JP2022086894A - Arithmetic unit and program - Google Patents

Arithmetic unit and program Download PDF

Info

Publication number
JP2022086894A
JP2022086894A JP2020199166A JP2020199166A JP2022086894A JP 2022086894 A JP2022086894 A JP 2022086894A JP 2020199166 A JP2020199166 A JP 2020199166A JP 2020199166 A JP2020199166 A JP 2020199166A JP 2022086894 A JP2022086894 A JP 2022086894A
Authority
JP
Japan
Prior art keywords
road surface
vehicle
surface condition
behavior information
vehicle behavior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020199166A
Other languages
Japanese (ja)
Inventor
伸一 ▲高▼松
Shinichi Takamatsu
悠 首藤
Yu Shudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2020199166A priority Critical patent/JP2022086894A/en
Priority to PCT/JP2021/042675 priority patent/WO2022113909A1/en
Publication of JP2022086894A publication Critical patent/JP2022086894A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Road Repair (AREA)

Abstract

To appropriately confirm the condition of a road surface of a road even if a detection condition of a vehicle side is different.SOLUTION: An arithmetic unit includes a vehicle behavior information acquisition part for acquiring vehicle behavior information showing a vehicle behavior detected by a plurality of sensors provided at different positions of a vehicle 10 traveling on a road, and a road surface condition information acquisition part for acquiring road surface condition information showing a road surface condition of the road by estimating a transfer function showing a relation between the road surface condition of the road as an input and the vehicle behavior information as an output on the basis of a plurality of pieces of vehicle behavior information.SELECTED DRAWING: Figure 5

Description

本発明は、演算装置及びプログラムに関する。 The present invention relates to arithmetic units and programs.

例えば特許文献1に示すように、道路を走行している車両の振動を検出し、その振動データに基づいて、道路の路面凹凸状態を診断する技術が知られている。 For example, as shown in Patent Document 1, there is known a technique of detecting the vibration of a vehicle traveling on a road and diagnosing the uneven state of the road surface based on the vibration data.

特開2014-108988号公報Japanese Unexamined Patent Publication No. 2014-108988

しかし、例えば同じ道路を走行していたとしても、例えば車種が異なるなど、車両側の検出条件が異なる場合には、車両の挙動は異なるものとなり、道路の路面の状態を適切に検出できないおそれがある。そのため、車両側の検出条件が異なる場合であっても、道路の路面の状態を適切に検出することが求められている。 However, even if the vehicle is traveling on the same road, if the detection conditions on the vehicle side are different, for example, the vehicle type is different, the behavior of the vehicle will be different, and the condition of the road surface may not be detected properly. be. Therefore, even if the detection conditions on the vehicle side are different, it is required to appropriately detect the condition of the road surface.

本発明は、上記に鑑みてなされたものであって、車両側の検出条件が異なる場合であっても、道路の路面の状態を適切に検出可能な演算装置及びプログラムを提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide an arithmetic unit and a program capable of appropriately detecting the state of the road surface of a road even when the detection conditions on the vehicle side are different. do.

上述した課題を解決し、目的を達成するために、本開示に係る演算装置は、道路を走行する車両の異なる位置に設けられる複数のセンサによって検出された、前記車両の挙動を示す車両挙動情報を取得する車両挙動情報取得部と、複数の前記車両挙動情報に基づいて、入力としての前記道路の路面状態と、出力としての前記車両挙動情報との関係を示す伝達関数を推定することで、前記道路の路面状態を示す路面状態情報を取得する路面状態情報取得部と、を含む。 In order to solve the above-mentioned problems and achieve the object, the arithmetic unit according to the present disclosure has vehicle behavior information indicating the behavior of the vehicle detected by a plurality of sensors provided at different positions of the vehicle traveling on the road. By estimating the transmission function indicating the relationship between the road surface state of the road as an input and the vehicle behavior information as an output, based on the vehicle behavior information acquisition unit for acquiring A road surface condition information acquisition unit for acquiring road surface condition information indicating the road surface condition of the road is included.

上述した課題を解決し、目的を達成するために、本開示に係るプログラムは、道路を走行する車両の異なる位置に設けられる複数のセンサによって検出された、前記車両の挙動を示す車両挙動情報を取得するステップと、複数の前記車両挙動情報に基づいて、入力としての前記道路の路面状態と、出力としての前記車両挙動情報との関係を示す伝達関数を推定することで、前記道路の路面状態を示す路面状態情報を取得するステップと、を含む、演算方法を、コンピュータに実行させる。 In order to solve the above-mentioned problems and achieve the object, the program according to the present disclosure uses vehicle behavior information indicating the behavior of the vehicle detected by a plurality of sensors provided at different positions of the vehicle traveling on the road. Based on the acquired step and the plurality of vehicle behavior information, the road surface condition of the road is estimated by estimating the transmission function indicating the relationship between the road surface condition of the road as an input and the vehicle behavior information as an output. The computer is made to execute a calculation method including a step of acquiring road surface condition information indicating the above.

本発明によれば、車両側の検出条件が異なる場合であっても、道路の路面の状態を適切に確認することができる。 According to the present invention, even when the detection conditions on the vehicle side are different, the state of the road surface can be appropriately confirmed.

図1は、本実施形態に係る検出システムの模式的なブロック図である。FIG. 1 is a schematic block diagram of the detection system according to the present embodiment. 図2は、車両の模式図である。FIG. 2 is a schematic view of the vehicle. 図3は、車両の模式図である。FIG. 3 is a schematic diagram of the vehicle. 図4は、演算装置の模式的なブロック図である。FIG. 4 is a schematic block diagram of the arithmetic unit. 図5は、路面状態の算出を説明する模式図である。FIG. 5 is a schematic diagram illustrating the calculation of the road surface condition. 図6は、本実施形態に係る路面状態の算出フローを説明するフローチャートである。FIG. 6 is a flowchart illustrating a calculation flow of the road surface condition according to the present embodiment.

以下に、本発明の好適な実施形態を図面に基づいて詳細に説明する。なお、以下に説明する実施形態により本発明が限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments described below.

(検出システム)
図1は、本実施形態に係る検出システムの模式的なブロック図である。図1に示すように、本実施形態に係る検出システム1は、車両10と、測定データ取得装置12と、演算装置14とを含む。検出システム1は、道路Rを走行する車両10の車両挙動情報に基づき、その道路Rの路面状態を判定するシステムである。車両挙動情報とは、道路Rを走行中の車両10の挙動を示す情報であり、詳しくは後述する。検出システム1は、演算装置14によって、車両挙動情報に基づいて道路Rの路面状態を算出することで、道路Rの路面状態を判定する。路面状態は、本実施形態では路面の凹凸度合いを示す指標である。さらに言えば、本実施形態では、路面状態は、路面の鉛直方向での高さを示す情報であり、例えば、道路R上のある位置における路面状態は、その位置よりも車両10の進行方向に沿って単位距離手前での路面の高さに対する、その位置における路面の高さの差分であってよい。また例えば、路面状態は、IRI(International Roughness Index;国際ラフネス指数)、路面の平たん性、ひび割れ、わだち掘れ、及びMCI(Meintenance Control Index)の少なくとも1つであってもよい。また例えば、路面状態は、道路R上の、マンホールの有無や橋の継ぎ目の有無など、路面の凹凸度合いに影響を及ぼす物体の有無を示す情報であってよいし、路面の凹凸度合いに影響を及ぼす物体の有無を示す情報と、上記の情報(IRIなど)とを含むものであってもよい。また、路面状態情報は、路面の状態を示す指標であれば、路面の凹凸度合いを示す指標に限定されない。
(Detection system)
FIG. 1 is a schematic block diagram of the detection system according to the present embodiment. As shown in FIG. 1, the detection system 1 according to the present embodiment includes a vehicle 10, a measurement data acquisition device 12, and an arithmetic unit 14. The detection system 1 is a system for determining the road surface condition of the road R based on the vehicle behavior information of the vehicle 10 traveling on the road R. The vehicle behavior information is information indicating the behavior of the vehicle 10 traveling on the road R, and will be described in detail later. The detection system 1 determines the road surface condition of the road R by calculating the road surface condition of the road R based on the vehicle behavior information by the arithmetic unit 14. The road surface condition is an index indicating the degree of unevenness of the road surface in the present embodiment. Furthermore, in the present embodiment, the road surface condition is information indicating the height of the road surface in the vertical direction. For example, the road surface condition at a certain position on the road R is in the traveling direction of the vehicle 10 rather than the position. It may be the difference in the height of the road surface at that position with respect to the height of the road surface in front of a unit distance along the road. Further, for example, the road surface condition may be at least one of IRI (International Roughness Index), road surface flatness, cracking, rutting, and MCI (Maintenance Control Index). Further, for example, the road surface condition may be information indicating the presence or absence of an object on the road R that affects the degree of unevenness of the road surface, such as the presence or absence of a manhole or the presence or absence of a seam of a bridge, and affects the degree of unevenness of the road surface. It may include information indicating the presence or absence of an object to be exerted and the above-mentioned information (IRI, etc.). Further, the road surface condition information is not limited to the index indicating the degree of unevenness of the road surface as long as it is an index indicating the condition of the road surface.

検出システム1においては、車両10が、道路Rを走行しながら車両挙動情報を検出し、検出した車両挙動情報を測定データ取得装置12に送信する。測定データ取得装置12は、例えば道路Rを管理する主体に管理される装置(コンピュータ)である。測定データ取得装置12は、車両10から送信された車両挙動情報を、演算装置14に送信する。演算装置14は、測定データ取得装置12から送信された車両挙動情報に基づき、車両10が走行した道路Rの路面状態を算出する。そして、演算装置14は、路面状態の算出結果を、測定データ取得装置12に送信する。このように、演算装置14は、測定データ取得装置12を介して車両挙動情報を取得するが、それに限られない。例えば、検出システム1は、測定データ取得装置12が設けられておらず、演算装置14が、車両10から直接車両挙動情報を取得してもよい。 In the detection system 1, the vehicle 10 detects the vehicle behavior information while traveling on the road R, and transmits the detected vehicle behavior information to the measurement data acquisition device 12. The measurement data acquisition device 12 is, for example, a device (computer) managed by an entity that manages the road R. The measurement data acquisition device 12 transmits the vehicle behavior information transmitted from the vehicle 10 to the arithmetic unit 14. The arithmetic unit 14 calculates the road surface condition of the road R on which the vehicle 10 has traveled, based on the vehicle behavior information transmitted from the measurement data acquisition device 12. Then, the arithmetic unit 14 transmits the calculation result of the road surface condition to the measurement data acquisition device 12. As described above, the arithmetic unit 14 acquires vehicle behavior information via the measurement data acquisition device 12, but is not limited thereto. For example, the detection system 1 is not provided with the measurement data acquisition device 12, and the arithmetic unit 14 may acquire vehicle behavior information directly from the vehicle 10.

