JP2022087940A - Oxygen saturation degree measuring device and oxygen saturation degree measuring method - Google Patents

Oxygen saturation degree measuring device and oxygen saturation degree measuring method Download PDF

Info

Publication number
JP2022087940A
JP2022087940A JP2020200089A JP2020200089A JP2022087940A JP 2022087940 A JP2022087940 A JP 2022087940A JP 2020200089 A JP2020200089 A JP 2020200089A JP 2020200089 A JP2020200089 A JP 2020200089A JP 2022087940 A JP2022087940 A JP 2022087940A
Authority
JP
Japan
Prior art keywords
oxygen saturation
signal
light
ratio
variable component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020200089A
Other languages
Japanese (ja)
Inventor
香菜子 竹本
Kanako Takemoto
敦也 伊藤
Atsuya Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Micro Devices Inc
Original Assignee
Nisshinbo Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Micro Devices Inc filed Critical Nisshinbo Micro Devices Inc
Priority to JP2020200089A priority Critical patent/JP2022087940A/en
Publication of JP2022087940A publication Critical patent/JP2022087940A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

To provide an oxygen saturation degree measuring device and an oxygen saturation degree measuring method capable of measuring an oxygen saturation degree even by a signal with a small fluctuation component, by which measurement of an oxygen saturation degree is difficult on a conventional oxygen saturation degree measuring device.SOLUTION: A biological tissue is irradiated with lights of different wavelengths, and the light passing through the biological tissue or the light reflected by the biological tissue is received. Not only in the case where a peak value and a bottom value of a signal of a fluctuation component are clearly shown in a received signal, but also in the case where a peak value and a bottom value are not clear, a root mean square of the signal of the fluctuation component is calculated, and using the result of this calculation, a predetermined ratio is calculated to obtain an oxygen saturation degree.SELECTED DRAWING: Figure 2

Description

本発明は、生体組織に異なる波長の光を照射し、透過又は反射した光から血液中の酸素飽和度を測定するための酸素飽和度測定装置および酸素飽和度測定方法に関する。 The present invention relates to an oxygen saturation measuring device and an oxygen saturation measuring method for irradiating a living tissue with light having a different wavelength and measuring the oxygen saturation in blood from the transmitted or reflected light.

血液中の酸素飽和度を非侵襲的に測定する酸素飽和度測定装置は、赤色光と赤外光とを生体組織に照射し、赤色光と赤外光それぞれの透過光又は反射光から得られる吸収度の変動成分(脈動成分)の比から酸素飽和度を測定するものである。特にピーク値とボトム値のある変動成分の信号を処理することによってノイズによる誤差を少なくする方法が提案されている(例えば特許文献1)。 An oxygen saturation measuring device that non-invasively measures the oxygen saturation in blood irradiates a living tissue with red light and infrared light, and is obtained from transmitted light or reflected light of the red light and infrared light, respectively. The oxygen saturation is measured from the ratio of the fluctuation component (pulsation component) of the absorption degree. In particular, a method of reducing an error due to noise by processing a signal of a variable component having a peak value and a bottom value has been proposed (for example, Patent Document 1).

特公平02-44534号公報Special Fair 02-44534 Gazette

この種の酸素飽和度測定装置は、救急救命の現場や術後管理といった医療現場で広く使用されているが、その多くは指先や耳たぶに装着する透過型となっている。 This type of oxygen saturation measuring device is widely used in the medical field such as emergency lifesaving field and postoperative management, but most of them are permeable type worn on the fingertip or earlobe.

一方、発光面と受光面が同一面内にある反射型は、反射光に含まれる変動成分の信号が小さく、すなわち変動成分の信号のピーク値とボトム値が明確でないために、酸素飽和度の正確な測定が難しく広く使用されるに至っていない。しかしながら反射型の酸素飽和度測定装置は、測定位置が指先や耳たぶのような限られた部位に限らず、様々な部位で測定可能になるという利点もある。本発明はこのような実状に鑑み、従来の酸素飽和度測定装置では測定することが難しい変動成分の小さい信号によっても酸素飽和度を測定することができる酸素飽和度測定装置および酸素飽和度測定方法を提供することを目的とする。 On the other hand, in the reflective type in which the light emitting surface and the light receiving surface are in the same plane, the signal of the variable component contained in the reflected light is small, that is, the peak value and the bottom value of the signal of the variable component are not clear, so that the oxygen saturation is high. Accurate measurement is difficult and has not been widely used. However, the reflective oxygen saturation measuring device has an advantage that the measuring position is not limited to a limited part such as a fingertip or an earlobe, but can be measured at various parts. In view of such circumstances, the present invention is an oxygen saturation measuring device and an oxygen saturation measuring method capable of measuring oxygen saturation even with a signal having a small fluctuation component, which is difficult to measure with a conventional oxygen saturation measuring device. The purpose is to provide.

