JP2022087703A - Virus deactivation device and air processing unit with the same - Google Patents

Virus deactivation device and air processing unit with the same Download PDF

Info

Publication number
JP2022087703A
JP2022087703A JP2020199790A JP2020199790A JP2022087703A JP 2022087703 A JP2022087703 A JP 2022087703A JP 2020199790 A JP2020199790 A JP 2020199790A JP 2020199790 A JP2020199790 A JP 2020199790A JP 2022087703 A JP2022087703 A JP 2022087703A
Authority
JP
Japan
Prior art keywords
heat
air
temperature
virus
residence time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020199790A
Other languages
Japanese (ja)
Inventor
秀一 西村
Shuichi Nishimura
貴之 丸山
Takayuki Maruyama
智之 鈴木
Tomoyuki Suzuki
総一郎 阪田
Soichiro Sakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichi Co Ltd
National Hospital Organization
Original Assignee
Dainichi Co Ltd
National Hospital Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichi Co Ltd, National Hospital Organization filed Critical Dainichi Co Ltd
Priority to JP2020199790A priority Critical patent/JP2022087703A/en
Publication of JP2022087703A publication Critical patent/JP2022087703A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a virus deactivation device capable of efficiently deactivating floating viruses in a short time and excellent in practicability without needing high-temperature heating or high-temperature exposure for an extended period of a whole chamber and further without using a special device or material.SOLUTION: A virus deactivation device is configured by providing a heat source 2 and heat-holding treatment space 3 for heat-holding an introduction air over the temperature and detention time of a prescribed threshold value to a heating treatment part 1 provided to an air passage part which introduces the air capable of including viruses and treats the introduction air to discharge.SELECTED DRAWING: Figure 2

Description

本発明は、たとえば、空気中のウイルスを加熱して不活化させるウイルス不活化装置並びにウイルス不活化装置付きの暖房装置などの空気処理装置に関するものである。 The present invention relates to, for example, an air treatment device such as a virus inactivating device that heats and inactivates a virus in the air and a heating device equipped with the virus inactivating device.

浮遊ウイルスの不活化は、加熱、紫外線、オゾン、光触媒、湿度など様々な手法によりおこなうことが検討、研究されている。
たとえば、室温下であれば湿度制御により不活化する研究がなされている。
Inactivation of airborne viruses has been investigated and studied by various methods such as heating, ultraviolet rays, ozone, photocatalyst, and humidity.
For example, research has been conducted to inactivate it by controlling humidity at room temperature.

また、加熱により不活化できることは一般的知見として予想できるが、先行技術としてたとえば100℃未満の温度で30分や1時間など比較的低温で長時間加熱すれば不活化できることが報告されている研究事例もある。 In addition, it can be expected as a general finding that it can be inactivated by heating, but as a prior art, it has been reported that it can be inactivated by heating at a relatively low temperature such as 30 minutes or 1 hour at a temperature of less than 100 ° C for a long time. There are also cases.

またたとえば、ウイルスを捕捉することなく、加熱空間および放電空間を通過させることで、ウイルスを不活化させる装置も提案されている(特許文献1特許第5683247号公報)。 Further, for example, a device for inactivating a virus by passing it through a heating space and a discharging space without capturing the virus has also been proposed (Patent Document 1, Patent No. 5683247).

また、本発明者により、人が立ち入る閉鎖空間内で室温と湿度を制御することによりこの空間全体のウイルスをこの空間全体を高温に加熱することなく不活化させる装置も提案されている(特許文献2特開2019-92835号公報)。 The present inventor has also proposed a device for inactivating a virus in the entire space without heating the entire space to a high temperature by controlling the room temperature and humidity in a closed space where a person enters (Patent Document). 2 Japanese Patent Application Laid-Open No. 2019-92835).

しかしながら、たとえば室内を高温にすることなく自動的に効率よく短時間で浮遊ウイルスを不活化できる装置の実現・実用化には至っていない。また100℃以上の高温での不活化のための温度、その温度での不活化に必要な加熱保持時間(滞留時間)について調査、研究した事例も多くはない。 However, for example, a device that can automatically and efficiently inactivate airborne viruses in a short time without raising the temperature of the room has not been realized or put into practical use. In addition, there are not many cases of investigating and researching the temperature for inactivation at a high temperature of 100 ° C. or higher and the heating holding time (residence time) required for inactivation at that temperature.

特許第5683247号公報Japanese Patent No. 5683247 特開2019-92835号公報Japanese Unexamined Patent Publication No. 2019-92835

本発明は、室内全体を高温に加熱したり長時間の高温暴露などをおこなわなくても、さらに特殊な装置や特殊材料を用いなくても、浮遊ウイルスを短時間で効率的よく不活化できる実用性に優れたウイルス不活化装置並びにウイルス不活化装置付き空気処理装置を提供することを目的としている。 INDUSTRIAL APPLICABILITY According to the present invention, a floating virus can be efficiently and efficiently inactivated in a short time without heating the entire room to a high temperature or exposing it to a high temperature for a long time, and without using a special device or a special material. It is an object of the present invention to provide a virus inactivating device having excellent properties and an air treatment device with a virus inactivating device.

添付図面を参照して本発明の要旨を説明する。
ウイルスを含み得る空気を導入しこの導入空気を処理し排出する空気流路部に、この導入空気を加熱処理する加熱処理部1が設けられた構成とされ、この加熱処理部1は、ウイルスを不活化させる所定の閾値の温度および滞留時間以上の加熱処理条件で、流路空間内の前記導入空気を加熱する熱源2と、この閾値の温度および滞留時間以上の加熱処理条件で、流路空間内の前記導入空気を前記熱源2により加熱保持する熱保持処理空間3とが設けられた構成とされていることを特徴とするウイルス不活化装置に係るものである。
The gist of the present invention will be described with reference to the accompanying drawings.
A heat treatment unit 1 for heat-treating the introduced air is provided in an air flow path portion for introducing air containing a virus and treating and discharging the introduced air, and the heat treatment unit 1 is configured to heat the introduced air. A heat source 2 that heats the introduced air in the flow path space under heat treatment conditions of a predetermined threshold temperature and residence time or more to be inactivated, and a flow path space under heat treatment conditions of this threshold temperature and residence time or more. The present invention relates to a virus inactivating device, which is provided with a heat holding treatment space 3 for heating and holding the introduced air inside by the heat source 2.

また前記加熱処理部1での加熱処理条件となる前記閾値の温度および滞留時間は、温度は100℃以上、滞留時間は0.5秒以下であり、この加熱処理条件を満たす温度および滞留時間以上で前記導入空気が加熱処理されるように前記熱源2および前記熱保持処理空間3が構成されていることを特徴とする請求項1記載のウイルス不活化装置に係るものである。 Further, the temperature and residence time of the threshold value, which is the heat treatment condition in the heat treatment unit 1, are 100 ° C. or higher and the residence time is 0.5 seconds or less, and the temperature and residence time satisfying this heat treatment condition or more. The present invention relates to the virus inactivating device according to claim 1, wherein the heat source 2 and the heat retention processing space 3 are configured so that the introduced air is heat-treated.

また前記加熱処理部1での加熱処理条件となる前記閾値の温度および滞留時間は、温度が高い程滞留時間は短くなる予め知得された温度と滞留時間との組み合わせ加熱処理条件で、この加熱処理条件を満たす温度および滞留時間以上で前記導入空気が加熱処理されるように前記熱源2および前記熱保持処理空間3が構成されていることを特徴とする請求項1または2に記載のウイルス不活化装置に係るものである。 Further, the temperature and residence time of the threshold value, which is the heat treatment condition in the heat treatment unit 1, are such that the higher the temperature, the shorter the residence time. The virus-free according to claim 1 or 2, wherein the heat source 2 and the heat retention treatment space 3 are configured so that the introduced air is heat-treated at a temperature and a residence time that satisfy the treatment conditions. It is related to the activation device.

