提供することを目的としている。 The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide an antibacterial member capable of stably exhibiting an excellent antibacterial action.

この課題を解決するために、本発明者らが鋭意検討した結果、銅又は銅合金からなる抗菌層においては、湿潤環境下の方が乾燥環境下に比べて高い抗菌性を発現することが分かった。このため、抗菌層表面の湿度を適切に維持することにより、銅又は銅合金からなる抗菌層の表面により多くの水分を配することができるため、優れた抗菌作用を安定して発現可能であるとの知見を得た。 As a result of diligent studies by the present inventors in order to solve this problem, it was found that the antibacterial layer made of copper or a copper alloy exhibits higher antibacterial properties in a wet environment than in a dry environment. rice field. Therefore, by appropriately maintaining the humidity of the surface of the antibacterial layer, more water can be distributed to the surface of the antibacterial layer made of copper or a copper alloy, so that an excellent antibacterial action can be stably exhibited. I got the finding.

本発明は上述の知見に基づいてなされたものであって、本発明の抗菌部材は、銅又は銅合金からなる銅部と、吸湿材料からなる吸湿部と、を有し、前記抗菌部材の表面に前記吸湿部が露出していることを特徴としている。 The present invention has been made based on the above findings, and the antibacterial member of the present invention has a copper portion made of copper or a copper alloy and a moisture absorbing portion made of a hygroscopic material, and has a surface of the antibacterial member. It is characterized in that the moisture absorbing portion is exposed.

この構成の抗菌部材においては、銅又は銅合金からなる銅部と、吸湿材料からなる吸湿部と、を有し、前記抗菌部材の表面に前記吸湿部が露出しているので、使用環境において相対湿度が低下した際に前記吸湿部から水分が放出され、銅部表面近傍の水分量が適切に維持される。これにより、銅部における抗菌作用を安定して発現することができ、優れた抗菌性を得ることが可能となる。 The antibacterial member having this configuration has a copper portion made of copper or a copper alloy and a moisture absorbing portion made of a moisture absorbing material, and the moisture absorbing portion is exposed on the surface of the antibacterial member. Moisture is released from the moisture absorbing portion when the humidity drops, and the amount of moisture in the vicinity of the surface of the copper portion is appropriately maintained. As a result, the antibacterial action on the copper portion can be stably exhibited, and excellent antibacterial properties can be obtained.

ここで、本発明の抗菌部材においては、前記抗菌部材の表面に露出する前記吸湿部の露出面積率が1%以上80%以下の範囲内とされていることが好ましい。
この場合、前記抗菌部材の表面に露出する前記吸湿部の露出面積率が1%以上80%以下の範囲内とされているので、使用環境において相対湿度が低下した際に前記吸湿部から十分に水分が放出され、銅部表面近傍の水分量がさらに適切に維持され、さらに優れた抗菌性を得ることが可能となる。
Here, in the antibacterial member of the present invention, it is preferable that the exposed area ratio of the moisture absorbing portion exposed on the surface of the antibacterial member is within the range of 1% or more and 80% or less.
In this case, the exposed area ratio of the moisture-absorbing portion exposed on the surface of the antibacterial member is within the range of 1% or more and 80% or less. Moisture is released, the amount of water in the vicinity of the surface of the copper portion is maintained more appropriately, and it becomes possible to obtain more excellent antibacterial properties.

また、本発明の抗菌部材においては、前記抗菌部材の表面において、前記銅部の中に前記吸湿部が島状に配置されていることが好ましい。
この場合、前記抗菌部材の表面において、前記銅部の中に前記吸湿部が島状に配置されているので、吸湿材料からなる吸湿部を銅部によって支持することができ、前記抗菌部材の表面に露出するように吸湿部を安定して配置することが可能となる。
Further, in the antibacterial member of the present invention, it is preferable that the moisture absorbing portion is arranged in an island shape in the copper portion on the surface of the antibacterial member.
In this case, on the surface of the antibacterial member, since the moisture absorbing portion is arranged in an island shape in the copper portion, the moisture absorbing portion made of the moisture absorbing material can be supported by the copper portion, and the surface of the antibacterial member can be supported. It is possible to stably arrange the hygroscopic part so as to be exposed to the surface.

また、本発明の抗菌部材においては、島状に配置された前記吸湿部同士の平均距離が10mm以下であることが好ましい。
この場合、島状に配置された前記吸湿部同士の平均距離が10mm以下とされているので、吸湿部による水蒸気放出の効果を、吸湿部の間の銅部に対して十分に影響を及ぼせることが可能となる。
Further, in the antibacterial member of the present invention, it is preferable that the average distance between the hygroscopic portions arranged in an island shape is 10 mm or less.
In this case, since the average distance between the moisture-absorbing portions arranged in an island shape is 10 mm or less, the effect of water vapor release by the moisture-absorbing portions can sufficiently affect the copper portions between the moisture-absorbing portions. It becomes possible.