上記目的を達成するため、本願請求項1に係る発明は、少なくとも2つの異なる波長の光を生体組織に放射する発光部と、前記生体組織を透過あるいは前記生体組織で反射した前記異なる波長の光を受光する受光部と、該受光部で受光した光の変動成分の信号と非変動成分の信号との比をそれぞれ算出し、該算出結果の比から酸素飽和度を求める演算部と、を備えた酸素飽和度測定装置において、前記演算部は、前記変動成分の信号の二乗平均平方根を算出し、該変動成分の信号の二乗平均平方根の信号と前記非変動成分の信号との比をそれぞれ算出し、該算出結果の比から酸素飽和度を求めることを特徴とする。 In order to achieve the above object, the invention according to claim 1 of the present application comprises a light emitting portion that radiates light of at least two different wavelengths to a living body tissue, and light having the different wavelengths transmitted through or reflected by the living body tissue. It is provided with a light receiving unit that receives light, and a calculation unit that calculates the ratio of the signal of the variable component and the signal of the non-variable component of the light received by the light receiving unit, and obtains the oxygen saturation from the ratio of the calculation result. In the oxygen saturation measuring device, the calculation unit calculates the squared average square root of the signal of the variable component, and calculates the ratio of the signal of the squared average square root of the signal of the variable component to the signal of the non-variable component, respectively. However, it is characterized in that the oxygen saturation is obtained from the ratio of the calculation result.

本願請求項2に係る発明は、少なくとも2つの異なる波長の光を生体組織に照射し、前記生体組織を透過あるいは前記生体組織で反射した光を受光することで、受光した光の変動成分の信号と非変動成分の信号との比をそれぞれ算出し、該算出結果の比から酸素飽和度を求める酸素飽和度測定方法において、前記変動成分の信号の二乗平均平方根を算出し、該変動成分の信号の二乗平均平方根の信号と前記非変動成分の信号との比をそれぞれ算出し、該算出結果の比から酸素飽和度を求めることを特徴とする。 The invention according to claim 2 of the present application irradiates a living body tissue with light having at least two different wavelengths, and receives light transmitted through the living body tissue or reflected by the living body tissue to receive a signal of a variable component of the received light. In the oxygen saturation measurement method in which the ratio between the signal of the variable component and the signal of the non-variable component is calculated and the oxygen saturation is obtained from the ratio of the calculation result, the squared average square root of the signal of the variable component is calculated and the signal of the variable component is calculated. It is characterized in that the ratio of the signal of the squared average square root of the above and the signal of the non-variable component is calculated, and the oxygen saturation is obtained from the ratio of the calculation result.

本発明の酸素飽和度測定装置および酸素飽和度測定方法では、変動成分の信号の二乗平均平方根を算出して所定の比を算出することにより、ノイズの少ない測定結果を得ることが可能となる。その結果、変動成分の信号にピーク値とボトム値が明確に表れない場合であっても酸素飽和度の測定が可能となり、適用範囲が広がるという利点がある。特に、発光面と受光面が同一面内にある反射型の酸素飽和度測定装置を構成することができ、効果が大きい。 In the oxygen saturation measuring device and the oxygen saturation measuring method of the present invention, it is possible to obtain a measurement result with less noise by calculating the root mean square of the signal of the fluctuating component and calculating a predetermined ratio. As a result, it is possible to measure the oxygen saturation even when the peak value and the bottom value do not clearly appear in the signal of the fluctuating component, and there is an advantage that the applicable range is widened. In particular, it is possible to configure a reflection type oxygen saturation measuring device in which the light emitting surface and the light receiving surface are in the same plane, which is highly effective.

酸素飽和度測定装置の説明図である。It is explanatory drawing of the oxygen saturation degree measuring apparatus. 本発明の酸素飽和度測定方法を説明する図である。It is a figure explaining the oxygen saturation degree measuring method of this invention. 本発明の第1の実施例の酸素飽和度測定方法を説明する図である。It is a figure explaining the oxygen saturation degree measuring method of 1st Example of this invention. 一般的な酸素飽和度測定方法の説明図である。It is explanatory drawing of the general oxygen saturation degree measuring method. 一般的な反射型の酸素飽和度測定装置を用いた酸素飽和度測定方法を説明する図である。It is a figure explaining the oxygen saturation degree measuring method using the general reflection type oxygen saturation degree measuring apparatus.

本発明の酸素飽和度測定装置および酸素飽和度測定方法は、波長の異なる光をそれぞれ生体組織に照射し、生体組織を透過する光、あるいは生体組織で反射する光を受光する。このとき受光する信号が、変動成分の信号のピーク値とボトム値が明確に表れる場合だけでなく、ピーク値とボトム値が明確でない場合であっても、変動成分の信号の二乗平均平方根を算出し、この算出結果を用いて所定の比を算出することで酸素飽和度を知ることができる。以下、従来例と比較しながら本発明について説明する。 The oxygen saturation measuring device and the oxygen saturation measuring method of the present invention irradiate a living tissue with light having different wavelengths, and receive light transmitted through the living tissue or reflected by the living tissue. At this time, the root mean square of the signal of the variable component is calculated not only when the peak value and the bottom value of the signal of the variable component appear clearly but also when the peak value and the bottom value of the signal received are not clear. Then, the oxygen saturation can be known by calculating a predetermined ratio using this calculation result. Hereinafter, the present invention will be described with reference to conventional examples.

