JP2022085059A - Boiler device - Google Patents

Boiler device Download PDF

Info

Publication number
JP2022085059A
JP2022085059A JP2020196540A JP2020196540A JP2022085059A JP 2022085059 A JP2022085059 A JP 2022085059A JP 2020196540 A JP2020196540 A JP 2020196540A JP 2020196540 A JP2020196540 A JP 2020196540A JP 2022085059 A JP2022085059 A JP 2022085059A
Authority
JP
Japan
Prior art keywords
temperature
hot water
boiler
water
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020196540A
Other languages
Japanese (ja)
Other versions
JP7470021B2 (en
Inventor
清二 有川
Seiji Arikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2020196540A priority Critical patent/JP7470021B2/en
Publication of JP2022085059A publication Critical patent/JP2022085059A/en
Application granted granted Critical
Publication of JP7470021B2 publication Critical patent/JP7470021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

To provide a boiler device capable of rapidly adjusting a hot water delivery temperature to a set temperature even when a hot water supply demand is increased.SOLUTION: One of a plurality of boilers A functions as a master boiler A1, and the others function as slave boilers A2-A4. At first, a hot water delivery temperature is set to be at a set temperature by the master boiler A1, and slave boilers A2-A4 simultaneously start the operation in the case where the hot water delivery temperature does not reach the set temperature even when a heating power command of the master boiler A1 reaches an upper limit, and the hot water delivery temperature is raised at once to the set temperature by the master boiler A1 and the slave boilers A2-A4.SELECTED DRAWING: Figure 3

Description

本発明は、複数のボイラ装置によって出湯温度を設定温度に制御するための技術に関するものである。 The present invention relates to a technique for controlling the hot water temperature to a set temperature by a plurality of boiler devices.

従来から、複数台のボイラを利用して、需要が生じた湯水を設定温度に加熱制御する技術は知られている。複数台のボイラを利用するメリットとしては、1つ1つのボイラの容量を小さくすることができるため、例えば、1台のボイラで全範囲の出湯量が賄える構成とした場合における、低出湯量時の効率低下を防止できる点が考えられる。 Conventionally, there has been known a technique of heating and controlling hot water in demand to a set temperature by using a plurality of boilers. The merit of using multiple boilers is that the capacity of each boiler can be reduced. Therefore, for example, when one boiler is configured to cover the entire range of hot water output, when the amount of hot water is low. It is conceivable that it is possible to prevent a decrease in efficiency.

このような複数台のボイラを利用した技術としては、下記特許文献1記載のボイラ連系システムが例示できる。以下に、当該ボイラ連系システムの構成および動作について簡単に説明する。 As a technique using such a plurality of boilers, the boiler interconnection system described in Patent Document 1 below can be exemplified. The configuration and operation of the boiler interconnection system will be briefly described below.

特開2016-125690号Japanese Unexamined Patent Publication No. 2016-125690

前記ボイラ連系システムは、給水管と出湯管、5つの熱源装置、および、コントローラを備える。給水管には、当該給水管に流れる水の流量を検知可能な流量センサが設置されている。 The boiler interconnection system includes a water supply pipe, a hot water supply pipe, five heat source devices, and a controller. A flow rate sensor capable of detecting the flow rate of water flowing through the water supply pipe is installed in the water supply pipe.

熱源装置はバーナーと、該バーナーの燃焼熱によって熱媒をバーナーによって加熱する第1熱交換器、第1熱交換器に熱媒を循環させるポンプ、第1熱交換器を通った熱媒をバイパスするバイパス管、バイパス管に取り付けられる第2熱交換器、第2熱交換器に接続される出湯管を備えて概略構成されている。 The heat source device bypasses the burner, the first heat exchanger in which the heat medium is heated by the burner by the combustion heat of the burner, the pump that circulates the heat medium in the first heat exchanger, and the heat medium that has passed through the first heat exchanger. It is roughly configured with a bypass pipe, a second heat exchanger attached to the bypass pipe, and a hot water outlet pipe connected to the second heat exchanger.