また前記熱保持処理空間3は、前記導入空気が通過する流路部であり、前記熱源2により加熱された高温状態が保持される滞留経路長を有する加熱空気滞留部に構成され、この加熱空気滞留部である熱保持処理空間3の前記導入空気の導入部から排出部までの流路距離を長く設定することで、この熱保持処理空間3内の前記導入空気を前記加熱処理条件の温度以上で加熱保持させる前記滞留時間を長く設定可能な構成とされていることを特徴とする請求項1~3のいずれか1項に記載のウイルス不活化装置に係るものである。 Further, the heat retention processing space 3 is a flow path portion through which the introduced air passes, and is configured as a heated air retention portion having a retention path length in which a high temperature state heated by the heat source 2 is maintained. By setting a long flow path distance from the introduction portion to the discharge portion of the introduced air of the heat retention treatment space 3 which is the retention portion, the introduced air in the heat retention treatment space 3 is equal to or higher than the temperature of the heat treatment condition. The present invention relates to the virus inactivating device according to any one of claims 1 to 3, wherein the residence time to be heated and held in the air is set to be long.

また前記熱源2は、暖房または加湿を行うための熱源にも用いられている構成とされていることを特徴とする請求項1~4のいずれか1項に記載のウイルス不活化装置に係るものである。 The virus inactivating device according to any one of claims 1 to 4, wherein the heat source 2 is also configured to be used as a heat source for heating or humidifying. Is.

また前記熱源2の加熱能力または前記導入空気を前記加熱処理部に導入させる送風装置4の送風能力を制御することで、前記加熱処理部1でのウイルス不活化能力を一時的に高める加熱処理制御部が備えられていることを特徴とする請求項1~5のいずれか1項に記載のウイルス不活化装置係るものである。 Further, by controlling the heating capacity of the heat source 2 or the ventilation capacity of the blower device 4 for introducing the introduced air into the heat treatment unit, the heat treatment control for temporarily increasing the virus inactivating capacity of the heat treatment unit 1. The present invention relates to the virus inactivating device according to any one of claims 1 to 5, wherein the unit is provided.

また前記加熱処理部1の前記加熱処理空間3に、放熱を減じる断熱構造5が設けられていることを特徴とする請求項1~6のいずれか1項に記載のウイルス不活化装置に係るものである。 The virus inactivating device according to any one of claims 1 to 6, wherein a heat insulating structure 5 for reducing heat dissipation is provided in the heat treatment space 3 of the heat treatment unit 1. Is.

また室内の暖房、冷房、空調、空気清浄、加湿、除湿、送風、撹拌、換気または外気導入などの空気処理をおこなう空気処理部の空気流路部に前記加熱処理部1が設けられて、前記請求項1~7のいずれか1項に記載のウイルス不活化装置が備えられていることを特徴とするウイルス不活化装置付き空気処理装置に係るものである。 Further, the heat treatment unit 1 is provided in the air flow path portion of the air treatment unit that performs air treatment such as indoor heating, cooling, air conditioning, air cleaning, humidification, dehumidification, ventilation, stirring, ventilation, or introduction of outside air. The present invention relates to an air treatment device with a virus inactivating device, which comprises the virus inactivating device according to any one of claims 1 to 7.

本発明は上述のように構成したから、不活化のための温度とその温度に加熱保持する滞留時間の閾値以上、すなわち見出した閾値の温度および滞留時間以上の加熱処理条件で導入空気を加熱処理して導入空気中のウイルスを不活化し排出することで、たとえば室内全体を高温に加熱したり長時間の高温暴露などをおこなわなくても、さらに特殊な装置や特殊材料を用いなくても、浮遊ウイルスを短時間で効率的よく不活化できる実用性に優れたウイルス不活化装置となる。 Since the present invention is configured as described above, the introduced air is heat-treated under the heat treatment conditions of the temperature for inactivation and the residence time to be heated and held at that temperature, that is, the found threshold temperature and the residence time or more. By inactivating and discharging the virus in the introduced air, for example, without heating the entire room to a high temperature or exposing it to a high temperature for a long time, and without using special equipment or materials. It is a highly practical virus inactivating device that can efficiently and efficiently inactivate airborne viruses in a short time.

また、この装置を室内の暖房、冷房、空調、空気清浄、加湿、除湿、送風、撹拌、換気または外気導入などの空気処理をおこなう暖房装置などの空気処理装置に設ければ、たとえば室内の暖房などをおこないながら同時に室内の浮遊ウイルスを不活化でき、その室内のほぼすべての空気が本装置に導入されれば、暖房しながら比較的短時間(所定時間)で室内の浮遊ウイルスをほぼ不活化できることとなる実用性に優れたウイルス不活化装置付き空気処理装置となる。 Further, if this device is provided in an air treatment device such as a heating device that performs air treatment such as indoor heating, cooling, air conditioning, air purification, humidification, dehumidification, ventilation, stirring, ventilation, or introduction of outside air, for example, indoor heating. If almost all the air in the room is introduced into this device, the airborne virus in the room can be almost inactivated in a relatively short time (predetermined time) while heating. It will be an air treatment device with a virus inactivating device that is excellent in practicality.

本実施例の概略構成説明斜視図である。It is a schematic configuration explanatory perspective view of this Example. 本実施例の概略構成説明断面図である。It is sectional drawing explaining the schematic structure of this Example. 本実施例の閾値を見出すためのウイルス不活化試験装置(シュミレーター)の概略構成説明図である。It is a schematic block diagram of the virus inactivation test apparatus (simulator) for finding the threshold value of this Example.

本発明の最適な実施形態を図面に基づいて本発明の作用を示し簡単に説明する。 The optimum embodiment of the present invention will be briefly described by showing the operation of the present invention based on the drawings.

たとえば図1,2に示すように、ウイルスを含み得る空気は、たとえば送風装置4により空気流路部に設けられている加熱処理部1に導入され、加熱処理されて排出されるが、この導入空気は、前記加熱処理部1でウイルスを不活化させる所定の閾値の温度および滞留時間以上の加熱処理条件で加熱処理される。 For example, as shown in FIGS. 1 and 2, the air containing a virus is introduced into the heat treatment unit 1 provided in the air flow path portion by, for example, the blower 4, and is heat-treated and discharged. The air is heat-treated in the heat-treating unit 1 under heat treatment conditions of a predetermined threshold temperature for inactivating the virus and a residence time or more.

たとえばこの熱保持処理空間3は、送風装置4により取り込まれた前記導入空気が通過する流路部であり、前記熱源2により加熱された高温状態が所定時間保持される滞留経路長を有する加熱空気滞留部に構成され、たとえばこの加熱空気滞留部である熱保持処理空間3の前記導入空気の導入部から排出部までの流路距離を設定することで、この熱保持処理空間3内の前記導入空気を前記加熱処理条件の温度以上で所定時間加熱保持させることができる。 For example, the heat retention processing space 3 is a flow path portion through which the introduced air taken in by the blower 4 passes, and has a retention path length in which the high temperature state heated by the heat source 2 is maintained for a predetermined time. The introduction in the heat retention processing space 3 is configured in the retention portion, for example, by setting the flow path distance from the introduction portion to the discharge portion of the introduction air of the heat retention treatment space 3 which is the heating air retention portion. The air can be heated and held for a predetermined time at a temperature equal to or higher than the heat treatment condition.

