JP2022087039A - Color measuring device and method of manufacturing sheet - Google Patents

Color measuring device and method of manufacturing sheet Download PDF

Info

Publication number
JP2022087039A
JP2022087039A JP2021186192A JP2021186192A JP2022087039A JP 2022087039 A JP2022087039 A JP 2022087039A JP 2021186192 A JP2021186192 A JP 2021186192A JP 2021186192 A JP2021186192 A JP 2021186192A JP 2022087039 A JP2022087039 A JP 2022087039A
Authority
JP
Japan
Prior art keywords
color
light
measuring device
sheet
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021186192A
Other languages
Japanese (ja)
Inventor
敦紀 小原
Atsunori Obara
洋一 石田
Yoichi Ishida
啓介 貫井
Keisuke Nukui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2022087039A publication Critical patent/JP2022087039A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

To provide a color measuring device by which a tendency of a color tone of sheet can be managed in-line and which is excellent in color measurement accuracy, and also to provide a method of manufacturing the sheet using the same.SOLUTION: A color measuring device includes: light irradiation means for irradiating a conveying sheet with light, light receiving means for receiving at least one of the transmitted light transmitted through the conveying sheet and the reflected light reflected by the conveying sheet; and spectroscopic means for detecting the color by acquiring an optical spectrum of the light received by the light receiving means. The light irradiation means and the light receiving means include thickness measuring means. The light irradiation means, the light receiving means and the thickness measuring means reciprocate in parallel to a width direction of the conveying sheet.SELECTED DRAWING: Figure 1

Description

本発明は、インラインでシートの色調均一性を評価することと、厚みによる色調管理を行うことができる測色装置、及びそれを用いたシートの製造方法に関する。 The present invention relates to a color measuring device capable of in-line evaluation of color tone uniformity of a sheet and color tone control based on thickness, and a method of manufacturing a sheet using the same.

近年、熱可塑性樹脂フィルムのようなシートは様々な分野で用いられており、特にフラットパネルディスプレイやタッチパネル等の光学用途、ミラーディスプレイやスマートフォン、自動車エンブレム等の加飾用途、及び紫外線カットや熱線カット、ブルーライトカット等の波長選択用途で用いられるシートにおいては、これらを搭載する機器の品質やシートに要求される色調の観点から、色調の均一性が重要物性の一つとなる。そのため、このようなシートの製膜工程において、インラインでシートの色調を評価し、その傾向を管理することは、品質の合否判定、異常発生の把握や異常への早期対応を可能にする点で重要である。また、不良品流出を軽減して品質を向上させるためには、シートの全長かつ全幅の色調を評価できることも重要となる。 In recent years, sheets such as thermoplastic resin films have been used in various fields, especially for optical applications such as flat panel displays and touch panels, decorative applications such as mirror displays, smartphones and automobile emblems, and UV cut and heat ray cut. In sheets used for wavelength selection applications such as blue light cut, uniformity of color tone is one of the important physical properties from the viewpoint of the quality of the equipment on which they are mounted and the color tone required for the sheet. Therefore, in the film forming process of such a sheet, in-line evaluation of the color tone of the sheet and management of the tendency are possible in terms of quality pass / fail judgment, grasp of abnormality occurrence, and early response to abnormality. is important. It is also important to be able to evaluate the color tone of the entire length and width of the sheet in order to reduce the outflow of defective products and improve the quality.

上記背景より、これまでにインラインでシートの色調を評価するために種々の方法が用いられてきた。このような方法としては、例えば、測色機構がそれぞれ独立したカラーセンサーを幅方向に数箇所設置し、基準となる色調値との色差を表示する方法(特許文献1)、イメージング分光器を用いてシートの指定範囲における絵柄の色調を識別する方法(特許文献2)等が挙げられる。また、製膜工程における合否判定だけでなくインラインでの色調傾向管理も行い、異常時の迅速な状況把握、対応を可能とする技術も存在する(特許文献3)。 From the above background, various methods have been used to evaluate the color tone of the sheet inline. As such a method, for example, a method of installing several color sensors having independent color measuring mechanisms in the width direction and displaying a color difference from a reference color tone value (Patent Document 1), and an imaging spectroscope are used. A method of identifying the color tone of a pattern in a designated range of a sheet (Patent Document 2) and the like can be mentioned. In addition, there is a technique that not only makes a pass / fail judgment in the film forming process but also manages the color tone tendency in-line, and enables quick grasping of the situation and response in the event of an abnormality (Patent Document 3).

特開平06-41864号公報Japanese Unexamined Patent Publication No. 06-41864. 特開2006-82501号公報Japanese Unexamined Patent Publication No. 2006-82501 特開2016-70729号公報Japanese Unexamined Patent Publication No. 2016-70729

しかしながら、上記文献1及び2の方法では、インラインで色調の合否判定を行うことはできるものの、工程における色調の傾向を管理することは困難である。また、特許文献3の方法では、複数箇所に設置したカラーセンサーを用いるため、カラーセンサー毎の特性差による色調差が問題となる他、光源装置の消耗による光量差や外乱光の受光の影響を受けるため、測色箇所や時期によって精度が安定しない課題もある。また、色調差が問題になった場合に、具体的な原因究明やタイムリーな対策を取りにくいという課題もある。 However, in the methods of Documents 1 and 2, although the pass / fail judgment of the color tone can be performed in-line, it is difficult to manage the tendency of the color tone in the process. Further, in the method of Patent Document 3, since the color sensors installed at a plurality of locations are used, the color tone difference due to the characteristic difference of each color sensor becomes a problem, and the light amount difference due to the consumption of the light source device and the influence of the received disturbance light are affected. Therefore, there is a problem that the accuracy is not stable depending on the color measurement location and time. In addition, when the color difference becomes a problem, it is difficult to investigate the specific cause and take timely measures.

本発明は、上記従来技術の課題を克服し、インラインでシートの色調の傾向を管理することができ、さらに色調に影響するシートの厚みを同時に測定することによって、色調差が問題になった際の原因究明をより早く行うことを可能とする測色装置、及びそれを用いたシートの製造方法を提供することをその課題とする。 The present invention overcomes the above-mentioned problems of the prior art, can manage the tendency of the color tone of the sheet in-line, and further, by simultaneously measuring the thickness of the sheet that affects the color tone, when the color tone difference becomes a problem. It is an object of the present invention to provide a color measuring device capable of investigating the cause of the above and a method of manufacturing a sheet using the same.

上記課題を解決する本発明のシート状物の測色装置は以下の構成からなる。
(1) 搬送シートに光を照射する光照射手段、前記搬送シートを透過した透過光、及び前記搬送シートで反射された反射光のうち、少なくとも一方を受光する受光手段、及び前記受光手段で受光した光の分光スペクトルを取得することにより、色を検出する分光手段を備え、前記光照射手段と前記受光手段とが厚み測定手段を備え、かつ前記光照射手段と前記受光手段、及び前記厚み測定手段が、前記搬送シートの幅方向と平行に往復運動することを特徴とする、測色装置。
(2) 前記搬送シートの幅方向に一定の間隔で測色することを特徴とする、(1)に記載の測色装置。
(3) 前記光照射手段と前記受光手段、及び前記厚み測定手段が、前記搬送シートの幅方向端部外にあるタイミングでゼロ点補正を行うことを特徴とする、(1)又は(2)に記載の測色装置。
(4) 前記光照射手段の光源の中心から30cm以内の範囲、及び前記受光手段の光照射点の中心から30cm以内の範囲のうち少なくとも一方が、暗色であることを特徴とする請求項1~3のいずれかに記載の測色装置。
(5) 前記分光スペクトルから色調値を求める演算手段を備えることを特徴とする、(1)~(4)のいずれかに記載の測色装置。
(6) 前記色調値を、測色値トレンド及び彩度分布の少なくとも一方でリアルタイムに表示する表示手段を備えることを特徴とする、(5)に記載の測色装置。
(7) 搬送シートに任意に引いた長手方向と平行な直線上において、前記色調値が管理色調値範囲に含まれるか否かを検証する検証手段を備えることを特徴とする、(5)又は(6)に記載の測色装置。
(8) 前記検証手段が、前記管理色調値範囲を外れた色調値が観測された場合にアラームを発するアラーム機能を備えることを特徴とする、(7)に記載の測色装置。
(9) 前記厚み測定手段が、測色点からの距離が0mm以上500mm以下である位置の厚み値を測定し、かつ、前記表示手段に厚み値トレンドをリアルタイムで表示することを特徴とする、(6)~(8)のいずれかに記載の測色装置。
(10) 前記測色トレンドと前記厚み値トレンドとの相関を求めることを特徴とする、(9)に記載の測色装置。
(11) 前記往復運動する光照射手段、受光手段、及び厚み測定手段の駆動部及び走行部が、耐摩耗性部材であり、かつ稼働時に接触する部材間の動摩擦係数μdが0.1≦μd<0.3を満たす部材であることを特徴とする、(1)~(10)のいずれかに記載の測色装置。
(12) (1)~(11)のいずれかの測色装置を用いて搬送シートの色調管理、及び厚み管理を行うことを特徴とする、シートの製造方法。
The color measuring device for a sheet-like object of the present invention that solves the above problems has the following configuration.
(1) A light irradiating means for irradiating a transport sheet with light, a light receiving means for receiving at least one of the transmitted light transmitted through the transport sheet and the reflected light reflected by the transport sheet, and the light receiving means. A spectroscopic means for detecting a color by acquiring a spectral spectrum of the light is provided, the light irradiation means and the light receiving means are provided with a thickness measuring means, and the light irradiation means, the light receiving means, and the thickness measurement are provided. A color measuring device, characterized in that the means reciprocates in parallel with the width direction of the transport sheet.
(2) The color measuring device according to (1), characterized in that the color is measured at regular intervals in the width direction of the transport sheet.
(3) The light irradiating means, the light receiving means, and the thickness measuring means perform zero point correction at a timing outside the widthwise end of the transport sheet, (1) or (2). The color measuring device described in.
(4) Claims 1 to 1, wherein at least one of the range within 30 cm from the center of the light source of the light irradiation means and the range within 30 cm from the center of the light irradiation point of the light receiving means is dark. The color measuring device according to any one of 3.
(5) The color measuring device according to any one of (1) to (4), which comprises a calculation means for obtaining a color tone value from the spectral spectrum.
(6) The color measuring device according to (5), further comprising a display means for displaying the color tone value in real time at at least one of the color measurement value trend and the saturation distribution.
(7) It is characterized in that the transport sheet is provided with a verification means for verifying whether or not the color tone value is included in the control color tone value range on a straight line parallel to the longitudinal direction arbitrarily drawn, (5) or. The color measuring device according to (6).
(8) The color measuring device according to (7), wherein the verification means includes an alarm function for issuing an alarm when a color tone value outside the controlled color tone value range is observed.
(9) The thickness measuring means measures the thickness value at a position where the distance from the color measuring point is 0 mm or more and 500 mm or less, and displays the thickness value trend on the display means in real time. The color measuring device according to any one of (6) to (8).
(10) The color measuring device according to (9), characterized in that the correlation between the color measuring trend and the thickness value trend is obtained.
(11) The reciprocating light irradiating means, the light receiving means, and the driving part and the traveling part of the thickness measuring means are wear-resistant members, and the dynamic friction coefficient μd between the members in contact during operation is 0.1 ≦ μd. The color measuring device according to any one of (1) to (10), which is a member satisfying <0.3.
(12) A method for manufacturing a sheet, which comprises performing color tone control and thickness control of a conveyed sheet using any of the color measuring devices (1) to (11).

本発明により、下記の(I)及び(II)に示す2つの特徴を備える測色装置、及びそれを用いたシートの製造方法を提供することができる。
(I)測色箇所や時期による測色誤差を軽減し、インラインでのシート幅方向の色調をより高精度に評価すること、及びインラインでより正確に色調傾向を管理することが可能である。
(II)色調斑と厚みの相関をとり、目標とする色調となるように厚みを調整することや、色調斑の発生原因を厚みかその他で区別し、色調斑の発生原因を早期に発見することが可能である。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a color measuring device having the following two features (I) and (II), and a method for manufacturing a sheet using the same.
(I) It is possible to reduce the color measurement error depending on the color measurement location and time, evaluate the color tone in the sheet width direction inline with higher accuracy, and manage the color tone tendency more accurately in inline.
(II) Correlate the color tone spot with the thickness, adjust the thickness so that the target color tone is obtained, distinguish the cause of the color tone spot by thickness or others, and detect the cause of the color tone spot at an early stage. It is possible.

本発明の一実施態様に係る測色装置を長手方向から観察したときの概略図である。It is a schematic view when the color measuring apparatus which concerns on one Embodiment of this invention is observed from the longitudinal direction. 図1のAに示す測色装置と搬送シートを、搬送シート面と垂直な方向から観察したときの概略図である。FIG. 5 is a schematic view of the color measuring device and the transport sheet shown in FIG. 1A when observed from a direction perpendicular to the transport sheet surface. 図2の態様で測色を行ったときの、搬送シートにおける測色位置を表す概略図である。It is a schematic diagram which shows the color measurement position in the transport sheet when the color measurement is performed by the aspect of FIG. 測色値トレンドの一例を示す概略図である。It is a schematic diagram which shows an example of a colorimetric value trend. 彩色分布の一例を示す概略図である。It is a schematic diagram which shows an example of a coloring distribution. 図1のAの態様の測色装置であって、演算手段、表示手段、及び検証手段を備えるものを表す概略図である。It is a schematic diagram which shows the color measuring apparatus of the aspect A of FIG. 1, which includes the calculation means, the display means, and the verification means. 図6の態様の測色装置における測色手順を表すフローチャートである。It is a flowchart which shows the color measuring procedure in the color measuring apparatus of the aspect of FIG. 図6の態様の測色装置の第1表示部で表示される合否判定結果の一例である。This is an example of a pass / fail determination result displayed on the first display unit of the color measuring device according to the aspect of FIG. 比較例1で使用した多点同時測色装置を示す概略図である。It is a schematic diagram which shows the multipoint simultaneous color measuring apparatus used in the comparative example 1. FIG.

以下、本発明の測色装置について詳細に説明する。本発明の測色装置は搬送シートに光を照射する光照射手段、前記搬送シートを透過した透過光、及び前記搬送シートで反射された反射光のうち、少なくとも一方を受光する受光手段、及び前記受光手段で受光した光の分光スペクトルを取得することにより、色を検出する分光手段を備え、前記光照射手段と前記受光手段とが厚み測定手段を備え、かつ前記光照射手段と前記受光手段、及び前記厚み測定手段が、前記搬送シートの幅方向と平行に往復運動することを特徴とする。ここで測色とは、分光スペクトルを取得して色を表す指標を得ることをいう。色を表す指標としては、例えば後述する色調値が挙げられる。 Hereinafter, the color measuring device of the present invention will be described in detail. The color measuring device of the present invention includes a light irradiating means for irradiating a transport sheet with light, a light receiving means for receiving at least one of the transmitted light transmitted through the transport sheet and the reflected light reflected by the transport sheet, and the above-mentioned A spectroscopic means for detecting color by acquiring a spectral spectrum of light received by a light receiving means is provided, the light irradiating means and the light receiving means are provided with a thickness measuring means, and the light irradiating means and the light receiving means, The thickness measuring means reciprocates in parallel with the width direction of the transport sheet. Here, color measurement means acquiring a spectral spectrum to obtain an index representing color. Examples of the index representing the color include a color tone value described later.

本発明の測色装置は、搬送シートに光を照射する光照射手段を備えることが重要である。ここでシートとは、シート状の柔軟な連続媒体をいい、具体例としては熱可塑性樹脂フィルム等が挙げられる。搬送シートとは、最終製品となる前に製造工程内を走行しているシートをいう。光照射手段とは、搬送シートに光を照射する光源を備える装置をいう。 It is important that the color measuring device of the present invention includes a light irradiating means for irradiating the transport sheet with light. Here, the sheet refers to a sheet-like flexible continuous medium, and specific examples thereof include a thermoplastic resin film and the like. The transport sheet is a sheet that runs in the manufacturing process before it becomes a final product. The light irradiation means is a device provided with a light source that irradiates the transport sheet with light.

本発明の測色装置において光照射手段は、搬送シートのいずれか一方の面側(例えば、搬送シートが水平である場合は上側又は下側)に、搬送シートと接触しないように配置する。この光照射手段は、測色対象物である搬送シートの片面に光を照射して測色に必要な透過光や反射光を生じさせる役割を担う。通常、光照射手段から照射された光が搬送シートに到達すると、搬送シートを透過した透過光と、搬送シートで反射された反射光を生じる。本発明の測色装置による測色には、後述する受光手段が透過光や反射光を受光するステップが必要である。 In the color measuring device of the present invention, the light irradiation means is arranged on one side of the transport sheet (for example, the upper side or the lower side when the transport sheet is horizontal) so as not to come into contact with the transport sheet. This light irradiation means plays a role of irradiating one side of a transport sheet, which is a color measurement object, with light to generate transmitted light and reflected light necessary for color measurement. Normally, when the light emitted from the light irradiating means reaches the transport sheet, transmitted light transmitted through the transport sheet and reflected light reflected by the transport sheet are generated. Color measurement by the color measuring device of the present invention requires a step in which a light receiving means described later receives transmitted light or reflected light.

光照射手段として用いる光源は、測色に必要な透過光や反射光が得られるものであれば特に制限されず、測色の対象とする色に応じてハロゲンランプやタングステンランプ等、種々の光源を使用することができる。但し、可視光領域にピークがあり、小型の光源でも十分な光量を確保できるため、幅広い色調の分析に適している観点から、ハロゲンランプを用いることが好ましい。 The light source used as the light irradiation means is not particularly limited as long as it can obtain the transmitted light and reflected light required for color measurement, and various light sources such as halogen lamps and tungsten lamps are used depending on the color to be measured. Can be used. However, since there is a peak in the visible light region and a sufficient amount of light can be secured even with a small light source, it is preferable to use a halogen lamp from the viewpoint of being suitable for analysis of a wide range of color tones.