給湯用の水は、前記給水管から第2熱交換器に流入する。熱媒は、ポンプの作動によって第1熱交換器に流入する。バーナーが燃焼している場合には、第1熱交換器で加熱された熱媒がバイパス管に取り付けられた第2熱交換器に流入する。 The water for hot water supply flows into the second heat exchanger from the water supply pipe. The heat medium flows into the first heat exchanger by the operation of the pump. When the burner is burning, the heat medium heated by the first heat exchanger flows into the second heat exchanger attached to the bypass tube.

第2熱交換器を流れる熱媒は、給水管から供給される水を加熱する。第2熱交換器で加熱された水は、出湯管に流出される。 The heat medium flowing through the second heat exchanger heats the water supplied from the water supply pipe. The water heated by the second heat exchanger is discharged to the hot water outlet pipe.

5つの熱源装置は、いずれも上記構成となっている。通常時は、そのうちの2つが停止し、残りの3つを運転して給湯需要に応える構成である。 Each of the five heat source devices has the above configuration. Normally, two of them are stopped and the remaining three are operated to meet the demand for hot water supply.

前記ボイラ連系システムにおいて、給湯要求が生じた場合、コントローラは流量センサによって、給水管における水の流量(流水量)を検知する。当該流水量が所定値未満であれば、前述したとおり、5つの熱源装置のうち3つを運転して出湯温度を設定温度に制御する。 In the boiler interconnection system, when a hot water supply request occurs, the controller detects the flow rate (flow rate) of water in the water supply pipe by a flow rate sensor. If the amount of flowing water is less than a predetermined value, as described above, three of the five heat source devices are operated to control the hot water temperature to the set temperature.

一方、流量センサによって給水管に流れる流水量が所定値以上となったことを検知すると、停止している2つの熱源装置のポンプを作動させるとともに、バーナーを点火し燃焼させる。 On the other hand, when the flow rate sensor detects that the amount of water flowing through the water supply pipe exceeds a predetermined value, the pumps of the two stopped heat source devices are operated and the burners are ignited and burned.

これによって、熱媒は運転を開始した2つの熱源装置内で第1熱交換器へ流入した際に、バーナーの燃焼熱によって第1熱交換器を介して加熱され、その後、バイパス管に設けられた第2熱交換器へ流入する。 As a result, when the heat medium flows into the first heat exchanger in the two heat source devices that have started operation, it is heated by the combustion heat of the burner through the first heat exchanger, and then is provided in the bypass pipe. It flows into the second heat exchanger.

他方、給水管から供給される水は、第2熱交換器を流通するので、前述の如く、第2熱交換器に流入した加熱された熱媒によって加熱される。第2熱交換器によって加熱された水は出湯管に流出する。 On the other hand, since the water supplied from the water supply pipe flows through the second heat exchanger, it is heated by the heated heat medium flowing into the second heat exchanger as described above. The water heated by the second heat exchanger flows out to the hot water outlet pipe.

このように、前記ボイラ連系システムによれば、所定値以上の給油需要が生じた場合、停止中の熱源装置の運転を開始することによって、5つの熱源装置の加熱能力のすべてを使って湯水を加熱する構成であるので、速やかに湯水を設定温度に加熱することが可能となる。 As described above, according to the boiler interconnection system, when a refueling demand exceeding a predetermined value occurs, hot water is used by starting the operation of the stopped heat source device and using all the heating capacities of the five heat source devices. Since it is configured to heat the hot water, it is possible to quickly heat the hot water to a set temperature.

また、所定値以上の給湯需要が生じた場合、すべての熱源装置を運転することによって、出湯温度を設定温度に速やかに加熱することができるので、例えば、各熱源装置による出湯の加熱能力が限界に到達する都度、運転する熱源装置の台数を増やしていく方法に比べて、出湯温度を設定温度まで加熱するまでの時間を短縮できる利点も考えられる。 In addition, when the demand for hot water supply exceeds a predetermined value, the hot water outlet temperature can be quickly heated to the set temperature by operating all the heat source devices. Therefore, for example, the heating capacity of the hot water outlet by each heat source device is limited. Compared to the method of increasing the number of heat source devices to be operated each time the temperature is reached, there is an advantage that the time required to heat the hot water to the set temperature can be shortened.