(車両)
図2及び図3は、車両の模式図である。図2及び図3におけるZ方向は、鉛直方向の上方を指し、図2は鉛直方向上方から車両10を見た場合の模式図であり、図3は、側方から車両10を見た場合の模式図である。図2に示すように、車両10は、位置センサ10Aと、複数の挙動センサ10Bと、測定装置10Cとを備える。位置センサ10Aは、車両10の位置情報を取得するセンサである。車両10の位置情報とは、車両10の地球座標を示す情報である。位置センサ10Aは、本実施形態ではGNSS(Global Navivation Satelite System)用のモジュールである。
(vehicle)
2 and 3 are schematic views of the vehicle. The Z direction in FIGS. 2 and 3 points upward in the vertical direction, FIG. 2 is a schematic view when the vehicle 10 is viewed from above in the vertical direction, and FIG. 3 is a schematic view when the vehicle 10 is viewed from the side. It is a schematic diagram. As shown in FIG. 2, the vehicle 10 includes a position sensor 10A, a plurality of behavior sensors 10B, and a measuring device 10C. The position sensor 10A is a sensor that acquires the position information of the vehicle 10. The position information of the vehicle 10 is information indicating the earth coordinates of the vehicle 10. The position sensor 10A is a module for GNSS (Global Navigation Satellite System) in this embodiment.

挙動センサ10Bは、車両10の挙動を示す車両挙動情報を検出するセンサである。車両挙動情報は、道路を走行中の車両10の挙動を示す情報であれば任意の情報であってよい。それぞれの挙動センサ10Bは、異なる種類の車両挙動情報を検出するものであってよいが、同じ種類の車両挙動情報を検出することが好ましい。本実施形態では、挙動センサ10Bは、車両10の加速度を車両挙動情報として検出することが好ましい。この場合、挙動センサ10Bは、加速度を検出する加速度センサであり、より好ましくは3軸での加速度を検出する加速度センサである。また、挙動センサ10Bが検出する車両挙動情報は、加速度であることに限られず、例えば、加速度、車両10の周囲を撮像した画像データ、車両10の速度、車両10の角速度、車両10のステアリング角度、車両10のブレーキ量、車両10のワイパの動作、及び車両10のサスペンションの作動量の少なくとも1つであってよい。なお、車両10の周囲の画像データは、車両10の動きによって変化するため、車両10の挙動を示す情報であるといえる。車両10の周囲の撮像画像を検出する挙動センサ10Bは例えばカメラであり、車両10の速度を検出する挙動センサ10Bは例えば速度センサであり、車両10の速度を検出する挙動センサ10Bは例えば3軸ジャイロセンサであり、車両10のステアリング角度を検出する挙動センサ10Bは例えばステアリングセンサであり、車両10のブレーキ量を検出する挙動センサ10Bは例えばブレーキセンサであり、車両10のワイパの動作を検出する挙動センサ10Bは例えばワイパセンサが挙げられ、車両10のサスペンションの作動量を検出する挙動センサ10Bは例えばサスペンションセンサが挙げられる。 The behavior sensor 10B is a sensor that detects vehicle behavior information indicating the behavior of the vehicle 10. The vehicle behavior information may be any information as long as it is information indicating the behavior of the vehicle 10 traveling on the road. Each behavior sensor 10B may detect different types of vehicle behavior information, but it is preferable to detect the same type of vehicle behavior information. In the present embodiment, the behavior sensor 10B preferably detects the acceleration of the vehicle 10 as vehicle behavior information. In this case, the behavior sensor 10B is an acceleration sensor that detects acceleration, and more preferably an acceleration sensor that detects acceleration in three axes. Further, the vehicle behavior information detected by the behavior sensor 10B is not limited to acceleration, for example, acceleration, image data obtained by capturing the surroundings of the vehicle 10, speed of the vehicle 10, angular velocity of the vehicle 10, and steering angle of the vehicle 10. , The brake amount of the vehicle 10, the operation of the wiper of the vehicle 10, and the operation amount of the suspension of the vehicle 10 may be at least one. Since the image data around the vehicle 10 changes depending on the movement of the vehicle 10, it can be said that it is information indicating the behavior of the vehicle 10. The behavior sensor 10B for detecting the captured image around the vehicle 10 is, for example, a camera, the behavior sensor 10B for detecting the speed of the vehicle 10 is, for example, a speed sensor, and the behavior sensor 10B for detecting the speed of the vehicle 10 is, for example, three axes. The behavior sensor 10B, which is a gyro sensor and detects the steering angle of the vehicle 10, is, for example, a steering sensor, and the behavior sensor 10B, which detects the brake amount of the vehicle 10, is, for example, a brake sensor, and detects the operation of the wiper of the vehicle 10. Examples of the behavior sensor 10B include a wiper sensor, and examples of the behavior sensor 10B for detecting the operating amount of the suspension of the vehicle 10 include a suspension sensor.

それぞれの挙動センサ10Bは、車両10において、互いに異なる位置に搭載されている。図3に示すように、挙動センサ10Bは、車両10のタイヤ(ホイール)TRに設けられるサスペンションSUよりも、Z方向側に設けられる。すなわち、挙動センサ10Bは、車両10のサスペンションSUよりも、タイヤTRとは反対方向側(Z方向側)に設けられる。図2の例では、挙動センサ10Bとして、左側の前輪であるタイヤTR1のサスペンションSUのZ方向側に設けられる挙動センサ10B1と、右側の前輪であるタイヤTR2のサスペンションSUのZ方向側に設けられる挙動センサ10B2と、左側の後輪であるタイヤTR3のサスペンションSUのZ方向側に設けられる挙動センサ10B3と、右側の後輪であるタイヤTR4のサスペンションSUのZ方向側に設けられる挙動センサ10B4とを含む。ただし、挙動センサ10Bの設けられる位置は任意であり、例えばサスペンションSUよりもZ方向側に設けられていることに限られない。また、挙動センサ10Bの数も、4つであることに限られず任意であり、2つ以上の任意の数であってよい。また、図2の例ではタイヤTRの数は4つであるが、その数は任意であり、例えば、2つ以上の任意の数であってよい。 The respective behavior sensors 10B are mounted at different positions in the vehicle 10. As shown in FIG. 3, the behavior sensor 10B is provided on the Z direction side of the suspension SU provided on the tire (wheel) TR of the vehicle 10. That is, the behavior sensor 10B is provided on the side opposite to the tire TR (Z direction side) with respect to the suspension SU of the vehicle 10. In the example of FIG. 2, as the behavior sensor 10B, the behavior sensor 10B1 provided on the Z direction side of the suspension SU of the tire TR1 which is the front wheel on the left side and the behavior sensor 10B1 provided on the Z direction side of the suspension SU of the tire TR2 which is the front wheel on the right side are provided. The behavior sensor 10B2, the behavior sensor 10B3 provided on the Z direction side of the suspension SU of the tire TR3 which is the left rear wheel, and the behavior sensor 10B4 provided on the Z direction side of the suspension SU of the tire TR4 which is the right rear wheel. including. However, the position where the behavior sensor 10B is provided is arbitrary, and is not limited to, for example, being provided on the Z direction side of the suspension SU. Further, the number of the behavior sensors 10B is not limited to four, but may be arbitrary, and may be any number of two or more. Further, in the example of FIG. 2, the number of tire TRs is four, but the number is arbitrary, and may be, for example, two or more arbitrary numbers.

本実施形態の演算装置14は、これらの挙動センサ10B(図2の例では挙動センサ10B1~10B4)がそれぞれ検出した車両挙動情報を取得して、路面状態を算出する。 The arithmetic unit 14 of the present embodiment acquires vehicle behavior information detected by each of these behavior sensors 10B (behavior sensors 10B1 to 10B4 in the example of FIG. 2), and calculates the road surface state.

なお、車両10は、以上説明した挙動センサ10B以外にも、車両挙動情報を検出するセンサが設けられていてもよい。例えば、サスペンションSUよりも鉛直方向下方に、車両挙動情報を検出するセンサが設けられていてもよい。このように挙動センサ10B以外にも車両挙動情報を検出するセンサが設けられている場合には、演算装置14は、これら複数のセンサが検出した車両挙動情報のうちの、挙動センサ10Bが検出した車両挙動情報を用いて、路面状態を算出するといえる。 In addition to the behavior sensor 10B described above, the vehicle 10 may be provided with a sensor for detecting vehicle behavior information. For example, a sensor for detecting vehicle behavior information may be provided below the suspension SU in the vertical direction. When a sensor for detecting vehicle behavior information is provided in addition to the behavior sensor 10B, the arithmetic unit 14 detects the vehicle behavior information among the vehicle behavior information detected by these plurality of sensors. It can be said that the road surface condition is calculated using the vehicle behavior information.

測定装置10Cは、位置センサ10A及び挙動センサ10Bを制御して車両10の位置情報と車両挙動情報を検出させて、検出させた位置情報と車両挙動情報とを記録する装置である。すなわち、測定装置10Cは、車両10の位置情報と車両挙動情報とを記録するデータロガーとして機能する。測定装置10Cは、コンピュータであるとも言え、制御部10C1と、記憶部10C2と、通信部10C3とを含む。制御部10C1は、演算装置、すなわちCPU(Central Processing Unit)である。記憶部10C2は、制御部10C1の演算内容やプログラム、車両10の位置情報及び車両挙動情報などの各種情報を記憶するメモリであり、例えば、RAM(Random Access Memory)と、ROM(Read Only Memory)のような主記憶装置と、フラッシュメモリやHDD(Hard Disk Drive)などの不揮発性の記憶装置のうち、少なくとも1つを含む。なお、記憶部10C2が保存する制御部10C1用のプログラムは、測定装置10Cが読み取り可能な記録媒体に記憶されていてもよい。通信部10C3は、外部の装置と通信を行う通信モジュールであり、例えばアンテナなどである。 The measuring device 10C is a device that controls the position sensor 10A and the behavior sensor 10B to detect the position information and the vehicle behavior information of the vehicle 10 and records the detected position information and the vehicle behavior information. That is, the measuring device 10C functions as a data logger that records the position information and the vehicle behavior information of the vehicle 10. The measuring device 10C can be said to be a computer, and includes a control unit 10C1, a storage unit 10C2, and a communication unit 10C3. The control unit 10C1 is an arithmetic unit, that is, a CPU (Central Processing Unit). The storage unit 10C2 is a memory that stores various information such as calculation contents and programs of the control unit 10C1, position information of the vehicle 10, and vehicle behavior information. For example, a RAM (Random Access Memory) and a ROM (Read Only Memory). Such as, and at least one of non-volatile storage devices such as flash memory and HDD (Hard Disk Drive). The program for the control unit 10C1 stored by the storage unit 10C2 may be stored in a recording medium readable by the measuring device 10C. The communication unit 10C3 is a communication module that communicates with an external device, such as an antenna.