したがって、導入空気は、加熱処理部1の熱源2によりウイルスを不活化させる所定の温度と滞留時間の組み合わせである閾値のその温度以上で加熱されるが、さらに加熱処理部1の熱保持処理空間3を通過することでこの閾値の滞留時間以上その温度に加熱保持されることになり、導入空気内のウイルスは不活化され排出されることとなる。 Therefore, the introduced air is heated by the heat source 2 of the heat treatment unit 1 at a temperature equal to or higher than the threshold temperature which is a combination of a predetermined temperature and the residence time for inactivating the virus, but is further heated in the heat retention treatment space of the heat treatment unit 1. By passing through No. 3, the virus is heated and held at that temperature for the residence time of this threshold or longer, and the virus in the introduced air is inactivated and discharged.

ゆえに、たとえば本装置を室内に設置し運転を継続すれば、室内全体の浮遊ウイルスを自動的に比較的短時間に不活化でき、室内を高温に加熱することでしばらくその室内を利用できなくなるようなことはなく、また長時間の高温暴露などをおこなわなくてもよく、さらに特殊な装置や特殊材料を用いなくてもよいから、たとえば室内に居ながらにしてあるいはその室内を利用したまま室内の浮遊ウイルスを自動的に短時間で効率的よく不活化できる実用性に優れたウイルス不活化装置を容易に実現できることとなる。 Therefore, for example, if this device is installed indoors and the operation is continued, the airborne virus in the entire room can be automatically inactivated in a relatively short time, and the room cannot be used for a while by heating the room to a high temperature. Nothing happens, it is not necessary to expose it to high temperature for a long time, and it is not necessary to use special equipment or materials. It is possible to easily realize a highly practical virus inactivating device that can automatically and efficiently inactivate a floating virus in a short time.

言い換えると、本発明は、実験、研究、考察を重ね、このように不活化できる適切な閾値、すなわち不活化できる温度および滞留時間の組み合わせ条件を見出したことで、加熱処理部1の前記熱源2と熱保持処理空間3を、この条件で加熱処理が実現できるように設計して加熱処理部1を構成し、この加熱処理部1を空気流路部に設けることで、導入空気中の浮遊ウイルスを比較的短時間で効率的よく不活化できる本装置を実現できるものである。 In other words, the present invention has repeatedly experimented, researched, and considered to find an appropriate threshold value for inactivation, that is, a combination condition of the temperature and residence time for inactivation, and thus the heat source 2 of the heat treatment unit 1. The heat retention treatment space 3 is designed so that the heat treatment can be realized under these conditions to form the heat treatment unit 1, and by providing the heat treatment unit 1 in the air flow path portion, the airborne virus in the introduced air is provided. It is possible to realize this device that can efficiently and efficiently inactivate the virus in a relatively short time.

またたとえば、本装置を室内の暖房、冷房、空調、空気清浄、加湿、除湿、換気、撹拌、送風または外気導入などの空気処理をおこなう暖房装置などの空気処理装置に設ければ、たとえば室内の暖房などをおこないながら同時に室内の浮遊ウイルスを徐々に不活化でき、その室内のほぼすべての空気が本装置に導入されれば、暖房しながら比較的短時間(所定時間)で室内の浮遊ウイルスをほぼ不活化できることとなる実用性に優れたウイルス不活化装置付き空気処理装置を安価に実現できることとなる。 Further, for example, if this device is provided in an air treatment device such as a heating device that performs air treatment such as indoor heating, cooling, air conditioning, air cleaning, humidification, dehumidification, ventilation, stirring, ventilation, or introduction of outside air, for example, indoors. If the airborne virus in the room can be gradually inactivated at the same time while heating, and if almost all the air in the room is introduced into this device, the airborne virus in the room can be removed in a relatively short time (predetermined time) while heating. It is possible to inexpensively realize an air treatment device with a virus inactivating device, which is excellent in practicality and can be almost inactivated.

本発明の具体的な実施例1について図面に基づいて説明する。 Specific Example 1 of the present invention will be described with reference to the drawings.

本実施例では、ウイルスを含み得る空気を送風装置4により導入し排出する空気流路部に、この導入空気を加熱処理する加熱処理部1を設けた構成としているが、たとえば浮遊ウイルスを除去したい空間に本装置を配置または別の目的の暖房装置などの空気処理装置に本装置を設けて、その室内の空気を取り込む運転を継続することでその空間内の浮遊ウイルスを徐々に不活化していき、その室内のほぼすべての空気が本装置に導入されれば、所定時間後にはその空間の浮遊ウイルスをほぼすべて不活化できるように構成している。 In this embodiment, the air flow path portion for introducing and discharging the air containing the virus by the blower 4 is provided with the heat treatment unit 1 for heat-treating the introduced air. For example, it is desired to remove the airborne virus. By arranging this device in the space or installing this device in an air treatment device such as a heating device for another purpose and continuing the operation of taking in the air in the room, the airborne virus in the space is gradually inactivated. If almost all the air in the room is introduced into this device, almost all the airborne viruses in the space can be inactivated after a predetermined time.

具体的には、この加熱処理部1に、ウイルスを不活化させる所定の閾値の温度および滞留時間以上の加熱処理条件で、流路空間内の前記導入空気を加熱する熱源2と、この閾値の温度および滞留時間以上の加熱処理条件で、流路空間内の前記導入空気を前記熱源2により加熱保持する熱保持処理空間3とを設けた構成としている。 Specifically, the heat treatment unit 1 has a heat source 2 that heats the introduced air in the flow path space under heat treatment conditions of a predetermined threshold temperature for inactivating the virus and a residence time or more, and a heat source 2 of this threshold. The heat holding treatment space 3 is provided in which the introduced air in the flow path space is heated and held by the heat source 2 under the heat treatment conditions of the temperature and the residence time or more.

すなわち、この導入空気は送風装置4により加熱処理部1に導入され、熱源2によりウイルスを不活化させる所定の温度および滞留時間の組み合わせである閾値のその温度以上で加熱されるが、さらに加熱処理部1の熱保持処理空間3を通過させることで、この熱保持処理空間3の加熱温度、流路断面積、流路長(流路距離)、断熱構造5の構成によりこの閾値の温度でこの滞留時間以上自動的に(通過するだけで)加熱保持されてウイルスは不活化され排出されるように構成している。 That is, the introduced air is introduced into the heat treatment unit 1 by the blower 4, and is heated by the heat source 2 at a temperature equal to or higher than the threshold temperature which is a combination of a predetermined temperature and a residence time for inactivating the virus. By passing through the heat holding treatment space 3 of the part 1, the heating temperature of the heat holding treatment space 3, the flow path cross-sectional area, the flow path length (flow path distance), and the configuration of the heat insulating structure 5 allow the temperature at this threshold temperature. It is configured to be automatically heated and held for longer than the residence time (just by passing through) so that the virus is inactivated and discharged.

また本実施例の前記熱保持処理空間3は、前述のように導入空気が通過する流路部であり、前記熱源2により加熱された高温状態が保持される流路長(滞留経路長)を有する加熱空気滞留部に構成され、この加熱空気滞留部である熱保持処理空間3の前記導入空気の導入部から排出部までの流路距離を長く設定することで、この熱保持処理空間3内の前記導入空気を前記加熱処理条件の温度以上で加熱保持させる前記滞留時間を長く設定可能な構成としている。 Further, the heat retention processing space 3 of this embodiment is a flow path portion through which the introduced air passes as described above, and has a flow path length (retention path length) in which the high temperature state heated by the heat source 2 is maintained. By setting a long flow path distance from the introduction portion to the discharge portion of the introduced air of the heat retention treatment space 3 which is configured as the heated air retention portion and has the heating air retention portion, the inside of the heat retention treatment space 3 The residence time for keeping the introduced air heated and held at a temperature equal to or higher than the heat treatment condition can be set for a long time.