本発明の測色装置は、搬送シートを透過した透過光、及び搬送シートで反射された反射光のうち、少なくとも一方を受光する受光手段を備えることが重要である。本発明の測色装置において受光手段は、搬送シートのいずれか一方の面側(例えば、搬送シートが水平である場合は上側又は下側)に、搬送シートと接触しないように配置する。通常、透過光を測色に用いる場合は光照射手段のある面と反対面側に受光手段を配置し、反射光を測色に用いる場合は光照射手段のある面側に受光手段を配置する。また、測色に透過光と反射光の両方を用いる場合は、両方の面側に受光手段を配置する。 It is important that the color measuring device of the present invention includes a light receiving means that receives at least one of the transmitted light transmitted through the transport sheet and the reflected light reflected by the transport sheet. In the color measuring device of the present invention, the light receiving means is arranged on one side of the transport sheet (for example, the upper side or the lower side when the transport sheet is horizontal) so as not to come into contact with the transport sheet. Normally, when the transmitted light is used for color measurement, the light receiving means is arranged on the side opposite to the surface where the light irradiation means is located, and when the reflected light is used for color measurement, the light receiving means is arranged on the surface side where the light irradiation means is located. .. When both transmitted light and reflected light are used for color measurement, light receiving means are arranged on both surface sides.

この受光手段は、透過光や反射光を受光する役割を担う。そして本発明の測色装置による測色には、後述する分光手段が受光手段に到達した光の分光スペクトルを取得するステップが必要である。受光手段としては、透過光や反射光を受光する機能を備えるものであれば特に制限されず、例えば、種々のレンズ等を用いることができる。 This light receiving means plays a role of receiving transmitted light and reflected light. The color measurement by the color measuring device of the present invention requires a step in which the spectroscopic means described later acquires the spectral spectrum of the light that has reached the light receiving means. The light receiving means is not particularly limited as long as it has a function of receiving transmitted light or reflected light, and for example, various lenses and the like can be used.

本発明の測色装置は、受光手段で受光した光の分光スペクトルを取得することにより、色を検出する分光手段を備えることが重要である。分光手段は、受光手段を通過した光の進路上、言い換えれば受光手段を通過した光が入射可能な位置に配置する。この分光手段は、受光手段で受光した光を波長帯域毎に分光して分光スペクトルを取得し、当該分光スペクトルから搬送シートの色を検出する役割を担う。 It is important that the color measuring device of the present invention includes a spectroscopic means for detecting a color by acquiring a spectroscopic spectrum of light received by the light receiving means. The spectroscopic means is arranged on the path of the light passing through the light receiving means, in other words, at a position where the light passing through the light receiving means can be incident. This spectroscopic means has a role of separating the light received by the light receiving means for each wavelength band to acquire a spectral spectrum and detecting the color of the carrier sheet from the spectral spectrum.

分光手段としては、分光が可能な装置であれば特に制限されず、例えばスライド可能なスリットやカラーセンサーを備えるイメージング分光器等を好適に用いることができる。このような分光器を使用する場合、受光手段で受光した光をスライド可能なスリットで所望の波長帯域毎に分光した後、イメージング分光器本体に取り込むことで分光スペクトルを取得することができる。 The spectroscopic means is not particularly limited as long as it is a device capable of spectroscopy, and for example, an imaging spectroscope provided with a slidable slit or a color sensor can be preferably used. When such a spectroscope is used, the spectroscopic spectrum can be obtained by splitting the light received by the light receiving means into a desired wavelength band with a slidable slit and then incorporating the light into the imaging spectroscope main body.

本発明の測色装置は、色調と同時に厚みを高精度で管理する観点から、光照射手段と受光手段とが搬送シートの厚み測定手段を備えることが重要である。ここで搬送シートの厚みとは、搬送シートの総厚みを意味する。搬送シートが、厚みによって色調が変化するもの(例えば、熱線反射及びブルーライト、および可視光を選択的に反射・カットする多層積層フィルム等)である場合、シートの色調と厚みの相関を評価すること、及び両者の相関から厚みによる色調管理を行うことが品質管理の面において重要となる。厚み測定手段は特に限定されないが、搬送シートに放射線を照射して、搬送シートを透過する際の減衰量から厚みを求めるものを利用できる。その詳細は後述する。 In the color measuring device of the present invention, it is important that the light irradiating means and the light receiving means are provided with the thickness measuring means of the transport sheet from the viewpoint of controlling the thickness at the same time as the color tone with high accuracy. Here, the thickness of the transport sheet means the total thickness of the transport sheet. When the color tone of the transport sheet changes depending on the thickness (for example, heat ray reflection and blue light, and a multilayer laminated film that selectively reflects and cuts visible light), the correlation between the color tone and the thickness of the sheet is evaluated. In terms of quality control, it is important to control the color tone according to the thickness based on the correlation between the two. The thickness measuring means is not particularly limited, but a method of irradiating the transport sheet with radiation and obtaining the thickness from the amount of attenuation when passing through the transport sheet can be used. The details will be described later.

しかしながら、測色装置と厚み測定手段が搬送シートの走行方向に離れた場所に設置されている場合や、搬送シートの幅方向で異なった位置を測定する場合は、両者の測定点がばらついて色調値と厚み値の正しい相関が取れないことがある。その結果、目標とする色調値から外れた値が観測された際に搬送シートの厚みを調節して色調ムラを軽減することが困難になる。 However, when the color measuring device and the thickness measuring means are installed at a distance from each other in the traveling direction of the transport sheet, or when measuring different positions in the width direction of the transport sheet, the measurement points of both are different and the color tone is different. The correct correlation between the value and the thickness value may not be obtained. As a result, when a value deviating from the target color tone value is observed, it becomes difficult to adjust the thickness of the transport sheet to reduce the color tone unevenness.

一方、測色装置を構成する光照射手段と受光手段とが厚み測定手段を備えることで、色調の測定点と厚みの測定点をより近接させることが可能となる。このような態様とすることにより、色調と厚みの相関を正しく採取することができるため、目標とする色調に調整する際に、目標とする厚みの設定や色調管理をより正確に行うことが可能となる。 On the other hand, when the light irradiating means and the light receiving means constituting the color measuring device are provided with the thickness measuring means, the color tone measuring point and the thickness measuring point can be brought closer to each other. By adopting such an aspect, it is possible to correctly collect the correlation between the color tone and the thickness, so that it is possible to set the target thickness and manage the color tone more accurately when adjusting to the target color tone. It becomes.

また、色調は搬送シートの厚み以外の要因によっても変化するため、このような態様の測色装置を用いることにより、搬送シートの色調変化が厚みの変化によるものか、別の要因(例えば、搬送シートを構成する各層の厚みや、厚み比、屈折率差等)によるものかの分別を行うことができる。その結果、色調異常の原因特定をより短時間でかつ高精度に行うことが可能となる。 Further, since the color tone changes due to a factor other than the thickness of the transport sheet, by using the color measuring device of such an embodiment, the color tone change of the transport sheet may be due to the change in the thickness, or another factor (for example, transport). It is possible to distinguish whether the sheet is based on the thickness, thickness ratio, refractive index difference, etc. of each layer constituting the sheet. As a result, it is possible to identify the cause of the color tone abnormality in a shorter time and with higher accuracy.

上記の観点から、測色点と厚みの測定点は可能な限り近づけることが好ましく、具体的には、厚み測定手段が、測色点からの距離が0mm以上500mm以下である位置の厚み値を測定することが好ましい。なお、ここで「測色点からの距離が0mmである位置の厚み値を測定する」とは、測色点と厚み測定点が全く同じであることを意味し、この態様が最も理想的な態様となる。 From the above viewpoint, it is preferable that the color measuring point and the thickness measuring point are as close as possible. Specifically, the thickness measuring means determines the thickness value at the position where the distance from the color measuring point is 0 mm or more and 500 mm or less. It is preferable to measure. Here, "measuring the thickness value at a position where the distance from the color measurement point is 0 mm" means that the color measurement point and the thickness measurement point are exactly the same, and this embodiment is the most ideal. It becomes an aspect.

本発明の測色装置は、広範囲にわたって搬送シートの色調を評価する観点から、光照射手段と受光手段、及び前記厚み測定手段が、搬送シートの幅方向と平行に往復運動することが重要である。ここで搬送シートの幅方向とは、搬送シートの走行方向(長手方向)と搬送シート面内で直交する方向をいう。このような態様とすることにより、搬送シートの走行により長手方向の測色点が変化するだけでなく、幅方向の測色点も変化させることが可能となるため、二次元的に搬送シートの測色や厚み測定が可能となる。 In the color measuring device of the present invention, it is important that the light irradiating means, the light receiving means, and the thickness measuring means reciprocate in parallel with the width direction of the conveying sheet from the viewpoint of evaluating the color tone of the conveying sheet over a wide range. .. Here, the width direction of the transfer sheet means a direction orthogonal to the traveling direction (longitudinal direction) of the transfer sheet in the surface of the transfer sheet. By adopting such an aspect, not only the color measurement point in the longitudinal direction can be changed by the traveling of the transfer sheet, but also the color measurement point in the width direction can be changed, so that the transfer sheet can be two-dimensionally changed. Color measurement and thickness measurement are possible.

光照射手段と受光手段、及び厚み測定手段の可動範囲は、搬送シートの幅方向と平行に往復運動する限り特に制限はされない。但し、搬送シートの全幅にわたって測色を行う観点から、一方の幅方向端部の外側から他方の幅方向端部の外側までの区間を往復運動することが好ましい。さらに、このような態様とすることにより、光照射手段と受光手段がシート面上にないとき、すなわち、例えば可動範囲の両端に位置するときに後述するゼロ点補正を行うことで、測色ムラおよび厚み測定ムラを軽減しつつ測色精度を維持することもできる。 The movable range of the light irradiating means, the light receiving means, and the thickness measuring means is not particularly limited as long as they reciprocate in parallel with the width direction of the conveying sheet. However, from the viewpoint of measuring the color over the entire width of the transport sheet, it is preferable to reciprocate in a section from the outside of one widthwise end to the outside of the other widthwise end. Further, by adopting such an embodiment, when the light irradiation means and the light receiving means are not on the sheet surface, that is, when they are located at both ends of the movable range, for example, the zero point correction described later is performed to perform color measurement unevenness. It is also possible to maintain the color measurement accuracy while reducing the thickness measurement unevenness.

また、光照射手段と受光手段の相対的な位置関係は、測色精度の観点から、往復運動をしている間も一定に保つことが好ましく、厚み測定手段についても同様である。このような態様とすることにより透過光や反射光が受光手段の一定箇所に継続して入射することとなり、測色精度や厚み測定精度を高く維持することができる。光照射手段と受光手段の相対的な位置関係を一定に保つ方法は、これらを同じ方向に、かつ同じ速度で動かす方法が挙げられる。 Further, the relative positional relationship between the light irradiating means and the light receiving means is preferably kept constant even during the reciprocating motion from the viewpoint of color measurement accuracy, and the same applies to the thickness measuring means. With such an embodiment, the transmitted light and the reflected light are continuously incident on a certain position of the light receiving means, and the color measurement accuracy and the thickness measurement accuracy can be maintained high. As a method of keeping the relative positional relationship between the light irradiation means and the light receiving means constant, there is a method of moving them in the same direction and at the same speed.

本発明の測色装置は、測色精度を安定させる観点から、光照射手段の光源の中心から30cm以内の範囲、及び受光手段の光照射点の中心から30cm以内の範囲のうち少なくとも一方が、暗色であることが好ましく、これらの領域が共に暗色であることがより好ましい。光照射手段の光源の中心から30cm以内の範囲とは、光源が発する光の進行方向と対向する方向から光照射手段を観察したときに、光源の中心からの距離が30cm以内である範囲をいう。受光手段の光照射点の中心から30cm以内の範囲とは、光源が発する光の進行方向から受光手段を観察したときに、受光手段の光照射点の中心からの距離が30cm以内である範囲をいう。暗色とは、光源から発せられた光を光の三原色である赤色・緑色・青色に分けたときに、少なくとも1色を70%以上100%未満吸収する色をいう。暗色として具体的には、黒色、茶色、褐色、紺色、濃灰色等が挙げられる。 From the viewpoint of stabilizing the color measurement accuracy, the color measuring device of the present invention has at least one of a range within 30 cm from the center of the light source of the light irradiating means and a range within 30 cm from the center of the light irradiating point of the light receiving means. It is preferably dark, and more preferably both of these areas are dark. The range within 30 cm from the center of the light source of the light irradiation means means the range in which the distance from the center of the light source is within 30 cm when the light irradiation means is observed from the direction facing the traveling direction of the light emitted by the light source. .. The range within 30 cm from the center of the light irradiation point of the light receiving means is the range within 30 cm from the center of the light irradiation point of the light receiving means when the light receiving means is observed from the traveling direction of the light emitted by the light source. Say. The dark color means a color that absorbs at least one color of 70% or more and less than 100% when the light emitted from the light source is divided into the three primary colors of light, red, green, and blue. Specific examples of the dark color include black, brown, brown, dark blue, and dark gray.

「光照射手段の光源の中心から30cm以内の範囲が暗色である」とは、光照射手段の光源の中心から30cm以内の範囲を光の進行方向と垂直な二次元平面と見なしたときの全面積を100%としたときに、その80%以上100%未満、好ましくは99.5%以下が暗色であることをいう。ここで上限を100%未満としたのは、光源部分を暗色とすることができないためである。「受光手段の光照射点の中心から30cm以内の範囲が暗色である」についても上記と同様に解釈することができ、受光手段における暗色部分の面積率の上限を100%未満としたのは、光照射点を暗色とすることができないためである。 "The area within 30 cm from the center of the light source of the light irradiation means is dark" means that the area within 30 cm from the center of the light source of the light irradiation means is regarded as a two-dimensional plane perpendicular to the traveling direction of the light. When the total area is 100%, it means that 80% or more and less than 100%, preferably 99.5% or less, is a dark color. Here, the upper limit is set to less than 100% because the light source portion cannot be darkened. "The range within 30 cm from the center of the light irradiation point of the light receiving means is dark color" can be interpreted in the same manner as above, and the upper limit of the area ratio of the dark color portion in the light receiving means is set to less than 100%. This is because the light irradiation point cannot be darkened.

光照射手段の光源の中心から30cm以内の範囲、及び受光手段の光照射点の中心から30cm以内の範囲のうち少なくとも一方を暗色にする方法は、本発明の効果を損なわない限り特に限定されず、例えばこれらの範囲に暗色部材を使用する、又はこれらの範囲を暗色に塗装する等の方法が挙げられる。また、測色の目的とする測色波長が赤外や紫外である場合は、これらの範囲に赤外線や紫外線を吸収する材質を使用することや、これらの範囲を赤外線や紫外線を吸収する塗材で塗装することも可能である。また、光照射手段が発する光以外の光(以下、外部の光ということがある。)による測定精度低下を抑える観点から、これらの範囲の表面粗さを大きくして、外部の光を乱反射させることで受光手段に到達する外部の光の量を抑えることも好ましい。このような様態とすることにより、外部の光がこれらの範囲の表面で反射して受光部に入射することが軽減されるため、測色ムラを軽減し、測色精度を高くすることができる。 The method of darkening at least one of the range within 30 cm from the center of the light source of the light irradiation means and the range within 30 cm from the center of the light irradiation point of the light receiving means is not particularly limited as long as the effect of the present invention is not impaired. For example, a method of using a dark color member in these ranges or painting these ranges in a dark color can be mentioned. If the target color measurement wavelength is infrared or ultraviolet, use a material that absorbs infrared rays or ultraviolet rays in these ranges, or use a coating material that absorbs infrared rays or ultraviolet rays in these ranges. It is also possible to paint with. Further, from the viewpoint of suppressing a decrease in measurement accuracy due to light other than the light emitted by the light irradiating means (hereinafter, may be referred to as external light), the surface roughness in these ranges is increased to diffusely reflect the external light. Therefore, it is also preferable to suppress the amount of external light that reaches the light receiving means. By making such a mode, it is possible to reduce the reflection of external light on the surface of these ranges and incident on the light receiving portion, so that it is possible to reduce color measurement unevenness and improve color measurement accuracy. ..

以下、本発明の測色装置を構成する各手段の位置関係や動きについて、図面を参照しながら具体的に説明する。図1は本発明の一実施態様に係る測色装置を長手方向から観察したときの概略図である。なお、図1のAは受光手段が透過光を受光するタイプの測色装置、図1のBは受光手段が反射光を受光するタイプの測色装置を表す。 Hereinafter, the positional relationship and movement of each means constituting the color measuring device of the present invention will be specifically described with reference to the drawings. FIG. 1 is a schematic view of a color measuring device according to an embodiment of the present invention when observed from the longitudinal direction. Note that A in FIG. 1 represents a color measuring device of a type in which the light receiving means receives the transmitted light, and B in FIG. 1 represents a color measuring device of the type in which the light receiving means receives the reflected light.

図1のAに示す態様の測色装置1において、光照射手段2、及び受光手段3と一体化した分光手段4は、搬送シート5に接触することなく、その上面側と下面側にそれぞれ位置する。そして、光照射手段2、及び受光手段3を備える分光手段4は、フレーム6に搬送シート5の幅方向と平行に取り付けられたレール7に沿って往復運動する。光照射手段2の光源8が発する照射光9が搬送シート5に到達すると透過光10と反射光11が生じ、透過光10は受光手段3を経て分光手段4内に取り込まれる。分光手段4内に取り込まれた透過光10は、分光手段4が具備する可動式のスリット12により所望の波長帯域毎に分光されて分光手段の本体13に取り込まれ、ここで搬送シート5上の光照射点における分光スペクトルが得られる。 In the color measuring device 1 of the embodiment shown in FIG. 1A, the light irradiating means 2 and the spectroscopic means 4 integrated with the light receiving means 3 are located on the upper surface side and the lower surface side thereof without contacting the transport sheet 5. do. Then, the spectroscopic means 4 including the light irradiating means 2 and the light receiving means 3 reciprocate along the rail 7 attached to the frame 6 in parallel with the width direction of the transport sheet 5. When the irradiation light 9 emitted by the light source 8 of the light irradiation means 2 reaches the transport sheet 5, transmitted light 10 and reflected light 11 are generated, and the transmitted light 10 is taken into the spectroscopic means 4 via the light receiving means 3. The transmitted light 10 captured in the spectroscopic means 4 is separated into a desired wavelength band by a movable slit 12 provided in the spectroscopic means 4 and taken into the main body 13 of the spectroscopic means, where the light is captured on the transport sheet 5. A spectroscopic spectrum at the light irradiation point is obtained.

前述のとおり、光源8としてはハロゲンランプを、受光手段3としては種々のレンズを、分光手段4としてはイメージング分光器(スリット12を備えるもの)をそれぞれ好適に用いることができ、スリット12と分光手段の本体13の間に検出したい色調に応じてカラーセンサー(図示しない)を配置してもよい。後述する図1のBに示す態様の測色装置においても同様である。 As described above, a halogen lamp can be preferably used as the light source 8, various lenses can be preferably used as the light receiving means 3, and an imaging spectroscope (with a slit 12) can be preferably used as the spectroscopic means 4, and the slit 12 and the spectroscope can be used. A color sensor (not shown) may be arranged between the main bodies 13 of the means according to the color tone to be detected. The same applies to the color measuring device of the aspect shown in B of FIG. 1 to be described later.