まず、一般的な酸素飽和度測定装置を用いて血中の酸素飽和度を測定する方法について説明する。図1は一般的な酸素飽和度測定装置であり、図1(a)は透過型の酸素飽和度測定装置を、図1(b)は反射型の酸素飽和度測定装置をそれぞれ模式的に示している。発光部1は、波長の異なる光を放射するため赤色光を放射する赤色LED1と赤外光を放射する赤外LED1IRとを備えており、赤色LED1と赤外LED1IRはいずれか一方からのみ光を放射するように制御されている。受光部2は、赤色光と赤外光を受光する受光素子2R_IRを備えている。発光部1の発光と受光部2の受光は、図示しないタイミング制御手段により赤色光か赤外光のいずれかの発光あるいは受光となるように制御されている。 First, a method of measuring the oxygen saturation in blood using a general oxygen saturation measuring device will be described. FIG. 1 schematically shows a general oxygen saturation measuring device, FIG. 1A schematically shows a transmission type oxygen saturation measuring device, and FIG. 1B schematically shows a reflection type oxygen saturation measuring device. ing. The light emitting unit 1 includes a red LED1 R that emits red light and an infrared LED1 IR that emits infrared light because it emits light having different wavelengths, and the red LED1 R and the infrared LED1 IR are either one of them. It is controlled to emit light only from. The light receiving unit 2 includes a light receiving element 2 R_IR that receives red light and infrared light. The light emission of the light emitting unit 1 and the light reception of the light receiving unit 2 are controlled to be either red light or infrared light or light received by a timing control means (not shown).

赤色LED1から放射された赤色光は生体組織を透過等すると、受光素子2R_IRで受光し、増幅部3で増幅されたアナログ信号がアナログ/デジタル変換部4でデジタル信号に変換されて演算部5に入力する。一方赤外LED1IRから放射された赤外光も生体組織を透過等すると、受光素子2R_IRで受光し、増幅部3で増幅されたアナログ信号がアナログ/デジタル変換部4でデジタル信号に変換されて演算部5に入力する。 When the red light radiated from the red LED 1 R passes through the living tissue, it is received by the light receiving element 2 R_IR , and the analog signal amplified by the amplification unit 3 is converted into a digital signal by the analog / digital conversion unit 4 to be converted into a digital signal by the arithmetic unit. Enter in 5. On the other hand, when the infrared light radiated from the infrared LED 1 IR also passes through the biological tissue, it is received by the light receiving element 2 R_IR , and the analog signal amplified by the amplification unit 3 is converted into a digital signal by the analog / digital conversion unit 4. And input to the calculation unit 5.

演算部5では、赤色光と赤外光の吸収特性の比を算出する。具体的には、演算部5に入力する赤色光の時系列データyR(k)とし、赤外光の時系列データyIR(k)とすると、図4に示すような演算を行う。 The calculation unit 5 calculates the ratio of the absorption characteristics of red light and infrared light. Specifically, assuming that the time-series data yR (k) of red light to be input to the calculation unit 5 and the time-series data yIR (k) of infrared light are used, the calculation as shown in FIG. 4 is performed.

図4に示すように赤色光に係る演算では、演算部5に入力する赤色光の時系列データyR(k)を処理する。バンドパスフィルタ(BPF:例えば、通過帯域0.5~3Hz)を通過した信号に対してピーク値とボトム値を検出して、波高値(ピーク値-ボトム値)を算出する。これが変動成分の信号RACとなる。 As shown in FIG. 4, in the calculation related to the red light, the time series data yR (k) of the red light input to the calculation unit 5 is processed. A peak value and a bottom value are detected for a signal that has passed through a bandpass filter (BPF: for example, a pass band of 0.5 to 3 Hz), and a peak value (peak value-bottom value) is calculated. This becomes the signal RAC of the variable component.

この変動成分の信号RACが算出された期間において、ローパスフィルタ(LPF:例えば、カットオフ周波数Fc=0.5Hz)を通過した信号が非変動成分の信号RDCとなる。 During the period in which the signal R AC of this variable component is calculated, the signal that has passed through the low-pass filter (LPF: for example, the cutoff frequency Fc = 0.5 Hz) becomes the signal R DC of the non-variable component.

同様に赤外光に係る演算では、演算部5に入力する赤外光の時系列データyIR(k)を処理する。バンドパスフィルタ(BPF:例えば、通過帯域0.5~3Hz)を通過した信号に対してピーク値とボトム値を検出して、波高値(ピーク値-ボトム値)を算出する。これが変動成分の信号IRACとなる。 Similarly, in the calculation related to infrared light, the time series data yIR (k) of infrared light input to the calculation unit 5 is processed. A peak value and a bottom value are detected for a signal that has passed through a bandpass filter (BPF: for example, a pass band of 0.5 to 3 Hz), and a peak value (peak value-bottom value) is calculated. This becomes the signal IR AC of the variable component.