制御部10C1は、記憶部10C2に記憶されたプログラムを読み出して、位置センサ10A及び挙動センサ10Bの制御を実行する。制御部10C1は、車両10が道路を走行中に、所定時間ごとに、挙動センサ10Bに車両10の車両挙動情報を検出させる。また、制御部10C1は、位置センサ10Aに、挙動センサ10Bが車両挙動情報を検出したタイミングにおける車両10の位置情報を検出させる。すなわち、制御部10C1は、車両10が所定時間走行するたびに、挙動センサ10Bに車両10の車両挙動情報を検出させ、位置センサ10Aに車両10の位置情報を検出させる。ここでの所定時間とは、例えば1分など、一定の時間であることが好ましいが、所定時間は一定の時間であることに限られず、任意の長さであってよい。すなわち、所定時間は都度変化してもよく、例えば前回検出を行ってから1分経過したタイミングで今回の検出を行い、今回の検出から3分経過しタイミングで次回の検出を行ってもよい。 The control unit 10C1 reads out the program stored in the storage unit 10C2 and executes the control of the position sensor 10A and the behavior sensor 10B. The control unit 10C1 causes the behavior sensor 10B to detect the vehicle behavior information of the vehicle 10 at predetermined time intervals while the vehicle 10 is traveling on the road. Further, the control unit 10C1 causes the position sensor 10A to detect the position information of the vehicle 10 at the timing when the behavior sensor 10B detects the vehicle behavior information. That is, the control unit 10C1 causes the behavior sensor 10B to detect the vehicle behavior information of the vehicle 10 and causes the position sensor 10A to detect the position information of the vehicle 10 each time the vehicle 10 travels for a predetermined time. The predetermined time here is preferably a fixed time such as 1 minute, but the predetermined time is not limited to a fixed time and may be any length. That is, the predetermined time may change each time. For example, the current detection may be performed at the timing when 1 minute has elapsed from the previous detection, and the next detection may be performed at the timing when 3 minutes have elapsed from the current detection.

以下、挙動センサ10Bが車両挙動情報を検出したタイミングにおける車両10の位置情報を、適宜、車両位置情報と記載する。車両位置情報は、車両挙動情報が検出された位置の情報(座標)ともいえる。 Hereinafter, the position information of the vehicle 10 at the timing when the behavior sensor 10B detects the vehicle behavior information is appropriately referred to as vehicle position information. The vehicle position information can also be said to be information (coordinates) of the position where the vehicle behavior information is detected.

制御部10C1は、所定時間ごとに検出させた車両10の車両挙動情報と、車両位置情報とを取得し、取得した車両挙動情報と車両位置情報とを関連付けて、記憶部10C2に記憶させる。すなわち、同じタイミングで検出された車両挙動情報と車両位置情報とが、関連付けられる。そのため、記憶部10C2には、関連付けられた車両挙動情報と車両位置情報とが、検出されたタイミング毎に記憶される。なお、ここで関連付けられる車両位置情報と車両挙動情報とは、同じタイミングで検出されたものであるが、厳密に同じタイミングであることに限られず、異なるタイミングで検出されたものであってよい。この場合、例えば、検出タイミングの差が所定値以下となる車両位置情報と車両挙動情報とが、同じタイミングで検出されたものとして扱われて、関連付けられる。 The control unit 10C1 acquires the vehicle behavior information of the vehicle 10 detected at predetermined time intervals and the vehicle position information, associates the acquired vehicle behavior information with the vehicle position information, and stores the acquired vehicle behavior information in the storage unit 10C2. That is, the vehicle behavior information and the vehicle position information detected at the same timing are associated with each other. Therefore, the associated vehicle behavior information and vehicle position information are stored in the storage unit 10C2 at each detected timing. The vehicle position information and the vehicle behavior information associated here are detected at the same timing, but are not limited to exactly the same timing, and may be detected at different timings. In this case, for example, the vehicle position information in which the difference in detection timing is equal to or less than a predetermined value and the vehicle behavior information are treated as if they were detected at the same timing and are associated with each other.

制御部10C1は、関連付けられた車両挙動情報と車両位置情報とを、通信部10C3を介して、測定データ取得装置12に送信する。測定データ取得装置12は、車両10から受信した車両挙動情報と車両位置情報とを、演算装置14に送信する。なお、測定データ取得装置12を設けない場合は、制御部10C1は、関連付けられた車両挙動情報と車両位置情報とを、演算装置14に直接送信してもよい。 The control unit 10C1 transmits the associated vehicle behavior information and vehicle position information to the measurement data acquisition device 12 via the communication unit 10C3. The measurement data acquisition device 12 transmits the vehicle behavior information and the vehicle position information received from the vehicle 10 to the arithmetic unit 14. If the measurement data acquisition device 12 is not provided, the control unit 10C1 may directly transmit the associated vehicle behavior information and vehicle position information to the arithmetic unit 14.

(車両挙動情報と路面状態との関係)
ここで、路面状態は、路面に接するタイヤTRを介して、車両10の挙動に影響を与える。例えば、路面の凹凸(路面状態)に応じてタイヤTRが振動し、その振動が車両10全体に伝わるため、車両10の加速度(車両挙動情報)は、路面の凹凸(路面状態)に応じて変化する。このように車両挙動情報が路面状態に応じて変化するため、路面状態は、車両挙動情報に基づいて推定可能である。しかし、車両が異なる場合には、振動の伝わり方も異なるため、同じ路面状態の道路を走行しても、検出される車両挙動情報が異なる場合がある。例えば軽い車両の方が、振動が増幅されて加速度変化が大きくなる場合がある。また、車両挙動情報を検出するセンサの設けられた位置や種類によっても、車両挙動情報が異なることもある。
(Relationship between vehicle behavior information and road surface condition)
Here, the road surface condition affects the behavior of the vehicle 10 via the tire TR in contact with the road surface. For example, the tire TR vibrates according to the unevenness of the road surface (road surface condition), and the vibration is transmitted to the entire vehicle 10, so that the acceleration of the vehicle 10 (vehicle behavior information) changes according to the unevenness of the road surface (road surface condition). do. Since the vehicle behavior information changes according to the road surface condition in this way, the road surface condition can be estimated based on the vehicle behavior information. However, when the vehicle is different, the vibration is transmitted differently, so that the detected vehicle behavior information may be different even if the vehicle travels on a road with the same road surface condition. For example, in a lighter vehicle, the vibration may be amplified and the acceleration change may be larger. In addition, the vehicle behavior information may differ depending on the position and type of the sensor that detects the vehicle behavior information.

以上説明した路面状態と車両挙動情報との関係は、次のように言い換えることもできる。車両10においては、入力信号としての路面状態が、例えば振動などの信号に変換されて、タイヤTRを介して車両10に入力される。そして、その信号(例えば振動)が、車両10で変調されて挙動センサ10Bの設けられる位置まで伝達されて、挙動センサ10Bが、伝達された信号を、出力信号(例えば加速度)として検出する。この場合、車種やセンサ位置、種類などの検出条件に応じて、信号の変調度合いが異なるため、検出条件が変わると、挙動センサ10Bが検出する出力信号(車両挙動情報)も変わる。すなわち、路面状態を入力信号として車両挙動情報を出力信号とした場合の伝達関数が、車両10側の検出条件に応じて異なるために、路面状態が同じであっても車両挙動情報が変わるといえる。なお、ここでの伝達関数は、入力信号である路面状態と出力信号である車両挙動情報との関係を示す関数といえる。 The relationship between the road surface condition and the vehicle behavior information described above can be rephrased as follows. In the vehicle 10, the road surface condition as an input signal is converted into a signal such as vibration and input to the vehicle 10 via the tire TR. Then, the signal (for example, vibration) is modulated by the vehicle 10 and transmitted to the position where the behavior sensor 10B is provided, and the behavior sensor 10B detects the transmitted signal as an output signal (for example, acceleration). In this case, since the degree of signal modulation differs depending on the detection conditions such as the vehicle type, the sensor position, and the type, when the detection conditions change, the output signal (vehicle behavior information) detected by the behavior sensor 10B also changes. That is, since the transfer function when the road surface condition is used as the input signal and the vehicle behavior information is used as the output signal differs depending on the detection conditions on the vehicle 10 side, it can be said that the vehicle behavior information changes even if the road surface condition is the same. .. The transfer function here can be said to be a function showing the relationship between the road surface state, which is an input signal, and the vehicle behavior information, which is an output signal.

このように、同じ路面状態であっても、車両10側の検出条件に応じて伝達関数が変わり、結果として検出される車両挙動情報が異なるため、車両挙動情報に基づいて路面状態を適切に推定できない場合がある。従って、車両10側の検出条件が異なる場合でも、言い換えれば車両10側の検出条件を問わずに、路面状態を適切に推定することが求められている。それに対し、本実施形態に係る演算装置14は、複数の車両挙動情報から伝達関数を推定することにより、車両10側の検出条件を問わず、路面状態を適切に検出することを可能としている。以下、演算装置14について具体的に説明する。 In this way, even if the road surface condition is the same, the transfer function changes according to the detection conditions on the vehicle 10 side, and the vehicle behavior information detected as a result differs. Therefore, the road surface condition is appropriately estimated based on the vehicle behavior information. It may not be possible. Therefore, even if the detection conditions on the vehicle 10 side are different, in other words, it is required to appropriately estimate the road surface condition regardless of the detection conditions on the vehicle 10 side. On the other hand, the arithmetic unit 14 according to the present embodiment can appropriately detect the road surface state regardless of the detection conditions on the vehicle 10 side by estimating the transfer function from the plurality of vehicle behavior information. Hereinafter, the arithmetic unit 14 will be specifically described.

(演算装置)
図4は、演算装置の模式的なブロック図である。図4に示すように、演算装置14は、例えばコンピュータであり、通信部20と、記憶部22と、制御部24とを含む。通信部20は、外部の装置と通信を行う通信モジュールであり、例えばアンテナなどである。記憶部22は、制御部24の演算内容やプログラムなどの各種情報を記憶するメモリであり、例えば、RAMと、ROMのような主記憶装置と、フラッシュメモリやHDDなどの不揮発性の記憶装置のうち、少なくとも1つを含む。なお、記憶部22が保存する制御部24用のプログラムは、演算装置14が読み取り可能な記録媒体に記憶されていてもよい。
(Arithmetic logic unit)
FIG. 4 is a schematic block diagram of the arithmetic unit. As shown in FIG. 4, the arithmetic unit 14 is, for example, a computer, and includes a communication unit 20, a storage unit 22, and a control unit 24. The communication unit 20 is a communication module that communicates with an external device, such as an antenna. The storage unit 22 is a memory that stores various information such as calculation contents and programs of the control unit 24. For example, a RAM, a main storage device such as a ROM, and a non-volatile storage device such as a flash memory or an HDD. Of these, at least one is included. The program for the control unit 24 stored by the storage unit 22 may be stored in a recording medium readable by the arithmetic unit 14.