図1のBに示す態様の測色装置1において、光照射手段2及び受光手段3と一体化した分光手段4は、搬送シート5に接触することなく、その下面側に位置しており、フレーム6に搬送シート5の幅方向と平行に取り付けられたレール7に沿って往復運動する。光照射手段2の光源8が発する照射光9が搬送シート5に到達すると透過光10と反射光11が生じ、反射光11は受光手段3を経て分光手段4内に取り込まれる。分光手段4内に取り込まれた反射光11は、分光手段4が具備する可動式のスリット12により所望の波長帯域毎に分光されて分光手段の本体13に取り込まれ、ここで搬送シート5上の光照射点における分光スペクトルが得られる。 In the color measuring device 1 of the embodiment shown in FIG. 1B, the spectroscopic means 4 integrated with the light irradiating means 2 and the light receiving means 3 is located on the lower surface side of the conveying sheet 5 without coming into contact with the frame. It reciprocates along a rail 7 attached to 6 in parallel with the width direction of the transport sheet 5. When the irradiation light 9 emitted by the light source 8 of the light irradiation means 2 reaches the transport sheet 5, transmitted light 10 and reflected light 11 are generated, and the reflected light 11 is taken into the spectroscopic means 4 via the light receiving means 3. The reflected light 11 captured in the spectroscopic means 4 is separated into a desired wavelength band by the movable slit 12 provided in the spectroscopic means 4 and taken into the main body 13 of the spectroscopic means, where the light is captured on the transport sheet 5. A spectroscopic spectrum at the light irradiation point is obtained.

また、図1のA、Bに示す測色装置1は、厚み測定手段も備える。厚み測定手段は、搬送シート5に接触することなく、その上面側に線源を備える放射線照射手段A、下面側にイオンチャンバを備える放射線受光手段Bとして存在する(放射線照射手段Aと放射線受光手段Bの位置は逆でもよい。)。そして、放射線照射手段Aは光照射手段2と、放射線受光手段Bは分光手段4と共にレール7に沿って往復運動する。放射線照射手段の線源が発する放射線(β線等)が搬送シート5を通過する際、その放射線量が減衰し、通過した放射線は放射線受光手段を経てイオンチャンバ内に取り込まれる。イオンチャンバに取り込まれた放射線は、イオンチャンバが具備する電極によりイオン化され、そのイオン化エネルギーに応じて電離電流が発生する。その電離電流をエレクトロメータ(図示しない)で検知し、起電圧を測定することで、放射線受光手段Bに入射した放射線量を測定して減衰した放射線量を求め、減衰した放射線量から搬送シート5の厚みを求める。 Further, the color measuring device 1 shown in FIGS. 1A and 1B also includes a thickness measuring means. The thickness measuring means exists as a radiation irradiation means A having a radiation source on the upper surface side thereof and a radiation light receiving means B having an ion chamber on the lower surface side without contacting the transport sheet 5 (radiation irradiation means A and radiation receiving means). The position of B may be reversed.) Then, the radiation irradiating means A reciprocates along the rail 7 together with the light irradiating means 2 and the radiation receiving means B together with the spectroscopic means 4. When the radiation (β rays or the like) emitted from the radiation source of the irradiation means passes through the transport sheet 5, the radiation dose thereof is attenuated, and the passed radiation is taken into the ion chamber via the radiation receiving means. The radiation taken into the ion chamber is ionized by the electrodes provided in the ion chamber, and an ionizing current is generated according to the ionization energy. By detecting the ionizing current with an electrometer (not shown) and measuring the electromotive voltage, the radiation dose incident on the radiation receiving means B is measured to obtain the attenuated radiation dose, and the conveyed sheet 5 is obtained from the attenuated radiation dose. Find the thickness of.

放射線照射手段Aの線源としては、測定する搬送シートの厚みや材質、密度等によって適正な材質が変わるため特に限定されないが、例えば、Kr(クリプトン)や、Pm(プロメシウム)、Sr(ストロンチウム)等を選択することができる。 The radiation source of the irradiation means A is not particularly limited because the appropriate material changes depending on the thickness, material, density, etc. of the transport sheet to be measured, but is not particularly limited, for example, Kr (Krypton), Pm (Promethium), Sr (Strontium). Etc. can be selected.

厚み測定手段は厚み調整手段と連動し、測定結果から自動で厚み調整手段を制御する態様とすることも好ましい。逐次二軸延伸法による二軸配向フィルムの製造を例に挙げると、口金からのポリマー吐出量、口金のスリット間隙、キャストドラムの回転速度、縦延伸の延伸ロールの回転速度、横延伸のクリップ間幅等で厚み調整可能が可能であり、これらを調整する手段を厚み調整手段と呼ぶ。このような様態を取ることによって、製造中に搬送シートの厚み(および色調)が変化した際に、厚み測定結果から自動で厚み調整手段を制御し、厚み及び色調を一定に保つことが容易となる。 It is also preferable that the thickness measuring means is interlocked with the thickness adjusting means and the thickness adjusting means is automatically controlled from the measurement result. Taking the production of a biaxially oriented film by the sequential biaxial stretching method as an example, the amount of polymer discharged from the mouthpiece, the slit gap of the mouthpiece, the rotation speed of the cast drum, the rotation speed of the stretching roll for longitudinal stretching, and the distance between the clips for transverse stretching. The thickness can be adjusted by the width and the like, and the means for adjusting these is called the thickness adjusting means. By taking such a mode, when the thickness (and color tone) of the conveyed sheet changes during manufacturing, it is easy to automatically control the thickness adjusting means from the thickness measurement result and keep the thickness and color tone constant. Become.

本発明の測色装置は、測色精度を安定させる観点から、搬送シートの幅方向に一定の間隔で測色することが好ましい。ここで「搬送シートの幅方向に一定の間隔で測色する」とは、2つの測色点間の幅方向の長さが一定になるように測色を行うことを意味する。このとき、搬送シートの幅方向全長を100%としたときに、その70%以上100%以下の範囲において上記要件を満たしていれば「搬送シートの幅方向に一定の間隔で測色している」ものと見なすことができる。このとき、搬送シートの段階で予め最終製品とはならずに廃棄される部分(廃棄部分)が判明している場合は、上記要件を満たす範囲の計算は、搬送シートから廃棄部分を除いた部分の幅方向の長さを100%として行うものとする。なお、厚みの測定も、測定精度向上の観点から同様とすることがより好ましい。 From the viewpoint of stabilizing the color measurement accuracy, the color measuring device of the present invention preferably measures colors at regular intervals in the width direction of the transport sheet. Here, "color measurement at regular intervals in the width direction of the transport sheet" means that color measurement is performed so that the length in the width direction between the two color measurement points is constant. At this time, assuming that the total length in the width direction of the transport sheet is 100%, if the above requirements are satisfied in the range of 70% or more and 100% or less, "color measurement is performed at regular intervals in the width direction of the transport sheet. It can be regarded as a thing. At this time, if the part to be discarded (discarded part) that does not become the final product is known in advance at the stage of the transport sheet, the calculation within the range satisfying the above requirements is the part excluding the discarded part from the transport sheet. It is assumed that the length in the width direction of is 100%. It is more preferable that the thickness is measured in the same manner from the viewpoint of improving the measurement accuracy.

このような態様とすることにより、測色点の偏りを少なくして搬送シート(特に最終製品となる部分)の測色することができるため、最終的に得られるシート全体の色調ムラを予測することができる。そのため、色調異常箇所の早期発見が可能となり、それに対して適切な改善措置を施すことで色調不良の最終製品の生産を低く抑えることができる。搬送シートの幅方向に一定の間隔で測色するための手段は、本発明の効果を損なわない限り特に制限されないが、例えば、光照射手段と受光手段の往復運動の速度を一定とし、かつ測色を行う時間間隔を一定とする方法が挙げられる。 By adopting such an aspect, it is possible to measure the color of the conveyed sheet (particularly the part that becomes the final product) by reducing the bias of the color measurement point, and thus it is possible to predict the color tone unevenness of the entire sheet finally obtained. be able to. Therefore, it is possible to detect abnormal color tone at an early stage, and by taking appropriate improvement measures for it, it is possible to keep the production of the final product with poor color tone low. The means for measuring the color at regular intervals in the width direction of the transport sheet is not particularly limited as long as the effect of the present invention is not impaired. A method of making the time interval for performing color constant is mentioned.

次いで、本発明の測色装置であって、搬送シートの幅方向に一定の間隔で測色するものを用いたときの、測色点について図2、図3を参照しながら具体的に説明する。図2は、図1のAに示す測色装置と搬送シートを、搬送シート面と垂直な方向から観察したときの概略図である(但し、フレームの上部と光照射手段が走行するレールは図示しない。)。図3は、図2の態様で測色を行ったときの、搬送シートにおける測色位置を表した概略図である。 Next, when the color measuring device of the present invention is used to measure colors at regular intervals in the width direction of the transport sheet, the color measuring points will be specifically described with reference to FIGS. 2 and 3. .. FIG. 2 is a schematic view of the color measuring device and the transport sheet shown in FIG. 1A when observed from a direction perpendicular to the transport sheet surface (however, the upper part of the frame and the rail on which the light irradiation means travels are shown. do not do.). FIG. 3 is a schematic view showing the color measurement position on the transport sheet when the color measurement is performed in the aspect of FIG.

図2に示すように、搬送シート5は長手方向14に搬送され、光照射手段2と受光手段(搬送シートを挟んで光照射手段2の反対側に位置するため、図2においては図示しない。)は、測色装置1内で幅方向15と平行に、搬送シート5の一方の幅方向端部の外側から他方の幅方向端部の外側までの区間を往復運動する。このとき、光照射手段2が光を照射する点が測色点となるため、光照射手段2と受光手段の運動速度を一定とし、かつ搬送シート5上に光照射手段2があるときの光を照射する時間間隔を一定とすることにより、「搬送シートの幅方向に一定の間隔で測色する」ことができる。 As shown in FIG. 2, the transport sheet 5 is transported in the longitudinal direction 14, and is not shown in FIG. 2 because it is located on the opposite side of the light irradiation means 2 and the light receiving means (the transport sheet is sandwiched between the light irradiation means 2). ) Reciprocates in the color measuring device 1 in parallel with the width direction 15 from the outside of one width direction end portion of the transport sheet 5 to the outside of the other width direction end portion. At this time, since the point at which the light irradiating means 2 irradiates the light is the color measuring point, the light when the moving speeds of the light irradiating means 2 and the light receiving means are constant and the light irradiating means 2 is on the transport sheet 5. By setting the time interval for irradiating the light to be constant, it is possible to "measure the color at a constant interval in the width direction of the transport sheet".

測色装置1を通過する際の搬送シート5の搬送速度は、通常、測色装置1の長手方向14の位置が変わらなければ一定である。そのため、上記図2の態様で測色を行う場合の測色点の位置は、図3のようになる。より具体的には、搬送シート5が一定速度で長手方向14に搬送されている状況下で、光照射手段と受光手段(図3においては共に図示しない。)を一定速度で幅方向15と平行に往復運動させ、かつ搬送シート5上に光照射手段があるときの光を照射する時間間隔を一定とすれば、図3に白矢印で示す順に測色点16が定められ、各測色点間の幅方向の長さ17も一定となる。なお、各測色点間の幅方向の長さ17は、本発明の効果を損なわない限り特に制限されず、搬送シート5の幅、最終製品として想定しているシートの幅等に応じて適宜定めることができる。 The transport speed of the transport sheet 5 when passing through the color measuring device 1 is usually constant as long as the position of the color measuring device 1 in the longitudinal direction 14 does not change. Therefore, the positions of the color measurement points when the color measurement is performed in the aspect of FIG. 2 are as shown in FIG. More specifically, under the condition that the transport sheet 5 is transported in the longitudinal direction 14 at a constant speed, the light irradiation means and the light receiving means (both not shown in FIG. 3) are parallel to the width direction 15 at a constant speed. If the time interval for irradiating the light when the light irradiating means is on the transport sheet 5 is constant, the color measuring points 16 are defined in the order indicated by the white arrows in FIG. 3, and each color measuring point is defined. The length 17 in the width direction between the spaces is also constant. The length 17 in the width direction between the color measurement points is not particularly limited as long as the effect of the present invention is not impaired, and is appropriately determined according to the width of the transport sheet 5, the width of the sheet assumed as the final product, and the like. Can be determined.

本発明の測色装置は、経時的に生じる測色および厚み測定誤差を軽減する観点から、光照射手段と受光手段、及び厚み測定手段が搬送シートの幅方向端部外にあるタイミングで、ゼロ点補正を行うことが好ましい。ここでゼロ点とは、測色および厚み測定対象物である搬送シートに光および放射線が照射されない状態で測色したときの値をいう。ゼロ点補正とは、厚み測定手段を含む測色装置を稼働させている状況下において、搬送シートに光および放射線が照射されない状態で測色および厚み測定を行ってゼロ点を再設定することをいう。 The color measuring device of the present invention has zero at the timing when the light irradiation means, the light receiving means, and the thickness measuring means are outside the widthwise end of the transport sheet from the viewpoint of reducing the color measurement and the thickness measurement error that occur over time. It is preferable to perform point correction. Here, the zero point means a value when the color is measured in a state where the transport sheet, which is the object of color measurement and thickness measurement, is not irradiated with light and radiation. Zero point correction is to reset the zero point by performing color measurement and thickness measurement in a situation where a color measuring device including a thickness measuring means is in operation and the transport sheet is not irradiated with light and radiation. Say.

より具体的には、測色の場合、このような条件で得られた分光スペクトルを全波長で100%と設定し、かつ後述するL*値、a*値、b*値をそれぞれ順に100、0、0と設定することをいう。通常、分光手段として使用する分光器のゼロ点は、装置の長期使用に伴って使用前に設定した値からずれることがあるため、適宜ゼロ点補正を行うことで測色精度を維持することができる。また、厚み測定の場合、このような条件で得られた放射線の電離電流および起電圧を厚み0μmと設定することをいう。通常、厚み測定手段として使用する線源は、装置の長期使用に伴って放射線の照射量が減衰し、厚みが大きく測定される(見かけ上、搬送シートによって減衰する量が増えているように観測されるが、実際には放射線の照射量そのものが低下した状態になる。)ため、適宜ゼロ点補正を行うことで厚み測定精度を維持することができる。なお、本発明においては測色と厚みの少なくとも一方についてゼロ点補正が行われれば、ゼロ点補正が行われたものと見なす。 More specifically, in the case of color measurement, the spectral spectrum obtained under such conditions is set to 100% at all wavelengths, and the L * value, a * value, and b * value, which will be described later, are set to 100 in order. It means to set 0 and 0. Normally, the zero point of a spectroscope used as a spectroscopic means may deviate from the value set before use due to long-term use of the device, so it is possible to maintain color measurement accuracy by appropriately correcting the zero point. can. Further, in the case of thickness measurement, it means that the ionizing current and electromotive voltage of the radiation obtained under such conditions are set to a thickness of 0 μm. Normally, the radiation source used as a thickness measuring means is measured in a large thickness due to the decrease in the irradiation amount of radiation with the long-term use of the device (apparently, it is observed that the amount attenuated by the transport sheet is increasing). However, in reality, the amount of radiation itself is reduced.) Therefore, the thickness measurement accuracy can be maintained by appropriately correcting the zero point. In the present invention, if the zero point correction is performed for at least one of the color measurement and the thickness, it is considered that the zero point correction has been performed.

搬送シートに光が照射されない状態での測色とは、受光手段が透過光を受光する態様の測色装置であれば、光照射手段と受光手段との間に搬送シートが存在しない状態での測色をいい、受光手段が反射光を受光する態様の測色装置であれば、搬送シートの幅方向の延長上であって搬送シートと接触しない位置に存在し、かつ搬送シート面と平行な標準反射物に光を照射して行う測色をいう。なお、標準反射物は、ゼロ点補正を行うタイミング以外は光照射手段からの光が照射されない位置(例えば、光照射手段と受光手段の往復運動範囲外、若しくは光照射手段や受光手段の筐体内)に退避可能な態様で設けることが好ましい。標準反射物は、受光手段に入射させる反射光の性質等によって適宜変更することができ、例えば鏡面反射光を入射させる場合はミラー等を、拡散反射光を入射させる場合は標準白色板(例えば、硫酸バリウム、ポリテトラフルオロエチレン(PTFE)、セラミック等)を好適に用いることができる。 Color measurement in a state where the transport sheet is not irradiated with light means that if the light receiving means is a color measuring device that receives transmitted light, the transport sheet does not exist between the light irradiation means and the light receiving means. If the color measuring device is a color measuring device in which the light receiving means receives the reflected light, it exists at a position on the extension of the width direction of the transport sheet and does not come into contact with the transport sheet, and is parallel to the transport sheet surface. Color measurement performed by irradiating a standard reflector with light. The standard reflector is located at a position where light from the light irradiation means is not irradiated except at the timing of zero point correction (for example, outside the reciprocating motion range between the light irradiation means and the light receiving means, or inside the housing of the light irradiation means or the light receiving means. ), It is preferable to provide it in a manner that allows it to be retracted. The standard reflector can be appropriately changed depending on the nature of the reflected light incident on the light receiving means, for example, a mirror or the like when the specular reflected light is incident, and a standard white plate (for example, when the diffuse reflected light is incident). Barium sulfate, polytetrafluoroethylene (PTFE), ceramic, etc.) can be preferably used.

「光照射手段と受光手段、および厚さ測定手段とが搬送シートの幅方向端部外にあるタイミング」では、シートの生産ラインが稼働していながら、光照射手段が照射する光(又は標準反射物による反射光)が搬送シートに当たらず受光手段に到達しうる(放射線照射手段が照射する放射線についても同様である。)。そのため、このようなタイミングでゼロ点補正を行うことで、シートの生産を中断することなく、継続使用による消耗に伴う光源の光量低下や、外乱となる環境光量による受光量の変化、線源の放射線量低下による放射量の変化を適宜反映したゼロ点を設定することが可能となる。その結果、測色装置の測色および厚さ測定精度を長期間にわたって高く維持することができる。 At "timing when the light irradiating means, the light receiving means, and the thickness measuring means are outside the widthwise end of the transport sheet", the light (or standard reflection) emitted by the light irradiating means while the sheet production line is operating. (Reflected light from an object) can reach the light receiving means without hitting the transport sheet (the same applies to the radiation emitted by the irradiation means). Therefore, by performing zero point correction at such timing, the light amount of the light source decreases due to wear due to continuous use, the change in the light receiving amount due to the ambient light amount that becomes a disturbance, and the radiation source without interrupting the production of the sheet. It is possible to set a zero point that appropriately reflects changes in the radiation dose due to a decrease in the radiation dose. As a result, the color measurement and thickness measurement accuracy of the color measuring device can be maintained high for a long period of time.