前述の如く、前記ボイラ連系システムはその構成要素として流量センサが必須である。然るに、流量センサは比較的高価であるので、これを必須要素として組み込むボイラ装置は、当然ながら、その装置コストが上昇してしまうデメリットがある。 As described above, the boiler interconnection system requires a flow rate sensor as a component thereof. However, since the flow rate sensor is relatively expensive, a boiler device incorporating this as an essential element has a demerit that the cost of the device increases, as a matter of course.

そこで、本発明は、流量センサを構成要素とせず、出湯温度の設定温度までの加熱を短時間で実現できるボイラ装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a boiler device that can realize heating up to a set temperature of hot water in a short time without using a flow rate sensor as a component.

請求項1記載の発明は、缶水を貯水する缶体と、前記缶水を加熱するバーナーと、缶水を前記缶体と缶体外部に連結される熱媒流通管との間で循環させるポンプと、前記熱媒流通管内を流れる缶水温度を測定する缶水温度測定用温度センサと、前記熱媒流通管の途中に取り付けられる熱交換器と、該熱交換器を介して接続される入水管および出湯管と、該出湯管内の水温を測定する出湯配管用温度測定用温度センサと、前記缶水温度測定用温度センサおよび出湯配管用温度測定用温度センサから測定温度情報を検出して、前記バーナーへの火力指令および前記ポンプの駆動/停止を制御するコントローラを備えて構成されるボイラを複数備え、前記出湯管内を流れる出湯を当該複数のボイラによって温度制御する構成であり、当該複数のボイラの1つがマスターボイラとして機能し、その他のボイラがスレーブボイラとして機能し、前記出湯管内を流れる出湯温度が設定温度になるよう、最初に、前記マスターボイラによって出湯温度が設定温度となるよう前記バーナーへの火力指令を制御し、当該マスターボイラの火力指令が上限に達したら、前記スレーブボイラの火力指令を同時に制御して、出湯管を流れる出湯温度を設定温度に早期に到達させることに特徴を有する。 The invention according to claim 1 circulates a can body for storing can water, a burner for heating the can water, and a heat medium flow pipe connected to the can body and the outside of the can body. A pump, a temperature sensor for measuring the can water temperature that measures the temperature of the can water flowing in the heat medium flow tube, and a heat exchanger attached in the middle of the heat medium flow tube are connected via the heat exchanger. Measurement temperature information is detected from the inlet pipe and the outlet pipe, the temperature sensor for temperature measurement for the outlet pipe that measures the water temperature in the outlet pipe, the temperature sensor for measuring the can water temperature, and the temperature sensor for temperature measurement for the outlet pipe. A plurality of boilers including a controller for controlling the heating power command to the burner and the drive / stop of the pump are provided, and the temperature of the hot water flowing in the hot water discharge pipe is controlled by the plurality of boilers. First, the master boiler makes the hot water temperature the set temperature so that one of the boilers functions as the master boiler and the other boiler functions as the slave boiler, and the hot water temperature flowing in the hot water pipe becomes the set temperature. When the thermal power command to the burner is controlled and the thermal power command of the master boiler reaches the upper limit, the thermal power command of the slave boiler is controlled at the same time so that the hot water temperature flowing through the hot water pipe reaches the set temperature at an early stage. It has characteristics.

請求項2記載の発明は、請求項1記載のボイラ装置において、前記出湯管内の出湯温度が設定温度に達した後は、前記スレーブボイラの運転台数を減少させて、出湯温度を設定温度に維持することに特徴を有する。 According to the second aspect of the present invention, in the boiler device according to the first aspect, after the hot water discharge temperature in the hot water discharge pipe reaches the set temperature, the number of operating slave boilers is reduced to maintain the hot water discharge temperature at the set temperature. It is characterized by doing.

請求項1記載の発明によれば、高価な流量センサを使用することなく、出湯温度を設定温度に早期に到達させることが可能となる。 According to the invention of claim 1, it is possible to reach the set temperature at an early stage without using an expensive flow rate sensor.

