JP2022085200A - Self-excited asynchronous compensation device - Google Patents

Self-excited asynchronous compensation device Download PDF

Info

Publication number
JP2022085200A
JP2022085200A JP2020196759A JP2020196759A JP2022085200A JP 2022085200 A JP2022085200 A JP 2022085200A JP 2020196759 A JP2020196759 A JP 2020196759A JP 2020196759 A JP2020196759 A JP 2020196759A JP 2022085200 A JP2022085200 A JP 2022085200A
Authority
JP
Japan
Prior art keywords
reactor
inverters
circulating current
interconnection
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020196759A
Other languages
Japanese (ja)
Inventor
和志 五藤
Kazushi Goto
雅幸 岡庭
Masayuki Okaniwa
祐 桑原
Yu Kuwabara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2020196759A priority Critical patent/JP2022085200A/en
Publication of JP2022085200A publication Critical patent/JP2022085200A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

To suppress a high-frequency circulating current generated between two inverters that make up a self-excited asynchronous compensation device.SOLUTION: One reactor (circulating current suppression reactor) 7 that suppresses a high-frequency circulating current is connected between two asynchronous inverters 3a and 3b connected in parallel via two interconnection reactors 6a and 6b, and the reactor 7 includes one coil 7b that connects the winding start to an interconnection reactor 6b and the other coil 7a that connects the winding start to the winding end of the one coil 7b and connects the winding end to the interconnection reactor 6a.SELECTED DRAWING: Figure 1

Description

本発明は、自励式無効電力補償装置(以下、STAOCOMという。)を構成する二台のインバータ間に発生する循環電流を抑制する技術に関する。 The present invention relates to a technique for suppressing a circulating current generated between two inverters constituting a self-excited electrostatic compensator (hereinafter referred to as STAOCOM).

太陽光発電や風力発電など自然エネルギーを利用する分散型電源が配電系統に大量導入された場合、系統電圧の変動が増大することが懸念される。特に、日射や風力の急変により、これらの出力は大きく変動する。 When a large amount of distributed power sources that use natural energy such as solar power generation and wind power generation are introduced into the distribution system, there is a concern that fluctuations in the system voltage will increase. In particular, these outputs fluctuate significantly due to sudden changes in solar radiation and wind power.

その影響による急激な電圧変動に対しては、変圧器のタップを切換えて電圧を調整する従来の電圧調整装置では対応できず、この問題を解決する装置としてSTATCOMなどの無効電力補償装置が有効と考えられる。 The conventional voltage regulator that adjusts the voltage by switching the tap of the transformer cannot cope with the sudden voltage fluctuation due to the influence, and a static power compensation device such as STATCOM is effective as a device to solve this problem. Conceivable.

STATCOMは、高圧配電系統に接続されて、無効電力を無段階かつ高速に供給するものであり、無効電力が配電線を流れることで発生する電圧を利用して、配電線の電圧を調整する。無効電力はインバータで制御される。 The STATCOM is connected to a high-voltage distribution system to supply reactive power steplessly and at high speed, and adjusts the voltage of the distribution line by using the voltage generated by the reactive power flowing through the distribution line. Reactive power is controlled by the inverter.

インバータはサイリスタよりも高速動作が可能な半導体(SiC-MOSFET(炭化ケイ素MOS型電界効果トランジスタ))を用いて構成されており、高速な無効電力出力制御によって急激な電圧変動を迅速に抑制することができる。(下記非特許文献1参照)。 The inverter is configured using a semiconductor (SiC-PWM (silicon carbide MOS type field effect transistor)) that can operate at a higher speed than the thyristor, and rapidly suppresses sudden voltage fluctuations by high-speed ineffective power output control. Can be done. (See Non-Patent Document 1 below).

[2019年4月10日検索]インターネット<URL:http://www.aichidenki.jp/products/catalog_pdf/a2-statcom.pdf>[Search on April 10, 2019] Internet <URL: http://www.aichidenki.jp/products/catalog_pdf/a2-statcom.pdf>

非特許文献1記載のSTATCOMの制御性能としては、高圧配電系統の電圧一定制御は、応答時間30ms以内、無効電力一定制御は、応答時間30ms以内、フリッカ抑制制御はフリッカ電圧(6Hz)45%以下を実現している。 As the control performance of STATCOM described in Non-Patent Document 1, the constant voltage control of the high voltage distribution system has a response time of 30 ms or less, the constant reactive power control has a response time of 30 ms or less, and the flicker suppression control has a flicker voltage (6 Hz) of 45% or less. Has been realized.