光照射手段や受光手段、厚さ測定手段がシートの幅方向端部外にあることを認識させる方法としては、予め光照射手段や受光手段、放射線照射手段の往復運動範囲を搬送シートの幅方向全長を包含するように設定する方法や、搬送装置が搬送可能なシートの最大幅よりも光照射手段や受光手段、放射線照射手段の往復運動範囲を広くする方法を用いることができる。 As a method of recognizing that the light irradiation means, the light receiving means, and the thickness measuring means are outside the widthwise end of the sheet, the reciprocating motion range of the light irradiation means, the light receiving means, and the radiation irradiation means is previously set in the width direction of the sheet. A method of setting the entire length to be included, or a method of widening the reciprocating motion range of the light irradiation means, the light receiving means, and the irradiation means beyond the maximum width of the sheet that can be conveyed by the transfer device can be used.

本発明の測色装置は、分光手段によって得られる分光スペクトルより色を数値化して搬送シートの色ムラ評価を容易にする観点から、分光スペクトルから色調値を求める演算手段を備えることが好ましい。色調値とはCIE1976L*a*b*表色系におけるL*値、a*値、及びb*値をいう。ここで、L*値は色の明るさを0~100で表すものであり、色が明るいほどL*値は大きくなる。a*値は赤色方向と緑色方向の色味を-100~+100の範囲で表すものであり、赤みが強いほど+方向に、緑みが強いほど-方向に値が大きくなる。b*値は黄色方向と青色方向の色味を-100~+100の範囲で表すものであり、黄みが強いほど+方向に、青みが強いほど-方向に値が大きくなる。 The color measuring device of the present invention preferably includes a calculation means for obtaining a color tone value from the spectral spectrum from the viewpoint of quantifying the color from the spectral spectrum obtained by the spectral means and facilitating the evaluation of color unevenness of the conveyed sheet. The color tone value means the L * value, the a * value, and the b * value in the CIE1976L * a * b * color system. Here, the L * value represents the brightness of the color from 0 to 100, and the brighter the color, the larger the L * value. The a * value represents the tint in the red and green directions in the range of -100 to +100, and the stronger the redness, the larger the value in the + direction, and the stronger the greenishness, the larger the value in the-direction. The b * value represents the tint in the yellow and blue directions in the range of -100 to +100, and the stronger the yellowness, the larger the value in the + direction, and the stronger the bluishness, the larger the value in the-direction.

本発明の測色装置における演算手段により、分光スペクトルよりJIS Z 8722(2009年)に規定するC光源・2度視野三刺激値X,Y,Zを取得し、JIS Z 8730(2009年)に規定する計算式を用いてC光源・2度視野三刺激値X,Y,Zから色調値(L*値,a*値,b*値)を算出することができる。上記方法により色調値の算出が可能なものであれば、演算手段の種類は特に制限されず、公知の電子計算機やソフトウェアを適宜組み合わせて用いることができる。 By the calculation means in the color measuring device of the present invention, the C light source specified in JIS Z 8722 (2009) and the two-degree field tristimulus values X, Y, Z are acquired from the spectroscopic spectrum, and the JIS Z 8730 (2009) is obtained. The color tone values (L * value, a * value, b * value) can be calculated from the C light source and the two-degree field tristimulus values X, Y, and Z using the specified calculation formula. As long as the color tone value can be calculated by the above method, the type of the calculation means is not particularly limited, and a known computer or software can be used in an appropriate combination.

本発明の測色装置における演算手段は、測色装置を構成する分光手段から分光スペクトルのデータを取得することが可能な態様で設置されていれば、その設置位置は特に制限されない。分光手段から分光スペクトルのデータを取得するには、データ通信可能なケーブルや無線LANなどの公知の手法を用いることができる。また、演算手段は、搬送シートの色調の異常の把握を容易にする観点から、色調値のデータを後述する測色値トレンドや彩度分布に変換する機能を備えることが好ましい。 The installation position of the arithmetic means in the color measuring device of the present invention is not particularly limited as long as it is installed in a manner capable of acquiring spectral spectrum data from the spectroscopic means constituting the color measuring device. In order to acquire the spectral spectrum data from the spectroscopic means, a known method such as a cable capable of data communication or a wireless LAN can be used. Further, it is preferable that the calculation means has a function of converting the color tone value data into a color measurement value trend or a saturation distribution, which will be described later, from the viewpoint of facilitating grasping the abnormality of the color tone of the transport sheet.

本発明の測色装置は、異常の早期把握の観点から、色調値を、測色値トレンド及び彩度分布の少なくとも一方でリアルタイムに表示する表示手段を備えることが好ましい。ここで測色値トレンドとは、「時間又は搬送シート上の測色点の幅方向位置」及び「L*値、a*値、及びb*値の少なくとも一つ」のいずれかを横軸、他方を縦軸として表したチャート図をいう。彩度分布とは、任意に定めた一定期間に得られたa*値及びb*値の一方を横軸、他方を縦軸として表した散布図をいう。また、同様の観点から、表示手段に厚み値トレンドをリアルタイムで表示することも好ましい。 From the viewpoint of early grasping of abnormalities, the color measuring device of the present invention preferably includes a display means for displaying a color tone value in real time on at least one of a color measurement value trend and a saturation distribution. Here, the color measurement value trend is defined by any one of "time or the position in the width direction of the color measurement point on the transport sheet" and "at least one of L * value, a * value, and b * value" on the horizontal axis. A chart diagram showing the other as the vertical axis. The saturation distribution is a scatter plot in which one of the a * value and the b * value obtained in an arbitrarily determined period is represented by the horizontal axis and the other is represented by the vertical axis. From the same viewpoint, it is also preferable to display the thickness value trend on the display means in real time.

図4は、測色値トレンドの一例を示す概略図である。図4のAに示す例は、縦軸がa*値、横軸が時間を表すものであり、例えば、データの間隔を測色装置が1周するのに要する時間とすることによって、長手方向に平行な直線上におけるa*値を経時的に観測することができる。図4のBに示す例は、縦軸がa*値、横軸が搬送シート上の測色点の幅方向位置を表すものである。これは、幅方向と平行な色調ムラの有無を評価するのに有用である。なお、後述する管理色調値範囲18を併せて表示することにより、そこからの逸脱の有無を容易に評価することができる。 FIG. 4 is a schematic diagram showing an example of the colorimetric value trend. In the example shown in A of FIG. 4, the vertical axis represents the a * value and the horizontal axis represents the time. For example, by setting the data interval as the time required for the color measuring device to make one round, the longitudinal direction is used. The a * value on a straight line parallel to can be observed over time. In the example shown in B of FIG. 4, the vertical axis represents the a * value, and the horizontal axis represents the position of the color measurement point on the transport sheet in the width direction. This is useful for evaluating the presence or absence of color tone unevenness parallel to the width direction. By also displaying the management color tone value range 18 described later, it is possible to easily evaluate the presence or absence of deviation from the control color tone value range 18.

図5は、彩色分布の一例を示す概略図である。図5に示す例は、縦軸がb*値、横軸がa*値を表すものであり、各測色点におけるa*値とb*値のバランスを評価することができる。このとき、評価結果が表示される時間を調節することで、観察期間の設定が可能である。この時間を長くすれば表示される測色点は多くなり、短くすれば少なくなる。この時間は、目的に応じて適宜調整が可能である。なお、後述する管理色調値範囲18を併せて表示することにより、そこからの逸脱の有無を容易に評価することもできる。 FIG. 5 is a schematic diagram showing an example of a coloring distribution. In the example shown in FIG. 5, the vertical axis represents the b * value and the horizontal axis represents the a * value, and the balance between the a * value and the b * value at each color measurement point can be evaluated. At this time, the observation period can be set by adjusting the time during which the evaluation result is displayed. The longer this time, the more color measurement points will be displayed, and the shorter this time, the fewer. This time can be adjusted as appropriate according to the purpose. By also displaying the management color tone value range 18 described later, it is possible to easily evaluate the presence or absence of deviation from the control color tone value range 18.

本発明の測色装置は、異常の早期把握の観点から、厚さを、上記測色値トレンド及び彩度分布や測色・厚さ測定時間と組み合わせて表示する表示手段を備えることが好ましい。例として、横軸に厚さ、縦軸にL*値、a*値、b*値のうち少なくとも一つを表示するグラフを用い、厚さと色調値の相関を管理する方法や、横軸に時間、縦軸に厚さを表示するグラフを用い、経時での厚みの変化を管理する方法が考えられる。このような様態を用いることによって、管理色調範囲からの逸脱がシートの厚み起因であるかの判断や、適正な色調値に修正するための厚み調整量の算出等を早期に行うことができる。 From the viewpoint of early grasping of abnormalities, the color measuring device of the present invention preferably includes a display means for displaying the thickness in combination with the color measurement value trend, the saturation distribution, and the color measurement / thickness measurement time. As an example, a method of managing the correlation between thickness and color tone value using a graph displaying at least one of L * value, a * value, and b * value on the horizontal axis and the thickness on the vertical axis, and the horizontal axis A method of managing the change in thickness over time by using a graph that displays the time and thickness on the vertical axis can be considered. By using such a mode, it is possible to determine at an early stage whether the deviation from the controlled color tone range is due to the thickness of the sheet, calculate the thickness adjustment amount for correcting the appropriate color tone value, and the like at an early stage.

本発明の測色装置における表示手段は、演算手段で得られた色調値のデータや厚み測定値のデータを測色値トレンド及び彩度分布、厚み測定値の少なくとも一方で表示することが可能な態様で設置されていれば、その種類や設置位置は特に制限されない。また、表示手段としては、公知のモニター等を演算手段と連結して使用することや、演算手段と一体化したモニター等を使用することができる。 The display means in the color measuring device of the present invention can display the color tone value data and the thickness measurement value data obtained by the calculation means at least one of the color measurement value trend, the saturation distribution, and the thickness measurement value. As long as it is installed in a mode, its type and installation position are not particularly limited. Further, as the display means, a known monitor or the like can be used in connection with the calculation means, or a monitor or the like integrated with the calculation means can be used.

本発明の測色装置は、搬送シートの色調ムラが一定レベルに抑えられているかを容易に評価する観点から、搬送シートに任意に引いた長手方向と平行な直線上において、色調値が管理色調値範囲に含まれるか否かを検証する検証手段を備えることが好ましい。ここで、「搬送シートに任意に引いた長手方向と平行な直線」とは、任意に選択した測色点から搬送シート上に引いた長手方向と平行な直線をいい、管理色調値範囲とは、許容可能な色調値の範囲をいう。管理色調値範囲は、L*値、a*値、及びb*値のうち必要なものについて、目的に応じて個々に設定することができる。当該の直線上において色調値が管理色調値範囲に含まれるか否かを検証することにより、長手方向と平行な方向の色調ムラの有無や程度を容易に評価することができる。 In the color measuring device of the present invention, the color tone value is controlled on a straight line parallel to the longitudinal direction arbitrarily drawn on the transport sheet from the viewpoint of easily evaluating whether the color tone unevenness of the transport sheet is suppressed to a certain level. It is preferable to provide a verification means for verifying whether or not it is included in the value range. Here, the "straight line parallel to the longitudinal direction arbitrarily drawn on the transport sheet" means a straight line parallel to the longitudinal direction drawn on the transport sheet from an arbitrarily selected color measurement point, and the controlled color tone value range is. , Refers to the range of acceptable color tone values. The control color tone value range can be individually set for the required L * value, a * value, and b * value according to the purpose. By verifying whether or not the color tone value is included in the control color tone value range on the straight line, the presence or absence and degree of color tone unevenness in the direction parallel to the longitudinal direction can be easily evaluated.

本発明の測色装置における検証手段は、管理色調値範囲を設定し、長手方向と平行な直線上の色調値と管理色調値範囲の関係を検証可能なものであれば特に制限されず、公知の電子計算機やソフトウェアを適宜組み合わせて用いることができる。また、設置位置も特に制限されず、演算手段と一体化したものであってもよい。検証手段が演算手段と一体化している態様としては、例えば、演算手段の機能を実現するソフトウェアがインストールされた電子計算機に、検証手段の機能を実現するソフトウェアもインストールされている状態、すなわち、1台の電子計算機が演算手段と検証手段の両方を兼ね備える態様が挙げられる。 The verification means in the color measuring device of the present invention is not particularly limited as long as it can set a controlled color tone value range and verify the relationship between the color tone value on a straight line parallel to the longitudinal direction and the controlled color tone value range, and is publicly known. Computers and software can be used in combination as appropriate. Further, the installation position is not particularly limited, and may be integrated with the calculation means. As a mode in which the verification means is integrated with the calculation means, for example, a state in which software for realizing the function of the verification means is also installed in a computer in which software for realizing the function of the calculation means is installed, that is, 1 An embodiment in which a computer is equipped with both a calculation means and a verification means can be mentioned.

また、本発明の測色装置においては、異常の早期把握の観点から、検証手段が、管理色調値範囲を外れた色調値が観測された場合にアラームを発するアラーム機能を備えることも好ましい。このような態様とするためには、例えば、検証手段として用いる電子計算機やソフトウェアを、このような機能を持つものとする方法が挙げられる。 Further, in the color measuring device of the present invention, from the viewpoint of early grasping of an abnormality, it is also preferable that the verification means has an alarm function for issuing an alarm when a color tone value outside the controlled color tone value range is observed. In order to make such an aspect, for example, a method of making a computer or software used as a verification means have such a function can be mentioned.

本発明の測色装置は、往復運動する光照射手段、受光手段、及び厚み測定手段の駆動部及び走行部が、耐摩耗性部材であり、かつ稼働時に接触する部材間(以下、走行部側の部材を部材A、稼動部側の部材を部材Bと呼ぶことがある。)の動摩擦係数μdが0.1≦μd<0.3を満たす部材であることが好ましい。なお、以下、部材間の動摩擦係数を単に動摩擦係数と呼ぶことがある。ここで「駆動部」とは、光照射手段、受光手段、及び厚み測定手段が往復運動をする際に、走行部と接触する部分であり、例えば上記手段に付いている車輪や、上記手段の往復運動に付随して後述する走行部の上を動くケーブルカバーやベアリング等がこれに該当する。「走行部」とは、上記各手段の駆動部が走行する部分であり、例えばレール等がこれに該当する。「耐摩耗性部材」をとは、機械的引っかきや粘着などにより、その表面が損耗する現象が起きにくい部材をいい、例えば、炭素鋼、クロム鋼、マンガン鋼、クロムモリブデン鋼、クロモリ鋼、マルテンサイト系ステンレス、析出硬化系ステンレス、オーステナイト系ステンレス等が挙げられる。また、「稼働時に接触する部材」とは装置が稼働する際に互いに接触する駆動部及び走行部を指す。 In the color measuring device of the present invention, the reciprocating light irradiating means, the light receiving means, and the driving portion and the traveling portion of the thickness measuring means are wear-resistant members and are in contact with each other during operation (hereinafter, the traveling portion side). The member of the above may be referred to as a member A and the member on the moving portion side may be referred to as a member B). It is preferable that the member has a dynamic friction coefficient μd satisfying 0.1 ≦ μd <0.3. Hereinafter, the coefficient of dynamic friction between the members may be simply referred to as the coefficient of dynamic friction. Here, the "driving unit" is a portion that comes into contact with the traveling unit when the light irradiating means, the light receiving means, and the thickness measuring means reciprocate, and is, for example, the wheel attached to the means or the means. Cable covers, bearings, etc. that move on the traveling portion that accompanies the reciprocating motion, which will be described later, fall under this category. The "traveling unit" is a portion on which the driving unit of each of the above means travels, and for example, a rail or the like corresponds to this. "Abrasion resistant member" means a member whose surface is less likely to be worn due to mechanical scratching or adhesion, for example, carbon steel, chrome steel, manganese steel, chrome molybdenum steel, chromoly steel, marten. Examples thereof include site-based stainless steel, precipitation-curing stainless steel, and austenite-based stainless steel. Further, the "member that comes into contact with each other during operation" refers to a drive unit and a traveling unit that come into contact with each other when the device operates.

本発明の測色装置においては、光照射手段、受光手段、及び厚み測定手段が搬送シート上を往復運動するため、駆動部と走行部は互いに接触と擦れを繰り返して生じる摩擦による粉塵の発生を軽減することが、最終的に得られるシートの品質の観点から求められる。上記動摩擦係数μdが0.3以下であることにより、往復運動の繰り返しによる駆動部の擦過に伴う削り粉の飛散が抑えられ、これらが搬送シートに付着することによるキズや付着異物の発生を軽減できる。 In the color measuring device of the present invention, since the light irradiating means, the light receiving means, and the thickness measuring means reciprocate on the transport sheet, the driving part and the traveling part repeatedly contact and rub against each other to generate dust due to friction. Mitigation is required from the viewpoint of the quality of the finally obtained sheet. When the dynamic friction coefficient μd is 0.3 or less, the scattering of shavings due to the rubbing of the drive unit due to repeated reciprocating motion is suppressed, and the generation of scratches and adhered foreign substances due to their adhesion to the transport sheet is reduced. can.

一方で、動摩擦係数μdが0.1以上であることにより、走行部上を往復運動する光照射手段、受光手段、及び厚み測定手段の滑りが抑えられ、加速・ブレーキ性が保たれるため、速度や走行距離を容易に正しく制御することができる。その結果、走行距離を測るカウンターの滑りによる誤作動も軽減され、測定位置の認識精度も高まる。さらに、光照射手段と受光手段は搬送シートを挟んで個別に稼働しているため、双方の走行距離が正しく制御できなくなると互いの位置関係や光路にズレが生じ、光照射手段から照射された光を受光手段で正しく受光できなくなることがあるが、動摩擦係数μdが0.1以上であるとこのような不具合も軽減できる。 On the other hand, when the dynamic friction coefficient μd is 0.1 or more, slippage of the light irradiating means, the light receiving means, and the thickness measuring means reciprocating on the traveling portion is suppressed, and acceleration / braking performance is maintained. The speed and mileage can be easily and correctly controlled. As a result, malfunctions due to slippage of the counter that measures the mileage are reduced, and the recognition accuracy of the measurement position is improved. Further, since the light irradiating means and the light receiving means operate individually with the transport sheet sandwiched between them, if the mileage of both cannot be controlled correctly, the positional relationship between them and the optical path are deviated, and the light irradiating means irradiates the light. Light may not be received correctly by the light receiving means, but if the dynamic friction coefficient μd is 0.1 or more, such a problem can be alleviated.