制御部24は、演算装置、すなわちCPUである。制御部24は、車両挙動情報取得部30と路面状態情報取得部32とを含む。制御部24は、記憶部22からプログラム(ソフトウェア)を読み出して実行することで、車両挙動情報取得部30と路面状態情報取得部32とを実現して、それらの処理を実行する。なお、制御部24は、1つのCPUによってこれらの処理を実行してもよいし、複数のCPUを備えて、それらの複数のCPUで、処理を実行してもよい。また、車両挙動情報取得部30と路面状態情報取得部32との少なくとも一部を、ハードウェアで実現してもよい。 The control unit 24 is an arithmetic unit, that is, a CPU. The control unit 24 includes a vehicle behavior information acquisition unit 30 and a road surface condition information acquisition unit 32. The control unit 24 reads the program (software) from the storage unit 22 and executes it to realize the vehicle behavior information acquisition unit 30 and the road surface condition information acquisition unit 32, and executes their processing. The control unit 24 may execute these processes by one CPU, or may include a plurality of CPUs and execute the processes by the plurality of CPUs. Further, at least a part of the vehicle behavior information acquisition unit 30 and the road surface condition information acquisition unit 32 may be realized by hardware.

(車両挙動情報取得部)
車両挙動情報取得部30は、複数の挙動センサ10Bによって検出された車両挙動情報を取得する。すなわち、車両挙動情報取得部30は、車両10内で互いに異なる位置で検出された、複数の車両挙動情報を取得する。本実施形態の例では、車両挙動情報取得部30は、挙動センサ10B1が検出した車両挙動情報と、挙動センサ10B2が検出した車両挙動情報と、挙動センサ10B3が検出した車両挙動情報と、挙動センサ10B4が検出した車両挙動情報とを取得する。さらに言えば、車両挙動情報取得部30は、車両挙動情報と共に、その車両挙動情報に関連付けられた車両位置情報を取得する。すなわち、車両挙動情報取得部32は、複数の挙動センサ10Bによって検出された車両挙動情報と、それらの車両挙動情報が検出された際の車両位置情報とを、取得する。車両挙動情報取得部30は、車両10によって逐次検出された車両挙動情報と車両位置情報を、取得する。
(Vehicle behavior information acquisition unit)
The vehicle behavior information acquisition unit 30 acquires vehicle behavior information detected by a plurality of behavior sensors 10B. That is, the vehicle behavior information acquisition unit 30 acquires a plurality of vehicle behavior information detected at different positions in the vehicle 10. In the example of the present embodiment, the vehicle behavior information acquisition unit 30 includes vehicle behavior information detected by the behavior sensor 10B1, vehicle behavior information detected by the behavior sensor 10B2, vehicle behavior information detected by the behavior sensor 10B3, and a behavior sensor. The vehicle behavior information detected by 10B4 is acquired. Furthermore, the vehicle behavior information acquisition unit 30 acquires the vehicle position information associated with the vehicle behavior information together with the vehicle behavior information. That is, the vehicle behavior information acquisition unit 32 acquires the vehicle behavior information detected by the plurality of behavior sensors 10B and the vehicle position information when the vehicle behavior information is detected. The vehicle behavior information acquisition unit 30 acquires the vehicle behavior information and the vehicle position information sequentially detected by the vehicle 10.

車両挙動情報取得部30は、車両挙動情報と車両位置情報とを、通信部20を介して、測定データ取得装置12から取得する。ただし、測定データ取得装置12を設けない場合は、車両挙動情報取得部30は、車両挙動情報と車両位置情報とを、車両10の測定装置10Cから直接取得してもよい。 The vehicle behavior information acquisition unit 30 acquires vehicle behavior information and vehicle position information from the measurement data acquisition device 12 via the communication unit 20. However, when the measurement data acquisition device 12 is not provided, the vehicle behavior information acquisition unit 30 may acquire the vehicle behavior information and the vehicle position information directly from the measurement device 10C of the vehicle 10.

(路面状態情報取得部)
路面状態情報取得部32は、車両挙動情報取得部30が取得した複数の車両挙動情報に基づいて、入力信号としての路面状態と出力信号としての車両挙動情報との関係を示す伝達関数を推定することで、路面状態を示す路面状態情報を取得する。上述のように、伝達関数は車両側の検出条件によって異なり、検出条件毎の伝達関数は通常未知であるため、検出条件毎の伝達関数を予め算出することなく、車両挙動情報を用いて路面情報を算出することは難しい。それに対し、路面状態情報取得部32は、複数の車両挙動情報に基づいて伝達関数を推定することで、検出条件毎の伝達関数を予め算出することなく、路面情報を算出することを可能としている。具体的には、本実施形態においては、路面状態情報取得部32は、ブラインド信号源分離の原理を用いて、複数の車両挙動情報に基づき、伝達関数を推定して路面状態を算出する。以下、具体的に説明する。
(Road surface condition information acquisition unit)
The road surface condition information acquisition unit 32 estimates a transmission function indicating the relationship between the road surface condition as an input signal and the vehicle behavior information as an output signal, based on a plurality of vehicle behavior information acquired by the vehicle behavior information acquisition unit 30. By doing so, the road surface condition information indicating the road surface condition is acquired. As described above, the transfer function differs depending on the detection condition on the vehicle side, and the transfer function for each detection condition is usually unknown. Therefore, the transfer function for each detection condition is not calculated in advance, and the road surface information is used using the vehicle behavior information. Is difficult to calculate. On the other hand, the road surface condition information acquisition unit 32 can calculate the road surface information by estimating the transfer function based on a plurality of vehicle behavior information without calculating the transfer function for each detection condition in advance. .. Specifically, in the present embodiment, the road surface condition information acquisition unit 32 estimates the transfer function and calculates the road surface condition based on a plurality of vehicle behavior information by using the principle of blind signal source separation. Hereinafter, a specific description will be given.

路面状態情報取得部32は、路面状態に応じたタイヤTR1~TR4への信号(例えば振動)のそれぞれが、車両挙動情報のそれぞれに影響を及ぼすと仮定して、車両挙動情報に基づいて伝達関数を推定し、タイヤTRが接触する道路R上の位置毎の路面状態を算出する。すなわち、路面状態情報取得部32は、それぞれのタイヤTRへの信号が全ての挙動センサ10Bに伝わると仮定して、伝達関数を推定して路面状態を算出する。本実施形態の例では、路面状態情報取得部32は、タイヤTR1、TR2、TR3、TR4への信号(タイヤTR1、TR2、TR3、TR4の振動)が、挙動センサ10B1が検出した車両挙動情報と、挙動センサ10B2が検出した車両挙動情報と、挙動センサ10B3が検出した車両挙動情報と、挙動センサ10B4が検出した車両挙動情報とに影響を及ぼすと仮定して、伝達関数を推定し、タイヤTR1、TR2、TR3、TR4が接触する位置の路面状態を算出する。なお、タイヤTR1、TR2、TR3、TR4は、それぞれ異なる位置で道路Rと接触する。そのため、路面状態情報取得部32は、異なる位置に入力される路面状態に応じた信号のそれぞれが、車両挙動情報のそれぞれに影響を及ぼすと仮定して、伝達関数を推定して路面状態を算出するともいえる。 The road surface condition information acquisition unit 32 assumes that each of the signals (for example, vibration) to the tires TR1 to TR4 according to the road surface condition affects each of the vehicle behavior information, and the transmission function based on the vehicle behavior information. Is estimated, and the road surface condition for each position on the road R with which the tire TR contacts is calculated. That is, the road surface condition information acquisition unit 32 estimates the transfer function and calculates the road surface condition on the assumption that the signal to each tire TR is transmitted to all the behavior sensors 10B. In the example of the present embodiment, in the road surface condition information acquisition unit 32, the signals to the tires TR1, TR2, TR3, TR4 (vibrations of the tires TR1, TR2, TR3, TR4) are the vehicle behavior information detected by the behavior sensor 10B1. , The transmission function is estimated assuming that it affects the vehicle behavior information detected by the behavior sensor 10B2, the vehicle behavior information detected by the behavior sensor 10B3, and the vehicle behavior information detected by the behavior sensor 10B4, and the tire TR1 , TR2, TR3, and TR4 are in contact with each other to calculate the road surface condition. The tires TR1, TR2, TR3, and TR4 come into contact with the road R at different positions. Therefore, the road surface condition information acquisition unit 32 estimates the transfer function and calculates the road surface condition on the assumption that each of the signals corresponding to the road surface conditions input to different positions affects each of the vehicle behavior information. It can be said to do.

また、路面状態情報取得部32は、路面状態に応じたタイヤTRへの信号と車両挙動情報との組み合わせ毎に(タイヤTRへの信号と車両挙動情報との1:1の組み合わせ毎に)、伝達関数を推定して、タイヤTRが接触する道路R上の位置毎の路面状態を算出する。言い換えれば、路面状態情報取得部32は、道路Rのそれぞれの位置の路面状態とそれぞれの車両挙動情報との組み合わせ毎に(路面状態と車両挙動情報の1:1の組み合わせ毎に)、伝達関数を推定して、道路Rの位置毎の路面状態を算出する。すなわち、路面状態情報取得部32は、信号が挙動センサ10Bに伝わる際の変調度合いが、タイヤTRと挙動センサ10Bの組み合わせ毎に異なるとして、タイヤTRの信号と車両挙動情報との組み合わせ毎に、言い換えれば道路Rの位置の路面状態と車両挙動情報との組み合わせ毎に、伝達関数を推定する。本実施形態の例では、路面状態情報取得部32は、タイヤTR1と挙動センサ10B1の組み合わせ、タイヤTR1と挙動センサ10B2の組み合わせ、タイヤTR1と挙動センサ10B3の組み合わせ、タイヤTR1と挙動センサ10B4の組み合わせ、タイヤTR2と挙動センサ10B1の組み合わせ、タイヤTR2と挙動センサ10B2の組み合わせ、タイヤTR2と挙動センサ10B3の組み合わせ、タイヤTR2と挙動センサ10B4の組み合わせ、タイヤTR3と挙動センサ10B1の組み合わせ、タイヤTR3と挙動センサ10B2の組み合わせ、タイヤTR3と挙動センサ10B3の組み合わせ、タイヤTR3と挙動センサ10B4の組み合わせ、タイヤTR4と挙動センサ10B1の組み合わせ、タイヤTR4と挙動センサ10B2の組み合わせ、タイヤTR4と挙動センサ10B3の組み合わせ、タイヤTR4と挙動センサ10B4の組み合わせの、合計16個の伝達関数を推定する。 Further, the road surface condition information acquisition unit 32 receives each combination of the signal to the tire TR and the vehicle behavior information according to the road surface condition (for each 1: 1 combination of the signal to the tire TR and the vehicle behavior information). The transmission function is estimated to calculate the road surface condition for each position on the road R with which the tire TR contacts. In other words, the road surface condition information acquisition unit 32 is a transfer function for each combination of the road surface condition at each position of the road R and each vehicle behavior information (for each 1: 1 combination of the road surface condition and the vehicle behavior information). Is estimated, and the road surface condition for each position of the road R is calculated. That is, the road surface condition information acquisition unit 32 assumes that the degree of modulation when the signal is transmitted to the behavior sensor 10B differs for each combination of the tire TR and the behavior sensor 10B, and determines that each combination of the tire TR signal and the vehicle behavior information In other words, the transfer function is estimated for each combination of the road surface condition at the position of the road R and the vehicle behavior information. In the example of the present embodiment, the road surface condition information acquisition unit 32 is a combination of the tire TR1 and the behavior sensor 10B1, a combination of the tire TR1 and the behavior sensor 10B2, a combination of the tire TR1 and the behavior sensor 10B3, and a combination of the tire TR1 and the behavior sensor 10B4. , Combination of tire TR2 and behavior sensor 10B1, combination of tire TR2 and behavior sensor 10B2, combination of tire TR2 and behavior sensor 10B3, combination of tire TR2 and behavior sensor 10B4, combination of tire TR3 and behavior sensor 10B1, tire TR3 and behavior Combination of sensor 10B2, combination of tire TR3 and behavior sensor 10B3, combination of tire TR3 and behavior sensor 10B4, combination of tire TR4 and behavior sensor 10B1, combination of tire TR4 and behavior sensor 10B2, combination of tire TR4 and behavior sensor 10B3, A total of 16 transmission functions of the combination of the tire TR4 and the behavior sensor 10B4 are estimated.