さらに、本発明の抗菌部材においては、島状に配置された前記吸湿部の面積を円形近似したときの半径の平均が0.5μm以上1000μm以下の範囲内であることが好ましい。
この場合、島状に配置された前記吸湿部の面積を一定の大きさに制御することにより、同一の吸湿部の露出面積率であっても、一定面積における数密度が増加する。そのため、抗菌部材の表面全体に吸湿部による効果を及ぼすことが可能となる。
Further, in the antibacterial member of the present invention, it is preferable that the average radius when the area of the hygroscopic portion arranged in an island shape is approximately circularly approximated is in the range of 0.5 μm or more and 1000 μm or less.
In this case, by controlling the area of the moisture-absorbing portion arranged in an island shape to a constant size, the number density in the constant area increases even if the exposed area ratio of the same moisture-absorbing portion is the same. Therefore, it is possible to exert the effect of the moisture absorbing portion on the entire surface of the antibacterial member.

また、本発明の抗菌部材においては、前記吸湿部は、相対湿度を40%から50%に変化させたときに、吸湿率が1%以上変化する吸湿材料で構成されていることが好ましい。
この場合、前記吸湿部が上述の吸湿材料で構成されているので、使用環境において相対湿度が低下した際に、前記吸湿部から水分が確実に放出され、銅部表面近傍の水分量をさらに適切に維持することができ、銅部における抗菌作用を安定して発現することが可能となる。
なお、吸湿率は、以下の式によって算出される。
吸収率(%)=(W-W)/W×100
:試料の乾燥重量(g),W:吸湿した試料の重量(g)
Further, in the antibacterial member of the present invention, it is preferable that the hygroscopic portion is made of a hygroscopic material whose hygroscopicity changes by 1% or more when the relative humidity is changed from 40% to 50%.
In this case, since the moisture-absorbing portion is made of the above-mentioned moisture-absorbing material, moisture is surely released from the moisture-absorbing portion when the relative humidity decreases in the usage environment, and the amount of moisture in the vicinity of the surface of the copper portion is more appropriate. It is possible to stably develop the antibacterial action in the copper portion.
The hygroscopicity is calculated by the following formula.
Absorption rate (%) = (W 1 -W 0 ) / W 0 x 100
W 0 : Dry weight of sample (g), W 1 : Weight of absorbed sample (g)

さらに、本発明の抗菌部材においては、前記銅部が、添加元素として、Zn,Sn,Ni,Al,Mnから選択される一種又は二種以上を合計で0.1mass%以上含み、Cuの含有量が30mass%以上とされた銅合金で構成されていることが好ましい。
この場合、銅部がCuの含有量が30mass%以上とされた銅合金で構成されているので、抗菌性に十分に優れている。また、添加元素としてZn,Sn,Ni,Al,Mnから選択される一種又は二種以上を合計で0.1mass%以上含んでいるので、銅部の変色を抑制することができる。
Further, in the antibacterial member of the present invention, the copper portion contains one or more selected from Zn, Sn, Ni, Al, and Mn as an additive element in a total of 0.1 mass% or more, and contains Cu. It is preferably composed of a copper alloy having an amount of 30 mass% or more.
In this case, since the copper portion is made of a copper alloy having a Cu content of 30 mass% or more, the antibacterial property is sufficiently excellent. Further, since one or more selected from Zn, Sn, Ni, Al, and Mn as the additive element is contained in a total of 0.1 mass% or more, discoloration of the copper portion can be suppressed.

本発明によれば、優れた抗菌作用を安定して発現させることが可能な抗菌部材を提供することができる。 According to the present invention, it is possible to provide an antibacterial member capable of stably exhibiting an excellent antibacterial action.

本発明の実施形態における抗菌部材の一例を示す説明図である。(a)が上面図、(b)が断面図である。It is explanatory drawing which shows an example of the antibacterial member in embodiment of this invention. (A) is a top view and (b) is a sectional view. 吸湿材料における相対湿度と吸湿率との関係を示すグラフである。It is a graph which shows the relationship between a relative humidity and a hygroscopic rate in a hygroscopic material. 本発明の実施形態における抗菌部材の使用例を示す説明図である。It is explanatory drawing which shows the use example of the antibacterial member in embodiment of this invention. Dry環境およびWet環境での抗菌特性を評価した結果を示すグラフである。It is a graph which shows the result of having evaluated the antibacterial property in a Dry environment and a Wet environment. 本発明の他の実施形態における抗菌部材の例を示す説明図である。It is explanatory drawing which shows the example of the antibacterial member in another embodiment of this invention. 本発明の他の実施形態における抗菌部材の一例を示す説明図である。(a)が上面図、(b)が断面図である。It is explanatory drawing which shows an example of the antibacterial member in another embodiment of this invention. (A) is a top view and (b) is a sectional view. 本発明の他の実施形態における抗菌部材の一例を示す説明図である。It is explanatory drawing which shows an example of the antibacterial member in another embodiment of this invention.