なお、動摩擦係数は以下の手順で測定することができる。先ず、部材Aおよび部材Bと同材料・表面状態であり、平面に加工した試料片(それぞれ、試料片A、試料片Bと呼ぶ。)を用意する。なお、試料片Bの重さはW(g)とする。試料片A上に試料片Bを地面に平行な向きで接触させて設置して、試料片B上に300gの重りを乗せる。その後、試料片Bに引き紐を付け、試料片Aおよび試料片Bの接触面に平行な方向(地面に平行な方向)に引っ張り部材Bを滑らせる。この際、部材Bを動かし続けるために必要な力F(g)を測定し、以下の式に則り動摩擦係数μdを求める。
式:μd=F/(W+300)。
The coefficient of dynamic friction can be measured by the following procedure. First, a sample piece having the same material and surface condition as the member A and the member B and processed into a flat surface (referred to as a sample piece A and a sample piece B, respectively) is prepared. The weight of the sample piece B is W (g). The sample piece B is placed in contact with the sample piece A in a direction parallel to the ground, and a weight of 300 g is placed on the sample piece B. After that, a drawstring is attached to the sample piece B, and the pulling member B is slid in a direction parallel to the contact surface of the sample piece A and the sample piece B (direction parallel to the ground). At this time, the force F (g) required to keep the member B moving is measured, and the dynamic friction coefficient μd is obtained according to the following equation.
Equation: μd = F / (W + 300).

上記観点から、駆動部及び走行部が耐摩耗性部材であり、動摩擦係数が0.1以上、0.3未満を満たす部材で構成されることが好ましい。動摩擦係数が0.1以上、0.3未満を満たす部材は、装置の機能を損なわない限り特に指定されないが、適度に表面を研磨したオーステナイト系ステンレス(SUS304)材などを好適に用いることができる。 From the above viewpoint, it is preferable that the drive unit and the traveling unit are wear-resistant members and are composed of members having a dynamic friction coefficient of 0.1 or more and less than 0.3. A member having a dynamic friction coefficient of 0.1 or more and less than 0.3 is not particularly specified as long as the function of the device is not impaired, but an austenitic stainless steel (SUS304) material having an appropriately polished surface can be preferably used. ..

以下、本発明の測色装置について、図1のAの態様の測色装置であって、演算手段、表示手段、及び検証手段を備えるものを例に挙げながら具体的に説明するが、本発明の測色装置は以下の態様に限定されない。 Hereinafter, the color measuring device of the present invention will be specifically described with reference to the color measuring device of the aspect A of FIG. 1 having a calculation means, a display means, and a verification means as an example. The color measuring device is not limited to the following aspects.

図6は、図1のAの態様の測色装置であって、演算手段、表示手段、及び検証手段を備えるものを表す概略図である。図6に示す態様の測色装置1において、光照射手段2、及び受光手段3と一体化した分光手段4は、搬送シート5に接触することなく、その上面側と下面側にそれぞれ位置する。そして、光照射手段2、及び受光手段3を備える分光手段4は、フレーム6に搬送シート5の幅方向と平行に取り付けられたレール7に沿って往復運動する。光照射手段2の光源8が発する照射光9が搬送シート5に到達すると透過光10と反射光11が生じ、透過光10は受光手段3を経て分光手段4内に取り込まれる。分光手段4内に取り込まれた透過光10は、分光手段4が具備する可動式のスリット12により所望の波長帯域毎に分光されて分光手段の本体13に取り込まれ、ここで搬送シート5上の光照射点における分光スペクトルが得られる。 FIG. 6 is a schematic diagram showing a color measuring device of the aspect A of FIG. 1 including a calculation means, a display means, and a verification means. In the color measuring device 1 of the embodiment shown in FIG. 6, the light irradiating means 2 and the spectroscopic means 4 integrated with the light receiving means 3 are located on the upper surface side and the lower surface side thereof without contacting the transport sheet 5. Then, the spectroscopic means 4 including the light irradiating means 2 and the light receiving means 3 reciprocate along the rail 7 attached to the frame 6 in parallel with the width direction of the transport sheet 5. When the irradiation light 9 emitted by the light source 8 of the light irradiation means 2 reaches the transport sheet 5, transmitted light 10 and reflected light 11 are generated, and the transmitted light 10 is taken into the spectroscopic means 4 via the light receiving means 3. The transmitted light 10 captured in the spectroscopic means 4 is separated into a desired wavelength band by a movable slit 12 provided in the spectroscopic means 4 and taken into the main body 13 of the spectroscopic means, where the light is captured on the transport sheet 5. A spectroscopic spectrum at the light irradiation point is obtained.

また、光照射手段2は放射線照射手段Aを備え、放射線照射手段Aは線源を備える。さらに、分光手段4は放射線受光手段Bを備え、放射線受光手段Bはイオンチャンバを備える。このような様態とすることで、測色および厚さ測定手段は近接して設置され、同時にレール7に沿って往復運動する。 Further, the light irradiation means 2 includes a radiation irradiation means A, and the radiation irradiation means A includes a radiation source. Further, the spectroscopic means 4 includes a radiation receiving means B, and the radiation receiving means B includes an ion chamber. By making such a mode, the color measuring means and the thickness measuring means are installed in close proximity, and at the same time, they reciprocate along the rail 7.

分光手段4としてはイメージング分光器を好適に用いることができ、イメージング分光器が、例えば、モノクロCCDカメラを備える二次元センサーを有するものである場合、二次元センサー内のモノクロCCDカメラで撮影され、CCDの縦方向が波長軸、横方向が位置の軸になり、CCDの撮像素子にて搬送シートの測色位置に対応する分光スペクトルに変換される。 An imaging spectroscope can be preferably used as the spectroscopic means 4, and when the imaging spectroscope has, for example, a two-dimensional sensor including a monochrome CCD camera, the image is taken by the monochrome CCD camera in the two-dimensional sensor. The vertical direction of the CCD is the wavelength axis, and the horizontal direction is the position axis, which is converted into a spectroscopic spectrum corresponding to the color measurement position of the carrier sheet by the image pickup element of the CCD.

放射線受光手段Bよりイオンチャンバに取り込まれた放射線は、イオンチャンバが具備する電極によりイオン化され、そのイオン化エネルギーに応じて電離電流が発生する。その電離電流をエレクトロメータ(図示しない)で検知し、起電圧を測定することで、放射線受光手段Bが得た放射線量を測定することにより減衰した放射線量を算出し、搬送シート5の厚みを得られる。 The radiation taken into the ion chamber by the radiation receiving means B is ionized by the electrodes provided in the ion chamber, and an ionizing current is generated according to the ionization energy. By detecting the ionizing current with an electrometer (not shown) and measuring the electromotive voltage, the radiation dose obtained by the radiation receiving means B is measured to calculate the attenuated radiation dose, and the thickness of the transport sheet 5 is determined. can get.

分光手段4は、ケーブルを介して2つのCPUを備える電子計算機19に接続されている。以下、電子計算機19における各CPUについて、第1CPU20、第2CPU21ということがある。 The spectroscopic means 4 is connected to a computer 19 including two CPUs via a cable. Hereinafter, each CPU in the computer 19 may be referred to as a first CPU 20 and a second CPU 21.

第1CPU20は、測色装置が稼働している間、分光手段4で得られた分光スペクトルより色調値を算出する役割、減衰した放射線量より搬送シート5の厚みを算出する役割、色調値のデータを第2CPU21に伝送する役割、及び色調値のデータを予め設定した管理色調値範囲と比較して合否判定を行う役割を担う。このとき、第1CPU20の検査条件の一つとして、検査する搬送シートの長手方向の長さに1本の中間ロールに巻き取られる搬送シートの長さを設定することにより、1本の中間ロールにおける色調ムラや厚みムラの有無を容易に評価することができる。また、第1CPU20は、色調値のデータを予め設定した管理色調値範囲と比較して合否判定を行った結果、「否」であったときにアラームを発するものとしてもよい。 The first CPU 20 has a role of calculating a color tone value from the spectral spectrum obtained by the spectroscopic means 4, a role of calculating the thickness of the conveyed sheet 5 from the attenuated radiation amount, and data of the color tone value while the color measuring device is operating. Is transmitted to the second CPU 21, and the color tone value data is compared with a preset management color tone value range to make a pass / fail judgment. At this time, as one of the inspection conditions of the first CPU 20, the length of the transport sheet wound around one intermediate roll is set to the length in the longitudinal direction of the transport sheet to be inspected, so that the length of the transport sheet is set to one intermediate roll. The presence or absence of color tone unevenness and thickness unevenness can be easily evaluated. Further, the first CPU 20 may issue an alarm when the result of the pass / fail determination by comparing the color tone value data with the preset management color tone value range is "No".

また、第1CPU20には、分光手段4や第2CPU21の他、入力部22、第1表示部23、及び第1出力部24も接続されている。入力部22は、管理色調値等の検査条件の入力、測色の開始や停止等の指示をする装置である。第1表示部23は、測色結果や検査条件をリアルタイムで表示するための装置である。第1出力部24は、検査条件や検査結果等を紙にプリント出力する装置である。 Further, in addition to the spectroscopic means 4 and the second CPU 21, the input unit 22, the first display unit 23, and the first output unit 24 are also connected to the first CPU 20. The input unit 22 is a device that inputs inspection conditions such as control color tone values and gives instructions such as start and stop of color measurement. The first display unit 23 is a device for displaying color measurement results and inspection conditions in real time. The first output unit 24 is a device that prints out inspection conditions, inspection results, and the like on paper.

第2CPU21は、第1CPU20に通信回線25で接続されており、その他に第2表示部26や第2出力部27が接続されている。第2CPU21は、第1CPU20で得られた測色値を、測色値トレンドや彩度分布へ編集する機能や厚み値を厚みトレンドへ編集する機能を有しており、第1CPU20で入力された条件や得られた測色値や厚み値は直ちに第2CPU21に伝送され、リアルタイムに測色値トレンドや彩度分布、厚み値トレンドに編集されて、第2表示部26で測色値トレンドや彩度分布のデータが表示される。 The second CPU 21 is connected to the first CPU 20 by a communication line 25, and is also connected to a second display unit 26 and a second output unit 27. The second CPU 21 has a function of editing the color measurement value obtained by the first CPU 20 into a color measurement value trend and a saturation distribution and a function of editing a thickness value into a thickness trend, and the conditions input by the first CPU 20. The obtained color measurement value and thickness value are immediately transmitted to the second CPU 21, edited in real time into the color measurement value trend, saturation distribution, and thickness value trend, and the color measurement value trend and saturation are displayed on the second display unit 26. Distribution data is displayed.

測色値トレンドは、例えば、時間又は搬送シート上の測色点の幅方向位置を横軸、L*値、a*値、及びb*値の少なくとも一つを縦軸として表示することが好ましい。また、例えば横軸が時間で縦軸がa*値のものと横軸が時間で縦軸がb*値のものを同時に表示するなど複数種表示することや、横軸が時間で縦軸がa*値のものを複数の測色点を対象に表示すること、及びこれらを組み合わせることも可能である。測色値トレンドにおいて横軸に時間を取ることにより、ある測色点における色調を経時的に観測することができる。一方、横軸に搬送シートの幅方向位置を取ることにより、搬送シートの幅方向と平行な方向の色ムラの有無を観測することができる。 For the color measurement value trend, for example, it is preferable to display the time or the widthwise position of the color measurement point on the transport sheet as the horizontal axis, and at least one of the L * value, the a * value, and the b * value as the vertical axis. .. In addition, for example, the horizontal axis is time and the vertical axis is a * value, and the horizontal axis is time and the vertical axis is b * value. It is also possible to display a * value for a plurality of color measurement points and to combine these. By taking time on the horizontal axis in the color measurement value trend, the color tone at a certain color measurement point can be observed over time. On the other hand, by locating the transport sheet in the width direction on the horizontal axis, it is possible to observe the presence or absence of color unevenness in the direction parallel to the width direction of the transport sheet.

彩度分布は、任意に定めた一定期間に得られたa*値を横軸、b*値を縦軸とする散布図として表すことが好ましい。この「任意に定めた一定期間」は、表示させたい測色点の数に応じて適宜設定することができる。この期間が長ければ長いほど、過去のデータを多く表示することができる。 The saturation distribution is preferably represented as a scatter plot with the a * value obtained in an arbitrarily determined fixed period on the horizontal axis and the b * value on the vertical axis. This "arbitrarily determined fixed period" can be appropriately set according to the number of color measurement points to be displayed. The longer this period, the more historical data can be displayed.

また、第2出力部27は、測色値トレンドや彩度分布のデータを紙にプリント出力する装置である。この第2出力部27を、一定の単位巻き取り長さ(時間若しくは回数)の測色が終了する毎にデータをプリント出力するように設定することで、不良品の特定等の効率化に繋げることができる。 Further, the second output unit 27 is a device that prints out the data of the colorimetric value trend and the saturation distribution on paper. By setting the second output unit 27 to print out data every time the color measurement of a certain unit winding length (time or number of times) is completed, it leads to efficiency improvement such as identification of defective products. be able to.

このように、図6の態様の測色装置においては、主に第1CPU20が演算手段と検証手段の役割を果たし、第2表示部26が表示手段の役割を果たしている。 As described above, in the color measuring device of the aspect of FIG. 6, the first CPU 20 mainly plays the role of the calculation means and the verification means, and the second display unit 26 plays the role of the display means.

図7は、図6の測色装置における測色手順を表すフローチャートである。先ず、第1CPU20側で検査条件(被測色物、検査日、検査速度、測色間隔、検査する搬送シートの長手方向の長さ等)を設定する。このとき、1サイクルの検査で中間ロール(図7中、中間スプール)における色調ムラの有無を評価することが可能となるように、検査する搬送シートの長手方向の長さには、1本の中間ロールに巻き取られる搬送シートの長さを設定する。 FIG. 7 is a flowchart showing a color measuring procedure in the color measuring device of FIG. First, the inspection conditions (object to be inspected, inspection date, inspection speed, color measurement interval, length in the longitudinal direction of the transport sheet to be inspected, etc.) are set on the first CPU 20 side. At this time, the length of the transport sheet to be inspected is one in the longitudinal direction so that the presence or absence of color tone unevenness in the intermediate roll (intermediate spool in FIG. 7) can be evaluated in one cycle of inspection. Set the length of the transport sheet to be wound on the intermediate roll.

続いて、第1CPU20側管理色調値範囲(図7中、管理基準値)の設定を行う。この設定は、予め被測色物等の測色条件を入力することで自動設定される態様としてもよい。また、管理色調値範囲は、搬送シート全面で同じ範囲としても、幅方向位置毎に異なる範囲を設定してもよい。管理色調値範囲の設定が完了した後、その情報を第2CPU21側に伝送して第2CPU21の表示設定を行い、測色値トレンドと彩度分布のどちらを表示させるかを設定する(本発明の効果を損なわない限り、両方を表示させてもよい。)。 Subsequently, the control color tone value range (control reference value in FIG. 7) on the first CPU 20 side is set. This setting may be set automatically by inputting color measurement conditions such as a color object to be measured in advance. Further, the control color tone value range may be the same range on the entire surface of the transport sheet, or may be set to a different range for each position in the width direction. After the setting of the management color tone value range is completed, the information is transmitted to the second CPU 21 side to set the display of the second CPU 21 and set whether to display the color measurement value trend or the saturation distribution (invention of the present invention). Both may be displayed as long as the effect is not impaired.)

このように、第1CPU20と第2CPU21の事前設定を終えた後、搬送フィルムの走行を確認した上で光照射手段2、及び受光手段3と一体化した分光手段4を稼働させて測色を開始する。測色を開始すると、測色点における色調値のデータが第1CPU20に蓄積され、その後又は同時に第2CPU21に転送される。第1CPU20は、蓄積された色調値のデータを管理色調値範囲と比較して合否判定を行い、結果を第1表示部23に表示する。また、第2CPU21に転送された色調値のデータは、測色値トレンドや彩度分布に変換され、これらが第2表示部26に表示される。第1CPU20から第2CPU21へのデータ転送のタイミングは、リアルタイムでの監視を行う観点から蓄積と同時が特に好ましいが、第1CPU20のスペック上困難な場合は、後述する中間ロール巻き替えを示す信号が伝達されるのと同じタイミングとすることができる。 In this way, after completing the preset settings of the first CPU 20 and the second CPU 21, after confirming the running of the conveyed film, the light irradiating means 2 and the spectroscopic means 4 integrated with the light receiving means 3 are operated to start color measurement. do. When the color measurement is started, the color tone value data at the color measurement point is accumulated in the first CPU 20 and then or simultaneously transferred to the second CPU 21. The first CPU 20 compares the accumulated color tone value data with the managed color tone value range, makes a pass / fail judgment, and displays the result on the first display unit 23. Further, the color tone value data transferred to the second CPU 21 is converted into a color measurement value trend and a saturation distribution, and these are displayed on the second display unit 26. The timing of data transfer from the first CPU 20 to the second CPU 21 is particularly preferably simultaneous with the accumulation from the viewpoint of real-time monitoring, but if it is difficult due to the specifications of the first CPU 20, a signal indicating intermediate roll rewinding, which will be described later, is transmitted. It can be the same timing as it is done.

この検査が1サイクル終了したタイミング(1本の中間ロールの検査が終了したタイミング)で、第1CPU20は第2CPU21へ信号(中間ロール巻き替えを示す信号)を伝送し、第1出力部24と第2出力部27は、合否判定結果、測色値トレンドや彩度分布をそれぞれプリント出力する。得られたプリント出力の結果より、得られた中間ロールに巻かれたシートの品質を評価し、製膜継続の可否を判断することができる。 At the timing when one cycle of this inspection is completed (the timing when the inspection of one intermediate roll is completed), the first CPU 20 transmits a signal (a signal indicating intermediate roll rewinding) to the second CPU 21, and the first output unit 24 and the first 2 The output unit 27 prints out the pass / fail determination result, the color measurement value trend, and the saturation distribution, respectively. From the results of the obtained print output, it is possible to evaluate the quality of the sheet wound on the obtained intermediate roll and determine whether or not the film formation can be continued.