より詳しくは、路面状態情報取得部32は、車両挙動情報と、位置毎の路面状態と、路面状態と車両挙動情報との伝達関数との関係を示す方程式が、車両挙動情報毎に成立するとし、かつ、車両挙動情報同士が独立するとして、車両挙動情報毎の連立方程式を解くことで、伝達関数と路面状態とを算出する。車両挙動情報同士が独立するとは、車両挙動情報同士が互いに影響を及ぼさないことを意味する。図5は、路面状態の算出を説明する模式図である。図5に示すように、挙動センサ10B1が検出した車両挙動情報をX1とし、挙動センサ10B2が検出した車両挙動情報をX2とし、挙動センサ10B3が検出した車両挙動情報をX3とし、挙動センサ10B4が検出した車両挙動情報をX4とし、タイヤTR1に接触する道路R上の位置での路面状態をS1とし、タイヤTR2に接触する道路R上の位置での路面状態をS2とし、タイヤTR3に接触する道路R上の位置での路面状態をS3とし、タイヤTR4に接触する道路R上の位置での路面状態をS4とする。また、路面状態S1を入力信号とし車両挙動情報X1を出力信号とする伝達関数をA11とし、路面状態S1を入力信号とし車両挙動情報X2を出力信号とする伝達関数をA12とし、路面状態S1を入力信号とし車両挙動情報X3を出力信号とする伝達関数をA13とし、路面状態S1を入力信号とし車両挙動情報X4を出力信号とする伝達関数をA14とし、路面状態S2を入力信号とし車両挙動情報X1を出力信号とする伝達関数をA21とし、路面状態S2を入力信号とし車両挙動情報X2を出力信号とする伝達関数をA22とし、路面状態S2を入力信号とし車両挙動情報X3を出力信号とする伝達関数をA23とし、路面状態S2を入力信号とし車両挙動情報X4を出力信号とする伝達関数をA24とし、路面状態S3を入力信号とし車両挙動情報X1を出力信号とする伝達関数をA31とし、路面状態S3を入力信号とし車両挙動情報X2を出力信号とする伝達関数をA32とし、路面状態S3を入力信号とし車両挙動情報X3を出力信号とする伝達関数をA33とし、路面状態S3を入力信号とし車両挙動情報X4を出力信号とする伝達関数をA34とし、路面状態S4を入力信号とし車両挙動情報X1を出力信号とする伝達関数をA41とし、路面状態S4を入力信号とし車両挙動情報X2を出力信号とする伝達関数をA42とし、路面状態S4を入力信号とし車両挙動情報X3を出力信号とする伝達関数をA43とし、路面状態S4を入力信号とし車両挙動情報X4を出力信号とする伝達関数をA44とする。この場合、車両挙動情報X1~X4は、挙動センサ10Bで検出されるため既知となり、伝達関数A11~A44及び路面状態S1~S4は未知であるため、路面状態情報取得部32は、車両挙動情報X1~X4に基づいて、伝達関数A11~A44及び路面状態S1~S4を算出するといえる。 More specifically, the road surface condition information acquisition unit 32 assumes that an equation showing the relationship between the vehicle behavior information, the road surface condition for each position, and the transfer function between the road surface condition and the vehicle behavior information is established for each vehicle behavior information. Moreover, assuming that the vehicle behavior information is independent of each other, the transfer function and the road surface state are calculated by solving the simultaneous equations for each vehicle behavior information. Independence of vehicle behavior information means that vehicle behavior information does not affect each other. FIG. 5 is a schematic diagram illustrating the calculation of the road surface condition. As shown in FIG. 5, the vehicle behavior information detected by the behavior sensor 10B1 is X1, the vehicle behavior information detected by the behavior sensor 10B2 is X2, the vehicle behavior information detected by the behavior sensor 10B3 is X3, and the behavior sensor 10B4 The detected vehicle behavior information is X4, the road surface condition at the position on the road R in contact with the tire TR1 is S1, the road surface condition at the position on the road R in contact with the tire TR2 is S2, and the tire TR3 is contacted. The road surface condition at the position on the road R is S3, and the road surface condition at the position on the road R in contact with the tire TR4 is S4. Further, the transmission function with the road surface state S1 as the input signal and the vehicle behavior information X1 as the output signal is A11, the transmission function with the road surface state S1 as the input signal and the vehicle behavior information X2 as the output signal is A12, and the road surface state S1 is set. The transmission function with the input signal and the vehicle behavior information X3 as the output signal is A13, the transmission function with the road surface condition S1 as the input signal and the vehicle behavior information X4 as the output signal is A14, and the road surface condition S2 is the input signal and the vehicle behavior information. The transmission function with X1 as the output signal is A21, the road surface state S2 is the input signal, the vehicle behavior information X2 is the output signal, the transmission function is A22, the road surface state S2 is the input signal, and the vehicle behavior information X3 is the output signal. The transmission function is A23, the road surface condition S2 is an input signal, the vehicle behavior information X4 is an output signal, the transmission function is A24, the road surface condition S3 is an input signal, and the vehicle behavior information X1 is an output signal. The transmission function with the road surface condition S3 as the input signal and the vehicle behavior information X2 as the output signal is A32, the transmission function with the road surface condition S3 as the input signal and the vehicle behavior information X3 as the output signal is A33, and the road surface condition S3 is the input signal. The transmission function with the vehicle behavior information X4 as the output signal is A34, the transmission function with the road surface condition S4 as the input signal and the vehicle behavior information X1 as the output signal is A41, and the road surface condition S4 is the input signal and the vehicle behavior information X2 is used. The transmission function as the output signal is A42, the transmission function with the road surface condition S4 as the input signal and the vehicle behavior information X3 as the output signal is A43, the road surface condition S4 is the input signal, and the vehicle behavior information X4 is the output signal. Is A44. In this case, the vehicle behavior information X1 to X4 are known because they are detected by the behavior sensor 10B, and the transfer functions A11 to A44 and the road surface conditions S1 to S4 are unknown. It can be said that the transfer functions A11 to A44 and the road surface states S1 to S4 are calculated based on X1 to X4.

この場合、路面状態情報取得部32は、以下の式(1)~(4)の全てが成立するような、伝達関数A11~A44及び路面状態S1~S4を算出する。なお、E1、E2、E3、E4は、係数であり、伝達関数A11~A44及び路面状態S1~S4の算出に合わせて設定される。 In this case, the road surface condition information acquisition unit 32 calculates the transfer functions A11 to A44 and the road surface conditions S1 to S4 so that all of the following equations (1) to (4) are satisfied. Note that E1, E2, E3, and E4 are coefficients and are set according to the calculation of the transfer functions A11 to A44 and the road surface states S1 to S4.

X1=A11・S1+A21・S2+A31・S3+A41・S4+E1 ・・・(1)
X2=A12・S1+A22・S2+A32・S3+A42・S4+E2 ・・・(2)
X3=A13・S1+A23・S2+A33・S3+A43・S4+E3 ・・・(3)
X4=A14・S1+A24・S2+A34・S3+A44・S4+E4 ・・・(4)
X1 = A11 ・ S1 + A21 ・ S2 + A31 ・ S3 + A41 ・ S4 + E1 ・ ・ ・ (1)
X2 = A12, S1 + A22, S2 + A32, S3 + A42, S4 + E2 ... (2)
X3 = A13 / S1 + A23 / S2 + A33 / S3 + A43 / S4 + E3 ... (3)
X4 = A14 ・ S1 + A24 ・ S2 + A34 ・ S3 + A44 ・ S4 + E4 ・ ・ ・ (4)

例えば、路面状態情報取得部32は、伝達関数A11~A44及び路面状態S1~S4に、値を変えながら数値を代入する回帰計算を用いて、式(1)~(4)が成立するような、伝達関数A11~A44及び路面状態S1~S4を算出する。なお、路面状態情報取得部32は、式(1)~(4)の左辺と右辺が厳密に同じ値となる場合に、式(1)~(4)が成立すると判断することに限られず、式(1)~(4)の左辺と右辺との差分が所定の範囲内となる場合に、式(1)~(4)が成立するとして、式(1)~(4)の左辺と右辺との差分を所定の範囲内とするような、伝達関数A11~A44及び路面状態S1~S4を算出してよい。 For example, the road surface state information acquisition unit 32 uses regression calculation in which numerical values are substituted into the transfer functions A11 to A44 and the road surface states S1 to S4 while changing the values, so that the equations (1) to (4) are established. , Transfer functions A11 to A44 and road surface conditions S1 to S4 are calculated. The road surface condition information acquisition unit 32 is not limited to determining that the equations (1) to (4) are satisfied when the left side and the right side of the equations (1) to (4) have exactly the same value. When the difference between the left side and the right side of the equations (1) to (4) is within a predetermined range, it is assumed that the equations (1) to (4) are satisfied, and the left side and the right side of the equations (1) to (4) are satisfied. The transfer functions A11 to A44 and the road surface states S1 to S4 may be calculated so that the difference between the two and the above is within a predetermined range.