以下に、本発明の一実施形態である抗菌部材について説明する。
本実施形態である抗菌部材は、例えば、机、椅子、棚等の什器や、手すり、ドアノブ等の不特定多数の人が接触するような各種製品に適用され、これら各種製品の表面に抗菌性を付与するものである。
Hereinafter, the antibacterial member according to the embodiment of the present invention will be described.
The antibacterial member of the present embodiment is applied to, for example, furniture such as desks, chairs, and shelves, and various products such as handrails and doorknobs that an unspecified number of people come into contact with, and has antibacterial properties on the surface of these various products. Is given.

本実施形態である抗菌部材10は、図1に示すように、銅又は銅合金からなる銅部11と、吸湿材料からなる吸湿部12と、を有しており、抗菌部材10の表面に吸湿部12が露出した構造とされている。
本実施形態では、抗菌部材10の表面に露出する吸湿部12の露出面積率が1%以上80%以下の範囲内とされていることが好ましい。
また、本実施形態では、図1に示すように、抗菌部材10の表面において銅部11の中に、吸湿部12が島状に配置された構造とされている。
As shown in FIG. 1, the antibacterial member 10 of the present embodiment has a copper portion 11 made of copper or a copper alloy and a moisture absorbing portion 12 made of a hygroscopic material, and the surface of the antibacterial member 10 absorbs moisture. The structure is such that the portion 12 is exposed.
In the present embodiment, it is preferable that the exposed area ratio of the moisture absorbing portion 12 exposed on the surface of the antibacterial member 10 is within the range of 1% or more and 80% or less.
Further, in the present embodiment, as shown in FIG. 1, the moisture absorbing portion 12 is arranged in an island shape in the copper portion 11 on the surface of the antibacterial member 10.

ここで、島状に配置された吸湿部12においては、隣接する吸湿部12同士の平均距離が10mm以下であることが好ましい。
また、島状に配置された吸湿部12においては、吸湿部の面積を円形近似したときの半径の平均が0.5μm以上1000μm以下の範囲内であることが好ましい。
Here, in the moisture absorbing portions 12 arranged in an island shape, it is preferable that the average distance between the adjacent moisture absorbing portions 12 is 10 mm or less.
Further, in the moisture absorbing portions 12 arranged in an island shape, it is preferable that the average radius when the area of the moisture absorbing portions is approximately circularly approximated is within the range of 0.5 μm or more and 1000 μm or less.

ここで、銅部11は、Cuの含有量が30mass%以上とされた銅又は銅合金で構成されていることが好ましい。
また、添加元素として、Zn,Sn,Ni,Al,Mnから選択される一種又は二種以上を合計で0.1mass%以上含み、Cuの含有量が30mass%以上とされた銅合金であってもよい。
Here, the copper portion 11 is preferably made of copper or a copper alloy having a Cu content of 30 mass% or more.
Further, it is a copper alloy containing one or more selected from Zn, Sn, Ni, Al and Mn as an additive element in a total of 0.1 mass% or more and a Cu content of 30 mass% or more. May be good.

吸湿部12は、相対湿度の変化に伴って可逆的に水蒸気を吸放出する吸湿材料で構成されている。
ここで、吸湿材料は、相対湿度の値によって、相対湿度変化時の吸湿率変化量が異なることがあるが、使用環境に応じて自由に選択することが好ましい。その場合は、使用環境の相対湿度の変化量から吸湿率が1%以上変化する材料を使うことが好ましい。
本実施形態では、吸湿部12を構成する吸湿材料は、非水溶性であって、相対湿度を40%から50%に変化させたときに、吸湿率が1%以上変化するものを用いることが好ましい。
The moisture absorbing portion 12 is made of a moisture absorbing material that reversibly absorbs and releases water vapor as the relative humidity changes.
Here, the hygroscopic material may have a different amount of change in hygroscopicity when the relative humidity changes depending on the value of relative humidity, but it is preferably freely selected according to the usage environment. In that case, it is preferable to use a material whose hygroscopicity changes by 1% or more from the amount of change in relative humidity in the usage environment.
In the present embodiment, the moisture-absorbing material constituting the moisture-absorbing portion 12 is water-insoluble, and the moisture absorption rate changes by 1% or more when the relative humidity is changed from 40% to 50%. preferable.

具体的には、吸湿材料としては、例えば、シリカゲル、メソポーラスシリカ、レーヨン、吸湿性アクリル、ビニル系材料、セルロース系材料などが挙げられる。ここで、各種吸湿材料の吸湿率を図2に示す。 Specifically, examples of the hygroscopic material include silica gel, mesoporous silica, rayon, hygroscopic acrylic, vinyl-based material, and cellulose-based material. Here, the hygroscopicity of various hygroscopic materials is shown in FIG.

この抗菌部材10においては、図3に示すように、例えば、温度の上昇等によって使用環境における相対湿度が低下した場合には、吸湿部12から水分が放出され、銅部11の表面近傍の水分量を維持することが可能となる。 In the antibacterial member 10, as shown in FIG. 3, for example, when the relative humidity in the usage environment decreases due to an increase in temperature or the like, moisture is released from the moisture absorbing portion 12 and the moisture in the vicinity of the surface of the copper portion 11 It is possible to maintain the amount.