この変動成分の信号IRACが算出された期間において、ローパスフィルタを通過した信号が非変動成分の信号IRDCとなる。 During the period in which the signal IR AC of this variable component is calculated, the signal that has passed through the low-pass filter becomes the signal IR DC of the non-variable component.

次に比Rを算出する。比Rは、
R=(RAC/RDC)/(IRAC/IRDC) ・・・(式1)
として算出される。ここで、変動成分を非変動成分で規格化することで、赤色LED1および赤外LED1IRの発光量が異なることの影響を排除している。
Next, the ratio R is calculated. Ratio R is
R = (R AC / R DC ) / (IR AC / IR DC ) ... (Equation 1)
Is calculated as. Here, by normalizing the variable component with the non-variable component, the influence of the different emission amounts of the red LED1 R and the infrared LED1 IR is eliminated.

比Rと既知の血中酸素飽和度との関係を予め求めておくことで、比Rが決まれば測定対象の血中の酸素飽和度を知ることができる。この比Rと既知の酸素飽和度との関係は、演算部5内あるいは比Rを出力した別の装置内に記憶させておけばよい。 By obtaining the relationship between the ratio R and the known blood oxygen saturation in advance, it is possible to know the oxygen saturation in the blood to be measured once the ratio R is determined. The relationship between the ratio R and the known oxygen saturation may be stored in the calculation unit 5 or in another device that outputs the ratio R.

このように酸素飽和度を求めるために算出される比Rは、赤色光と赤外光の透過光等の変動成分の比である。透過型の酸素飽和度測定装置を用いた指先や耳たぶの測定では、変動成分の信号のピーク値とボトム値が明確に表れ、波高値の算出は容易で比Rを問題なく算出することができる。 The ratio R calculated in order to obtain the oxygen saturation is the ratio of variable components such as transmitted light of red light and infrared light. In the measurement of fingertips and earlobe using a transmission type oxygen saturation measuring device, the peak value and bottom value of the signal of the fluctuating component clearly appear, the peak value can be calculated easily, and the ratio R can be calculated without any problem. ..

しかしながら、透過型の酸素飽和度測定装置を用いた場合であっても指先や耳たぶ以外の部位の測定や反射型の酸素飽和度測定装置では、変動成分の信号のピーク値とボトム値が明確に表れない場合がある。例えば、反射型の酸素飽和度測定装置を用いて脈動の小さい部位である手首の測定を行い、比Rを測定した結果を図5に示す。図5に示すように、上記式(1)に従い算出される比Rにノイズが含まれ酸素飽和度の計測が難しくなってしまう。 However, even when a transmission type oxygen saturation measuring device is used, the peak value and bottom value of the signal of the fluctuating component are clearly defined in the measurement of parts other than the fingertip and earlid and the reflection type oxygen saturation measuring device. It may not appear. For example, FIG. 5 shows the results of measuring the ratio R by measuring the wrist, which is a region where the pulsation is small, using a reflex-type oxygen saturation measuring device. As shown in FIG. 5, noise is included in the ratio R calculated according to the above equation (1), which makes it difficult to measure the oxygen saturation.

そこで本願発明は、演算部5における比Rの算出方法として別の算出方法を提案するものである。本発明では、所定の期間サンプリングした赤色光の変動成分RACから二乗平均平方根RAC_rmsを算出し、同様に、所定の期間サンプリングした赤外光の変動成分IRACから二乗平均平方根IRAC_rmsを算出し、赤色光と赤外光との比Rを算出する。比Rは以下の式で表すことができる。 Therefore, the present invention proposes another calculation method as a method for calculating the ratio R in the calculation unit 5. In the present invention, the root mean square R AC_rms is calculated from the variable component R AC of red light sampled for a predetermined period, and similarly, the root mean square IR AC_rms is calculated from the variable component IR AC of infrared light sampled for a predetermined period. Then, the ratio R of the red light and the infrared light is calculated. The ratio R can be expressed by the following equation.

R=(RAC_rms/RDC)/(IRAC_rms/IRDC) ・・・(式2) R = (R AC_rms / R DC ) / (IR AC_rms / IR DC ) ... (Equation 2)

この場合も、変動成分を非変動成分で規格化することで、赤色LED1および赤外LED1IRの発光量が異なることの影響を排除できる。なお、二乗平均平方根RAC_rmsを算出するための測定は、サンプリング周波数fsを100Hzとした場合、1秒~数秒程度の測定を行えばよい。この程度の測定時間であれば、通常の脈拍(60拍/分)の1拍分に相当する測定を十分に行うことができるからである。 In this case as well, by normalizing the variable component with the non-variable component, it is possible to eliminate the influence of the different emission amounts of the red LED1 R and the infrared LED1 IR . The measurement for calculating the root mean square R AC_rms may be performed for about 1 second to several seconds when the sampling frequency fs is 100 Hz. This is because, with this measurement time, it is possible to sufficiently perform the measurement corresponding to one beat of a normal pulse (60 beats / minute).