したがって、送風装置4により筐体内に取り込まれた導入空気が熱源2により加熱されつつ熱保持処理空間3を通過することで、導入空気のすべてがこの加熱処理条件を満たすように自動的に加熱保持される構成としたため、たとえば室内の空気が順次導入され順次その導入空気内のウイルスが不活化され排出される運転を継続し、その室内のほぼすべての空気が本装置に導入されれば、ほぼすべての浮遊ウイルスが不活化されることとなるように構成している。 Therefore, the introduced air taken into the housing by the blower 4 passes through the heat holding treatment space 3 while being heated by the heat source 2, so that all of the introduced air is automatically heated and held so as to satisfy this heat treatment condition. For example, if the air in the room is introduced in sequence and the virus in the introduced air is inactivated and discharged continuously, and almost all the air in the room is introduced into this device, almost all of the air in the room is introduced. It is configured so that all airborne viruses will be inactivated.

また本実施例では、後述する試験装置(シミュレーター)により予め前記加熱処理部1での加熱処理条件を見出したもので、この加熱処理条件となる前記閾値の温度および滞留時間は、温度は100℃以上、滞留時間は0.5秒以下で、温度が高い程滞留時間は短くなる温度と滞留時間との組み合わせ加熱処理条件としている。具体的には、たとえばインフルエンザウイルスの場合、180℃の温度で滞留時間0.17秒以上とした場合はウイルスの失活率は99%以上、またたとえば同じ温度で滞留時間0.06秒以上ならば失活率90%以上、またたとえば150℃の温度の場合は滞留時間0.10秒で失活率90%以上、130℃の温度の場合でも滞留時間0.17秒で失活率90%以上、で室内のウイルスを不活化できることが確認できた。さらには、このような試験結果を基にウイルスの不活化能力を発揮できるポイントを推定した結果、100℃以上、0.5秒以下という閾値を見出すことができた。 Further, in this embodiment, the heat treatment conditions in the heat treatment unit 1 are found in advance by a test apparatus (simulator) described later, and the temperature and residence time of the threshold value, which is the heat treatment conditions, are 100 ° C. As described above, the residence time is 0.5 seconds or less, and the higher the temperature, the shorter the residence time. The combination of the temperature and the residence time is used as the heat treatment condition. Specifically, for example, in the case of influenza virus, if the residence time is 0.17 seconds or more at a temperature of 180 ° C., the virus inactivation rate is 99% or more, and if the residence time is 0.06 seconds or more at the same temperature, for example. For example, the deactivation rate is 90% or more, for example, at a temperature of 150 ° C, the deactivation rate is 90% or more with a residence time of 0.10 seconds, and even at a temperature of 130 ° C, the deactivation rate is 90% with a residence time of 0.17 seconds. With the above, it was confirmed that the virus in the room can be inactivated. Furthermore, as a result of estimating the points at which the virus inactivating ability can be exerted based on such test results, it was possible to find a threshold value of 100 ° C. or higher and 0.5 seconds or lower.

すなわち、この試験結果からも、この程度の高温な熱源2の実装は容易であり、またその温度に加熱保持させる滞留時間が0.5秒以下ならば実用化は可能であるから、熱保持処理空間3の構造や断熱構造の設計により前記不活化能力を発揮できる閾値以上の加熱処理部1の実用化は可能であることが確認できたといえる。 That is, from this test result, it is easy to mount the heat source 2 having such a high temperature, and if the residence time of heating and holding at that temperature is 0.5 seconds or less, it can be put into practical use. Therefore, the heat holding process is possible. It can be said that it was confirmed that the heat treatment unit 1 having a temperature equal to or higher than the threshold value capable of exerting the inactivation ability can be put into practical use by designing the structure of the space 3 and the heat insulating structure.

この試験結果から本実施例では、99%以上ウイルスを不活化できる温度180℃、滞留時間0.17秒を閾値として見出し、この閾値以上に加熱保持できる加熱処理条件を満たす加熱処理部1に構成している。 From this test result, in this example, a temperature of 180 ° C. that can inactivate a virus by 99% or more and a residence time of 0.17 seconds are found as threshold values, and the heat treatment unit 1 is configured to satisfy the heat treatment condition that can be heated and held above this threshold value. is doing.

具体的には、図示したように、筐体(外装体)にこの筐体内に空気(外気)を取り込む送風装置4を設け、この送風装置4により取り込まれた導入空気の空気流路部に、この閾値の180℃以上に導入空気を加熱できるヒーターなどを採用した熱源2と、この熱源2で180℃以上に加熱された高温状態を通過するだけで0.17秒以上保持する流路距離(滞留経路長)を有する熱保持処理空間3とで構成した加熱処理部1を設けた構成としている。 Specifically, as shown in the figure, a ventilation device 4 for taking in air (outside air) in the housing is provided in the housing (exterior body), and an air flow path portion of the introduced air taken in by the ventilation device 4 is provided. A heat source 2 that employs a heater that can heat the introduced air above this threshold of 180 ° C, and a flow path distance that holds for 0.17 seconds or more just by passing through a high temperature state heated to 180 ° C or higher by this heat source 2 ( The heat treatment unit 1 is provided with the heat retention treatment space 3 having the retention path length).

さらに説明すると、図2に図示した本実施例は、筐体(外装体)内に断熱材で囲んで断熱構造5を施した加熱処理筐体を加熱処理部1として設け、この加熱処理部1の導入口に送風装置4を設けるとともに熱源2を配設し、排出口までの間に邪魔板などを設け左右複数の分岐路としたりして、迂回、蛇行、螺旋などにより滞留経路長を長く設計した滞留流路部を形成し、この滞留流路部を通過する導入空気が熱源2で180℃以上に加熱され且つ断熱構造5で冷却を防ぎつつその温度に保持される流路長が長く確保される流路となる熱保持処理空間3を形成し、この断熱状態にして熱源2による高温状態が保持されるように構成した熱保持処理空間3を送風装置4により導入空気が導入、通過、排出することで、この導入空気はすべて180℃以上で0.17秒以上保持されて排出されるように構成している。 Further, in the present embodiment illustrated in FIG. 2, a heat treatment housing having a heat insulating structure 5 surrounded by a heat insulating material is provided as the heat treatment unit 1 in the housing (exterior body), and the heat treatment unit 1 is provided. A blower 4 is provided at the introduction port of the air, a heat source 2 is provided, and a baffle plate or the like is provided between the inlet and the like to form a plurality of left and right branch paths. The designed stagnant flow path is formed, and the introduced air passing through this stagnant flow path is heated to 180 ° C. or higher by the heat source 2, and the heat insulating structure 5 prevents cooling while maintaining the flow path length at that temperature for a long time. The air introduced by the blower 4 is introduced and passed through the heat holding treatment space 3 which is configured to form the heat holding treatment space 3 which is the secured flow path and to maintain the high temperature state by the heat source 2 in this heat insulating state. By discharging, all of the introduced air is held at 180 ° C. or higher for 0.17 seconds or longer and discharged.