ここで、Dry環境における抗菌性評価及びWet環境における抗菌性評価結果について、表1~4および図4を参照して説明する。 Here, the antibacterial property evaluation in the Dry environment and the antibacterial property evaluation result in the Wet environment will be described with reference to Tables 1 to 4 and FIG.

ガラス、純Ag(純度99mass%)、純Ni(純度99mass%)、純Cu(純度99mass%)、ニッケル合金(Ni-33mass%Cu-2mass%Fe)からなる試料片を準備した。 A sample piece composed of glass, pure Ag (purity 99 mass%), pure Ni (purity 99 mass%), pure Cu (purity 99 mass%), and nickel alloy (Ni-33 mass% Cu-2 mass% Fe) was prepared.

(Dry環境での抗菌性評価)
黄色ブドウ球菌株を36±2℃で、培地にて培養し、発育した集落をかき取り、滅菌イオン交換懸濁して約10CFU/mLに調製し、これを試験菌液とした。
25mの試験チャンバー内床面に試験品を設置し、チャンバー内に試験菌液を噴霧、浮遊させて、試験品に試験菌を付着させた。この試験品を常温常湿条件(約25℃,約50%RH)下で所定時間作用させた。所定時間作用後に試験品を回収し、各試験品の付着菌数をN=3で測定した。
菌の減少率=-log(所定時間経過後の試験片の生菌数(cfu)/初期の接種菌数(cfu))
(Evaluation of antibacterial properties in Dry environment)
Staphylococcus aureus strains were cultured in a medium at 36 ± 2 ° C., the grown colonies were scraped off, and sterile ion exchange suspension was performed to prepare about 109 CFU / mL, which was used as a test bacterial solution.
The test product was placed on the floor surface inside the test chamber of 25 m 3 , and the test bacterial solution was sprayed and suspended in the chamber to allow the test bacteria to adhere to the test product. This test product was allowed to act for a predetermined time under normal temperature and humidity conditions (about 25 ° C., about 50% RH). After the action for a predetermined time, the test products were collected, and the number of adhered bacteria of each test product was measured at N = 3.
Bacterial decrease rate = -log (number of viable cells (cfu) of test piece after a predetermined time / initial number of inoculated bacteria (cfu))

(Wet環境での抗菌性評価)
JIS Z 2801に準拠し各試験片の表面に一定の黄色ブドウ球菌を接種し、所定時間経過後の生菌数(cfu)を定量した。N=3で実施した。
菌の減少率=-log(所定時間経過後の試験片の生菌数(cfu)/初期の接種菌数(cfu))
(Evaluation of antibacterial properties in Wet environment)
In accordance with JIS Z 2801, the surface of each test piece was inoculated with a certain amount of Staphylococcus aureus, and the viable cell count (cfu) after a lapse of a predetermined time was quantified. It was carried out at N = 3.
Bacterial decrease rate = -log (number of viable cells (cfu) of test piece after a predetermined time / initial number of inoculated bacteria (cfu))

上述のDry環境での抗菌性評価結果として、経過時間0分(初期)、30分、60分、360分経過後の菌数を表1に、菌の減少率を表2に示す。
上述のWet環境での抗菌性評価結果として、経過時間0分(初期)、10分、30分、1440分経過後の菌数を表3に、菌の減少率を表4に示す。
また、図4に、Dry環境及びWet環境における経過時間30分経過後の菌の減少率を示す。
As the results of the antibacterial property evaluation in the above-mentioned Dry environment, Table 1 shows the number of bacteria after the elapsed time of 0 minutes (initial), 30 minutes, 60 minutes, and 360 minutes, and Table 2 shows the reduction rate of the bacteria.
As the results of the antibacterial property evaluation in the Wet environment described above, Table 3 shows the number of bacteria after the elapsed time of 0 minutes (initial), 10 minutes, 30 minutes, and 1440 minutes, and Table 4 shows the reduction rate of the bacteria.
In addition, FIG. 4 shows the reduction rate of bacteria in the Dry environment and the Wet environment after the elapsed time of 30 minutes.

Figure 2022089023000002
Figure 2022089023000002

Figure 2022089023000003
Figure 2022089023000003

Figure 2022089023000004
Figure 2022089023000004

Figure 2022089023000005
Figure 2022089023000005

純Agや純Niに比べて、純Cu及びCuを含むNi合金においては、Wet環境における抗菌性に優れていることが確認された。
また、純Cu及びCuを含むNi合金においては、Dry環境に比べてWet環境での抗菌性が大幅に優れていることが確認された。
以上のように、銅部11の表面近傍の水分量を適切に調整することによって、銅部11における抗菌作用を十分に発現することが可能となるのである。
It was confirmed that the Ni alloy containing pure Cu and Cu was superior in antibacterial property in the Wet environment as compared with pure Ag and pure Ni.
Further, it was confirmed that the pure Cu and the Ni alloy containing Cu have significantly superior antibacterial properties in the Wet environment as compared with the Dry environment.
As described above, by appropriately adjusting the amount of water in the vicinity of the surface of the copper portion 11, the antibacterial action of the copper portion 11 can be sufficiently exhibited.