図2に従来のSTATCOMの主回路構成をブロック図で示す。STATCOM101は、二台のインバータ102a,102bと制御ユニット103、連系用変圧器104、電圧検出器105を備えて概略構成されている。 FIG. 2 shows a block diagram of the main circuit configuration of a conventional STATCOM. The STATCOM 101 is roughly configured with two inverters 102a and 102b, a control unit 103, an interconnection transformer 104, and a voltage detector 105.

二台のインバータ102a,102bは互いに並列接続されており、連系用変圧器104を介して高圧配電系統(以下、単に配電系統という)106に接続される。 The two inverters 102a and 102b are connected in parallel to each other and are connected to the high voltage distribution system (hereinafter, simply referred to as a distribution system) 106 via the interconnection transformer 104.

制御ユニット103は電圧検出器105を介して配電系統106に接続されており、電圧検出器105にて配電系統106の(線間)電圧を検出し、配電系統106の電圧が目標電圧となるようにインバータ102a,102bを制御する。 The control unit 103 is connected to the distribution system 106 via the voltage detector 105, and the voltage detector 105 detects the (line-to-line) voltage of the distribution system 106 so that the voltage of the distribution system 106 becomes the target voltage. Controls the inverters 102a and 102b.

インバータ102a,102bはSiC-MOSFETのスイッチングによって、連系用変圧器104を介して無効電力を配電系統106に流し、配電線に無効電力が流れることによって発生する電圧を利用して、配電系統106の電圧を目標電圧に調整する。 The inverters 102a and 102b flow the reactive power to the distribution system 106 via the interconnection transformer 104 by switching the SiC-HPLC, and utilize the voltage generated by the reactive power flowing through the distribution line to use the distribution system 106. Adjust the voltage of to the target voltage.

インバータ102a,102bは無効電力を無段階で調節可能なため、きめ細かい電圧調整が可能となる。 Since the inverters 102a and 102b can adjust the reactive power steplessly, fine voltage adjustment is possible.

然るに、前記インバータ102a,102bは並列構成となっているので、互いに非同期とした場合、インバータ102a,102b間に高周波の循環電流が流れる。 However, since the inverters 102a and 102b are configured in parallel, a high frequency circulating current flows between the inverters 102a and 102b when they are asynchronous with each other.

インバータ102a,102b間に高周波の循環電流が流れることによって、インバータ102a,102bを構成するSiC-MOSFET等のパワーデバイスで生じる導通損失を増大させることとなるので、好ましくない。 The flow of a high-frequency circulating current between the inverters 102a and 102b increases the conduction loss that occurs in a power device such as a SiC- MOSFET that constitutes the inverters 102a and 102b, which is not preferable.

そこで従来は、インバータ102a,102bを構成する制御部(図示せず)の補償器(ゲイン)を理想の値よりも下げることで、循環電流の影響を抑制していた。 Therefore, conventionally, the influence of the circulating current has been suppressed by lowering the compensator (gain) of the control unit (not shown) constituting the inverters 102a and 102b to an ideal value.

しかし、補償器(ゲイン)を理想の値よりも下げることによって、インバータ102a,102bの性能が低下する問題が発生する。 However, lowering the compensator (gain) below the ideal value causes a problem that the performance of the inverters 102a and 102b is deteriorated.

本発明は、前述の問題を解決できるものであり、インバータの制御性能を低下させることなく、循環電流の影響を抑制することのできる無効電力補償装置の構造に関するものである。 The present invention relates to a structure of a static power compensator capable of solving the above-mentioned problems and suppressing the influence of circulating current without deteriorating the control performance of the inverter.