すなわち本実施例は、このような加熱条件を満たす加熱領域となる熱保持処理空間3を空気流路部に設け、たとえばこの流路断面積を小さく、長さを蛇行、迂回路などに形成して流路長を長くし、さらに断熱構造5を施すことで、この加熱領域(熱保持処理空間3)での温度が容易に180℃以上に保持されて導入空気のすべてが180℃以上で0.17秒以上加熱保持され、浮遊ウイルスをほぼすべてこの熱により不活化できるように構成している。 That is, in this embodiment, a heat retention processing space 3 that is a heating region satisfying such a heating condition is provided in the air flow path portion, and for example, the cross-sectional area of the flow path is made small and the length is formed in a meandering or detour. By lengthening the flow path length and further providing the heat insulating structure 5, the temperature in this heating region (heat retention treatment space 3) is easily maintained at 180 ° C. or higher, and all of the introduced air is 0 at 180 ° C. or higher. It is heat-held for 17 seconds or longer, and is configured so that almost all airborne viruses can be inactivated by this heat.

したがって、繰り返しとなるが、本実施例の加熱処理部1の熱保持処理空間3は、このように構成することで、ウイルスを含み得る空気を取り込んで通過させることで、この導入空気を180℃以上に加熱するだけでなく、この180℃以上で0.17秒以上加熱保持できる長さの加熱領域(加熱空気滞留部)に構成している。 Therefore, again, the heat retention treatment space 3 of the heat treatment unit 1 of the present embodiment is configured in this way, and by taking in and passing air that may contain a virus, the introduced air is passed through at 180 ° C. In addition to heating above, it is configured in a heating region (heated air retention portion) having a length that can be heated and held at 180 ° C. or higher for 0.17 seconds or longer.

またこの加熱領域を断熱構造5で囲めば、放熱が抑えられるため省エネルギーも図れ、またその長さも短く設計できたり、また風量を上げても閾値以上の加熱処理条件を満たすことができるため、不活化能力が向上し一層短時間で不活化できることとなる。 Further, if this heating region is surrounded by the heat insulating structure 5, energy saving can be achieved because heat dissipation is suppressed, the length can be designed to be short, and even if the air volume is increased, the heat treatment condition equal to or higher than the threshold value can be satisfied. The activation ability is improved and it can be inactivated in a shorter time.

このように実験、研究、考察をおこなうことにより、対象となるウイルスが所定の失活率で不活化できる温度および滞留時間の閾値が見出され、この閾値以上の温度および滞留時間、すなわちこの組み合わせの温度および滞留時間以上の加熱処理条件で、前記導入空気が加熱処理されるように前記熱源2と前記熱保持処理空間3を構成することとなる。 Through such experiments, research, and consideration, a threshold of temperature and residence time at which the target virus can be inactivated at a predetermined inactivation rate was found, and the temperature and residence time above this threshold, that is, the combination thereof. The heat source 2 and the heat retention treatment space 3 are configured so that the introduced air is heat-treated under the heat treatment conditions of the above temperature and the residence time.

また、本実施例では、前記熱源2の加熱能力または前記導入空気を前記加熱処理部1に導入させる送風装置4の送風能力を制御することで、前記加熱処理部1でのウイルス不活化能力を一時的に高める加熱処理制御部を備えている。 Further, in this embodiment, by controlling the heating capacity of the heat source 2 or the ventilation capacity of the blower device 4 for introducing the introduced air into the heat treatment unit 1, the virus inactivating capacity of the heat treatment unit 1 is increased. It is equipped with a heat treatment control unit that temporarily increases the heat treatment.

たとえば具体的には、実験・試験で取得した閾値以上の温度および滞留時間以上の加熱処理条件を維持した状態で、風量を上げることで、不活化性能を一時的に高めることができるように送風装置4に送風量制御装置を設けた構成としている。 For example, specifically, the inactivation performance can be temporarily improved by increasing the air volume while maintaining the temperature above the threshold value acquired in the experiment / test and the heat treatment condition at least the residence time. The device 4 is provided with an air flow rate control device.

同様に熱源2による加熱温度を上げる既存の熱源制御装置を用いて不活化性能を調整してさらに一時的に熱源2の調整によっても高めることができるように構成している。 Similarly, the inactivation performance is adjusted by using an existing heat source control device that raises the heating temperature by the heat source 2, and the inactivation performance can be further temporarily increased by adjusting the heat source 2.

また、たとえば導入空気や室内の空気の浮遊ウイルス量を測定するウイルス検知装置を備えて、この検知装置によりウイルスが浮遊している状況と検知したら、前記制御装置の作動により不活化性能を高めるように(強モードに)自動制御する構成としてもよい。 In addition, for example, a virus detection device that measures the amount of airborne viruses in the introduced air or indoor air is provided, and if a virus is detected to be floating by this detection device, the inactivation performance can be improved by operating the control device. It may be configured to be automatically controlled (in strong mode).

また、たとえば室温の部屋内で相対湿度が40%RH以下の乾燥状態ではウイルスが失活しにくくなっているので(空気中の感染価が高い状態)、湿度センサーを設けて、この湿度センサーで室内の相対湿度が所定値以下、たとえば40%RH以下となり室内乾燥状態を検知した場合に、強モードに自動制御する構成としてもよい。 Also, for example, in a room at room temperature in a dry state with a relative humidity of 40% RH or less, the virus is less likely to be inactivated (a state where the infectivity in the air is high), so a humidity sensor is provided and this humidity sensor is used. When the relative humidity in the room becomes a predetermined value or less, for example, 40% RH or less and a dry state in the room is detected, the configuration may be such that the mode is automatically controlled to the strong mode.

また、たとえばパーティクルカウンタを設けて、このパーティクルカウンタで所定値以上の塵埃濃度となり人が密な状態であると検知した場合に、強モードに自動制御する構成としてもよい。 Further, for example, a particle counter may be provided, and when the particle counter detects that the dust concentration is equal to or higher than a predetermined value and a person is in a dense state, the particle counter may be automatically controlled to the strong mode.

また室内の暖房、冷房、空調、空気清浄、加湿、除湿、送風、撹拌、換気または外気導入などの空気処理をおこなう空気処理部への空気流路部に前記加熱処理部1を設けて、この空気処理装置に図示したような本装置を設けてもよい。 Further, the heat treatment unit 1 is provided in the air flow path portion to the air treatment unit that performs air treatment such as indoor heating, cooling, air conditioning, air cleaning, humidification, dehumidification, ventilation, stirring, ventilation, or introduction of outside air. The air treatment device may be provided with the present device as shown in the figure.

この場合たとえば前記熱源2は、暖房を行うための熱源を用い、送風装置4も暖房のための送風装置を用いた構成とし、室内の暖房を行う暖房装置などの空気処理装置の空気流路部に本装置を設けて、室内の暖房をおこないながら同時に室内の浮遊ウイルスを徐々に不活化していき、暖房しながら比較的短時間(所定時間)で室内のウイルスを効率よく不活化できるウイルス不活化装置付き暖房装置を安価に実現できることとなる。 In this case, for example, the heat source 2 uses a heat source for heating, and the blower device 4 also uses a blower for heating, and the air flow path portion of an air treatment device such as a heating device for heating the room. This device is installed in the room to gradually inactivate airborne viruses in the room while heating the room, and to efficiently inactivate the viruses in the room in a relatively short time (predetermined time) while heating. A heating device with an activation device can be realized at low cost.