そこで、本実施形態では、使用環境における相対湿度が低下した際に、吸湿部12から水分を放出させて、銅部11の表面近傍の水分が多い状態を適切に維持するために、抗菌部材10の表面に露出する吸湿部12の露出面積率が1%以上80%以下の範囲内とした。
ここで、抗菌部材10の表面に露出する吸湿部12の露出面積率が1%以上である場合には、相対湿度の変化によって吸湿部12から水分を十分に放出させることができる。一方、抗菌部材10の表面に露出する吸湿部12の露出面積率が80%以下である場合には、抗菌部材10の表面に露出する銅部11の露出面積が確保され、銅部11による抗菌作用を十分に得ることができる。
なお、抗菌部材10の表面に露出する吸湿部12の露出面積率の下限は、5%以上であることが好ましく、10%以上であることがさらに好ましい。一方、抗菌部材10の表面に露出する吸湿部12の露出面積率の上限は、70%以下であることが好ましく、50%以下であることがさらに好ましい。
Therefore, in the present embodiment, when the relative humidity in the usage environment decreases, the antibacterial member 10 releases moisture from the moisture absorbing portion 12 to appropriately maintain a state in which a large amount of moisture is present near the surface of the copper portion 11. The exposed area ratio of the moisture absorbing portion 12 exposed on the surface of the above was set within the range of 1% or more and 80% or less.
Here, when the exposed area ratio of the moisture absorbing portion 12 exposed on the surface of the antibacterial member 10 is 1% or more, moisture can be sufficiently released from the moisture absorbing portion 12 by the change of the relative humidity. On the other hand, when the exposed area ratio of the moisture absorbing portion 12 exposed on the surface of the antibacterial member 10 is 80% or less, the exposed area of the copper portion 11 exposed on the surface of the antibacterial member 10 is secured, and the antibacterial portion 11 is used for antibacterial treatment. The action can be sufficiently obtained.
The lower limit of the exposed area ratio of the moisture absorbing portion 12 exposed on the surface of the antibacterial member 10 is preferably 5% or more, and more preferably 10% or more. On the other hand, the upper limit of the exposed area ratio of the moisture absorbing portion 12 exposed on the surface of the antibacterial member 10 is preferably 70% or less, more preferably 50% or less.

以上のような構成とされた本実施形態である抗菌部材10においては、銅又は銅合金からなる銅部11と、吸湿材料からなる吸湿部12と、を有し、抗菌部材10の表面に吸湿部12が露出した構造とされているので、使用環境の相対湿度が低下した場合に吸湿部12から水分が放出され、銅部11の表面近傍を水分が多い状態で適切に維持することができる。よって、銅部11における抗菌作用を安定して発現することができ、優れた抗菌性を得ることが可能となる。 The antibacterial member 10 of the present embodiment having the above-described configuration has a copper portion 11 made of copper or a copper alloy and a moisture absorbing portion 12 made of a moisture absorbing material, and the surface of the antibacterial member 10 absorbs moisture. Since the portion 12 has an exposed structure, moisture is released from the moisture absorbing portion 12 when the relative humidity of the usage environment decreases, and the vicinity of the surface of the copper portion 11 can be appropriately maintained in a high moisture state. .. Therefore, the antibacterial action of the copper portion 11 can be stably exhibited, and excellent antibacterial properties can be obtained.

本実施形態である抗菌部材10において、抗菌部材10の表面に露出する吸湿部12の露出面積率が1%以上80%以下の範囲内とされている場合には、使用環境において相対湿度が低下した際に吸湿部12から十分に水分が放出され、銅部11の表面近傍を水分が多い状態でさらに適切に維持することができ、さらに優れた抗菌性を得ることが可能となる。 In the antibacterial member 10 of the present embodiment, when the exposed area ratio of the moisture absorbing portion 12 exposed on the surface of the antibacterial member 10 is within the range of 1% or more and 80% or less, the relative humidity decreases in the usage environment. At that time, sufficient moisture is released from the moisture absorbing portion 12, and the vicinity of the surface of the copper portion 11 can be more appropriately maintained in a state of a large amount of moisture, and further excellent antibacterial properties can be obtained.

本実施形態である抗菌部材10において、図1に示すように、銅部11の中に吸湿部12が島状に配置されている場合には、吸湿材料からなる吸湿部12を銅部11によって支持することができ、抗菌部材10の表面に露出するように吸湿部12を安定して配置することが可能となる。 In the antibacterial member 10 of the present embodiment, as shown in FIG. 1, when the moisture absorbing portion 12 is arranged in an island shape in the copper portion 11, the moisture absorbing portion 12 made of the moisture absorbing material is formed by the copper portion 11. It can be supported, and the moisture absorbing portion 12 can be stably arranged so as to be exposed on the surface of the antibacterial member 10.