路面状態情報取得部32による、式(1)~(4)が成立するような、伝達関数A11~A44及び路面状態S1~S4の算出方法の具体例を以下で説明する。 A specific example of the calculation method of the transfer functions A11 to A44 and the road surface states S1 to S4 such that the equations (1) to (4) are satisfied by the road surface condition information acquisition unit 32 will be described below.

路面状態情報取得部32は、伝達関数A11~A44及び路面状態S1~S4について任意の値を当てはめて、式(1)~(4)の右辺を算出する計算を実行して、式(1)~(4)の全てで、左辺(車両挙動情報の計測値)と右辺(車両挙動情報を伝達関数や路面状態から算出した計算値)との差が所定値以内となるかを判断する。そして、伝達関数A11~A44及び路面状態S1~S4の値を変えながら同様の計算を行い、式(1)~(4)の全てで、左辺と右辺との差が所定値以内となった際の伝達関数A11~A44及び路面状態S1~S4を、伝達関数A11~A44及び路面状態S1~S4の算出結果として取得する。すなわち、路面状態情報取得部32は、最尤推定の手法を用いて、伝達関数A11~A44及び路面状態S1~S4を算出するといえる。なお、係数であるE1~E4については、例えば確率分布などを利用して、計算の度にランダムに設定してよい。 The road surface condition information acquisition unit 32 applies arbitrary values to the transmission functions A11 to A44 and the road surface conditions S1 to S4, executes a calculation to calculate the right side of the equations (1) to (4), and executes the calculation of the equation (1). In all of (4), it is determined whether the difference between the left side (measured value of vehicle behavior information) and the right side (calculated value calculated from the transmission function or road surface condition of vehicle behavior information) is within a predetermined value. Then, the same calculation is performed while changing the values of the transfer functions A11 to A44 and the road surface states S1 to S4, and when the difference between the left side and the right side is within a predetermined value in all of the equations (1) to (4). The transfer functions A11 to A44 and the road surface states S1 to S4 are acquired as the calculation results of the transfer functions A11 to A44 and the road surface states S1 to S4. That is, it can be said that the road surface condition information acquisition unit 32 calculates the transfer functions A11 to A44 and the road surface conditions S1 to S4 by using the method of maximum likelihood estimation. The coefficients E1 to E4 may be randomly set for each calculation by using, for example, a probability distribution.

また、計算に用いる路面状態S1~S4の候補を、次のように抽出してもよい。すなわち、時系列で連続した車両挙動情報X1~X4の測定値の波形である時間波形と、路面状態S1~S4及び伝達関数A11~A44として任意の値を代入して算出した車両挙動情報X1~X4の算出値(すなわち式(1)~(4)の右辺)の時間波形とを作成して、それらの時間波形を比較する。そして、それらの時間波形の形状の差異が小さい場合に、その時間波形に用いた路面状態S1~S4を、計算に用いる路面状態S1~S4の候補とする。時間波形の形状の差異が小さいかの判断は、任意の判断基準を用いてよい。 Further, the candidates of the road surface states S1 to S4 used for the calculation may be extracted as follows. That is, the vehicle behavior information X1 to calculated by substituting the time waveform which is the waveform of the measured values of the vehicle behavior information X1 to X4 continuous in time series and arbitrary values as the road surface states S1 to S4 and the transmission functions A11 to A44. The time waveforms of the calculated values of X4 (that is, the right side of the equations (1) to (4)) are created, and the time waveforms are compared. Then, when the difference in the shape of the time waveform is small, the road surface states S1 to S4 used for the time waveform are used as candidates for the road surface states S1 to S4 used for the calculation. Any judgment criteria may be used to judge whether the difference in the shape of the time waveform is small.

また、以上の説明では、路面状態S1~S4が未知であり、路面状態と伝達関数の両方を算出する場合を例にしたが、既知の路面状態S1~S4を用いて、伝達関数A11~A44を予め算出しておいてもよい。すなわちこの場合、車両10に、路面状態が既知の道路上を走行させて、車両挙動情報X1~X4を取得させる。そして、取得した車両情報X1~X4を式(1)~(4)の左辺に代入し、既知の路面状態S1~S4を式(1)~(4)の右辺に代入して、例えば上述のような最尤推定の手法を用いて、伝達関数A11~A44を算出する。その後、路面状態が未知の道路を走行させて車両情報X1~X4を取得したら、車両情報X1~X4及び伝達関数A11~A44が既知となるので、式(1)~(4)により、路面状態が未知の道路の路面状態S1~S4を算出できる。このように既知の路面状態S1~S4を用いて、伝達関数A11~A44を予め算出することで、計算負荷を低減できる。 Further, in the above description, the case where the road surface states S1 to S4 are unknown and both the road surface state and the transfer function are calculated is taken as an example, but the transfer functions A11 to A44 are used by using the known road surface states S1 to S4. May be calculated in advance. That is, in this case, the vehicle 10 is made to travel on a road whose road surface condition is known to acquire vehicle behavior information X1 to X4. Then, the acquired vehicle information X1 to X4 are substituted into the left side of the equations (1) to (4), and the known road surface conditions S1 to S4 are substituted into the right side of the equations (1) to (4). The transfer functions A11 to A44 are calculated by using the method of maximum likelihood estimation as described above. After that, when the vehicle information X1 to X4 is acquired by driving on a road whose road surface condition is unknown, the vehicle information X1 to X4 and the transmission functions A11 to A44 become known. Can calculate the road surface conditions S1 to S4 of an unknown road. By calculating the transfer functions A11 to A44 in advance using the known road surface conditions S1 to S4 in this way, the calculation load can be reduced.

また、以上の説明では、タイヤの数が4つの場合を例に説明していたが、タイヤの数をn個として一般化した場合には、以下の式(A1)から式(An)の全てが成立するような、伝達関数A11~Ann及び路面状態S1~Snを算出するといえる。算出方法としては上記の説明と同様である。なお、nは2以上の整数であり、例えば、伝達関数A1nは、路面状態S1を入力信号とし車両挙動情報Xnを出力信号とする伝達関数である。 Further, in the above description, the case where the number of tires is four has been described as an example, but when the number of tires is generalized to n, all of the following formulas (A1) to (An) are used. It can be said that the transfer functions A11 to Ann and the road surface states S1 to Sn are calculated so that the above is satisfied. The calculation method is the same as the above description. Note that n is an integer of 2 or more, and for example, the transfer function A1n is a transfer function that uses the road surface state S1 as an input signal and the vehicle behavior information Xn as an output signal.

X1=A11・S1+・・・+An1・Sn+E1 ・・・(A1)
・・・
Xn=A1n・S1+・・・+Ann・Sn+En ・・・(An)
X1 = A11 ・ S1 + ・ ・ ・ + An1 ・ Sn + E1 ・ ・ ・ (A1)
・ ・ ・
Xn = A1n · S1 + ... + Ann · Sn + En ... (An)

以上の説明では、タイヤTR及び挙動センサ10Bが4つである場合を例に説明していたが、路面状態情報取得部32は、タイヤTR及び挙動センサ10Bが2つ以上である場合に、次のようにして路面状態を算出すると言い換えることができる。すなわち、路面状態情報取得部32は、第1路面状態(例えば路面状態S1)と第2路面状態(例えば路面状態S2)とが第1車両挙動情報(例えば車両挙動情報X1)に影響を及ぼし、かつ、第1路面状態と第2路面状態とが第2車両挙動情報(例えば車両挙動情報X2)に影響を及ぼすと仮定することで、第1路面状態と第1車両挙動情報との関係を示す第1伝達関数(例えば伝達関数A11)と、第2路面状態と第1車両挙動情報との関係を示す第2伝達関数(例えば伝達関数A21)と、第1路面状態と第2車両挙動情報との関係を示す第3伝達関数(例えば伝達関数A12)と、第2路面状態と第2車両挙動情報との関係を示す第4伝達関数(例えば伝達関数A22)とを推定して、第1路面状態及び第2路面状態を算出する。 In the above description, the case where the tire TR and the behavior sensor 10B are four has been described as an example, but the road surface condition information acquisition unit 32 is described below when the tire TR and the behavior sensor 10B are two or more. In other words, the road surface condition is calculated as follows. That is, in the road surface state information acquisition unit 32, the first road surface state (for example, the road surface state S1) and the second road surface state (for example, the road surface state S2) affect the first vehicle behavior information (for example, vehicle behavior information X1). Moreover, by assuming that the first road surface state and the second road surface state affect the second vehicle behavior information (for example, vehicle behavior information X2), the relationship between the first road surface state and the first vehicle behavior information is shown. The first transfer function (for example, transfer function A11), the second transfer function (for example, transfer function A21) showing the relationship between the second road surface state and the first vehicle behavior information, and the first road surface state and the second vehicle behavior information. The third transfer function (for example, transfer function A12) showing the relationship between the above and the fourth transfer function (for example, transfer function A22) showing the relationship between the second road surface state and the second vehicle behavior information are estimated, and the first road surface is estimated. The state and the second road surface state are calculated.

路面状態情報取得部32は、車両10によって逐次検出された一群の車両挙動情報毎に、上述の処理を実行して、路面状態を算出する。一群の車両挙動情報とは、複数の挙動センサ10Bによって同じタイミングで検出された車両挙動情報であり、同じ車両位置情報に関連付いた車両挙動情報といえる。すなわち上記の例では、車両挙動情報X1、X2、X3、X4は、同じタイミングで検出された(同じ車両位置情報に関連付けられた)車両挙動情報である。路面状態情報取得部32は、一群の車両挙動情報毎に路面状態を算出することで、車両10の進行方向に沿った道路Rの位置毎の路面状態を算出することができる。ただし、路面状態情報取得部32は、異なるタイミングで検出された車両挙動情報を用いて(異なる車両位置情報に関連付けられた複数の車両挙動情報を用いて)、路面状態を算出してもよい。すなわち、車両挙動情報X1、X2、X3、X4は、異なるタイミングで検出された(異なる車両位置情報に関連付けられた)車両挙動情報であってもよい。 The road surface condition information acquisition unit 32 executes the above-mentioned processing for each group of vehicle behavior information sequentially detected by the vehicle 10 to calculate the road surface condition. The group of vehicle behavior information is vehicle behavior information detected at the same timing by a plurality of behavior sensors 10B, and can be said to be vehicle behavior information associated with the same vehicle position information. That is, in the above example, the vehicle behavior information X1, X2, X3, and X4 are vehicle behavior information detected at the same timing (associated with the same vehicle position information). The road surface condition information acquisition unit 32 can calculate the road surface condition for each position of the road R along the traveling direction of the vehicle 10 by calculating the road surface condition for each group of vehicle behavior information. However, the road surface condition information acquisition unit 32 may calculate the road surface condition by using the vehicle behavior information detected at different timings (using a plurality of vehicle behavior information associated with different vehicle position information). That is, the vehicle behavior information X1, X2, X3, X4 may be vehicle behavior information detected at different timings (associated with different vehicle position information).