以上のように本実施例では、失活率99%以上の浮遊ウイルス不活化効果を期待できる閾値以上の加熱処理条件を満足する熱源2と熱保持処理空間3を設けた加熱処理部1に構成することで、たとえば暖房などしながら室内浮遊ウイルスを自動的に比較的短時間で99%以上不活化でき、特殊な部品や薬剤などを用いないため、加熱と送風のみの単純な構成でも実現可能で、製造コストを抑え低価格で実現可能であり、またこのように閾値以上の温度および滞留時間を確保できれば、それ以上の加熱は不要で、省エネルギーも可能な構成である。 As described above, in this embodiment, the heat treatment unit 1 is provided with a heat source 2 and a heat retention treatment space 3 that satisfy the heat treatment conditions above the threshold value that can be expected to have an inactivating effect of a floating virus having an inactivation rate of 99% or more. By doing so, for example, indoor airborne viruses can be automatically inactivated by 99% or more in a relatively short time while heating, and since no special parts or chemicals are used, a simple configuration with only heating and ventilation can be realized. Therefore, it is possible to suppress the manufacturing cost and realize it at a low price, and if the temperature and the residence time equal to or higher than the threshold value can be secured in this way, further heating is not required and energy saving is possible.

またたとえば、前述のように暖房装置に採用した場合、閾値以上の温度および滞留時間で導入空気を加熱処理できる構造とすれば、ヒーターなどの熱源2の種類は問わなく実現可能であるから、様々な既存の方式の暖房装置に採用でき、また様々な空気処理装置に搭載でき、その処理をおこないながら、ウイルス不活化性能を発揮できることとなる。 Further, for example, when adopted in a heating device as described above, if the structure is such that the introduced air can be heat-treated at a temperature and residence time equal to or higher than the threshold value, it can be realized regardless of the type of heat source 2 such as a heater. It can be adopted in various existing heating devices, and can be installed in various air treatment devices, and can exhibit virus inactivation performance while performing the treatment.

また一時的に閾値以上の温度および滞留時間に加熱処理できる構成であれば、本来の機器機能とは別に一時的にウイルス不活化モードにして不活化装置として使用することもできる構成で、様々な空気処理装置に適用できる。 In addition to the original device function, it can also be temporarily set to virus inactivation mode and used as an inactivating device as long as it can be temporarily heat-treated at a temperature above the threshold and residence time. Applicable to air treatment equipment.

また、ウイルス感染者のいる冬の部屋で診療行為をする場合の感染リスクを避けるには、換気による外気取り入れ量を増やしたいところではあるが、室温が低下し快適性を著しく損ない、患者の症状悪化を招く。これを解決するため、たとえば本装置で室内空気を循環処理(不活化処理)しつつ、継続使用による温度の上りすぎに対しては、部屋の換気装置を連動制御して部屋の外気取り入れ量を増やすように調節し、感染リスクを最小化しつつ、快適温度も維持し続けることができるように構成してもよい。すなわち、新鮮外気または同じ建物内であっても浮遊ウイルスがない(感染リスクが小さい)室外の空気を取り入れて本装置による温度上昇を抑えるように調節するように換気装置を制御する構成とすれば、浮遊ウイルスを失活させつつ暖房させることで快適な室温環境で診療することができることとなる。 In addition, in order to avoid the risk of infection when performing medical treatment in a winter room with a virus-infected person, it is desirable to increase the amount of outside air taken in by ventilation, but the room temperature drops and comfort is significantly impaired. It causes deterioration. In order to solve this, for example, while circulating the indoor air (inactivating treatment) with this device, if the temperature rises too much due to continuous use, the ventilation device of the room is interlocked and controlled to control the amount of outside air taken into the room. It may be adjusted to increase and configured to maintain a comfortable temperature while minimizing the risk of infection. In other words, if the ventilation system is controlled so as to take in fresh outside air or outdoor air that is free of airborne viruses (low risk of infection) even in the same building and control the temperature rise due to this device. By heating while inactivating the airborne virus, it is possible to perform medical treatment in a comfortable room temperature environment.

また、前述したように、閾値は温度と滞留時間の組み合わせ加熱処理条件で、温度を上げれば滞留時間は短くて済む。たとえば、風量を増やすことで同じ条件であれば滞留時間は短くなってしまうが、この滞留時間が閾値以下とならないように熱保持処理空間3をたとえば一層長く設計すれば済む。またこのような設計変更をしなくても、風量を上げて不活化能力を上げる場合、熱源2の温度を上げることでも閾値の滞留時間は短くなるので滞留時間がなお閾値以上を確保できるから、風量を上げても同等の不活化効果を得られ、そのため一層短時間で不活化できることとなる。言い換えると風量を増やしても熱保持処理空間3で閾値以上の温度および滞留時間以上の加熱処理条件を維持でき同等の不活化効果が得られていれば、より短時間で不活化が可能となる。 Further, as described above, the threshold value is a combination heat treatment condition of temperature and residence time, and if the temperature is raised, the residence time can be shortened. For example, by increasing the air volume, the residence time becomes shorter under the same conditions, but the heat retention processing space 3 may be designed to be longer, for example, so that the residence time does not fall below the threshold value. In addition, even if the design is not changed, if the air volume is increased to increase the inactivating capacity, the residence time of the threshold value can be shortened even by increasing the temperature of the heat source 2, so that the residence time can still be secured above the threshold value. Even if the air volume is increased, the same inactivating effect can be obtained, so that the inactivation can be performed in a shorter time. In other words, if the heat retention treatment space 3 can maintain the temperature above the threshold value and the heat treatment conditions above the residence time even if the air volume is increased and the same inactivation effect is obtained, inactivation can be performed in a shorter time. ..

このように、風量と熱源温度を制御することで、一時的に不活化性能を上げたり、短時間で不活化できたり、すぐに最高温度に達する熱源2を採用することで、ウイルスを検知したらすぐに不活化できるようにすることもできる。 In this way, by controlling the air volume and heat source temperature, the inactivation performance can be temporarily improved, inactivation can be done in a short time, and by adopting the heat source 2 that reaches the maximum temperature immediately, if a virus is detected. It can also be made available for immediate inactivation.

次に本実施例を構成するにあたり、あらかじめ前記加熱処理条件となる温度および滞留時間の閾値を見出すための試験手法について説明する。 Next, in constructing this embodiment, a test method for finding the threshold values of the temperature and the residence time, which are the heat treatment conditions, will be described in advance.

図3に図示したように、本実施例での試験装置(シミュレーター)は、ウイルスを含む空気を導入する導入口にファン(送風装置)を設け、この取り込んだ導入空気を整流する整流板を抜けた後、この導入空気を加熱するヒーター(熱源)により所定温度以上で加熱保持される加熱領域(熱保持処理空間)を設け、熱交換器で冷やした後この不活化した空気の失活率を測定する(ウイルスの残存率を測定する)ウイルス測定装置へ排出する構成としている。 As shown in FIG. 3, the test apparatus (simulator) in this embodiment is provided with a fan (blower) at the introduction port for introducing air containing a virus, and passes through a rectifying plate for rectifying the introduced air taken in. After that, a heating region (heat retention treatment space) that is heated and held at a predetermined temperature or higher by a heater (heat source) that heats the introduced air is provided, and after cooling with a heat exchanger, the deactivation rate of the inactivated air is determined. It is configured to be discharged to the virus measuring device to be measured (measure the residual rate of the virus).

この試験装置(シミュレーター)を用いて、ウイルスの残存率を測定算出しウイルスの失活率を算出することで、前述したような試験結果から最適な閾値を見出した。 By measuring and calculating the virus survival rate and calculating the virus inactivation rate using this test device (simulator), the optimum threshold value was found from the test results as described above.