このように比Rの算出のために、変動成分の信号として二乗平均平方根を算出して得られた値を用いることで酸素飽和度が算出可能となる。以下、本発明の実施例について説明する。 In this way, the oxygen saturation can be calculated by using the value obtained by calculating the root mean square as the signal of the variable component for the calculation of the ratio R. Hereinafter, examples of the present invention will be described.

本発明の第1の実施例について説明する。本実施例の酸素飽和度測定装置は、一般的な酸素飽和度測定装置と比較して演算部5の構成が相違する。すなわち、演算部5において本発明の酸素飽和度測定方法を実行する手段を備えている点で相違している。 A first embodiment of the present invention will be described. The oxygen saturation measuring device of this embodiment has a different configuration of the calculation unit 5 as compared with a general oxygen saturation measuring device. That is, the difference is that the arithmetic unit 5 is provided with means for executing the oxygen saturation measuring method of the present invention.

本発明の酸素飽和度測定装置は、図1に示す酸素飽和度測定装置同様、発光部1には、赤色光として波長630nmの光を放射する赤色LED1と赤外光として波長920nmの光を放射する赤外LED1IRとを備えている。生体組織に赤色光あるいは赤外光を放射する際には、図示しないタイミング制御部からの信号に従い、例えば周期10msec、発光のデューティー1%の赤色光あるいは赤外光のみが放射されるように制御される。 Similar to the oxygen saturation measuring device shown in FIG. 1, the oxygen saturation measuring device of the present invention emits red LED1 R that emits light having a wavelength of 630 nm as red light and light having a wavelength of 920 nm as infrared light in the light emitting unit 1. It is equipped with an infrared LED 1 IR that emits light. When emitting red light or infrared light to a living tissue, control is performed so that only red light or infrared light having a period of 10 msec and a emission duty of 1% is emitted according to a signal from a timing control unit (not shown). Will be done.

受光部2には上記赤色光と赤外光を受光する受光素子2R_IRを備えている。この受光素子2R_IRは、赤色LED1と赤外LED1IRとがそれぞれ発光しているタイミングで受光した光を電気信号に変換して増幅部3に出力し、増幅部3から出力されたアナログ信号をアナログ/デジタル変換部4でデジタル信号に変換して演算部5に出力する。アナログ/デジタル変換部4でアナログ信号をデジタル信号に変換するタイミングは、赤色光あるいは赤外光が発光しているタイミングを合わせて行われるため、赤色光あるいは赤外光に対するサンプリング周波数fsは100Hzとなる。以上の動作は、一般的なパルスオキシメータの動作と同じ動作となる。 The light receiving unit 2 is provided with a light receiving element 2 R_IR that receives the red light and the infrared light. The light receiving element 2 R_IR converts the light received at the timing when the red LED1 R and the infrared LED1 IR are emitting into an electric signal and outputs it to the amplification unit 3, and the analog signal output from the amplification unit 3 Is converted into a digital signal by the analog / digital conversion unit 4 and output to the calculation unit 5. Since the timing of converting the analog signal to the digital signal by the analog / digital conversion unit 4 is performed at the same timing as the red light or the infrared light is emitted, the sampling frequency fs for the red light or the infrared light is 100 Hz. Become. The above operation is the same as the operation of a general pulse oximeter.

次に演算部5における演算について説明する。演算部5に入力する赤色光の時系列データをyR(k)とし、赤外光の時系列データをyIR(k)とする。図2は、演算部5における演算を説明する説明図である。 Next, the calculation in the calculation unit 5 will be described. The time-series data of red light input to the calculation unit 5 is yR (k), and the time-series data of infrared light is yIR (k). FIG. 2 is an explanatory diagram illustrating an operation in the calculation unit 5.

図2に示すように、赤色光に係る演算では、演算部5に入力する赤色光の時系列データyR(k)を処理する。具体的には、バンドパスフィルタ(BPF:通過帯域0.5~3Hz)を通過した信号に対して二乗平均平方根を算出する。このバンドパスフィルタを通過した信号は、変動成分の信号となる。バンドパスフィルタを通過した信号をybpR(k)とする。 As shown in FIG. 2, in the calculation related to the red light, the time series data yR (k) of the red light input to the calculation unit 5 is processed. Specifically, the root mean square is calculated for a signal that has passed through a bandpass filter (BPF: pass band 0.5 to 3 Hz). The signal that has passed through this bandpass filter becomes a signal of a variable component. The signal that has passed through the bandpass filter is defined as ybpR (k).

二乗平均平方根(RMS)の算出は、バンドパスフィルタを通過した信号ybp_R(k)からT秒前にバンドパスフィルタを通過した信号ybp_R(k-N)までのデータを用いる。ここでNは、時間T秒の間のサンプル数で、サンプリング周波数をfsとすると、N=fs/Tの関係となる。 The root mean square (RMS) is calculated using the data from the signal ybp_R (k) that passed through the bandpass filter to the signal ybp_R (k—N) that passed through the bandpass filter T seconds ago. Here, N is the number of samples during the time T seconds, and when the sampling frequency is fs, the relationship is N = fs / T.