また、本実施形態である抗菌部材10において、島状に配置された吸湿部12同士の距離が10mm以下である場合には、吸湿部12による水蒸気放出の効果を、吸湿部12の間の銅部11に対して十分に影響を及ぼせることが可能となる。
なお、島状に配置された吸湿部12同士の距離の上限は、5mm以下であることがさらに好ましく、3mm以下であることがより好ましい。島状に配置された吸湿部12同士の距離の下限は、対象となるウィルス、細菌、真菌などの大きさに応じて適宜設定することが好ましく、本実施形態では0.1μm以上とすることが好ましい。
なお、島状に配置された全ての隣接する吸湿部12同士の距離が10mm以下であることが望ましいが、吸湿部12同士の平均距離が10mm以下であれば、銅部11に対して十分に影響を及すことが可能となる。吸湿部12同士の平均距離は、抗菌部材10の表面において、無作為に10点の島状の吸湿部12を選択し、各吸湿部12から最隣接に位置する吸湿部12までの距離を測定し、それを平均することで算出してもよい。
Further, in the antibacterial member 10 of the present embodiment, when the distance between the moisture absorbing portions 12 arranged in an island shape is 10 mm or less, the effect of water vapor release by the moisture absorbing portions 12 is exerted on the copper between the moisture absorbing portions 12. It is possible to sufficiently influence the part 11.
The upper limit of the distance between the moisture absorbing portions 12 arranged in an island shape is more preferably 5 mm or less, and even more preferably 3 mm or less. The lower limit of the distance between the hygroscopic portions 12 arranged in an island shape is preferably set appropriately according to the size of the target virus, bacterium, fungus, etc., and may be 0.1 μm or more in this embodiment. preferable.
It is desirable that the distance between all the adjacent moisture absorbing portions 12 arranged in an island shape is 10 mm or less, but if the average distance between the moisture absorbing portions 12 is 10 mm or less, it is sufficient with respect to the copper portion 11. It will be possible to influence. For the average distance between the moisture absorbing portions 12, 10 island-shaped moisture absorbing portions 12 are randomly selected on the surface of the antibacterial member 10, and the distance from each moisture absorbing portion 12 to the adjacent moisture absorbing portion 12 is measured. Then, it may be calculated by averaging it.

さらに、本実施形態である抗菌部材10において、島状に配置された吸湿部12の面積を円形近似したときの半径の平均が0.5μm以上1000μm以下の範囲内である場合には、同一の吸湿部12の露出面積率であっても一定面積における数密度が増加し、そのため、抗菌部材10の表面全体に吸湿部12による効果を及ぼすことが可能となる。
なお、島状に配置された吸湿部12の面積を円形近似したときの半径の平均の下限は、1μm以上であることがさらに好ましく、4μm以上であることがより好ましい。また、島状に配置された吸湿部12の面積を円形近似したときの半径の平均の上限は、750μm以下であることがさらに好ましく、500μm以下であることがより好ましい。
Further, in the antibacterial member 10 of the present embodiment, when the average radius when the area of the moisture absorbing portions 12 arranged in an island shape is approximately circularly approximated is within the range of 0.5 μm or more and 1000 μm or less, the same is true. Even with the exposed area ratio of the moisture absorbing portion 12, the number density in a certain area increases, so that the effect of the moisture absorbing portion 12 can be exerted on the entire surface of the antibacterial member 10.
The lower limit of the average radius when the area of the moisture absorbing portions 12 arranged in an island shape is approximately circularly approximated is more preferably 1 μm or more, and further preferably 4 μm or more. Further, the upper limit of the average radius when the area of the moisture absorbing portions 12 arranged in an island shape is approximately circularly approximated is more preferably 750 μm or less, and further preferably 500 μm or less.

また、本実施形態である抗菌部材10において、吸湿部12が、相対湿度を40%から50%に変化させたときに、吸湿率が1%以上変化する吸湿材料で構成されている場合には、使用環境の相対湿度が低下した際に、吸湿部12から水分が十分に放出され、銅部11の表面近傍の水分量をさらに適切に維持することが可能となり、銅部11における抗菌作用を安定して発現することができる。 Further, in the antibacterial member 10 of the present embodiment, when the moisture absorbing portion 12 is made of a moisture absorbing material whose hygroscopicity changes by 1% or more when the relative humidity is changed from 40% to 50%. When the relative humidity of the usage environment decreases, the moisture is sufficiently released from the moisture absorbing portion 12, and the moisture content near the surface of the copper portion 11 can be maintained more appropriately, and the antibacterial action of the copper portion 11 is exhibited. It can be expressed stably.