請求項2記載の発明によれば、請求項1記載の効果に加え、出湯温度が設定温度に到達した後は、スレーブボイラの運転台数を減少させることによって、出湯温度を設定温度に維持することができる。 According to the invention of claim 2, in addition to the effect of claim 1, after the hot water temperature reaches the set temperature, the hot water temperature is maintained at the set temperature by reducing the number of slave boilers in operation. Can be done.

本発明のボイラ装置を構成するマスターボイラまたは各スレーブボイラの構成図である。It is a block diagram of the master boiler or each slave boiler which constitutes the boiler apparatus of this invention. 前記マスターボイラまたは各スレーブボイラの電気系統構成図である。It is an electric system block diagram of the master boiler or each slave boiler. 前記マスターボイラまたは各スレーブボイラの連結構成図である。It is a connection configuration diagram of the master boiler or each slave boiler. 本発明に係るボイラ装置を構成するマスターボイラおよびスレーブボイラの火力指令制御と出湯温度の関係を示すグラフである。It is a graph which shows the relationship between the thermal power command control of the master boiler and the slave boiler which make up the boiler apparatus which concerns on this invention, and the hot water temperature.

以下、本発明の実施の形態を図1乃至図4により説明する。図1は本発明のボイラ装置を構成する各ボイラ(マスターボイラまたはスレーブボイラ)Aの構成を示している。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 4. FIG. 1 shows the configuration of each boiler (master boiler or slave boiler) A constituting the boiler device of the present invention.

図1において、1は熱媒として利用するための水(缶水)を留めておく貯水缶であり、2は貯水缶1内に缶水を補給する補給管である。3は補給管2に設けられ、給水・止水を切り替える補給用電磁弁であり、後述する給水機能によって自動的に開閉制御され、貯水缶1内に一定量の水が常に貯められるよう制御される。 In FIG. 1, 1 is a water storage can for holding water (canned water) to be used as a heat medium, and 2 is a supply pipe for replenishing canned water in the water storage can 1. Reference numeral 3 is a replenishment solenoid valve provided in the replenishment pipe 2 for switching between water supply and water stoppage, which is automatically opened and closed by a water supply function described later, and is controlled so that a certain amount of water is always stored in the water storage can 1. To.

4は貯水缶1内部と連通し、貯水缶1内の缶水を、貯水缶1の外部で循環させる熱媒流通管であり、5は貯水缶1内と熱媒流通管4間で缶水を循環させるための循環用ポンプである。 Reference numeral 4 is a heat medium flow pipe that communicates with the inside of the water storage can 1 and circulates the can water in the water storage can 1 outside the water storage can 1. It is a circulation pump for circulating water.

6は熱媒流通管4に取り付けられた管水温度測定用の温度センサであり、7は熱媒流通管4上に設けられる熱交換器である。 Reference numeral 6 is a temperature sensor for measuring the temperature of the pipe water attached to the heat medium flow tube 4, and reference numeral 7 is a heat exchanger provided on the heat medium flow tube 4.

8は貯水缶1の外部から、貯水缶1内の缶水を加熱するためのバーナーであり、9はバーナー8に燃料を供給するための燃料供給管を示している。10は燃料供給管9に取り付けられ、バーナー8への燃料の供給と停止を切り換える燃料制御用電磁弁を示している。 Reference numeral 8 is a burner for heating the can water in the water storage can 1 from the outside of the water storage can 1, and reference numeral 9 is a fuel supply pipe for supplying fuel to the burner 8. Reference numeral 10 is attached to the fuel supply pipe 9 and indicates a fuel control solenoid valve for switching between supply and stop of fuel to the burner 8.

11はバーナー8に燃焼に必要とされる空気を供給する給気管であり、12はバーナー8への空気の供給と停止を切り換えるための給気用電磁弁を示している。 Reference numeral 11 is an air supply pipe for supplying the air required for combustion to the burner 8, and reference numeral 12 is an air supply solenoid valve for switching between supplying and stopping the air to the burner 8.