請求項1記載の自励式無効電力補償装置は、変圧器部と電力変換器部からなり、該電力変換器部を構成する並列接続した非同期の二台のインバータ間に、当該インバータの何れかに一端を接続する2つの連系リアクトルと、当該2つの連系リアクトルの間に、高周波の循環電流を抑制する1つの循環電流抑制リアクトルを接続し、当該循環電流抑制リアクトルは、前記2つの連系リアクトルのうち、一方の連系リアクトルの他端に巻始めを接続する一方のコイルと、当該一方のコイルの巻終わりに巻始めを接続し、その巻終わりを他方の前記連系リアクトルの他端に接続した他方のコイルから構成したことに特徴を有する。 The self-excited ineffective power compensating device according to claim 1 comprises a transformer unit and a power converter unit, and is located between two asynchronous inverters connected in parallel constituting the power converter unit. A circulating current suppression reactor that suppresses high-frequency circulating current is connected between two interconnection reactors that connect one end and the two interconnection reactors, and the circulating current suppression reactor is the two interconnections. Of the reactors, one coil that connects the winding start to the other end of one interconnection reactor and the winding start that connects the winding end to the winding end of the one coil, and the winding end is the other end of the other interconnection reactor. It is characterized by being composed of the other coil connected to the inverter.

請求項1記載の発明によれば、インバータ内の制御部の調整が不要となるので、インバータの制御性能を低下させることなく、高周波の循環電流を抑制することが可能となる。また、連系リアクトルを設けることにより、接続する系統の線路インピーダンスの変化の影響を受けにくくなる。 According to the first aspect of the present invention, since it is not necessary to adjust the control unit in the inverter, it is possible to suppress the high frequency circulating current without deteriorating the control performance of the inverter. Further, by providing the interconnection reactor, it is less likely to be affected by the change in the line impedance of the connected system.

本発明に係る自励式無効電力補償装置の主回路を示すブロック図である。It is a block diagram which shows the main circuit of the self-excited electrostatic compensator which concerns on this invention. 従来の自励式無効電力補償装置の主回路を示すブロック図である。It is a block diagram which shows the main circuit of the conventional self-excited electrostatic compensator.

以下、本発明の実施の形態を図1により説明する。図1において、1は配電系統2に接続される自励式無効電力補償装置(STATCOM)であり、3a,3bはSTATCOM1の電力変換器部を構成する二台のインバータである。 Hereinafter, embodiments of the present invention will be described with reference to FIG. In FIG. 1, 1 is a self-excited electrostatic compensator (STATCOM) connected to the distribution system 2, and 3a and 3b are two inverters constituting the power converter unit of STATCOM1.

二台のインバータ3a,3bは互いに並列接続されており、非同期構成となっている。 The two inverters 3a and 3b are connected in parallel to each other and have an asynchronous configuration.

4は配電系統2に接続される電圧検出器であり、5は電圧検出器4を介して配電系統2に接続され、配電系統2の配電線電圧を制御する制御ユニットを示している。 Reference numeral 4 is a voltage detector connected to the distribution system 2, and reference numeral 5 is a control unit connected to the distribution system 2 via the voltage detector 4 to control the distribution line voltage of the distribution system 2.

6a,6bはインバータ3a,3bに一端を接続する2つの連系リアクトルであり、7は連系リアクトル6a,6b間に接続される1つのリアクトル(循環電流抑制リアクトル)を示している。循環電流抑制リアクトル7を構成する各コイル7a,7bは、連系リアクトル6a,6bの他端にそれぞれ一端を接続し、他端を他方のコイル7b,7aの他端に接続することで、互いに直列接続されている。なお、各コイル7a,7bは1つの鉄心に巻回されることで、1つのリアクトル7を構成している。 6a and 6b are two interconnection reactors having one end connected to the inverters 3a and 3b, and 7 indicates one reactor (circulation current suppression reactor) connected between the interconnection reactors 6a and 6b. Each of the coils 7a and 7b constituting the circulating current suppression reactor 7 is connected to the other end of the interconnection reactors 6a and 6b at one end, and the other end is connected to the other end of the other coils 7b and 7a to each other. It is connected in series. The coils 7a and 7b are wound around one iron core to form one reactor 7.