さらに、本実施形態である抗菌部材10において、銅部11が、添加元素として、Zn,Sn,Ni,Al,Mnから選択される一種又は二種以上を合計で0.1mass%以上含み、Cuの含有量が30mass%以上とされた銅合金で構成されている場合には、抗菌性に十分に優れているとともに、銅部11の変色を抑制することができる。 Further, in the antibacterial member 10 of the present embodiment, the copper portion 11 contains one or more selected from Zn, Sn, Ni, Al, and Mn as an additive element in a total of 0.1 mass% or more, and Cu. When it is composed of a copper alloy having a content of 30 mass% or more, it is sufficiently excellent in antibacterial property and can suppress discoloration of the copper portion 11.

以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
本実施形態では、図1に示す構造の抗菌部材10を例に挙げて説明したが、これに限定されることはない。
Although the embodiments of the present invention have been described above, the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the invention.
In the present embodiment, the antibacterial member 10 having the structure shown in FIG. 1 has been described as an example, but the present invention is not limited thereto.

例えば、図5(a)に示す抗菌部材10のように、銅部11の表面から突出するように、吸湿部12が配設されていてもよい。この場合、吸湿部12と銅部11が凹凸で組み合わさっているため、接触によって吸湿部12が剥がれ難くなると共に、抗菌部材10の広範囲に水分を供給しやすくなる。
また、図5(b)に示す抗菌部材10のように、銅部11の表面から後退するように、吸湿部12が配設されていてもよい。この場合、吸湿部12と銅部11が凹凸で組み合わさっているため、接触によって吸湿部12が剥がれることが少なくなる。
さらに、図5(c)に示す抗菌部材10のように、銅部11の表面に吸湿部12が載置された構造であってもよい。この場合、銅部11の表面を平面状に形成した後で、吸湿部を配するので製造が容易になる。
For example, as in the antibacterial member 10 shown in FIG. 5A, the moisture absorbing portion 12 may be arranged so as to protrude from the surface of the copper portion 11. In this case, since the moisture absorbing portion 12 and the copper portion 11 are combined with unevenness, the moisture absorbing portion 12 is less likely to be peeled off by contact, and the antibacterial member 10 is easily supplied with water over a wide range.
Further, as in the antibacterial member 10 shown in FIG. 5B, the moisture absorbing portion 12 may be arranged so as to recede from the surface of the copper portion 11. In this case, since the moisture absorbing portion 12 and the copper portion 11 are combined with unevenness, the moisture absorbing portion 12 is less likely to be peeled off by contact.
Further, as in the antibacterial member 10 shown in FIG. 5C, the structure may be such that the moisture absorbing portion 12 is placed on the surface of the copper portion 11. In this case, since the moisture absorbing portion is arranged after the surface of the copper portion 11 is formed flat, the production becomes easy.

また、図6に示すように、吸湿部12であるベース板の上に、貫通孔15を有する銅部11を積層した構造であってもよい。この場合、銅部11と吸湿部12をそれぞれシート状に作成することができるため、製造が容易になる。
さらに、図7(a)に示すように、吸湿部12がランダム配置されていてもよい。この場合、銅部11が連続相であり、吸湿部12が分散相である。つまり、抗菌部材10の表面において、銅部11の中に吸湿部12が島状に配置されている。
また、図7(b)に示すように、吸湿部12の中に銅部11が配置されたものであってもよい。この場合、吸湿部12が連続相であり、銅部11が分散相である。つまり、抗菌部材10の表面において、吸湿部12の中に銅部11が島状に配置されている。
Further, as shown in FIG. 6, the structure may be such that the copper portion 11 having the through hole 15 is laminated on the base plate which is the moisture absorbing portion 12. In this case, since the copper portion 11 and the moisture absorbing portion 12 can be formed in the form of a sheet, the production becomes easy.
Further, as shown in FIG. 7A, the moisture absorbing portions 12 may be randomly arranged. In this case, the copper portion 11 is a continuous phase and the moisture absorbing portion 12 is a dispersed phase. That is, on the surface of the antibacterial member 10, the moisture absorbing portion 12 is arranged in an island shape in the copper portion 11.
Further, as shown in FIG. 7B, the copper portion 11 may be arranged in the moisture absorbing portion 12. In this case, the moisture absorbing portion 12 is a continuous phase and the copper portion 11 is a dispersed phase. That is, on the surface of the antibacterial member 10, the copper portion 11 is arranged in an island shape in the moisture absorbing portion 12.

10 抗菌部材
11 銅部
12 吸湿部
10 Antibacterial member 11 Copper part 12 Moisture absorbing part

Claims (7)