13は中途位置に前記熱交換器7を配置した入水配管であり、14は入水配管13に熱交換器7を介して接続される出湯配管を示している。15は出湯配管14に取り付けられ、出湯温度を測定する出湯配管温度測定用の温度センサを示している。 Reference numeral 13 is a water inlet pipe in which the heat exchanger 7 is arranged at an intermediate position, and reference numeral 14 is a hot water outlet pipe connected to the water inlet pipe 13 via the heat exchanger 7. Reference numeral 15 is attached to the hot water outlet pipe 14, and indicates a temperature sensor for measuring the hot water discharge pipe temperature.

16は後述する操作パネルからの指令信号や、温度センサ6,15からの温度情報などを基に、ボイラ装置Aを構成する電磁弁3,10,12や、貯水缶1内の水位を検出する図示しない水位センサ、バーナー8、循環用ポンプ5など、ボイラ装置Aを構成する各種制御機器を制御するためのコントローラを示している。 Reference numeral 16 detects the water levels in the electromagnetic valves 3, 10 and 12 constituting the boiler device A and the water storage can 1 based on the command signal from the operation panel described later and the temperature information from the temperature sensors 6 and 15. A controller for controlling various control devices constituting the boiler device A, such as a water level sensor (not shown), a burner 8, and a circulation pump 5, is shown.

なお、17はコントローラ16に指令信号を出力するリモコンであり、前記操作パネルと同様、ボイラ装置Aを構成する各種制御機器を制御する目的で操作される。 Reference numeral 17 denotes a remote controller that outputs a command signal to the controller 16, which is operated for the purpose of controlling various control devices constituting the boiler device A, similarly to the operation panel.

図2は図1に示すコントローラ16とその周辺機器の電気的な接続状態を説明する電気系統構成図である。図2に示すように、コントローラ16は外部電源18に接続される制御電源部19と、該制御電源部19から制御用電源の供給を受けて動作する制御部20、および、制御部20に指令信号を出力する操作パネル21から概略構成されている。 FIG. 2 is an electrical system configuration diagram illustrating an electrical connection state of the controller 16 shown in FIG. 1 and its peripheral devices. As shown in FIG. 2, the controller 16 commands a control power supply unit 19 connected to an external power supply 18, a control unit 20 that operates by receiving a control power supply from the control power supply unit 19, and a control unit 20. It is roughly configured from an operation panel 21 that outputs a signal.

操作パネル21には、操作者が制御部20に出力する指示情報を入力するための操作部をはじめ、各種表示部や設定部などが備えられている。 The operation panel 21 is provided with various display units, setting units, and the like, as well as an operation unit for inputting instruction information output to the control unit 20 by the operator.

制御部20は前記操作パネル21以外にリモコン17によっても制御指示されるものである。リモコン17には別途、外部電源22が供給されている。なお、リモコン17の構成は、前述した操作パネル21に具備される機能と概ね同様であるが、リモコン17には、図2に示すように、複数台(図2では2台のみ表示)のボイラAが接続されるため、1つのリモコンによって複数台のボイラAの操作が可能となるスイッチ類などが別途具備されている。 The control unit 20 is instructed to be controlled by the remote controller 17 in addition to the operation panel 21. An external power supply 22 is separately supplied to the remote controller 17. The configuration of the remote controller 17 is almost the same as the function provided in the operation panel 21 described above, but as shown in FIG. 2, the remote controller 17 has a plurality of boilers (only two are displayed in FIG. 2). Since A is connected, switches and the like that enable the operation of a plurality of boilers A by one remote controller are separately provided.

操作パネル21あるいはリモコン17から指令信号や各種設定信号、あるいは、センサ接点23に接続される温度センサ6,15等の各種センサ情報が制御部20に入力されると、制御部20は、入力された設定情報に基づき各種設定を実行するとともに、入力された指令信号に従い制御機器24を制御する。制御機器24としては、図1に示す電磁弁3,10,12や、貯水缶1内の水位を検出する図示しない水位センサ、バーナー8、循環用ポンプ5などが挙げられる。 When command signals, various setting signals, or various sensor information such as temperature sensors 6 and 15 connected to the sensor contacts 23 are input to the control unit 20 from the operation panel 21 or the remote control 17, the control unit 20 is input. Various settings are executed based on the set information, and the control device 24 is controlled according to the input command signal. Examples of the control device 24 include solenoid valves 3, 10 and 12 shown in FIG. 1, a water level sensor (not shown) for detecting the water level in the water storage can 1, a burner 8, a circulation pump 5, and the like.