この加熱領域の温度は、ヒーターへの印加電圧を可変して調整し、滞留時間はヒーターを配置した加熱位置(熱源位置)をヒーター可動領域内でスライドさせて調整して、断熱構造で囲んだ前記排出口付近の熱交換器までの加熱領域(熱保持処理空間)の長さが可変できるように構成して、この温度と加熱領域の長さを変えて試験し、適切な温度および滞留時間の組み合わせを見出して閾値を見出した。 The temperature of this heating area is adjusted by varying the voltage applied to the heater, and the residence time is adjusted by sliding the heating position (heat source position) where the heater is placed in the heater movable area, and surrounded by a heat insulating structure. The length of the heating region (heat retention treatment space) up to the heat exchanger near the discharge port is configured to be variable, and this temperature and the length of the heating region are changed for testing, and the appropriate temperature and residence time are obtained. The combination of was found and the threshold was found.

さらに説明すると、温度は熱交換器の入り口手前で測定した平均値で、ウイルスの残存率を測定する都合上この熱交換器では水冷により28℃以下まで冷却しているが、ヒーターを配置した加熱位置から熱交換器までの長短自在なヒーター加熱領域を熱保持処理空間とし、この体積と風量から滞留時間を算出している。 To explain further, the temperature is an average value measured in front of the entrance of the heat exchanger, and for the convenience of measuring the residual rate of the virus, this heat exchanger is cooled to 28 ° C or less by water cooling, but heating with a heater is placed. The heater heating region, which can be freely lengthened from the position to the heat exchanger, is used as the heat retention processing space, and the residence time is calculated from this volume and air volume.

また固定パラメータとしては、ファンの風量を0.4m/分、部屋の室温20℃、湿度30%RHとしている。またこの部屋に見立てた25mのチャンバー内でインフルエンザウイルス(H3N2型)をネブライザーにより噴霧し、この雰囲気中の感染性を有したウイルスの数と前記シミュレーター通過後の感染性を有したウイルスの数からウイルス残存率を算出し、これを1から減じた値を失活率として算出している。 As fixed parameters, the air volume of the fan is 0.4 m 3 / min, the room temperature is 20 ° C, and the humidity is 30% RH. In addition, influenza virus (H3N2 type) was sprayed with a nebulizer in a 25 m 3 chamber that looked like this room, and the number of infectious viruses in this atmosphere and the number of infectious viruses after passing through the simulator. The virus survival rate is calculated from, and the value obtained by subtracting this from 1 is calculated as the inactivation rate.

具体的には、プラークアッセイ法で感染力のあるウイルスがどれくらいいるか個数測定するもので、その空間のウイルスの数(感染力のあるウイルスの数に相当する感染価)と、シミュレーター通過後のウイルスの数(前記感染価)とをそれぞれ測定して、その相対比であるウイルス残存率を測定算出する構成としている。 Specifically, the number of infectious viruses is measured by the plaque assay method, and the number of viruses in the space (infectious titer corresponding to the number of infectious viruses) and the virus after passing through the simulator. The virus survival rate, which is a relative ratio thereof, is measured and calculated by measuring each of the numbers (the infection titer).

さらに説明すると、まず、シミュレーターを熱源作動させず送風のみで運転し、ウイルスがシミュレーター内に物理的に付着してその空間内とシミュレーター通過後のウイルス数に差が生じないことを確認する。シミュレーター運転開始後、チャンバー内でウイルスをネブライザーで2分30秒間噴霧し、30秒間チャンバー内を浮遊させ濃度を均一化してから、シミュレーター上流側の空気の一定量をサンプリングし、シミュレーター下流側の空気の一定量をサンプリングする。なお、サンプリング時間およびサンプリング周期などについては適宜設定されるものである。このとき測定された結果が本発明装置を不活化運転する際に得られる結果の基準となる。 To explain further, first, the simulator is operated only by blowing air without operating the heat source, and it is confirmed that the virus physically adheres to the inside of the simulator and there is no difference in the number of viruses in the space and after passing through the simulator. After starting the simulator operation, the virus is sprayed in the chamber with a nebulizer for 2 minutes and 30 seconds, the chamber is suspended for 30 seconds to equalize the concentration, and then a certain amount of air on the upstream side of the simulator is sampled and the air on the downstream side of the simulator is sampled. Sample a certain amount. The sampling time, sampling period, and the like are appropriately set. The result measured at this time serves as a reference for the result obtained when the apparatus of the present invention is inactivated.

次に、送風と加熱の組み合わせによる不活化運転試験をおこなう。不活化運転をする場合にはあらかじめシミュレーターを10分間暖機運転することでシミュレーター内部の温度を安定させておき、その後にチャンバー内でウイルスをネブライザーで2分30秒間噴霧し、30秒間チャンバー内を浮遊させ濃度を均一化してからシミュレーター上流側の室温20℃前後の空気の一定量をサンプリングし、加熱後に熱交換器で28℃以下に冷却されたシミュレーター下流側の空気の一定量をサンプリングする。 Next, an inactivated operation test is performed by combining ventilation and heating. In the case of inactivation operation, the temperature inside the simulator is stabilized by warming up the simulator for 10 minutes in advance, and then the virus is sprayed in the chamber with a nebulizer for 2 minutes and 30 seconds, and the inside of the chamber is kept for 30 seconds. After floating and equalizing the concentration, a fixed amount of air at room temperature around 20 ° C on the upstream side of the simulator is sampled, and a fixed amount of air on the downstream side of the simulator cooled to 28 ° C or lower by a heat exchanger after heating is sampled.

その不活化運転の測定結果として1からウイルス残存率を減じたウイルス失活率が90%以上、さらには99%以上となる温度と滞留時間を測定し、その相関を考察し、その組み合わせの閾値を見出した。 As a measurement result of the inactivation operation, the temperature and residence time at which the virus inactivation rate, which is obtained by subtracting the virus survival rate from 1 is 90% or more, and further 99% or more, are measured, the correlation is considered, and the threshold value of the combination is examined. I found.

すなわち、このシミュレーターを用いた試験により、温度180℃以上滞留時間0.17secの条件で99%以上の失活率が得られた。このようにごく短時間で実用化可能な0.5秒未満のワンパス条件でもウイルスを高温暴露することで、高いウイルス失活効果が得られた。 That is, by the test using this simulator, the deactivation rate of 99% or more was obtained under the condition of the temperature of 180 ° C. or higher and the residence time of 0.17 sec. High virus inactivation effect was obtained by exposing the virus to high temperature even under one-pass conditions of less than 0.5 seconds, which can be put into practical use in such a very short time.

この結果からこれを実現する閾値を見出しこれ以上の加熱処理条件を満たす加熱処理がおこなえる容易に製作可能な前記本装置を構成した。 From this result, a threshold value for realizing this was found, and the easily manufacturable present device capable of performing heat treatment satisfying further heat treatment conditions was constructed.

尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものであり、閾値の算出手法も本実施例に限られるもではない。 The present invention is not limited to the present embodiment, and the specific configuration of each constituent requirement can be appropriately designed, and the threshold calculation method is not limited to the present embodiment.