銅又は銅合金からなる銅部と、吸湿材料からなる吸湿部と、を有し、前記抗菌部材の表面に前記吸湿部が露出していることを特徴とする抗菌部材。 An antibacterial member having a copper portion made of copper or a copper alloy and a hygroscopic portion made of a hygroscopic material, wherein the hygroscopic portion is exposed on the surface of the antibacterial member. 前記抗菌部材の表面に露出する前記吸湿部の露出面積率が1%以上80%以下の範囲内とされていることを特徴とする請求項1に記載の抗菌部材。 The antibacterial member according to claim 1, wherein the exposed area ratio of the moisture absorbing portion exposed on the surface of the antibacterial member is within the range of 1% or more and 80% or less. 前記抗菌部材の表面において、前記銅部の中に前記吸湿部が島状に配置されていることを特徴とする請求項1又は請求項2に記載の抗菌部材。 The antibacterial member according to claim 1 or 2, wherein the moisture absorbing portion is arranged in an island shape in the copper portion on the surface of the antibacterial member. 島状に配置された前記吸湿部同士の平均距離が10mm以下であることを特徴とする請求項3に記載の抗菌部材。 The antibacterial member according to claim 3, wherein the average distance between the hygroscopic portions arranged in an island shape is 10 mm or less. 島状に配置された前記吸湿部の面積を円形近似したときの半径の平均が0.5μm以上1000μm以下の範囲内であることを特徴とする請求項3又は請求項4に記載の抗菌部材。 The antibacterial member according to claim 3 or 4, wherein the average radius when the area of the moisture absorbing portion arranged in an island shape is approximately circularly approximated is within the range of 0.5 μm or more and 1000 μm or less. 前記吸湿部は、相対湿度を40%から50%に変化させたときに、吸湿率が1%以上変化する吸湿材料で構成されていることを特徴とする請求項1から請求項5のいずれか一項に記載の抗菌部材。 Any of claims 1 to 5, wherein the hygroscopic portion is made of a hygroscopic material whose hygroscopicity changes by 1% or more when the relative humidity is changed from 40% to 50%. The antibacterial member according to item 1. 前記銅部は、添加元素として、Zn,Sn,Ni,Al,Mnから選択される一種又は二種以上を合計で0.1mass%以上含み、Cuの含有量が30mass%以上とされた銅合金で構成されていることを特徴とする請求項1から請求項6のいずれか一項に記載の抗菌部材。 The copper portion contains one or more selected from Zn, Sn, Ni, Al, and Mn as an additive element in a total of 0.1 mass% or more, and the Cu content is 30 mass% or more. The antibacterial member according to any one of claims 1 to 6, wherein the antibacterial member is composed of.
JP2020201230A 2020-12-03 2020-12-03 Antibacterial member Pending JP2022089023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020201230A JP2022089023A (en) 2020-12-03 2020-12-03 Antibacterial member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020201230A JP2022089023A (en) 2020-12-03 2020-12-03 Antibacterial member

Publications (1)

Publication Number Publication Date
JP2022089023A true JP2022089023A (en) 2022-06-15

Family

ID=81987914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020201230A Pending JP2022089023A (en) 2020-12-03 2020-12-03 Antibacterial member

Country Status (1)

Country Link
JP (1) JP2022089023A (en)

Similar Documents

Publication Publication Date Title
Hu et al. Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity
Arendsen et al. The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology
Li et al. Efficacy of nano-silver in alleviating bacteria-related blockage in cut rose cv. Movie Star stems
Shenoy et al. Honey as an antimicrobial agent against Pseudomonas aeruginosa isolated from infected wounds
Munhoz et al. Alginate films functionalized with silver sulfadiazine-loaded [Mg-Al] layered double hydroxide as antimicrobial wound dressing
JP2014040416A5 (en) Disinfectant, its material, its product and method of use
TW201422421A (en) Glass frit antimicrobial coating
US20190345600A1 (en) Method of manufacturing antibacterial superabsorbent polymer absorber containing metal nanoparticles
TWI496911B (en) Antibacterial article and method for making the same
Buckley et al. Silver carbonate nanoparticles stabilised over alumina nanoneedles exhibiting potent antibacterial properties
CN109846113A (en) One kind can be from the nitric oxide production mouth and nose amenities of offer
Salman Evaluation and comparison the antibacterial activity of silver nano particles (AgNPs) and silver nitrate (AgNO3) on some pathogenic bacteria
Pires et al. Silver‐doped 58S bioactive glass as an anti‐Leishmania agent
Melo et al. Pulmonary macrophages and their different roles in health and disease
Shaheen et al. Medical and microbial applications of controlled shape of silver nanoparticles prepared by ionizing radiation
JP6783481B2 (en) A surface treatment method for copper or a copper alloy, a surface treatment liquid for sterilizing copper or a copper alloy, and a sterilization method using copper or a copper alloy treated by the method.
JP2022089023A (en) Antibacterial member
Maheshwari et al. Green expertise: Synthesis of Silver nanoparticles for wound healing application an overview
EP2797412A1 (en) Antimicrobial material comprising a metal ion charged on synthesized zeolite
JP2011231431A (en) Antimicrobial-antiviral treatment method for fiber product
JP6820579B2 (en) Antiviral agents and virus removal methods
JP2012052258A (en) Antimicrobial fiber sheet
Luceri et al. Antibacterial and Antiviral Activities of Silver Nanocluster/Silica Composite Coatings Deposited onto Air Filters
WO2022244248A1 (en) Phosphor bronze alloy powder
JPS588530A (en) Disinfectant air filter material