図3は、本発明のボイラ装置にかかる各ボイラ(マスターボイラ、スレーブボイラ)Aが物理的にどのように接続されているかを図示したものである。図3に示すように、本発明のボイラ装置は、図1に示す構成のボイラAが複数台(図3では4台)直列に接続されている。 FIG. 3 illustrates how each boiler (master boiler, slave boiler) A related to the boiler device of the present invention is physically connected. As shown in FIG. 3, in the boiler device of the present invention, a plurality of boilers A having the configuration shown in FIG. 1 (four in FIG. 3) are connected in series.

つまり、図3に示すように、図1に示す出湯管14に入水管13を接続する図1に示すボイラAと同構成のボイラ装置Aが配置され、また、このように接続されたボイラ装置Aの出湯管14に入水管13を接続した同構成のボイラ装置Aがさらに接続されている。 That is, as shown in FIG. 3, a boiler device A having the same configuration as the boiler A shown in FIG. 1 connecting the water inlet pipe 13 to the hot water outlet pipe 14 shown in FIG. 1 is arranged, and the boiler device A connected in this way is also arranged. A boiler device A having the same configuration in which the water inlet pipe 13 is connected to the hot water outlet pipe 14 of A is further connected.

このように、複数台のボイラAを直列に接続することによって、複数台のボイラAによって出湯温度が設定温度となるように制御されるのである。また、本発明では、複数台のボイラAのうち一台をマスターボイラとし、その他をスレーブボイラとして機能させる。 In this way, by connecting a plurality of boilers A in series, the hot water outlet temperature is controlled to be a set temperature by the plurality of boilers A. Further, in the present invention, one of the plurality of boilers A is used as a master boiler, and the other is used as a slave boiler.

どのボイラをマスターボイラまたはスレーブボイラとするかは様々な決定方法を取り得るが、例えば、最初に電源を入れたボイラをマスターボイラとして機能させても良い。このようにして一台のボイラがマスターボイラとして設定された場合、その他のボイラは自動的にスレーブボイラとして設定され機能する。 Various methods can be used to determine which boiler is to be the master boiler or the slave boiler. For example, the boiler that is first turned on may be made to function as the master boiler. When one boiler is set as the master boiler in this way, the other boilers are automatically set and function as slave boilers.

つづいて、本発明のボイラ装置の動作について説明する。まず、図3に示す各ボイラAは、給湯需要に備えて、電源が入れられた段階で貯水缶1内に一定量の缶水を貯める。このとき、前述したとおり、例えば、最初に電源が入れられたボイラAがマスターボイラA1として機能し、その他がスレーブボイラA2~A4として機能する。 Subsequently, the operation of the boiler device of the present invention will be described. First, each boiler A shown in FIG. 3 stores a certain amount of canned water in the water storage can 1 when the power is turned on in preparation for the demand for hot water supply. At this time, as described above, for example, the boiler A that is first turned on functions as the master boiler A1, and the others function as the slave boilers A2 to A4.

各ボイラA1~A4の貯水缶1内の水位は、図示しない水位センサによって監視され、補給用電磁弁3の開閉を自動的に切り替える。缶水の水位レベルが基準水位より高水位となったときは補給用電磁弁3を閉じて止水し、低位置になったときに補給用電磁弁3を開いて貯水缶1内へ給水する(給水機能)。なお、当該給水機能に、水位の低位置を一定時間以上連続で検出した場合、給水弁異常と判定する機能を備えても良い。 The water level in the water storage can 1 of each boiler A1 to A4 is monitored by a water level sensor (not shown), and the opening and closing of the replenishment solenoid valve 3 is automatically switched. When the water level of the can water becomes higher than the standard water level, the replenishment solenoid valve 3 is closed to stop the water, and when the water level becomes low, the replenishment solenoid valve 3 is opened to supply water into the water storage can 1. (Water supply function). The water supply function may be provided with a function of determining that the water supply valve is abnormal when a low position of the water level is continuously detected for a certain period of time or longer.