なお、伝達関数を推定して路面状態を算出する方法は、以上の説明に限られず、路面状態情報取得部32は、複数の車両挙動情報を用いて、任意の方法で伝達関数を推定して路面状態を算出してよい。 The method of estimating the transfer function and calculating the road surface condition is not limited to the above description, and the road surface condition information acquisition unit 32 estimates the transfer function by an arbitrary method using a plurality of vehicle behavior information. The road surface condition may be calculated.

(処理フロー)
次に、以上説明した路面状態の算出方法のフローを、フローチャートに基づいて説明する。図6は、本実施形態に係る路面状態の算出フローを説明するフローチャートである。図6に示すように、演算装置14は、車両挙動情報取得部30により、複数の挙動センサ10Bによって検出された車両挙動情報を取得する(ステップS10)。そして、演算装置14は、車両挙動情報取得部30が取得した複数の車両挙動情報に基づいて、車両挙動情報と路面状態との関係を示す伝達関数を推定し、路面状態を算出する(ステップS12)。演算装置14は、一群の車両挙動情報毎にこれらの処理を実行して、車両10の進行方向に沿った道路Rの位置毎の路面状態を算出する。
(Processing flow)
Next, the flow of the road surface condition calculation method described above will be described with reference to the flowchart. FIG. 6 is a flowchart illustrating a calculation flow of the road surface condition according to the present embodiment. As shown in FIG. 6, the arithmetic unit 14 acquires the vehicle behavior information detected by the plurality of behavior sensors 10B by the vehicle behavior information acquisition unit 30 (step S10). Then, the arithmetic unit 14 estimates a transfer function indicating the relationship between the vehicle behavior information and the road surface condition based on the plurality of vehicle behavior information acquired by the vehicle behavior information acquisition unit 30, and calculates the road surface condition (step S12). ). The arithmetic unit 14 executes these processes for each group of vehicle behavior information, and calculates the road surface state for each position of the road R along the traveling direction of the vehicle 10.

(効果)
以上説明したように、本実施形態に係る演算装置14は、車両挙動情報取得部30と路面状態情報取得部32とを含む。車両挙動情報取得部30は、道路Rを走行する車両10の異なる位置に設けられる複数の挙動センサ10B(センサ)によって検出された、車両10の挙動を示す車両挙動情報を取得する。路面状態情報取得部32は、複数の車両挙動情報に基づいて、入力としての道路Rの路面状態と、出力としての車両挙動情報との関係を示す伝達関数を推定することで、道路Rの路面状態を示す路面状態情報を取得する。ここで、路面状態が同じ道路を走行する場合であっても、車両10側の検出条件が異なる場合には、伝達関数が異なるために、車両挙動情報が変化する。そのため、車両10側の検出条件を問わずに、車両挙動情報に基づいて路面状態を検出することは難しい。それに対し、本実施形態に係る演算装置14は、複数の車両挙動情報に基づいて伝達関数を推定するため、車両10側の検出条件が異なる場合にも、推定した伝達関数を用いて、路面状態を適切に検出することができる。すなわち、本実施形態に係る演算装置14は、複数の車両挙動情報に基づいて伝達関数を推定するため、伝達関数を事前に把握していなくても、車両10側の検出条件を問わずに、適切に路面状態を検出することが可能となる。
(effect)
As described above, the arithmetic unit 14 according to the present embodiment includes the vehicle behavior information acquisition unit 30 and the road surface condition information acquisition unit 32. The vehicle behavior information acquisition unit 30 acquires vehicle behavior information indicating the behavior of the vehicle 10 detected by a plurality of behavior sensors 10B (sensors) provided at different positions of the vehicle 10 traveling on the road R. The road surface condition information acquisition unit 32 estimates a transmission function indicating the relationship between the road surface condition of the road R as an input and the vehicle behavior information as an output based on a plurality of vehicle behavior information, thereby estimating the road surface of the road R. Acquires road surface condition information indicating the condition. Here, even when traveling on a road having the same road surface condition, if the detection conditions on the vehicle 10 side are different, the vehicle behavior information changes because the transfer function is different. Therefore, it is difficult to detect the road surface condition based on the vehicle behavior information regardless of the detection conditions on the vehicle 10 side. On the other hand, since the arithmetic unit 14 according to the present embodiment estimates the transfer function based on a plurality of vehicle behavior information, the road surface state is estimated by using the estimated transfer function even when the detection conditions on the vehicle 10 side are different. Can be detected properly. That is, since the arithmetic unit 14 according to the present embodiment estimates the transfer function based on a plurality of vehicle behavior information, the transfer function is not known in advance, regardless of the detection conditions on the vehicle 10 side. It becomes possible to appropriately detect the road surface condition.

また、路面状態情報取得部32は、道路Rの異なる位置の路面状態がそれぞれの車両挙動情報に影響を及ぼすと仮定することで伝達関数を推定することで、道路Rの位置毎の路面状態情報を取得する。路面状態情報取得部32は、このように仮定することで、それぞれの位置の路面状態に基づく信号(振動など)が全ての挙動センサ10Bに伝わることを条件として、伝達関数及び路面情報を算出する。これにより、演算装置14は、伝達関数をより高精度に推定して、車両10側の検出条件を問わずに、高精度に路面状態を検出することが可能となる。 Further, the road surface condition information acquisition unit 32 estimates the transfer function by assuming that the road surface conditions at different positions of the road R affect the vehicle behavior information, thereby providing the road surface condition information for each position of the road R. To get. By assuming this, the road surface condition information acquisition unit 32 calculates the transfer function and the road surface information on condition that a signal (vibration or the like) based on the road surface condition at each position is transmitted to all the behavior sensors 10B. .. As a result, the arithmetic unit 14 can estimate the transfer function with higher accuracy and detect the road surface state with higher accuracy regardless of the detection conditions on the vehicle 10 side.

また、路面状態情報取得部32は、道路Rのそれぞれの位置の路面状態と車両挙動情報との組み合わせ毎に、伝達関数を推定して、道路Rの位置毎の路面状態情報を取得する。路面状態情報取得部32は、組み合わせ毎に伝達関数を推定することで、路面状態に基づく信号が挙動センサ10Bに伝わる際の信号の変調度合いを個別に設定することが可能となる。そのため、演算装置14は、伝達関数をより高精度に推定して、車両10側の検出条件を問わずに、高精度に路面状態を検出することが可能となる。 Further, the road surface condition information acquisition unit 32 estimates a transfer function for each combination of the road surface condition and the vehicle behavior information at each position of the road R, and acquires the road surface condition information for each position of the road R. By estimating the transfer function for each combination, the road surface condition information acquisition unit 32 can individually set the modulation degree of the signal when the signal based on the road surface condition is transmitted to the behavior sensor 10B. Therefore, the arithmetic unit 14 can estimate the transfer function with higher accuracy and detect the road surface state with higher accuracy regardless of the detection conditions on the vehicle 10 side.

また、異なる挙動センサ10Bが検出した車両挙動情報を、第1車両挙動情報及び第2車両挙動情報とし、異なる位置における路面状態を、第1路面状態及び第2路面状態とした場合に、路面状態情報取得部32は、第1路面状態(例えば路面状態S1)と第2路面状態(例えば路面状態S2)とが第1車両挙動情報(例えば車両挙動情報X1)に影響を及ぼし、かつ、第1路面状態と第2路面状態とが第2車両挙動情報(例えば車両挙動情報X2)に影響を及ぼすと仮定することで、第1路面状態と第1車両挙動情報との関係を示す第1伝達関数(例えば伝達関数A11)と、第2路面状態と第1車両挙動情報との関係を示す第2伝達関数(例えば伝達関数A21)と、第1路面状態と第2車両挙動情報との関係を示す第3伝達関数(例えば伝達関数A12)と、第2路面状態と第2車両挙動情報との関係を示す第4伝達関数(例えば伝達関数A22)とを推定して、第1路面状態及び第2路面状態を路面状態情報として取得する。演算装置14は、このように路面状態を算出することで、伝達関数をより高精度に推定して、車両10側の検出条件を問わずに、高精度に路面状態を検出することが可能となる。 Further, when the vehicle behavior information detected by the different behavior sensors 10B is used as the first vehicle behavior information and the second vehicle behavior information, and the road surface states at different positions are set as the first road surface state and the second road surface state, the road surface state. In the information acquisition unit 32, the first road surface state (for example, road surface state S1) and the second road surface state (for example, road surface state S2) affect the first vehicle behavior information (for example, vehicle behavior information X1), and the first one. A first transmission function showing the relationship between the first road surface condition and the first vehicle behavior information by assuming that the road surface condition and the second road surface condition affect the second vehicle behavior information (for example, vehicle behavior information X2). (For example, the transmission function A11), the second transmission function (for example, the transmission function A21) showing the relationship between the second road surface state and the first vehicle behavior information, and the relationship between the first road surface state and the second vehicle behavior information are shown. The third transmission function (for example, transmission function A12) and the fourth transmission function (for example, transmission function A22) indicating the relationship between the second road surface state and the second vehicle behavior information are estimated, and the first road surface state and the second are Acquire the road surface condition as road surface condition information. By calculating the road surface condition in this way, the arithmetic unit 14 can estimate the transfer function with higher accuracy and detect the road surface condition with high accuracy regardless of the detection conditions on the vehicle 10 side. Become.

また、車両挙動情報取得部30は、車両10のサスペンションSUよりも車両10のタイヤTRとは反対側(Z方向側)に設けられた挙動センサ10Bによって検出された車両挙動情報を取得する。演算装置14は、サスペンションSUよりもZ方向側のセンサで検出された車両挙動情報を用いることで、伝達関数をより高精度に推定して、車両10側の検出条件を問わずに、高精度に路面状態を検出することが可能となる。 Further, the vehicle behavior information acquisition unit 30 acquires vehicle behavior information detected by the behavior sensor 10B provided on the side (Z direction side) opposite to the tire TR of the vehicle 10 from the suspension SU of the vehicle 10. The arithmetic unit 14 estimates the transfer function with higher accuracy by using the vehicle behavior information detected by the sensor on the Z direction side of the suspension SU, and has high accuracy regardless of the detection conditions on the vehicle 10 side. It is possible to detect the road surface condition.

また、車両挙動情報取得部30は、車両挙動情報として、少なくとも車両10の加速度の情報を取得する。車両挙動情報として加速度を用いることで、伝達関数をより高精度に推定して、車両10側の検出条件を問わずに、高精度に路面状態を検出することが可能となる。 Further, the vehicle behavior information acquisition unit 30 acquires at least acceleration information of the vehicle 10 as vehicle behavior information. By using acceleration as vehicle behavior information, it is possible to estimate the transfer function with higher accuracy and detect the road surface condition with higher accuracy regardless of the detection conditions on the vehicle 10 side.