第1CPU20、入力部22、第1表示部23、及び第1出力部24等は、例えば、DELL社製のパーソナルコンピュータ“Optiplex”(登録商標)シリーズとその周辺機器で構成することができる。この第1CPU20は、検査条件や測色値データ等を長期間記録する観点から、2GB程度のメモリーと80GB程度の内蔵の記憶装置(ハードディスク等)を備えることが好ましい。入力部22は、キーボード等の検査条件入力装置と、測色の開始や停止の指令を行うスイッチを備える。スイッチで測色の開始が入力されると、光照射手段2、及び受光手段3と一体化した分光手段4が、搬送シートの幅方向と平行に移動しながら予め設定した条件に従って測色を行い、第1表示部23に位置情報を伴った合否判定結果が表示される。第1表示部で表示される合否判定結果の一例を図8に示す。 The first CPU 20, the input unit 22, the first display unit 23, the first output unit 24, and the like can be configured by, for example, a personal computer "Optiplex" (registered trademark) series manufactured by Dell and its peripheral devices. From the viewpoint of recording inspection conditions, colorimetric value data, and the like for a long period of time, the first CPU 20 preferably includes a memory of about 2 GB and a built-in storage device (hard disk, etc.) of about 80 GB. The input unit 22 includes an inspection condition input device such as a keyboard and a switch for issuing a command to start or stop color measurement. When the start of color measurement is input by the switch, the light irradiation means 2 and the spectroscopic means 4 integrated with the light receiving means 3 move in parallel with the width direction of the transport sheet and perform color measurement according to preset conditions. , The pass / fail determination result accompanied by the position information is displayed on the first display unit 23. FIG. 8 shows an example of the pass / fail determination result displayed on the first display unit.

図8の例では、横軸を幅方向15、縦軸を長手方向14としてシート面を表している。ここで、長手方向14と平行に引かれた点線は各測色点の幅方向位置に相当し、その上に位置する各点は色調異常箇所(符号28)を表す。なお、色調異常箇所28は、L*、a*,b*のうち、どの値に異常が発生したかを点の色や形によって判別可能に表示することも好ましい。 In the example of FIG. 8, the horizontal axis is 15 in the width direction and the vertical axis is 14 in the longitudinal direction to represent the seat surface. Here, the dotted line drawn in parallel with the longitudinal direction 14 corresponds to the width direction position of each color measurement point, and each point located above the dotted line represents a color tone abnormality point (reference numeral 28). It is also preferable that the color tone abnormality portion 28 displays which of L *, a *, and b * the abnormality has occurred so that it can be discriminated by the color and shape of the dots.

第2CPU21は、第1CPU20で得られた色調値データを処理して、第2表示部26に測色位置毎に測色値トレンドや彩度分布を同画面に配置するように編集、表示する役割を担う。また、第2CPU21は測色値トレンドや彩度分布にデータ単位(実績トレンド)を重ね合わせられる機能を有する。第2CPU21は膨大なデータ処理が必要なため、第1CPU20と同等のメモリー、記憶装置を備えることが好ましい。また、第2表示部26及び第2出力部27は、第1表示部23や第1出力部24と同等のものを使用することができる。 The second CPU 21 processes the color tone value data obtained by the first CPU 20, edits and displays the color measurement value trend and the saturation distribution on the second display unit 26 so as to arrange them on the same screen for each color measurement position. To bear. Further, the second CPU 21 has a function of superimposing a data unit (actual trend) on the colorimetric trend and the saturation distribution. Since the second CPU 21 requires a huge amount of data processing, it is preferable to provide a memory and a storage device equivalent to those of the first CPU 20. Further, as the second display unit 26 and the second output unit 27, the same ones as those of the first display unit 23 and the first output unit 24 can be used.

以上のような構成とすることで、搬送シートの色ムラの傾向把握をオンラインで行うことができ、製膜工程における合否判定や傾向管理、異常時の迅速な対応が可能となる。 With the above configuration, it is possible to grasp the tendency of color unevenness of the conveyed sheet online, and it is possible to make a pass / fail judgment in the film forming process, manage the tendency, and quickly respond to an abnormality.

以上、本発明の測色装置の具体的態様について説明したが、これは上記態様に限定されるものではなく、本発明の効果を損なわない範囲内で種々の変更が可能である。例えば、電子計算機として十分な処理能力を有するCPUを備えるもの用いれば、上述した第2CPU21の機能を第1CPU20に集約することで、表示部、出力部を含めて単一のシステムとすることができる。また、色調異常個所の表示方法についても、目的に応じて適宜最適な表示方法を採用することができる。 Although the specific embodiment of the color measuring device of the present invention has been described above, the present invention is not limited to the above embodiment, and various changes can be made within the range not impairing the effect of the present invention. For example, if a computer equipped with a CPU having sufficient processing capacity is used, the functions of the second CPU 21 described above can be integrated into the first CPU 20 to form a single system including a display unit and an output unit. .. Further, as for the display method of the color tone abnormality portion, the optimum display method can be appropriately adopted according to the purpose.

以下、本発明のシートの製造方法について説明する。本発明のシートの製造方法は、本発明の測色装置を用いて搬送シートの色調管理を行うことを特徴とする。このような態様とすることにより、インラインでシートの色調の傾向を管理することができるため、色調に関して、製膜工程における合否判定や傾向管理、異常時の迅速な対応が可能となる。 Hereinafter, the method for manufacturing the sheet of the present invention will be described. The sheet manufacturing method of the present invention is characterized in that the color tone of the conveyed sheet is controlled by using the color measuring device of the present invention. With such an aspect, it is possible to manage the tendency of the color tone of the sheet in-line, so that it is possible to make a pass / fail judgment, manage the tendency, and quickly respond to an abnormality in the color tone in the film forming process.

本発明のシートの製造方法においては、その効果を損なわない限り、本発明の測色装置の配置位置や個数は特に制限されない。但し、シートの延伸を行う場合は、最終製品の品質をより確実に評価する観点から、延伸工程よりも下流に設定することが好ましい。 In the method for manufacturing a sheet of the present invention, the arrangement position and the number of the color measuring devices of the present invention are not particularly limited as long as the effect is not impaired. However, when stretching the sheet, it is preferable to set it downstream from the stretching step from the viewpoint of more reliably evaluating the quality of the final product.

次に、本発明のシートの製造方法について、逐次二軸延伸法による二軸配向ポリエチレンテレフタレート(PET)フィルムの製造を例に挙げて以下に説明するが、本発明のシートの製造方法はこれに限定されない。 Next, the method for producing a sheet of the present invention will be described below with reference to the production of a biaxially oriented polyethylene terephthalate (PET) film by a sequential biaxial stretching method. Not limited.

先ず、樹脂ペレットを押出機の原料投入部に供給し、樹脂を加熱溶融する。その後、ギヤポンプ等で樹脂の押出量を均一化して、加熱溶融された樹脂を押出し、フィルター等を介して異物やゲル化物などを取り除く。このとき、押出機は1台であっても複数台であってもよく、複数台の押出機を用いる場合は、フィルターを通過した熱可塑性樹脂を積層装置に送り込む。積層装置としては、マルチマニホールドダイやフィードブロックやスタティックミキサー等を用いることができ、これらを任意に組み合わせてもよい。 First, the resin pellets are supplied to the raw material input section of the extruder, and the resin is heated and melted. After that, the amount of resin extruded is made uniform by a gear pump or the like, the heated and melted resin is extruded, and foreign substances and gelled substances are removed through a filter or the like. At this time, the number of extruders may be one or a plurality, and when a plurality of extruders are used, the thermoplastic resin that has passed through the filter is sent to the laminating device. As the laminating device, a multi-manifold die, a feed block, a static mixer, or the like can be used, and these may be arbitrarily combined.

このようにして得られた樹脂の溶融体を、口金からシート状溶融物として吐出し、キャスティングドラム等の冷却体上に押し出して冷却固化することにより、無配向シートを得る。シート状溶融物から無配向シートを得る具体的な方法としては、ワイヤー状、テープ状、針状あるいはナイフ状等の電極を用いて、シート状溶融物を静電気力によりキャスティングドラム等の冷却体に密着させ急冷固化させる方法が好ましい。他には、スリット状、スポット状又は面状の装置からエアを吹き出して、シート状溶融物をキャスティングドラム等の冷却体に密着させて急冷固化させる方法や、ニップロールにてシート状溶融物を冷却体に密着させて急冷固化させる方法も好ましい。 The resin melt thus obtained is discharged as a sheet-like melt from the mouthpiece, extruded onto a cooling body such as a casting drum, and cooled and solidified to obtain an unoriented sheet. As a specific method for obtaining a non-oriented sheet from a sheet-shaped melt, a wire-shaped, tape-shaped, needle-shaped or knife-shaped electrode is used to apply the sheet-shaped melt to a cooling body such as a casting drum by electrostatic force. A method of bringing them into close contact with each other and quenching and solidifying is preferable. Other methods include blowing air from a slit-shaped, spot-shaped or planar device to bring the sheet-shaped melt into close contact with a cooling body such as a casting drum to quench and solidify it, or cooling the sheet-shaped melt with a nip roll. A method of rapidly cooling and solidifying the product in close contact with the body is also preferable.

次に、得られた無配向シートを、長手方向に延伸(縦延伸)して一軸配向シートを得る。縦延伸は、一本又は周速の等しい複数本の延伸ロールを使用して1段階で行うことも、周速の異なる複数本の延伸ロールを使用して多段階に行うことも可能であり、その倍率は2~7倍が好ましい。なお、縦延伸では、予熱ロールにて無配向シートを加熱した後に、赤外線ヒータ等により無配向シートをさらに加熱することも可能である。 Next, the obtained non-aligned sheet is stretched in the longitudinal direction (longitudinal stretching) to obtain a uniaxially oriented sheet. The longitudinal stretching can be performed in one step using one or a plurality of stretching rolls having the same peripheral speed, or can be performed in multiple steps using a plurality of stretching rolls having different peripheral speeds. The magnification is preferably 2 to 7 times. In the longitudinal stretching, it is also possible to heat the non-oriented sheet with a preheating roll and then further heat the non-oriented sheet with an infrared heater or the like.

また、縦延伸後、得られた一軸配向シートの両面若しくは片面に、易接着層等の機能層を形成させるための塗剤を塗布する工程を設けることも可能である。塗剤を塗布する方法としては、特に限定されないが、例えば、リバースコート法、グラビアコート法、ロッドコート法、バーコート法、ワイヤーバーコート法、ダイコート法、スプレーコート法などを用いることができる。 It is also possible to provide a step of applying a coating agent for forming a functional layer such as an easy-adhesion layer on both sides or one side of the obtained uniaxially oriented sheet after longitudinal stretching. The method for applying the coating agent is not particularly limited, and for example, a reverse coating method, a gravure coating method, a rod coating method, a bar coating method, a wire bar coating method, a die coating method, a spray coating method and the like can be used.

その後、縦延伸により得られた一軸配向シートを、テンター装置に導き、幅方向に延伸(横延伸)することにより二軸配向フィルムを得る。テンター装置は、その内部を走行するクリップにより一軸配向シートの幅方向両端部を把持し、予熱ゾーン、延伸ゾーン、熱固定ゾーン、及び冷却ゾーンの順に走行させることにより一軸配向シートを延伸温度に加熱して横延伸し、その後、熱固定して冷却する。こうして二軸配向フィルムを得ることができる。 Then, the uniaxially oriented sheet obtained by longitudinal stretching is guided to a tenter device and stretched (transversely) in the width direction to obtain a biaxially oriented film. The tenter device grips both ends of the uniaxially oriented sheet in the width direction by a clip traveling inside the tenter device, and heats the uniaxially oriented sheet to the stretching temperature by traveling in the order of the preheating zone, the stretching zone, the heat fixing zone, and the cooling zone. Then, it is laterally stretched, and then heat-fixed and cooled. In this way, a biaxially oriented film can be obtained.

予熱ゾーン及び延伸ゾーンの温度は、最終的に得るフィルムの厚み、延伸の速度、及びインラインコーティングの有無等にもよるが、80~160℃が好ましく、85~130℃がより好ましく、90~120℃がさらに好ましい。予熱ゾーン及び延伸ゾーンの温度を80℃以上とすることによりフィルム破断が軽減され、160℃以下とすることにより十分な強度のフィルムを得ることができる。横延伸の倍率は、最終的に得るフィルムの厚み、延伸の速度、インラインコーティングの有無等にもよるが、延伸ムラやフィルムの破断などを防止する観点から、2.5~6.0倍が好ましく、3.0~5.5倍がより好ましく、3.5~5.0倍がさらに好ましい。 The temperature of the preheating zone and the stretching zone is preferably 80 to 160 ° C, more preferably 85 to 130 ° C, and 90 to 120, although it depends on the thickness of the finally obtained film, the stretching speed, the presence or absence of in-line coating, and the like. ° C is more preferred. By setting the temperature of the preheating zone and the stretching zone to 80 ° C. or higher, film breakage is reduced, and by setting the temperature to 160 ° C. or lower, a film having sufficient strength can be obtained. The magnification of lateral stretching depends on the thickness of the final film, the speed of stretching, the presence or absence of in-line coating, etc., but from the viewpoint of preventing uneven stretching and breakage of the film, it is 2.5 to 6.0 times. It is preferable, 3.0 to 5.5 times more preferably, and 3.5 to 5.0 times more preferably.

本発明のシートの製造方法においては、横延伸工程後、後述する中間ロールとして巻き取る際にフィルム面が摩擦することで生じるキズ等の発生を軽減するために、幅方向両端部付近にナールといわれるエンボス加工を施してもよい。なお、このようなエンボス加工部分はフィルムの厚みが大きいエッジ部分と同様に、最終製品とする過程で、切断し除去することができる。 In the method for producing a sheet of the present invention, in order to reduce the occurrence of scratches and the like caused by friction of the film surface when winding as an intermediate roll described later after the lateral stretching step, knurls are used near both ends in the width direction. It may be embossed. It should be noted that such an embossed portion can be cut and removed in the process of making a final product, similarly to the edge portion having a large film thickness.

こうして得られた二軸配向フィルムは、その後の搬送工程で冷却され、一旦広幅の巻き取り機で中間ロールとして巻き取られた後、スリッターにより、必要な幅と長さに裁断されて最終製品となる。本発明の測色装置を、例えば中間ロールとして巻き取る前に配置することにより、測色箇所や時期による測色誤差を軽減し、オンラインでのシート幅方向の色調をより高精度に測色すること、及びインラインでより正確に色調傾向を管理することが可能となる。 The biaxially oriented film thus obtained is cooled in the subsequent transfer process, once wound as an intermediate roll by a wide winder, and then cut into a required width and length by a slitter to form a final product. Become. By arranging the color measuring device of the present invention before winding it as an intermediate roll, for example, the color measuring error due to the color measuring point and the timing is reduced, and the color tone in the sheet width direction online is measured with higher accuracy. This also makes it possible to manage color tone trends more accurately in-line.

なお、こうして得られたフィルムは色調ムラが軽減されており、各種光学用フィルムとして用いることができる。具体的には、プリズムシート用ベースフイルム、ハードコート用ベースフイルム、反射防止(AR)フィルム用ベースフイルム、光拡散用ベースフイルム、透明導電性フィルムなどとして好適に用いることができる。 The film thus obtained has reduced color tone unevenness and can be used as various optical films. Specifically, it can be suitably used as a base film for a prism sheet, a base film for a hard coat, a base film for an antireflection (AR) film, a base film for light diffusion, a transparent conductive film and the like.

以下、実施例に基づき本発明をより詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples.

[フィルムの製造に使用した樹脂]
フィルムの製造には、以下の樹脂A、樹脂B、組成物Iを使用した。
[Resin used in film manufacturing]
The following resin A, resin B, and composition I were used in the production of the film.

(樹脂A)
テレフタル酸ジメチル100質量部、エチレングリコール60質量部の混合物に、テレフタル酸ジメチル量に対して酢酸マグネシウム0.09質量部、三酸化アンチモン0.03質量部を添加して、常法により加熱昇温してエステル交換反応を行った。次いで、該エステル交換反応生成物に、テレフタル酸ジメチル量に対して、リン酸85%水溶液0.020質量部を添加した後、重縮合反応槽に移行した。さらに、加熱昇温しながら反応系を除々に減圧して1mmHgの減圧下、290℃で常法により重縮合反応を行い、固有粘度(IV)0.61のポリエチレンテレフタレート(PET)を得た。これを樹脂Aとした。
(Resin A)
To a mixture of 100 parts by mass of dimethyl terephthalate and 60 parts by mass of ethylene glycol, 0.09 parts by mass of magnesium acetate and 0.03 parts by mass of antimony trioxide are added to the amount of dimethyl terephthalate, and the temperature is raised by heating by a conventional method. Then, a transesterification reaction was carried out. Then, 0.020 parts by mass of an 85% phosphoric acid aqueous solution was added to the transesterification reaction product with respect to the amount of dimethyl terephthalate, and then the mixture was transferred to a polycondensation reaction tank. Further, the reaction system was gradually depressurized while heating and raising the temperature, and a polycondensation reaction was carried out at 290 ° C. under a reduced pressure of 1 mmHg to obtain polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.61. This was designated as resin A.

(樹脂B)
固有粘度(IV)0.60のスピログリコール(SPG)21mol%、及びシクロヘキサンジカルボン酸(CHDC)24mol%を共重合したPETと樹脂Aを4:1で混合し、共重合PET混合物を得た。これを樹脂Bとした。
(Resin B)
PET obtained by copolymerizing 21 mol% of spiroglycol (SPG) having an intrinsic viscosity (IV) of 0.60 and 24 mol% of cyclohexanedicarboxylic acid (CHDC) and resin A were mixed at a ratio of 4: 1 to obtain a copolymerized PET mixture. This was designated as resin B.