また、各ボイラA1~A4の貯水缶1内の缶水は、給湯需要に備えて、あらかじめ所定温度に温められる。具体的には、燃料制御用電磁弁10が開放することにより、燃料供給管9を通して燃料をバーナー8へ送るとともに、給気用電磁弁12を開くことにより燃焼用の空気をバーナー8へ送る。 Further, the canned water in the water storage cans 1 of the boilers A1 to A4 is preheated to a predetermined temperature in preparation for the demand for hot water supply. Specifically, when the fuel control solenoid valve 10 is opened, fuel is sent to the burner 8 through the fuel supply pipe 9, and by opening the air supply solenoid valve 12, combustion air is sent to the burner 8.

その後、バーナー8を点火制御することによって、バーナー8の燃焼によって貯水缶1内の缶水を所定の温度まで温めておく。缶水温度が所定温度に達したか否かは、循環用ポンプ5を駆動させて、缶水は熱媒流通管4を通して循環させ、循環している缶水温度を、熱媒流通管4に取り付けた缶水温度測定用温度センサ6に検出し、検出結果をコントローラ16の制御部20へ送信することによって、制御部20によって温度制御される。 After that, by controlling the ignition of the burner 8, the can water in the water storage can 1 is warmed to a predetermined temperature by the combustion of the burner 8. Whether or not the can water temperature has reached a predetermined temperature is determined by driving the circulation pump 5 to circulate the can water through the heat medium flow tube 4, and transfer the circulating can water temperature to the heat medium flow tube 4. The temperature is controlled by the control unit 20 by detecting the temperature on the attached can water temperature measurement temperature sensor 6 and transmitting the detection result to the control unit 20 of the controller 16.

以上の事前準備を給湯需要が生じる前段階で実施しておき、いざ給湯需要が生じた場合は、まず、マスターボイラA1一台で出湯温度を設定温度まで加熱する。出湯温度の制御としては、出湯温度制御機能と缶水温度制御機能の2つが存在する。 The above preparations are carried out before the hot water supply demand is generated, and when the hot water supply demand is generated, first, the hot water outlet temperature is heated to the set temperature by one master boiler A1. There are two functions for controlling the hot water temperature, that is, the hot water temperature control function and the can water temperature control function.

出湯温度制御機能は、循環ポンプ5の流量を制御し、出湯温度が設定温度になるように調整するものである。出湯温度は、出湯配管温度測定用温度センサ15によって検出された測定温度情報をコントローラ16の制御部20に出力する。当該情報を受信した制御部20は、さらに循環ポンプ5の流量を制御して出湯温度が設定温度に近づくよう制御する。以上の動作を繰り返すことによって、出湯温度を設定温度に調整する。 The hot water temperature control function controls the flow rate of the circulation pump 5 and adjusts the hot water temperature to a set temperature. The hot water outlet temperature outputs the measured temperature information detected by the hot water outlet pipe temperature measurement temperature sensor 15 to the control unit 20 of the controller 16. Upon receiving the information, the control unit 20 further controls the flow rate of the circulation pump 5 so that the hot water temperature approaches the set temperature. By repeating the above operation, the hot water temperature is adjusted to the set temperature.

缶水温度制御機能は、バーナー8の火力を制御し、熱媒流通管4内を循環する缶水温度が設定温度より一定温度高い温度となるように調整するものである。熱媒流通管4内を循環する缶水温度は缶水温度測定用温度センサ6によって検出された測定温度情報をコントローラ16の制御部20に出力する。当該情報を受信した制御部20は、さらにバーナー8の火力を制御して出湯温度が設定温度に近づくよう制御する。以上の動作を繰り返すことによって、缶水温度を設定温度に調整する。 The can water temperature control function controls the thermal power of the burner 8 and adjusts the temperature of the can water circulating in the heat medium flow tube 4 to be a constant temperature higher than the set temperature. The can water temperature circulating in the heat medium flow tube 4 outputs the measurement temperature information detected by the can water temperature measurement temperature sensor 6 to the control unit 20 of the controller 16. Upon receiving the information, the control unit 20 further controls the thermal power of the burner 8 to control the hot water temperature to approach the set temperature. By repeating the above operation, the can water temperature is adjusted to the set temperature.