また、路面状態とは、道路Rの路面の凹凸度合いを示す指標である。路面状態として路面の凹凸度合いを示す指標を用いることで、路面の状態を適切に判定することが可能となる。 The road surface condition is an index indicating the degree of unevenness of the road surface of the road R. By using an index indicating the degree of unevenness of the road surface as the road surface condition, it is possible to appropriately determine the condition of the road surface.

以上、本発明の実施形態及び実施例を説明したが、これら実施形態等の内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態等の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。 Although the embodiments and examples of the present invention have been described above, the embodiments are not limited by the contents of these embodiments and the like. Further, the above-mentioned components include those that can be easily assumed by those skilled in the art, those that are substantially the same, that is, those in a so-called equal range. Further, the above-mentioned components can be combined as appropriate. Further, various omissions, replacements or changes of the components can be made without departing from the gist of the above-described embodiment or the like.

1 検出システム
10 車両
10B 挙動センサ(センサ)
12 測定データ取得装置
14 演算装置
30 車両挙動情報取得部
32 路面状態情報取得部
R 道路
TR タイヤ
1 Detection system 10 Vehicle 10B Behavior sensor (sensor)
12 Measurement data acquisition device 14 Arithmetic logic unit 30 Vehicle behavior information acquisition unit 32 Road surface condition information acquisition unit R Road TR Tire

Claims (5)

道路を走行する車両の異なる位置に設けられる複数のセンサによって検出された、前記車両の挙動を示す車両挙動情報を取得する車両挙動情報取得部と、
複数の前記車両挙動情報に基づいて、入力としての前記道路の路面状態と、出力としての前記車両挙動情報との関係を示す伝達関数を推定することで、前記道路の路面状態を示す路面状態情報を取得する路面状態情報取得部と、
を含む、演算装置。
A vehicle behavior information acquisition unit that acquires vehicle behavior information indicating the behavior of the vehicle detected by a plurality of sensors provided at different positions of the vehicle traveling on the road.
Road surface condition information indicating the road surface condition of the road by estimating a transmission function indicating the relationship between the road surface condition as an input and the vehicle behavior information as an output based on the plurality of vehicle behavior information. Road surface condition information acquisition unit to acquire
Including arithmetic unit.
前記路面状態情報取得部は、前記道路の異なる位置の路面状態がそれぞれの前記車両挙動情報に影響を及ぼすと仮定することで前記伝達関数を推定することで、前記道路の位置毎の路面状態情報を取得する、請求項1に記載の演算装置。 The road surface condition information acquisition unit estimates the transmission function by assuming that the road surface conditions at different positions of the road affect the vehicle behavior information, thereby providing road surface condition information for each position of the road. The arithmetic unit according to claim 1. 前記路面状態情報取得部は、前記道路のそれぞれの位置の路面状態とそれぞれの前記車両挙動情報との組み合わせ毎に、前記伝達関数を推定して、前記道路の位置毎の路面状態情報を取得する、請求項2に記載の演算装置。 The road surface condition information acquisition unit estimates the transmission function for each combination of the road surface condition at each position of the road and the vehicle behavior information, and acquires the road surface condition information for each position of the road. , The arithmetic unit according to claim 2. 異なる前記センサが検出した前記車両挙動情報を、X1、X2、X3、X4とし、異なる位置における前記路面状態を、S1、S2、S3、S4とした場合に、
前記路面状態情報取得部は、以下の式(1)~(4)の全てが成立するような伝達関数A11~A44及び車両挙動情報S1~S4を算出することで、前記路面状態情報を算出する、請求項3に記載の演算装置。
X1=A11・S1+A21・S2+A31・S3+A41・S4+E1 ・・・(1)
X2=A12・S1+A22・S2+A32・S3+A42・S4+E2 ・・・(2)
X3=A13・S1+A23・S2+A33・S3+A43・S4+E3 ・・・(3)
X4=A14・S1+A24・S2+A34・S3+A44・S4+E4 ・・・(4)
ここで、S1を入力信号としX1を出力信号とする伝達関数をA11とし、S1を入力信号としX2を出力信号とする伝達関数をA12とし、S1を入力信号としX3を出力信号とする伝達関数をA13とし、S1を入力信号としX4を出力信号とする伝達関数をA14とし、S2を入力信号としX1を出力信号とする伝達関数をA21とし、S2を入力信号としX2を出力信号とする伝達関数をA22とし、S2を入力信号としX3を出力信号とする伝達関数をA23とし、S2を入力信号としX4を出力信号とする伝達関数をA24とし、S3を入力信号としX1を出力信号とする伝達関数をA31とし、S3を入力信号としX2を出力信号とする伝達関数をA32とし、S3を入力信号としX3を出力信号とする伝達関数をA33とし、S3を入力信号としX4を出力信号とする伝達関数をA34とし、S4を入力信号としX1を出力信号とする伝達関数をA41とし、S4を入力信号としX2を出力信号とする伝達関数をA42とし、S4を入力信号としX3を出力信号とする伝達関数をA43とし、S4を入力信号としX4を出力信号とする伝達関数をA44とし、E1~E4は係数である。
When the vehicle behavior information detected by different sensors is X1, X2, X3, X4, and the road surface conditions at different positions are S1, S2, S3, S4.
The road surface condition information acquisition unit calculates the road surface condition information by calculating transfer functions A11 to A44 and vehicle behavior information S1 to S4 such that all of the following equations (1) to (4) are satisfied. , The arithmetic unit according to claim 3.
X1 = A11 ・ S1 + A21 ・ S2 + A31 ・ S3 + A41 ・ S4 + E1 ・ ・ ・ (1)
X2 = A12, S1 + A22, S2 + A32, S3 + A42, S4 + E2 ... (2)
X3 = A13 / S1 + A23 / S2 + A33 / S3 + A43 / S4 + E3 ... (3)
X4 = A14 ・ S1 + A24 ・ S2 + A34 ・ S3 + A44 ・ S4 + E4 ・ ・ ・ (4)
Here, the transmission function with S1 as the input signal and X1 as the output signal is A11, the transmission function with S1 as the input signal and X2 as the output signal is A12, and S1 is the input signal and X3 is the output signal. Is A13, S1 is an input signal, X4 is an output signal, the transmission function is A14, S2 is an input signal, X1 is an output signal, S2 is an input signal, and X2 is an output signal. The function is A22, the transmission function with S2 as the input signal and X3 as the output signal is A23, the transmission function with S2 as the input signal and X4 as the output signal is A24, and S3 is the input signal and X1 is the output signal. The transmission function is A31, S3 is the input signal, X2 is the output signal, the transmission function is A32, S3 is the input signal, X3 is the output signal, S3 is the input signal, and X4 is the output signal. The transmission function is A34, S4 is an input signal, X1 is an output signal, A41 is, S4 is an input signal, X2 is an output signal, S4 is an input signal, and X3 is an output signal. The transfer function is A43, S4 is an input signal, X4 is an output signal, A44, and E1 to E4 are coefficients.
道路を走行する車両の異なる位置に設けられる複数のセンサによって検出された、前記車両の挙動を示す車両挙動情報を取得するステップと、
複数の前記車両挙動情報に基づいて、入力としての前記道路の路面状態と、出力としての前記車両挙動情報との関係を示す伝達関数を推定することで、前記道路の路面状態を示す路面状態情報を取得するステップと、
を含む、演算方法を、コンピュータに実行させる、
プログラム。
A step of acquiring vehicle behavior information indicating the behavior of the vehicle detected by a plurality of sensors provided at different positions of the vehicle traveling on the road.
Road surface condition information indicating the road surface condition of the road by estimating a transmission function indicating the relationship between the road surface condition as an input and the vehicle behavior information as an output based on the plurality of vehicle behavior information. And the steps to get
Let the computer execute the calculation method, including
program.
JP2020199166A 2020-11-30 2020-11-30 Arithmetic unit and program Pending JP2022086894A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020199166A JP2022086894A (en) 2020-11-30 2020-11-30 Arithmetic unit and program
PCT/JP2021/042675 WO2022113909A1 (en) 2020-11-30 2021-11-19 Calculating device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020199166A JP2022086894A (en) 2020-11-30 2020-11-30 Arithmetic unit and program

Publications (1)

Publication Number Publication Date
JP2022086894A true JP2022086894A (en) 2022-06-09

Family

ID=81754553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020199166A Pending JP2022086894A (en) 2020-11-30 2020-11-30 Arithmetic unit and program

Country Status (2)

Country Link
JP (1) JP2022086894A (en)
WO (1) WO2022113909A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3319407B2 (en) * 1998-10-12 2002-09-03 株式会社豊田中央研究所 Road surface condition estimation device
DE60143878D1 (en) * 2000-06-23 2011-03-03 Bridgestone Corp METHOD FOR DETERMINING THE DRIVING CONDITION OF A VEHICLE, DEVICE FOR DETERMINING THE DRIVING CONDITION OF A VEHICLE, VEHICLE CONTROL DEVICE, AND WHEEL WITH TIRES
JP4242047B2 (en) * 2000-08-29 2009-03-18 トヨタ自動車株式会社 Anti-collision control device

Also Published As

Publication number Publication date
WO2022113909A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
US20140371990A1 (en) Sensor system comprising a vehicle model unit
US20130297204A1 (en) Technique for calibrating dead reckoning positioning data
JP7113134B2 (en) vehicle controller
US7032450B2 (en) Method and apparatus for measuring speed of land vehicle using accelerometer
US11488391B2 (en) Method and apparatus for estimating position
WO2022113909A1 (en) Calculating device and program
JP6422431B2 (en) Improvement of inertial sensor
CN111989541B (en) Stereo camera device
CN115951662A (en) Navigation method, navigation device and mobile carrier
JP7228629B2 (en) Arithmetic unit
JP7028223B2 (en) Self-position estimator
JPH0668391A (en) Vehicle travel guidance device
JP3382518B2 (en) Vehicle distance measuring device
JP7503478B2 (en) Arithmetic device and program
US20220055655A1 (en) Positioning autonomous vehicles
WO2023189972A1 (en) Computation device, computation method, and program
JP7478181B2 (en) Calculation device, calculation method, and program
JP7503479B2 (en) Arithmetic device and program
JP2003185466A (en) Distance coefficient calculator
JP7064001B2 (en) Vehicle control unit
JP2023150597A (en) Processing unit, processing method, and program
JP3406195B2 (en) Vehicle distance measuring device
KR20020003970A (en) The vehicle navigation device including temperature-compensation function and the method thereof
CN116222587A (en) Position accuracy determination device, storage medium, and determination method
JP2023150815A (en) Calculation device, calculation method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240422