時間kにおけるT秒間の二乗平均平方根をyR_rms(k)とすると、

Figure 2022087940000002

と、算出される。 Let yR_rms (k) be the root mean square for T seconds at time k.
Figure 2022087940000002

Is calculated.

一方ローパスフィルタ(LPF:カットオフ周波数Fc=0.5Hz)を通過した信号は、非変動成分の信号となる。ローパスフィルタを通過した信号をylp_R(k)とすると、規格化された信号yR_nom(k)は、
yR_nom(k)=yR_rms(k)/ylp_R(k)
となる。
On the other hand, the signal that has passed through the low-pass filter (LPF: cutoff frequency Fc = 0.5 Hz) becomes a signal having a non-variable component. Assuming that the signal that has passed through the low-pass filter is ylp_R (k), the normalized signal yR_nom (k) is
yR_nom (k) = yR_rms (k) / ylp_R (k)
Will be.

同様に、赤外光に係る演算では、演算部5に入力する赤外光の時系列データyIR(k)を処理する。具体的には、バンドパスフィルタ(BPF:通過帯域0.5~3Hz)を通過した信号に対して二乗平均平方根を算出する。バンドパスフィルタを通過した信号をybpIR(k)とする。 Similarly, in the calculation related to infrared light, the time series data yIR (k) of infrared light input to the calculation unit 5 is processed. Specifically, the root mean square is calculated for a signal that has passed through a bandpass filter (BPF: pass band 0.5 to 3 Hz). The signal that has passed through the bandpass filter is defined as ybpIR (k).

二乗平均平方根(RMS)に算出は、バンドパスフィルタを通過した信号ybp_IR(k)からT秒前にバンドパスフィルタを通過した信号ybp_IR(k-N)までのデータを用いる。ここでNは、時間T秒の間のサンプル数で、サンプリング周波数をfsとすると、N=fs/Tの関係となる。 The calculation for the root mean square (RMS) uses the data from the signal ybp_IR (k) that passed through the bandpass filter to the signal ybp_IR (k—N) that passed through the bandpass filter T seconds ago. Here, N is the number of samples during the time T seconds, and when the sampling frequency is fs, the relationship is N = fs / T.

時間kにおけるT秒間の二乗平均平方根をyIR_rms(k)とすると、

Figure 2022087940000003

と、算出される。 Let yIR_rms (k) be the root mean square for T seconds at time k.
Figure 2022087940000003

Is calculated.

一方ローパスフィルタ(LPF:カットオフ周波数Fc=0.5Hz)を通過した信号は、非変動成分の信号となる。ローパスフィルタを通過した信号をylp_IR(k)とすると、規格化された信号yIR_nom(k)は、
yIR_nom(k)=yIR_rms(k)/ylp_IR(k)
となる。
On the other hand, the signal that has passed through the low-pass filter (LPF: cutoff frequency Fc = 0.5 Hz) becomes a signal having a non-variable component. Assuming that the signal that has passed through the low-pass filter is ylp_IR (k), the normalized signal yIR_nom (k) is
yIR_nom (k) = yIR_rms (k) / ylp_IR (k)
Will be.

次に比Rを算出する。比Rは上述の式(2)同様、
R=yR_nom(k)/yIR_nom(k)・・・(式3)
として算出される。
Next, the ratio R is calculated. The ratio R is the same as in the above equation (2).
R = yR_nom (k) / yIR_nom (k) ... (Equation 3)
Is calculated as.

この比Rと既知の酸素飽和度との関係を予め求めておくことで、比Rが決まれば測定対象の酸素飽和度を知ることができる。この比Rと既知の酸素飽和度の関係は、演算部5内あるいは比Rを出力する別の装置内に記憶させておけばよい。 By obtaining the relationship between this ratio R and the known oxygen saturation in advance, it is possible to know the oxygen saturation to be measured once the ratio R is determined. The relationship between the ratio R and the known oxygen saturation may be stored in the calculation unit 5 or in another device that outputs the ratio R.

T=2秒、N=200とした脈動の小さい部位である手首の実測値を図3に示す。手首の測定により得られる信号は変動成分の信号が小さく、ピーク値とボトム値が明瞭となっておらず、先に図5で説明したように従来の式(1)に従い算出する方法ではノイズが多くなる部位となっていた。これに対し式(3)に従い算出する本実施例では、図3に実線で示すようにノイズ少なくなっていることがわかる。比較のため、図5で示した従来方法による測定結果を破線で示している。 FIG. 3 shows the measured values of the wrist, which is a region where the pulsation is small, where T = 2 seconds and N = 200. The signal obtained by the wrist measurement has a small fluctuation component signal, and the peak value and bottom value are not clear. As explained earlier in FIG. 5, noise is generated by the method of calculating according to the conventional formula (1). It was a lot of parts. On the other hand, in this embodiment calculated according to the equation (3), it can be seen that the noise is reduced as shown by the solid line in FIG. For comparison, the measurement results by the conventional method shown in FIG. 5 are shown by broken lines.