さらに詳述すれば、非同期の二台のインバータ3a,3b間に連系リアクトル6a,6bを介して接続した1つの循環電流抑制リアクトル7は、連系リアクトル6aに巻終わりを接続する一方のコイル7aと、当該一方のコイル7aの巻始めに巻終わりを接続し、その巻始めを連系リアクトル6bに接続した他方のコイル7bから構成されている。 More specifically, one circulating current suppression reactor 7 connected via the interconnection reactors 6a and 6b between two asynchronous inverters 3a and 3b is one coil that connects the winding end to the interconnection reactor 6a. It is composed of 7a and the other coil 7b in which the winding end is connected to the winding start of the one coil 7a and the winding start is connected to the interconnection reactor 6b.

各コイル7a,7b間の接続点には、変圧器部を構成する連系用変圧器8が接続されており、当該連系用変圧器8を介して配電系統2に接続されている。 An interconnection transformer 8 constituting a transformer unit is connected to a connection point between the coils 7a and 7b, and is connected to the distribution system 2 via the interconnection transformer 8.

以上のように構成されたSTATCOM1の動作は図2で説明した従来のSTATCOM101の場合と概ね同一である。つまり、制御ユニット5は電圧検出器4を介して配電系統2の(線間)電圧を検出し、配電系統2の電圧が目標電圧となるようにインバータ3a,3bを制御する。 The operation of the STATCOM1 configured as described above is substantially the same as that of the conventional STATCOM101 described with reference to FIG. That is, the control unit 5 detects the (line-to-line) voltage of the distribution system 2 via the voltage detector 4, and controls the inverters 3a and 3b so that the voltage of the distribution system 2 becomes the target voltage.

インバータ3a,3bはSiC-MOSFETのスイッチングによって、連系リアクトル6a,6b、および、循環電流抑制リアクトル7のコイル7a,7bから連系用変圧器8を介して無効電力を配電系統2に流し、配電線に無効電力が流れることによって発生する電圧を利用して、配電系統2の電圧を目標電圧に調整する。 Inverters 3a and 3b flow inductive power from the interconnection reactors 6a and 6b and the coils 7a and 7b of the circulating current suppression reactor 7 to the distribution system 2 via the interconnection transformer 8 by switching the SiC-PWM. The voltage of the distribution system 2 is adjusted to the target voltage by using the voltage generated by the flow of invalid power in the distribution line.

このとき、連系リアクトル6a,6bは、インバータ3a,3bの制御が配電系統2の図示しない線路インピーダンスLの影響を受けにくくしている。連系リアクトル6a,6bの各々のインダクタンスLa,Lbと配電系統2の線路インピーダンスLとの関係は、La,Lb>Lである場合がインバータ3a,3bの制御への影響が小さい理想形となる。 At this time, the interconnection reactors 6a and 6b make it difficult for the control of the inverters 3a and 3b to be affected by the line impedance L (not shown) of the distribution system 2. The relationship between the inductances La and Lb of the interconnection reactors 6a and 6b and the line impedance L of the distribution system 2 is ideal when La, Lb> L has a small effect on the control of the inverters 3a and 3b. ..

また、並列構成となっている非同期のインバータ3a,3b間には高周波の循環電流が流れるが、連系リアクトル6a,6bのみによってこの循環電流を抑制しようとすると、循環電流が高周波であることから、La,Lb>>Lとする必要があり、コストやサイズを考慮すると現実的でない。 Further, a high-frequency circulating current flows between the asynchronous inverters 3a and 3b having a parallel configuration, but if an attempt is made to suppress this circulating current only by the interconnection reactors 6a and 6b, the circulating current is high-frequency. , La, Lb >> L, which is not realistic considering the cost and size.

そこで、本発明では、インバータ3a,3b間に、循環電流抑制リアクトル7を前述した接続態様によって接続することで、高周波の循環電流を当該リアクトル7によって抑制する。なお、当該リアクトル7は商用周波(ノーマル成分)電流に影響を与えることはない。 Therefore, in the present invention, the circulating current suppression reactor 7 is connected between the inverters 3a and 3b by the connection mode described above, so that the high frequency circulating current is suppressed by the reactor 7. The reactor 7 does not affect the commercial frequency (normal component) current.