1 加熱処理部
2 熱源
3 熱保持処理空間
4 送風装置
5 断熱構造
1 Heat treatment unit 2 Heat source 3 Heat retention treatment space 4 Blower 5 Insulation structure

Claims (8)

ウイルスを含み得る空気を導入しこの導入空気を処理し排出する空気流路部に、この導入空気を加熱処理する加熱処理部が設けられた構成とされ、
この加熱処理部は、ウイルスを不活化させる所定の閾値の温度および滞留時間以上の加熱処理条件で、流路空間内の前記導入空気を加熱する熱源と、この閾値の温度および滞留時間以上の加熱処理条件で、流路空間内の前記導入空気を前記熱源により加熱保持する熱保持処理空間とが設けられた構成とされていることを特徴とするウイルス不活化装置。
The air flow path section that introduces air that can contain viruses and processes and discharges the introduced air is provided with a heat treatment section that heat-treats the introduced air.
This heat treatment unit heats the introduced air in the flow path space under heat treatment conditions of a predetermined threshold temperature and residence time or longer for inactivating the virus, and heating at this threshold temperature and residence time or longer. A virus inactivating device characterized in that it is provided with a heat holding treatment space for heating and holding the introduced air in the flow path space by the heat source under the treatment conditions.
前記加熱処理部での加熱処理条件となる前記閾値の温度および滞留時間は、温度は100℃以上、滞留時間は0.5秒以下であり、この加熱処理条件を満たす温度および滞留時間以上で前記導入空気が加熱処理されるように前記熱源および前記熱保持処理空間が構成されていることを特徴とする請求項1記載のウイルス不活化装置。 The threshold temperature and residence time, which are the heat treatment conditions in the heat treatment unit, are 100 ° C. or higher and the residence time is 0.5 seconds or less, and the temperature and residence time satisfying the heat treatment conditions are the above. The virus inactivating device according to claim 1, wherein the heat source and the heat retention processing space are configured so that the introduced air is heat-treated. 前記加熱処理部での加熱処理条件となる前記閾値の温度および滞留時間は、温度が高い程滞留時間は短くなる予め知得された温度と滞留時間との組み合わせ加熱処理条件で、この加熱処理条件を満たす温度および滞留時間以上で前記導入空気が加熱処理されるように前記熱源および前記熱保持処理空間が構成されていることを特徴とする請求項1または2に記載のウイルス不活化装置。 The temperature and residence time of the threshold value, which is the heat treatment condition in the heat treatment unit, are the combination of the temperature and the residence time, which are known in advance, and the residence time becomes shorter as the temperature is higher. The virus inactivating device according to claim 1 or 2, wherein the heat source and the heat retention processing space are configured so that the introduced air is heat-treated at a temperature and residence time that satisfy the conditions. 前記熱保持処理空間は、前記導入空気が通過する流路部であり、前記熱源により加熱された高温状態が保持される滞留経路長を有する加熱空気滞留部に構成され、この加熱空気滞留部である熱保持処理空間の前記導入空気の導入部から排出部までの流路距離を長く設定することで、この熱保持処理空間内の前記導入空気を前記加熱処理条件の温度以上で加熱保持させる前記滞留時間を長く設定可能な構成とされていることを特徴とする請求項1~3のいずれか1項に記載のウイルス不活化装置。 The heat retention processing space is a flow path portion through which the introduced air passes, and is configured as a heated air retention portion having a retention path length in which a high temperature state heated by the heat source is maintained. By setting a long flow path distance from the introduction portion to the discharge portion of the introduction air in a certain heat retention treatment space, the introduction air in the heat retention treatment space is heated and held at a temperature equal to or higher than the heat treatment condition. The virus inactivating device according to any one of claims 1 to 3, wherein the residence time can be set to be long. 前記熱源は、暖房または加湿を行うための熱源にも用いられている構成とされていることを特徴とする請求項1~4のいずれか1項に記載のウイルス不活化装置。 The virus inactivating device according to any one of claims 1 to 4, wherein the heat source has a configuration that is also used as a heat source for heating or humidifying. 前記熱源の加熱能力または前記導入空気を前記加熱処理部に導入させる送風装置の送風能力を制御することで、前記加熱処理部でのウイルス不活化能力を一時的に高める加熱処理制御部が備えられていることを特徴とする請求項1~5のいずれか1項に記載のウイルス不活化装置。 A heat treatment control unit is provided that temporarily enhances the virus inactivating capacity of the heat treatment unit by controlling the heating capacity of the heat source or the ventilation capacity of the blower that introduces the introduced air into the heat treatment unit. The virus inactivating device according to any one of claims 1 to 5, wherein the virus is inactivated. 前記加熱処理部の前記熱保持処理空間に、放熱を減じる断熱構造が設けられていることを特徴とする請求項1~6のいずれか1項に記載のウイルス不活化装置。 The virus inactivating device according to any one of claims 1 to 6, wherein a heat insulating structure for reducing heat dissipation is provided in the heat retention processing space of the heat treatment unit. 室内の暖房、冷房、空調、空気清浄、加湿、除湿、送風、撹拌、換気または外気導入などの空気処理をおこなう空気処理部の空気流路部に前記加熱処理部が設けられて、前記請求項1~7のいずれか1項に記載のウイルス不活化装置が備えられていることを特徴とするウイルス不活化装置付き空気処理装置。 The heat treatment unit is provided in the air flow path portion of the air treatment unit that performs air treatment such as indoor heating, cooling, air conditioning, air cleaning, humidification, dehumidification, ventilation, stirring, ventilation, or introduction of outside air. An air treatment device with a virus inactivating device, which comprises the virus inactivating device according to any one of 1 to 7.
JP2020199790A 2020-12-01 2020-12-01 Virus deactivation device and air processing unit with the same Pending JP2022087703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020199790A JP2022087703A (en) 2020-12-01 2020-12-01 Virus deactivation device and air processing unit with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020199790A JP2022087703A (en) 2020-12-01 2020-12-01 Virus deactivation device and air processing unit with the same

Publications (1)

Publication Number Publication Date
JP2022087703A true JP2022087703A (en) 2022-06-13

Family

ID=81975571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020199790A Pending JP2022087703A (en) 2020-12-01 2020-12-01 Virus deactivation device and air processing unit with the same

Country Status (1)

Country Link
JP (1) JP2022087703A (en)

Similar Documents

Publication Publication Date Title
KR102060633B1 (en) Air circulation system with air cleaning technology
US20150359921A1 (en) System and Method For Reducing Airborne Contamination
US20130239803A1 (en) System and Method For Air Replacement and Positive Air Pressure Isolation
JP2015500452A (en) Method and system for regulating air in a closed environment with a distributed air circulation system
EP2051746A1 (en) Systems and methods for managing air quality
CN112325423B (en) Purification device with heated filter for killing biological species including COVID-19
KR20180096206A (en) Sterilizing device and Ventilation device having Sterilizer
Yang et al. Minimizing the exposure of airborne pathogens by upper-room ultraviolet germicidal irradiation: an experimental and numerical study
Noakes et al. Use of CFD modelling to optimise the design of upper-room UVGI disinfection systems for ventilated rooms
D'Orazio et al. Air bio-contamination control in hospital environment by UV-C rays and HEPA filters in HVAC systems
JP2022087703A (en) Virus deactivation device and air processing unit with the same
JP7170193B2 (en) Purifier with heated filter to kill biological species including COVID-19
JP2004211959A (en) Bathroom air conditioner
JP2021173517A5 (en)
JP2008264559A (en) Bath room air conditioner
JP4325785B2 (en) Apparatus and method for indoor air heating sterilization in hospitals, etc.
ES2569993T3 (en) Low flow vaporizer and climate control unit and cage system comprising such a vaporizer
US20200217523A1 (en) An air treatment system
JP2023077700A (en) air conditioning system
JP7170194B2 (en) Portable purifier with heated filter to kill biological species, including COVID-19
JP2021171621A5 (en)
US20240068682A1 (en) Systems and methods for thermal inactivation of pathogens
KR20130115724A (en) Evaluating apparatus for environmental performance of floor coverings
WO2021059288A2 (en) Blow heater for heating and disinfection of viruses and bacteria in gaseous medium
US11344649B1 (en) Modular contaminate capture and sterilization apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230926