このように本発明の酸素飽和度測定装置および酸素飽和度測定方法によると、ノイズが少ない比Rが算出され、この比Rと予め測定された酸素飽和度との関係から、測定対象の血中酸素飽和度を正確に求めることができる。 As described above, according to the oxygen saturation measuring device and the oxygen saturation measuring method of the present invention, a ratio R with less noise is calculated, and from the relationship between this ratio R and the oxygen saturation measured in advance, the blood to be measured is measured. The oxygen saturation can be calculated accurately.

次に第2の実施例について説明する。上述の第1の実施例で説明したように、本発明の酸素飽和度測定装置は、一般的な酸素飽和度測定装置と比較して演算部5の構成が相違し、この演算部5において本発明の酸素飽和度測定方法を実行している。通常演算部5には、複数の測定モードを記憶することが可能である。即ち酸素飽和度測定装置に、一般的な酸素飽和度測定方法に従う測定モードと、本発明の酸素飽和度測定方法に従う測定モードを切替え可能な酸素飽和度測定装置とすることが可能である。 Next, a second embodiment will be described. As described in the first embodiment described above, the oxygen saturation measuring device of the present invention has a different configuration of the calculation unit 5 as compared with the general oxygen saturation measuring device. The method for measuring oxygen saturation of the present invention is being carried out. The normal calculation unit 5 can store a plurality of measurement modes. That is, the oxygen saturation measuring device can be an oxygen saturation measuring device capable of switching between a measurement mode according to a general oxygen saturation measuring method and a measurement mode according to the oxygen saturation measuring method of the present invention.

指先や耳たぶのような脈動の大きな部位の測定においては、本発明の酸素飽和度測定方法に従う測定モードによる測定と一般的な酸素飽和度測定方法に従う測定モードによる測定とから得られるそれぞれの結果はほぼ同一となる。 In the measurement of large pulsating parts such as fingertips and ear pads, the results obtained from the measurement by the measurement mode according to the oxygen saturation measurement method of the present invention and the measurement by the measurement mode according to the general oxygen saturation measurement method are obtained. It will be almost the same.

そこで例えば、指先のような透過型で良好な測定を行うことができる部位について、透過型の装置を用い一般的な酸素飽和度測定方法に従う測定と、本発明の酸素飽和度測定方法に従う測定とを行い、両者の測定結果を比較して、両者の測定結果の乖離度合いにより測定結果の信頼性を確認することができる。あるいは、指先を透過型の装置を用い本発明の酸素飽和度測定方法に従う測定結果と、反射型の装置を用い本発明の酸素飽和度測定方法に従う測定結果とを比較して、同様に測定結果の信頼性を確認することができる。このとき発光部1は同一のLEDを用いても良い。このように本実施例によれば、酸素飽和度の測定結果を、酸素飽和度を求める以外に使用することも可能となる。 Therefore, for example, for a site such as a fingertip where good measurement can be performed with a permeation type, a measurement according to a general oxygen saturation measurement method using a permeation type device and a measurement according to the oxygen saturation measurement method of the present invention can be performed. , The measurement results of both can be compared, and the reliability of the measurement results can be confirmed by the degree of deviation between the measurement results of both. Alternatively, the measurement result according to the oxygen saturation measurement method of the present invention using the fingertip transmission type device is compared with the measurement result according to the oxygen saturation measurement method of the present invention using the reflection type device, and the measurement result is similarly compared. You can check the reliability of. At this time, the same LED may be used for the light emitting unit 1. As described above, according to this embodiment, it is possible to use the measurement result of oxygen saturation in addition to obtaining oxygen saturation.

上記説明したように本発明の酸素飽和度測定方法によれば、変動成分の信号が小さくピーク値とボトム値が明確に表れない場合でも、血中酸素飽和度を測定することが可能となる。なお当然ながら、本発明の酸素飽和度測定方法は、変動成分の信号のピーク値とボトム値が明瞭に表れる場合においても、従来の装置および方法と同様の測定結果を得ることができる。 As described above, according to the oxygen saturation measuring method of the present invention, it is possible to measure the blood oxygen saturation even when the signal of the fluctuating component is small and the peak value and the bottom value do not clearly appear. As a matter of course, the oxygen saturation measuring method of the present invention can obtain the same measurement results as the conventional apparatus and method even when the peak value and the bottom value of the signal of the fluctuating component clearly appear.