このようにして循環電流を抑制することにより、インバータ3a,3bを構成するSiC-MOSFET等のパワーデバイスで生じる導通損失が増大することを確実に防止することができる。 By suppressing the circulating current in this way, it is possible to reliably prevent an increase in conduction loss that occurs in a power device such as a SiC- MOSFET that constitutes the inverters 3a and 3b.

そして、この循環電流の抑制は、従来のように、インバータ3a,3bを構成する制御部内の補償器(ゲイン)を調節する(ゲインを理想値より下げる)ことなく実現できるので、インバータ3a,3bの制御性能の低下を招くことはない。 Since this suppression of the circulating current can be realized without adjusting the compensator (gain) in the control unit constituting the inverters 3a and 3b (gain lower than the ideal value) as in the conventional case, the inverters 3a and 3b are suppressed. It does not cause deterioration of the control performance of the inverter.

この結果、本発明に係るSTATCOM1による配電系統2の電圧制御性能を従来のSTATCOM101と比較して向上させることが可能となる。 As a result, it is possible to improve the voltage control performance of the distribution system 2 by the STATCOM 1 according to the present invention as compared with the conventional STATCOM 101.

具体的には、電圧一定制御の応答時間を20ms以内に、無効電力一定制御の応答時間を20ms以内に、フリッカ抑制制御のフリッカ電圧(6Hz)を30%以下とすることが可能となった。 Specifically, it has become possible to set the response time for constant voltage control within 20 ms, the response time for constant reactive power control within 20 ms, and the flicker voltage (6 Hz) for flicker suppression control to 30% or less.

以上説明したように、本発明の自励式無効電力補償装置(STATCOM)によれば、当該装置を構成する並列接続した二台のインバータ間に流れる高周波の循環電流を、両インバータ間に1つのリアクトルを追加するという簡易な構成によって抑制できるので、従来のように、インバータの制御性能を低下させることなく、循環電流による弊害を確実に防止することが可能となる。 As described above, according to the self-excited electrostatic compensator (STATCOM) of the present invention, a high frequency circulating current flowing between two parallel connected inverters constituting the device is transferred to one reactor between the two inverters. Since it can be suppressed by a simple configuration of adding the above, it is possible to surely prevent the harmful effects due to the circulating current without deteriorating the control performance of the inverter as in the conventional case.

本発明は、並列接続した非同期のインバータを備えた各種機器に利用可能である。 The present invention can be used for various devices including asynchronous inverters connected in parallel.

1,101 自励式無効電力補償装置(STATCOM)
2,106 高圧配電系統
3a,3b,102a,102b インバータ
4,105 電圧検出器
5,103 制御ユニット
6a,6b 連系リアクトル
7 循環電流抑制リアクトル
7a,7b コイル
8,104 連系用変圧器
1,101 Static Representative Compensator (STATCOM)
2,106 High-voltage distribution system 3a, 3b, 102a, 102b Inverter 4,105 Voltage detector 5,103 Control unit 6a, 6b Interconnected reactor 7 Circulating current suppression reactor 7a, 7b Coil 8,104 Interconnected transformer

Claims (1)

変圧器部と電力変換器部からなり、該電力変換器部を構成する並列接続した非同期の二台のインバータ間に、当該インバータの何れかに一端を接続する2つの連系リアクトルと、当該2つの連系リアクトルの間に、高周波の循環電流を抑制する1つの循環電流抑制リアクトルを接続し、当該循環電流抑制リアクトルは、前記2つの連系リアクトルのうち、一方の連系リアクトルの他端に巻始めを接続する一方のコイルと、当該一方のコイルの巻終わりに巻始めを接続し、その巻終わりを他方の前記連系リアクトルの他端に接続した他方のコイルから構成したことを特徴とする自励式無効電力補償装置。 Two interconnection reactors, which consist of a transformer unit and a power converter unit, and one end of which is connected to one of the two inverters connected in parallel to form the power converter unit, and the second reactor. A circulating current suppression reactor that suppresses high-frequency circulating current is connected between the two interconnection reactors, and the circulating current suppression reactor is attached to the other end of one of the two interconnection reactors. It is characterized by being composed of one coil connecting the winding start and the other coil connecting the winding start to the winding end of the one coil and connecting the winding end to the other end of the other interconnection reactor. Self-excited ineffective power compensator.
JP2020196759A 2020-11-27 2020-11-27 Self-excited asynchronous compensation device Pending JP2022085200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020196759A JP2022085200A (en) 2020-11-27 2020-11-27 Self-excited asynchronous compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020196759A JP2022085200A (en) 2020-11-27 2020-11-27 Self-excited asynchronous compensation device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022003098U Continuation JP3239844U (en) 2022-09-16 2022-09-16 Self-commutated reactive power compensator