(組成物I)
(a) アクリル・ウレタン共重合樹脂の水分散体:山南合成化学(株)製“サンナロン”WG-658(固形分濃度30質量%)
(b) イソシアネート基とアミノ基を含む化合物の水分散体:(固形分濃度28質量%)
(c) エポキシ化合物(固形):DIC(株)製“CR-5L”
(d) ポリチオフェン構造を有する化合物及び陰イオン構造を有する化合物からなる組成物の水分散体:(固形分濃度1.3質量%)
(e) オキサゾリン化合物の水分散体:日本触媒(株)製、“エポクロス”(登録商標)WS-500(固形分濃度40質量%)
(f) カルボジイミド化合物の水分散体:日清紡(株)製、“カルボジライト”(登録商標)V-04(固形分濃度40質量%)
(g) シリカ粒子:日揮触媒化成(株)製、“スフェリカ”(登録商標)スラリー140(固形分濃度40質量%)
(h) アセチレンジオール系界面活性剤:日信化学(株)製、“オルフィン”(登録商標)EXP4051(固形分濃度50質量%)
上記した(a)~(h)を固形分質量比で、(a):(b):(c):(d):(e):(f):(g):(h)=100:100:75:25:60:60:10:15となるように混合し、かつ固形分濃度が3質量%となるように純水で濃度調整したものを組成物Iとした。
(Composition I)
(A) Acrylic / urethane copolymer resin aqueous dispersion: "Sannaron" WG-658 manufactured by Yamanan Synthetic Chemical Co., Ltd. (solid content concentration 30% by mass)
(B) Aqueous dispersion of compound containing isocyanate group and amino group: (solid content concentration 28% by mass)
(C) Epoxy compound (solid): "CR-5L" manufactured by DIC Corporation
(D) An aqueous dispersion of a composition composed of a compound having a polythiophene structure and a compound having an anionic structure: (solid content concentration 1.3% by mass)
(E) Aqueous dispersion of oxazoline compound: "Epocross" (registered trademark) WS-500 (solid content concentration 40% by mass) manufactured by Nippon Shokubai Co., Ltd.
(F) Aqueous dispersion of carbodiimide compound: "Carbodilite" (registered trademark) V-04 (solid content concentration 40% by mass) manufactured by Nisshinbo Holdings Inc.
(G) Silica particles: "Spherica" (registered trademark) slurry 140 (solid content concentration 40% by mass) manufactured by JGC Catalysts and Chemicals Co., Ltd.
(H) Acetylenediol-based surfactant: "Orfin" (registered trademark) EXP4051 (solid content concentration 50% by mass) manufactured by Nissin Chemical Co., Ltd.
(A) to (h) described above in terms of solid content mass ratio, (a) :( b): (c) :( d) :( e): (f) :( g) :( h) = 100 :. Composition I was prepared by mixing so as to be 100: 75: 25: 60: 60: 10: 15, and adjusting the concentration with pure water so that the solid content concentration was 3% by mass.

[フィルムの製造]
樹脂A及び樹脂Bを各々別のベント付き二軸押出機に投入し、樹脂Aを280℃で、樹脂Bを270℃で溶融して、それぞれギヤポンプ及びフィルターを介して274個のスリットを有する部材を別個に1個有する549層のフィードブロックにて合流させた。このとき、厚膜層となる両側の最表層が樹脂Aとなるように両者を交互に積層し、かつ隣接する樹脂Aからなる層と樹脂Bからなる層の厚みがほぼ同じになるようにした。次いで、こうして得られた溶融樹脂の積層体をT-ダイに導いてシート状に成型した後、静電印加で表面温度25℃に保たれたキャスティングドラムに密着させて急冷固化して無配向シートを得た。なお、このときT-ダイの出口部にあたる口金の間隙を調整することによって、厚みの微調整をした。
[Manufacturing of film]
A member having resin A and resin B put into separate twin-screw extruders with vents, resin A is melted at 280 ° C., resin B is melted at 270 ° C., and has 274 slits via a gear pump and a filter, respectively. Was merged with a 549-layer feed block having one separately. At this time, the two layers were alternately laminated so that the outermost layers on both sides of the thick film layer became the resin A, and the thicknesses of the adjacent layers made of the resin A and the layers made of the resin B were made substantially the same. .. Next, the laminated body of the molten resin thus obtained was guided to a T-die and molded into a sheet, and then brought into close contact with a casting drum maintained at a surface temperature of 25 ° C. by electrostatic application and rapidly cooled and solidified to form a non-oriented sheet. Got At this time, the thickness was finely adjusted by adjusting the gap of the base corresponding to the outlet portion of the T-die.

得られた無配向シートを75℃に設定したロール群で加熱した後、延伸区間長100mmの間で、フィルム両面からラジエーションヒーターで急速加熱しながら縦方向に3.3倍延伸し、その後一旦冷却して一軸配向フィルムを得た。次いで、該一軸配向フィルムの両面に空気中でコロナ放電処理を施し、#4のワイヤーバーで易接着層の組成物Iを両面に塗布した。 The obtained non-oriented sheet was heated in a roll group set at 75 ° C., then stretched 3.3 times in the vertical direction from both sides of the film while being rapidly heated by a radiation heater for a stretched section length of 100 mm, and then cooled once. A uniaxially oriented film was obtained. Next, both sides of the uniaxially oriented film were subjected to a corona discharge treatment in air, and the composition I of the easy-adhesion layer was applied to both sides with a # 4 wire bar.

さらに、組成物Iを塗布した一軸配向フィルムをテンター装置に導き、100℃の熱風で予熱して、110℃の温度で横方向に3.5倍に延伸した。その後、同じテンター装置内にて240℃の熱風で熱処理を行い、同温度で幅方向に7%の弛緩処理を施し、さらに室温まで冷却して厚み70μm、幅3,650mmの二軸配向フィルムを得た。こうして得られた二軸配向フィルムをワインダーで巻き取り、二軸配向フィルムロールを得た。 Further, the uniaxially oriented film coated with the composition I was guided to a tenter device, preheated with hot air at 100 ° C., and stretched 3.5 times in the lateral direction at a temperature of 110 ° C. After that, heat treatment is performed with hot air at 240 ° C. in the same tenter device, a relaxation treatment of 7% in the width direction is performed at the same temperature, and the film is further cooled to room temperature to form a biaxially oriented film having a thickness of 70 μm and a width of 3,650 mm. Obtained. The biaxially oriented film thus obtained was wound with a winder to obtain a biaxially oriented film roll.

[測色装置]
(測色装置A)
図6に示す態様の測色装置を使用した。以下、本測色装置について具体的に説明する。測色装置1は、光照射手段2及び分光手段4を有し、分光手段4には受光手段3が取り付けられている。このとき、搬送フィルム5が光照射手段2と分光手段4の間を通過するように調整した。光照射手段2及び分光手段4は動力を備え、フレーム6に取り付けられた直線状のレール7に沿って往復運動する。透過光10は受光手段3を経て分光手段4内に到達し、分光手段4が具備する可動式のスリット12により所望の波長帯域毎に分光されて分光手段の本体13に取り込まれて、分光スペクトルが得られる。
[Color measuring device]
(Color measuring device A)
The color measuring device of the embodiment shown in FIG. 6 was used. Hereinafter, the color measuring device will be specifically described. The color measuring device 1 has a light irradiation means 2 and a spectroscopic means 4, and a light receiving means 3 is attached to the spectroscopic means 4. At this time, the transport film 5 was adjusted to pass between the light irradiation means 2 and the spectroscopic means 4. The light irradiation means 2 and the spectroscopic means 4 are powered and reciprocate along a linear rail 7 attached to the frame 6. The transmitted light 10 reaches the inside of the spectroscopic means 4 via the light receiving means 3, is separated for each desired wavelength band by the movable slit 12 provided in the spectroscopic means 4, is taken into the main body 13 of the spectroscopic means, and has a spectroscopic spectrum. Is obtained.

また、光照射手段2は放射線照射手段Aを備え、放射線照射手段Aはクリプトン線源を備える。さらに、分光手段4は放射線受光手段Bを備え、放射線受光手段Bはイオンチャンバを備える。放射線照射手段Aと放射線受光手段Bは、厚み測定手段として機能する。放射線受光手段Bを介してイオンチャンバに取り込まれた放射線は、イオンチャンバが具備する電極によりイオン化され、そのイオン化エネルギーに応じて電離電流が発生する。その電離電流をエレクトロメータ(図示しない)で検知し、起電圧を測定することで、放射線受光手段Bに入射した放射線量を測定して減衰した放射線量を求め、減衰した放射線量から搬送シート5の厚みを求めることができる。 Further, the light irradiation means 2 includes a radiation irradiation means A, and the radiation irradiation means A includes a krypton radiation source. Further, the spectroscopic means 4 includes a radiation receiving means B, and the radiation receiving means B includes an ion chamber. The radiation irradiating means A and the radiation receiving means B function as thickness measuring means. The radiation taken into the ion chamber via the radiation receiving means B is ionized by the electrodes included in the ion chamber, and an ionizing current is generated according to the ionization energy. By detecting the ionizing current with an electrometer (not shown) and measuring the electromotive voltage, the radiation dose incident on the radiation receiving means B is measured to obtain the attenuated radiation dose, and the conveyed sheet 5 is obtained from the attenuated radiation dose. The thickness of can be obtained.

光照射手段2としては、100V,180Wのハロゲンランプ(型式LA-150UE SO24)、及び投光レンズ(受光スポット径φ18mm(型式ML-70))を備える光照射装置を使用した。受光手段3としては、受光レンズ(受光スポット径φ15mm(型式ML-30))を使用した。分光手段4としては、二次元センサーを備えるイメージング分光器(イメージング分光器:波長範囲380~780nm、波長分解能2nm、スリット寸法幅30μm、高さ14.3mmのもの。二次元センサー:解像度1,600×1,200、センサーサイズ11.84×8.88mm、ピクセルサイズ7.4μm(kodak製 型式KAI-2020))を使用した。 As the light irradiation means 2, a light irradiation device equipped with a 100V, 180W halogen lamp (model LA-150UE SO24) and a light projecting lens (light receiving spot diameter φ18 mm (model ML-70)) was used. As the light receiving means 3, a light receiving lens (light receiving spot diameter φ15 mm (model ML-30)) was used. The spectroscope 4 includes an imaging spectroscope equipped with a two-dimensional sensor (imaging spectroscope: wavelength range 380 to 780 nm, wavelength resolution 2 nm, slit dimension width 30 μm, height 14.3 mm. Two-dimensional sensor: resolution 1,600. × 1,200, a sensor size of 11.84 × 8.88 mm, and a pixel size of 7.4 μm (Kodak model KAI-2020) were used.

分光手段4は、ケーブルを介して2つのCPU(第1CPU20、第2CPU21)を備える電子計算機19の第1CPU20に接続されており、第1CPU20には、分光手段4や第2CPU21の他、入力部22、第1表示部23、及び第1出力部24も接続されている。第2CPU21は、第1CPU20に通信回線25で接続されており、その他に第2表示部26や第2出力部27が接続されている。 The spectroscopic means 4 is connected to the first CPU 20 of the computer 19 having two CPUs (first CPU 20 and second CPU 21) via a cable, and the first CPU 20 is connected to the spectroscopic means 4 and the second CPU 21 as well as an input unit 22. , The first display unit 23, and the first output unit 24 are also connected. The second CPU 21 is connected to the first CPU 20 by a communication line 25, and is also connected to a second display unit 26 and a second output unit 27.

第1CPU20は、測色装置が稼働している間、分光手段4で得られた分光スペクトルより色調値を算出する役割、色調値のデータを第2CPU21に伝送する役割、及び色調値のデータを予め設定した管理色調値範囲と比較して合否判定を行う役割を担う。入力部22は、管理色調値等の検査条件の入力、測色の開始や停止等の指示をする装置である。第1表示部23は、測色結果や検査条件をリアルタイムで表示するための装置である。第1出力部24は、検査条件や検査結果等を紙にプリント出力する装置である。第2CPU21は、第1CPU20で得られた測色値を、測色値トレンドや彩度分布へ編集し、リアルタイムに第2表示部26で表示する役割を担う。第2出力部27は、測色値トレンドや彩度分布のデータを紙にプリント出力する装置である。 While the color measuring device is operating, the first CPU 20 has a role of calculating a color tone value from the spectral spectrum obtained by the spectroscopic means 4, a role of transmitting the color tone value data to the second CPU 21, and a role of transmitting the color tone value data to the second CPU 21 in advance. It plays a role of making a pass / fail judgment by comparing with the set management color tone value range. The input unit 22 is a device that inputs inspection conditions such as control color tone values and gives instructions such as start and stop of color measurement. The first display unit 23 is a device for displaying color measurement results and inspection conditions in real time. The first output unit 24 is a device that prints out inspection conditions, inspection results, and the like on paper. The second CPU 21 has a role of editing the color measurement value obtained by the first CPU 20 into a color measurement value trend and a saturation distribution and displaying the color measurement value on the second display unit 26 in real time. The second output unit 27 is a device that prints out the data of the colorimetric value trend and the saturation distribution on paper.

なお、電子計算機19、入力部22、第1表示部23、第1出力部24、第2表示部26、及び第2出力部27は、DELL社製のパーソナルコンピュータ“Optiplex”(登録商標)シリーズとその周辺機器で構成した。 The computer 19, the input unit 22, the first display unit 23, the first output unit 24, the second display unit 26, and the second output unit 27 are the personal computer "Optiplex" (registered trademark) series manufactured by Dell. And its peripherals.

(測色装置B)
図9に示す態様の多点同時測色装置を使用した。以下、本測色装置について具体的に説明する。測色装置1においては、フレーム6の上側に取り付けられた2つのシャッター内蔵光源29に、19個に分岐した光ファイバー30を介して19個の投光部31が連結されている(すなわち、シャッター内蔵光源29、それに連結した光ファイバー30と投光部31が光照射手段2に相当し、投光部31は合計で38個存在する。)。また、フレーム6の下側に取り付けられた分光手段4に、38個に分岐した光ファイバー30を介して38個の受光部32(受光手段3に相当)が連結されている。シャッター内蔵光源29が発した光は、光ファイバー30を介して投光部31より照射光9として搬送フィルム5に到達し、これを透過した透過光10は受光部32より光ファイバー30を通じて分光手段4に取り込まれて、分光手段4により分光スペクトルを得ることができる。
(Color measuring device B)
The multipoint simultaneous color measuring device of the embodiment shown in FIG. 9 was used. Hereinafter, the color measuring device will be specifically described. In the color measuring device 1, 19 light projecting portions 31 are connected to two light sources 29 having a built-in shutter attached to the upper side of the frame 6 via an optical fiber 30 branched into 19 (that is, a built-in shutter). The light source 29, the optical fiber 30 connected to the light source 29, and the light projecting unit 31 correspond to the light irradiation means 2, and there are 38 light projecting units 31 in total). Further, 38 light receiving portions 32 (corresponding to the light receiving means 3) are connected to the spectroscopic means 4 attached to the lower side of the frame 6 via the optical fiber 30 branched into 38 pieces. The light emitted by the light source 29 with a built-in shutter reaches the carrier film 5 as irradiation light 9 from the light projecting unit 31 via the optical fiber 30, and the transmitted light 10 transmitted through the light is transmitted from the light receiving unit 32 to the spectroscopic means 4 through the optical fiber 30. It is taken in and the spectroscopic spectrum can be obtained by the spectroscopic means 4.

なお、投光部31と受光部32は共に、100mm間隔で直線状に配置した。シャッター内蔵光源29としては、12V、100Wのダイクロイックミラー付きハロゲンランプ(型式MHAA-100W-650-SO)を使用した。光ファイバー30としては、投光部31側ではプラスチック製のものを、受光部32側では石英製のものを使用した(共にファイバー長4m)。投光部31としては、受光スポット径φ18mm(型式ML-70)のレンズを使用した。受光部32としては、受光スポット径φ15mm(型式ML-30)を使用した。分光手段4、電子計算機19、及び電子計算機19に接続されている各機器及びその役割は、実施例1のものと同様とした。 Both the light projecting unit 31 and the light receiving unit 32 were arranged linearly at intervals of 100 mm. As the light source 29 with a built-in shutter, a halogen lamp (model MHAA-100W-650-SO) with a 12V, 100W dichroic mirror was used. As the optical fiber 30, a plastic one was used on the light emitting portion 31 side and a quartz one was used on the light receiving portion 32 side (both have a fiber length of 4 m). As the light projecting unit 31, a lens having a light receiving spot diameter of φ18 mm (model ML-70) was used. As the light receiving unit 32, a light receiving spot diameter of φ15 mm (model ML-30) was used. The devices connected to the spectroscopic means 4, the computer 19, and the computer 19 and their roles were the same as those in the first embodiment.

また、測色装置Bを用いる場合は別途、クリプトン線源を有する放射線照射手段と、イオンチャンバを有する放射線受光手段とを備え、フレームに取り付けられた直線状のレールに沿って動力で往復運動する厚み測定手段(図示しない)を設置した。 Further, when the color measuring device B is used, it is separately provided with a radiation irradiating means having a krypton radiation source and a radiation receiving means having an ion chamber, and reciprocates by power along a linear rail attached to the frame. A thickness measuring means (not shown) was installed.

(動摩擦係数)
先ず、部材Aおよび部材Bと同材料・表面状態であり、平面に加工した試料片(それぞれ、試料片A、試料片Bと呼ぶ)を用意した。なお、試料片Bの重さはW(g)とした。試料片A上に試料片Bを地面に平行な向きで接触させて設置して、試料片B上に300gの重りを乗せた。その後、試料片Bに引き紐を付け、試料片Aおよび試料片Bの接触面に平行な方向(地面に平行な方向)に引っ張り部材Bを滑らせた。この際、部材Bを動かし続けるために必要な力F(g)を測定し、以下の式に則り動摩擦係数μdを求めた。
式:μd=F/(W+300)。
(Dynamic friction coefficient)
First, a sample piece having the same material and surface condition as the member A and the member B and processed into a flat surface (referred to as a sample piece A and a sample piece B, respectively) was prepared. The weight of the sample piece B was W (g). The sample piece B was placed in contact with the sample piece A in a direction parallel to the ground, and a weight of 300 g was placed on the sample piece B. Then, a drawstring was attached to the sample piece B, and the pulling member B was slid in a direction parallel to the contact surface of the sample piece A and the sample piece B (a direction parallel to the ground). At this time, the force F (g) required to keep the member B moving was measured, and the dynamic friction coefficient μd was obtained according to the following equation.
Equation: μd = F / (W + 300).