1:発光部、1:赤色LED、1IR:赤外LED、2:受光部、3:増幅部、4:アナログ/デジタル変換部、5:演算部 1: Light emitting part, 1 R : Red LED, 1 IR : Infrared LED, 2: Light receiving part, 3: Amplifying part, 4: Analog / digital conversion part, 5: Arithmetic unit

Claims (2)

少なくとも2つの異なる波長の光を生体組織に放射する発光部と、
前記生体組織を透過あるいは前記生体組織で反射した前記異なる波長の光を受光する受光部と、
該受光部で受光した光の変動成分の信号と非変動成分の信号との比をそれぞれ算出し、該算出結果の比から酸素飽和度を求める演算部と、を備えた酸素飽和度測定装置において、
前記演算部は、前記変動成分の信号の二乗平均平方根を算出し、該変動成分の信号の二乗平均平方根の信号と前記非変動成分の信号との比をそれぞれ算出し、該算出結果の比から酸素飽和度を求めることを特徴とする酸素飽和度測定装置。
A light emitting part that radiates light of at least two different wavelengths to living tissue,
A light receiving unit that receives light of the different wavelength that has passed through the living tissue or is reflected by the living tissue.
In an oxygen saturation measuring device provided with a calculation unit that calculates the ratio of the signal of the variable component and the signal of the non-variable component of the light received by the light receiving unit and obtains the oxygen saturation from the ratio of the calculation result. ,
The calculation unit calculates the root mean square of the signal of the variable component, calculates the ratio between the signal of the root mean square of the signal of the variable component and the signal of the non-variable component, respectively, and from the ratio of the calculation results. An oxygen saturation measuring device characterized by obtaining an oxygen saturation.
少なくとも2つの異なる波長の光を生体組織に照射し、前記生体組織を透過あるいは前記生体組織で反射した光を受光することで、受光した光の変動成分の信号と非変動成分の信号との比をそれぞれ算出し、該算出結果の比から酸素飽和度を求める酸素飽和度測定方法において、
前記変動成分の信号の二乗平均平方根を算出し、該変動成分の信号の二乗平均平方根の信号と前記非変動成分の信号との比をそれぞれ算出し、該算出結果の比から酸素飽和度を求めることを特徴とする酸素飽和度測定方法。
By irradiating a living tissue with light of at least two different wavelengths and receiving light transmitted through the living tissue or reflected by the living tissue, the ratio of the signal of the variable component and the signal of the non-variable component of the received light is received. In the oxygen saturation measurement method in which oxygen saturation is obtained from the ratio of the calculation results.
The root mean square of the signal of the variable component is calculated, the ratio of the root mean square signal of the signal of the variable component to the signal of the non-variable component is calculated, and the oxygen saturation is obtained from the ratio of the calculation results. A method for measuring oxygen saturation.
JP2020200089A 2020-12-02 2020-12-02 Oxygen saturation degree measuring device and oxygen saturation degree measuring method Pending JP2022087940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020200089A JP2022087940A (en) 2020-12-02 2020-12-02 Oxygen saturation degree measuring device and oxygen saturation degree measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020200089A JP2022087940A (en) 2020-12-02 2020-12-02 Oxygen saturation degree measuring device and oxygen saturation degree measuring method

Publications (1)

Publication Number Publication Date
JP2022087940A true JP2022087940A (en) 2022-06-14

Family

ID=81982308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020200089A Pending JP2022087940A (en) 2020-12-02 2020-12-02 Oxygen saturation degree measuring device and oxygen saturation degree measuring method

Country Status (1)

Country Link
JP (1) JP2022087940A (en)

Similar Documents

Publication Publication Date Title
US5285783A (en) Sensor, apparatus and method for non-invasive measurement of oxygen saturation
US5193543A (en) Method and apparatus for measuring arterial blood constituents
US20120165629A1 (en) Systems and methods of monitoring a patient through frequency-domain photo migration spectroscopy
US5485838A (en) Non-invasive blood pressure measurement device
US8221326B2 (en) Detection of oximetry sensor sites based on waveform characteristics
CN103381094B (en) Monitoring system and method for fetus pulse blood oxygen saturation
JP4830693B2 (en) Oxygen saturation measuring apparatus and measuring method
EP1273262A1 (en) Heart-sound detection apparatus and pulse-wave-propagation-velocity determination
JP2001178709A (en) Device for generating perfusion index of patient
US20050049469A1 (en) Pulse oximeter
US10874317B2 (en) Biological information measurement device
JP3107630B2 (en) Pulse oximeter
US20120310060A1 (en) Method of analyzing photon density waves in a medical monitor
JP2017140202A (en) Pulse wave detection device
JP6373511B2 (en) Optical analysis system and method
JP2958503B2 (en) Non-invasive blood pressure measurement device
JP2003235819A (en) Signal processing method and pulse wave signal processing method
JP2022087940A (en) Oxygen saturation degree measuring device and oxygen saturation degree measuring method
EP3434182B1 (en) System for monitoring the blood supply to the transplanted organ
JP6137321B2 (en) Biosensor
US10561375B2 (en) Pulse photometer and method for evaluating reliability of calculated value of blood light absorber concentration
JPH09215664A (en) Evaluator of autonomic nerve function
CN109890287B (en) Method for non-invasive determination of hemoglobin concentration and oxygen concentration in blood
JP5432848B2 (en) Pulse photometer and pulse rate identification method
JP2012024320A (en) Device and method for measuring biological signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230926

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20231107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240618