Publications (1)

Publication Number Publication Date
JP2022085200A true JP2022085200A (en) 2022-06-08

Family

ID=81892581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020196759A Pending JP2022085200A (en) 2020-11-27 2020-11-27 Self-excited asynchronous compensation device

Country Status (1)

Country Link
JP (1) JP2022085200A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328274A (en) * 1986-07-19 1988-02-05 Yaskawa Electric Mfg Co Ltd Large capacity transistor inverter
JP2012217330A (en) * 2011-04-01 2012-11-08 Ls Industrial Systems Co Ltd High voltage inverter system
US20150333612A1 (en) * 2012-11-15 2015-11-19 Abb Technology Ltd Apparatus for filtering harmonics in railway contact lines and method
WO2016203517A1 (en) * 2015-06-15 2016-12-22 東芝三菱電機産業システム株式会社 Power conversion device
JP2017118635A (en) * 2015-12-22 2017-06-29 東芝三菱電機産業システム株式会社 Self-excited reactive power compensator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328274A (en) * 1986-07-19 1988-02-05 Yaskawa Electric Mfg Co Ltd Large capacity transistor inverter
JP2012217330A (en) * 2011-04-01 2012-11-08 Ls Industrial Systems Co Ltd High voltage inverter system
US20150333612A1 (en) * 2012-11-15 2015-11-19 Abb Technology Ltd Apparatus for filtering harmonics in railway contact lines and method
WO2016203517A1 (en) * 2015-06-15 2016-12-22 東芝三菱電機産業システム株式会社 Power conversion device
JP2017118635A (en) * 2015-12-22 2017-06-29 東芝三菱電機産業システム株式会社 Self-excited reactive power compensator

Similar Documents

Publication Publication Date Title
Murali et al. Comparison of FACTS devices for power system stability enhancement
KR19980701884A (en) Dynamic Power and Voltage Regulators for AC Transmission Lines
Mathad et al. Review on comparison of FACTS controllers for power system stability enhancement
JP2001119860A (en) Method and device for adjusting power voltage system
Damor et al. Comparison of different fact devices
Hassantaghi et al. Control and stability analysis of dc microgrid system including wind and solar generation sources and grid‐connected voltage source converter
Lee et al. Hybrid distribution transformer based on an existing distribution transformer and a series-connected power converter
Anju et al. Co-ordination of SMES with STATCOM for mitigating SSR and damping power system oscillations in a series compensated wind power system
CN103474979A (en) Arc suppression coil device of active and full compensation
JP2014073008A (en) Reactive power compensator
CN101010848A (en) Electric power flow control
KR102262515B1 (en) Hybrid power quality compensation device
JP2795183B2 (en) Static var compensator
Zad et al. Improvement of on-load tap changer performance in voltage regulation of MV distribution systems with DG units using D-STATCOM
Strzelecki et al. Distribution transformer with multi-zone voltage regulation for smart grid system application
JP3239844U (en) Self-commutated reactive power compensator
JP2022085200A (en) Self-excited asynchronous compensation device
Wang et al. Comparative evaluation of converter-based compensation schemes for VSC systems to achieve full-range active power transfer in very weak grids
CN112350345A (en) Method for designing impedance correction device of modular multilevel converter and correction device
JP4411460B2 (en) Voltage regulation transformer
Damor et al. Improving power system transient stability by using facts devices
JP2020198684A (en) Self-excited reactive power compensator
Hamdan et al. A proposed supercapacitor integrated with an active power filter for improving the performance of a wind generation system under nonlinear unbalanced loading and faults
Rajpoot et al. Voltage Sag Mitigation in Distribution Line using DSTATCOM
Herrmann et al. Ensuring Short-term Voltage Stability in Extensive Grids With High Power Electronic Penetration by Applying Grid Forming Controls

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712