[評価]
(厚み値と色調の相関)
後述の実施例1および2、比較例1にて記載の50往復の測定中、断続的に幅方向、長手方向にそれぞれ±3μmを限度にフィルム厚みを変動させた。厚みの調整はT-ダイの間隙調整によって行った。このときの全測定値を用いて、下記の3つの相関係数の絶対値|r|を算出した。得られた相関係数の絶対値に基づいて、下記の評価基準で評価した。
<相関係数>
・厚み値とL*
・厚み値とa*
・厚み値とb*
<評価基準>
○:3つのうち、2つ以上が相関係数|r|≧0.8であった。
×:3つのうち、2つ以上が相関係数|r|<0.8であった。
(往復運動による削れ粉)
厚み値と色調の相関の評価のための50往復の測定に加え、さらに1000往復の測定を行った。その間に搬送されたシート上に付着した削り粉の数を、インライン欠点検査機アイリス-M(株式会社アヤハエンジニアリング製)を用いてカウントした。1000往復中に搬送されたフィルム全長に含まれる付着異物の個数を下記の評価基準で評価した。
<評価基準>
○:付着異物が10個未満であった。
×:付着異物が10個以上であった。
(総合評価)
総合評価は(厚み値と色調の相関)および(往復運動による削れ粉)の評価の結果を基に、下記のように評価し、○、△を合格、×を不合格とした。
○:(厚み値と色調の相関)および(往復運動による削れ粉)が共に○であった
△:(厚み値と色調の相関)が○であり、(往復運動による削れ粉)×であった
×:(厚み値と色調の相関)が×であった。
[evaluation]
(Correlation between thickness value and color tone)
During the 50 reciprocating measurements described in Examples 1 and 2 and Comparative Example 1 described later, the film thickness was intermittently varied within ± 3 μm in the width direction and the longitudinal direction, respectively. The thickness was adjusted by adjusting the gap between the T-dies. Using all the measured values at this time, the absolute values | r | of the following three correlation coefficients were calculated. Based on the absolute value of the obtained correlation coefficient, it was evaluated according to the following evaluation criteria.
<Correlation coefficient>
・ Thickness value and L *
・ Thickness value and a *
・ Thickness value and b *
<Evaluation criteria>
◯: Of the three, two or more had a correlation coefficient | r | ≧ 0.8.
X: Of the three, two or more had a correlation coefficient | r | <0.8.
(Shavings from reciprocating motion)
In addition to the 50 round trip measurements for evaluating the correlation between the thickness value and the color tone, 1000 round trips were further measured. The number of shavings adhering to the sheet conveyed during that period was counted using an in-line defect inspection machine Iris-M (manufactured by Ayaha Engineering Co., Ltd.). The number of adhered foreign substances contained in the total length of the film conveyed during 1000 round trips was evaluated according to the following evaluation criteria.
<Evaluation criteria>
◯: The number of adhered foreign substances was less than 10.
X: There were 10 or more adhered foreign substances.
(Comprehensive evaluation)
The comprehensive evaluation was made as follows based on the evaluation results of (correlation between thickness value and color tone) and (shavings due to reciprocating motion), and ○ and Δ were evaluated as acceptable, and × was regarded as unacceptable.
○: (correlation between thickness value and color tone) and (shavings due to reciprocating motion) were both ○ △: (correlation between thickness value and color tone) was ○, and (shavings due to reciprocating motion) ×. X: (correlation between thickness value and color tone) was x.

(実施例1)
[フィルムの製造]の項に記載の方法により得られるフィルムについて、得られたフィルムをワインダーで巻き取る工程の直前に、[測色装置]に記載の(測色装置A)を用いて測色、および厚さ測定を実施した。その際、光照射手段2、分光手段4、分光手段4に取り付けられた受光手段3(以下、これらを総称して測色機器一式ということがある。)は、搬送フィルム5と平行かつ直線状に4,000mmの距離を往復運動するように設定した。なお、往復運動による接触・擦れが発生する部材(部材AおよびB、走行部側の部材を部材A、稼動部側の部材を部材Bとする。)には表面を研磨したSUS材(部材間の動摩擦係数μd=0.25)を用いた。測色機器一式が往復運動の始点(一方の端部)から200mm進んだタイミングで最初の測色を行ってL*値、a*値、及びb*値のデータを取得し、以後、往復運動の始点からの距離が3,800mmとなるまで100mm進む毎に同様の測色を繰り返した(この間の測色回数は37回)。さらに、測色機器一式が往復運動の終点(始点と反対側の端部)に到達した後、これを逆方向に駆動させて同様の測色を行った。本測定を50往復にわたって同様の測色と厚さ測定を繰り返すことで、搬送フィルム5について合計で3,700回の測色を行った。得られた値(L*値、a*値、及びb*値)、および厚み値を用いて、[評価]の項目に従って評価したところ、厚み値と色調の相関、往復運動による削れ粉の評価が共に○となったため、総合評価も○となった。なお、往復運動による削れ粉については、さらに1,000往復にわたる測定を行った後に評価した。
(Example 1)
With respect to the film obtained by the method described in the section of [Manufacturing of film], immediately before the step of winding the obtained film with a winder, the color is measured using (color measuring device A) described in [color measuring device]. , And thickness measurements were performed. At that time, the light receiving means 3 attached to the light irradiating means 2, the spectroscopic means 4, and the spectroscopic means 4 (hereinafter, these may be collectively referred to as a set of color measuring devices) are parallel and linear with the conveying film 5. It was set to reciprocate at a distance of 4,000 mm. The surface-polished SUS material (between members) is used for the members (members A and B, the member on the traveling portion side is referred to as member A, and the member on the moving portion side is referred to as member B) in which contact / rubbing occurs due to the reciprocating motion. The dynamic friction coefficient of μd = 0.25) was used. The first color measurement is performed at the timing when the set of color measuring devices advances 200 mm from the start point (one end) of the reciprocating motion to acquire the data of L * value, a * value, and b * value, and then the reciprocating motion. The same color measurement was repeated every 100 mm until the distance from the start point of was 3,800 mm (the number of color measurements during this period was 37). Further, after the set of color measuring instruments reached the end point of the reciprocating motion (the end opposite to the starting point), it was driven in the opposite direction to perform the same color measurement. By repeating this measurement over 50 round trips in the same color measurement and thickness measurement, a total of 3,700 color measurements were performed on the conveyed film 5. When the obtained values (L * value, a * value, and b * value) and the thickness value were used for evaluation according to the item of [Evaluation], the correlation between the thickness value and the color tone, and the evaluation of the shavings by the reciprocating motion. Both became ○, so the overall evaluation was also ○. The shavings due to the reciprocating motion were evaluated after further measurement over 1,000 reciprocating motions.

(実施例2)
往復運動による接触・擦れが発生する部材にアルミ材(部材間の動摩擦係数μd=0.60)を用いた以外は実施例1と同様に測定・評価を実施したところ、厚み値と色調の相関は○、往復運動による削れ粉の評価は×となったため、総合評価は△となった。なお、往復運動による削れ粉については、さらに1,000往復にわたる測定を行った後に評価した。
(Example 2)
Measurement and evaluation were carried out in the same manner as in Example 1 except that an aluminum material (dynamic friction coefficient μd between members μd = 0.60) was used for the member that causes contact and rubbing due to reciprocating motion. As a result, the correlation between the thickness value and the color tone was performed. Was ○, and the evaluation of shavings due to reciprocating motion was ×, so the overall evaluation was △. The shavings due to the reciprocating motion were evaluated after further measurement over 1,000 reciprocating motions.

(実施例3)
往復運動による接触・擦れが発生する部材には鏡面研磨したSUS(部材間の動摩擦係数μd=0.09)を用いる以外は実施例1と同様に実施すると、厚み値と色調の相関、往復運動による削れ粉の評価は共に○となるが、実際の測定位置が徐々に目的の測定位置からずれ、さらに50往復を超えた後も連続して往復測定を繰り返すと、最終的に光照射手段と受光手段の位置関係がずれることで、正しく色調を測定できなくなる。このため、比較例1よりは優れるが、実施例1よりは劣る。
(Example 3)
When the same procedure as in Example 1 is carried out except that the mirror-polished SUS (dynamic friction coefficient μd between members μd = 0.09) is used for the member in which contact / rubbing occurs due to the reciprocating motion, the correlation between the thickness value and the color tone and the reciprocating motion are performed. The evaluation of the shavings by is both ○, but when the actual measurement position gradually deviates from the target measurement position and the reciprocating measurement is repeated continuously even after exceeding 50 reciprocating motions, the light irradiation means is finally used. If the positional relationship of the light receiving means shifts, it becomes impossible to measure the color tone correctly. Therefore, it is superior to Comparative Example 1 but inferior to Example 1.

(比較例1)
[測色装置]に記載の(測色装置B)を用いて測色し、別途設置した厚み測定手段を用いて厚みを測定した。その際、厚み測定手段は実施例1に記載と同様の往復運動で測定するようにした。また、厚み測定手段が往路37回厚みを測定する間に、測色装置Bでは幅方向37点を同時に1回測定してデータを取得した。本測定を厚み測定手段で50往復分にわたって同様の厚さ測定と測色を繰り返すことで、搬送フィルム5について合計で3,700回の測色を行った。得られた値(L*値、a*値、及びb*値)、および厚み値を用いて、[評価]の項目に従って評価したところ、厚み値と色調の相関が×となったため、総合評価も×となった。
(Comparative Example 1)
The color was measured using (color measuring device B) described in [Color measuring device], and the thickness was measured using a separately installed thickness measuring means. At that time, the thickness measuring means was measured by the same reciprocating motion as described in Example 1. Further, while the thickness measuring means measures the thickness 37 times on the outward path, the color measuring device B simultaneously measures 37 points in the width direction once to acquire data. By repeating this measurement with the thickness measuring means for 50 round trips in the same thickness measurement and color measurement, a total of 3,700 times of color measurement was performed on the conveyed film 5. When the obtained values (L * value, a * value, and b * value) and the thickness value were used for evaluation according to the item of [Evaluation], the correlation between the thickness value and the color tone was ×, so a comprehensive evaluation was made. Also became x.

本発明により、インラインでシートの色調の傾向を管理することができ、かつ精度に優れた測色装置を提供することができる。本発明の測色装置を、色調均一性の要求水準が高い用途(例えば光学用途、加飾用途、及び波長選択用途等)で用いられるシートの製造に用いることにより、品質向上や不良品の早期排除が可能となる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to manage the tendency of the color tone of a sheet in-line, and to provide a color measuring device having excellent accuracy. By using the color measuring device of the present invention for manufacturing a sheet used in applications where the required level of color tone uniformity is high (for example, optical applications, decorative applications, wavelength selection applications, etc.), quality improvement and early defective products can be achieved. Elimination is possible.

1 測色装置
2 光照射手段
3 受光手段
4 分光手段
5 搬送シート
6 フレーム
7 レール
8 光源
9 照射光
10 透過光
11 反射光
12 スリット
13 分光手段の本体
14 長手方向
15 幅方向
16 測色点
17 測色点間の幅方向の長さ
18 管理色調値範囲
19 電子計算機
20 第1CPU
21 第2CPU
22 入力部
23 第1表示部
24 第1出力部
25 通信回線
26 第2表示部
27 第2出力部
28 色調異常箇所
29 シャッター内蔵光源
30 光ファイバー
31 投光部
32 受光部
A 放射線照射手段
B 放射線受光手段
1 Color measuring device 2 Light irradiation means 3 Light receiving means 4 Spectroscopic means 5 Conveying sheet 6 Frame 7 Rail 8 Light source 9 Irradiation light 10 Transmitted light 11 Reflected light 12 Slit 13 Spectral means main body 14 Longitudinal direction 15 Width direction 16 Color measuring point 17 Length in the width direction between color measurement points 18 Controlled color adjustment range 19 Electronic computer 20 1st CPU
21 2nd CPU
22 Input unit 23 1st display unit 24 1st output unit 25 Communication line 26 2nd display unit 27 2nd output unit 28 Color tone abnormality location 29 Shutter built-in light source 30 Optical fiber 31 Light emitting unit 32 Light receiving unit A Radiation irradiation means B Radiation receiving means

Claims (12)

搬送シートに光を照射する光照射手段、
前記搬送シートを透過した透過光、及び前記搬送シートで反射された反射光のうち、少なくとも一方を受光する受光手段、
及び前記受光手段で受光した光の分光スペクトルを取得することにより、色を検出する分光手段を備え、
前記光照射手段と前記受光手段とが厚み測定手段を備え、
かつ前記光照射手段と前記受光手段、及び前記厚み測定手段が、前記搬送シートの幅方向と平行に往復運動することを特徴とする、測色装置。
Light irradiation means that irradiates the transport sheet with light,
A light receiving means that receives at least one of the transmitted light transmitted through the transport sheet and the reflected light reflected by the transport sheet.
And a spectroscopic means for detecting a color by acquiring a spectroscopic spectrum of light received by the light receiving means.
The light irradiation means and the light receiving means are provided with a thickness measuring means.
A color measuring device, wherein the light irradiating means, the light receiving means, and the thickness measuring means reciprocate in parallel with the width direction of the transport sheet.
前記搬送シートの幅方向に一定の間隔で測色することを特徴とする、請求項1に記載の測色装置。 The color measuring device according to claim 1, wherein the color is measured at regular intervals in the width direction of the transport sheet. 前記光照射手段と前記受光手段、及び前記厚み測定手段が、前記搬送シートの幅方向端部外にあるタイミングでゼロ点補正を行うことを特徴とする、請求項1又は2に記載の測色装置。 The color measurement according to claim 1 or 2, wherein the light irradiation means, the light receiving means, and the thickness measuring means perform zero point correction at a timing outside the widthwise end portion of the transport sheet. Device. 前記光照射手段の光源の中心から30cm以内の範囲、及び前記受光手段の光照射点の中心から30cm以内の範囲のうち少なくとも一方が、暗色であることを特徴とする請求項1~3のいずれかに記載の測色装置。 Any of claims 1 to 3, wherein at least one of the range within 30 cm from the center of the light source of the light irradiation means and the range within 30 cm from the center of the light irradiation point of the light receiving means is dark. Color measuring device described in Crab. 前記分光スペクトルから色調値を求める演算手段を備えることを特徴とする、請求項1~4のいずれかに記載の測色装置。 The color measuring device according to any one of claims 1 to 4, further comprising a calculation means for obtaining a color tone value from the spectral spectrum. 前記色調値を、測色値トレンド及び彩度分布の少なくとも一方でリアルタイムに表示する表示手段を備えることを特徴とする、請求項5に記載の測色装置。 The color measuring device according to claim 5, further comprising a display means for displaying the color tone value in real time at at least one of the color measurement value trend and the saturation distribution. 搬送シートに任意に引いた長手方向と平行な直線上において、前記色調値が管理色調値範囲に含まれるか否かを検証する検証手段を備えることを特徴とする、請求項5又は6に記載の測色装置。 The fifth or sixth aspect of the present invention, wherein the transport sheet is provided with a verification means for verifying whether or not the color tone value is included in the control color tone value range on a straight line parallel to the longitudinal direction arbitrarily drawn. Color measuring device. 前記検証手段が、前記管理色調値範囲を外れた色調値が観測された場合にアラームを発するアラーム機能を備えることを特徴とする、請求項7に記載の測色装置。 The color measuring device according to claim 7, wherein the verification means includes an alarm function for issuing an alarm when a color tone value outside the controlled color tone value range is observed. 前記厚み測定手段が、測色点からの距離が0mm以上500mm以下である位置の厚み値を測定し、かつ、前記表示手段に厚み値トレンドをリアルタイムで表示することを特徴とする、請求項6~8のいずれかに記載の測色装置。 6. The thickness measuring means is characterized in that the thickness value at a position where the distance from the color measuring point is 0 mm or more and 500 mm or less is measured, and the thickness value trend is displayed on the display means in real time. The color measuring device according to any one of 8 to 8. 前記測色トレンドと前記厚み値トレンドとの相関を求めることを特徴とする、請求項9に記載の測色装置。 The color measuring device according to claim 9, wherein the correlation between the color measuring trend and the thickness value trend is obtained. 前記往復運動する光照射手段、受光手段、及び厚み測定手段の駆動部及び走行部が、耐摩耗性部材であり、かつ稼働時に接触する部材間の動摩擦係数μdが0.1≦μd<0.3を満たす部材であることを特徴とする、請求項1~10のいずれかに記載の測色装置。 The reciprocating light irradiating means, the light receiving means, and the driving part and the traveling part of the thickness measuring means are wear-resistant members, and the dynamic friction coefficient μd between the members in contact during operation is 0.1 ≦ μd <0. The color measuring device according to any one of claims 1 to 10, wherein the member is a member satisfying 3. 請求項1~11のいずれかの測色装置を用いて搬送シートの色調管理、及び厚み管理を行うことを特徴とする、シートの製造方法。
A method for manufacturing a sheet, which comprises using the color measuring device according to any one of claims 1 to 11 to control the color tone and the thickness of the conveyed sheet.
JP2021186192A 2020-11-30 2021-11-16 Color measuring device and method of manufacturing sheet Pending JP2022087039A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020197985 2020-11-30
JP2020197985 2020-11-30

Publications (1)

Publication Number Publication Date
JP2022087039A true JP2022087039A (en) 2022-06-09

Family

ID=81893845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021186192A Pending JP2022087039A (en) 2020-11-30 2021-11-16 Color measuring device and method of manufacturing sheet

Country Status (1)

Country Link
JP (1) JP2022087039A (en)

Similar Documents

Publication Publication Date Title
US8211253B2 (en) Method of manufacturing optical display unit and manufacturing system of optical display unit
TWI463132B (en) Film defect inspecting method and apparatus
JP2014178249A (en) Film manufacturing method, film manufacturing process monitoring device and film inspection method
US20110222065A1 (en) Reflection characteristic measuring apparatus for sheet specimen, method of calibrating reflection characteristic measuring apparatus for sheet specimen, and calibration reference plate for use in calibration of reflection characteristic measuring apparatus for sheet specimen
CN112166297B (en) Method and apparatus for measuring thickness of liquid film, and method for producing thin film
US20190315037A1 (en) Method for indirectly deriving a systematic dependency between a setting parameter and an optical property of a film web, method for adapting the quality of a film web
TWI565580B (en) System and method for controlling thickness of optical film
JP2022087039A (en) Color measuring device and method of manufacturing sheet
JP2937004B2 (en) Method and apparatus for measuring thin film thickness, method for producing optical filter, and method for producing polymer film
CN106886070B (en) Optical film manufacturing apparatus and optical film manufacturing method
JP2021096218A (en) Colorimetry device and manufacturing method of sheet
US20220082371A1 (en) Film thickness gauge by near-infrared hyperspecral imaging
CN117214190A (en) Film double-sided detection equipment and detection method based on coating machine
JP2004125485A (en) Specifying method and inspection system for periodic defect occurrence part
US20130033899A1 (en) Reflecting base material, backlight unit, and method for manufacturing reflecting base material
JP3890430B2 (en) Surface inspection method and apparatus
JP2021189008A (en) Film inspection system, application device, and method for manufacturing film
CN112005104B (en) Measuring method and measuring device
TW202136755A (en) Functional film inspection method, inspection system, and web roll
JP2009229173A (en) Device and method for inspecting uncoated part of thin film coating
JP2010285498A (en) Adhesive tape manufacturing system
JP2004125493A (en) Inspection system
TWI447346B (en) System of real-time measuring thickness
JP2000177263A (en) Method and apparatus for manufacturing printing base sheet for thermal stencil
JP2020055304A (en) Film thickness distribution measuring device, sheet conveying device, sheet manufacturing device, and sheet manufacturing method