以上の出湯温度制御を実行することによって、図1に示す入水管13内の入水は熱交換器7によって設定温度まで加熱され出湯管14から出湯される。このようにして設定温度に加熱された出湯は利用者の給湯需要に応える。 By executing the above-mentioned hot water temperature control, the water in the water inlet pipe 13 shown in FIG. 1 is heated to a set temperature by the heat exchanger 7 and is discharged from the hot water outlet pipe 14. The hot water that is heated to the set temperature in this way meets the user's demand for hot water supply.

次に、以上の動作を実行している状況において給湯需要が増大した場合の動作について説明する。給湯需要が増大した場合、本発明のボイラ装置は、まず、マスターボイラA1単独で給湯需要に応えられる設定温度まで出湯温度を加熱する。 Next, the operation when the demand for hot water supply increases in the situation where the above operation is executed will be described. When the hot water supply demand increases, the boiler device of the present invention first heats the hot water outlet temperature to a set temperature that can meet the hot water supply demand by the master boiler A1 alone.

マスターボイラA1単独で設定温度まで出湯温度を加熱できた場合は、スレーブボイラA2~A4は運転しない。然るに、マスターボイラA1の火力指令が上限に達っしてもなお出湯温度が設定温度に満たない場合、本発明では、図4に示すように、停止状態にあったスレーブボイラA2~A4を同時に運転することで、出湯温度を設定温度まで一気に加熱する。 If the master boiler A1 alone can heat the hot water temperature to the set temperature, the slave boilers A2 to A4 will not operate. However, if the hot water temperature does not reach the set temperature even when the thermal power command of the master boiler A1 reaches the upper limit, in the present invention, as shown in FIG. 4, the slave boilers A2 to A4 that have been stopped are simultaneously used. By operating, the hot water temperature is heated to the set temperature at once.

そして、出湯温度が設定温度に達した後は、スレーブボイラA2~A4の運転台数を制御して、スレーブボイラA2~A4の運転台数を減らし、出湯温度が設定温度に維持されるように制御する。 Then, after the hot water outlet temperature reaches the set temperature, the number of operating units of the slave boilers A2 to A4 is controlled to reduce the number of operating units of the slave boilers A2 to A4, and the hot water outlet temperature is controlled to be maintained at the set temperature. ..

このとき、各ボイラA1~A4の出湯温度制御は、前述した出湯温度制御機能および缶水温度制御機能によって実行される。当該機能を利用した出湯温度制御は、従来技術とは異なり、流量センサを必要とすることなく、給湯需要の増加に対応して出湯温度を設定温度まで加熱することができるので、装置コストを低減できる。 At this time, the hot water temperature control of each of the boilers A1 to A4 is executed by the hot water temperature control function and the can water temperature control function described above. Unlike conventional techniques, hot water temperature control using this function can heat the hot water temperature to a set temperature in response to an increase in hot water supply demand without the need for a flow rate sensor, reducing equipment costs. can.

また、本発明においても、従来技術同様、マスターボイラA1の火力指令が上限に達した後、スレーブボイラA2~A4を順番に運転開始して、運転状態のボイラ(熱源装置)の台数を増加していく方法と比較して、出湯温度を極めて短時間で設定温度まで加熱することができる。 Further, also in the present invention, as in the prior art, after the thermal power command of the master boiler A1 reaches the upper limit, the slave boilers A2 to A4 are sequentially started to operate, and the number of boilers (heat source devices) in the operating state is increased. It is possible to heat the hot water temperature to the set temperature in an extremely short time as compared with the method of heating.

なお、上記説明では、スレーブボイラの台数が3台の場合を例示して説明したが、本発明の範囲はこの台数に限定するものでないことは当然である。 In the above description, the case where the number of slave boilers is three is exemplified, but it is natural that the scope of the present invention is not limited to this number.

以上説明したように、本発明のボイラ装置によれば、高価な流量センサを用いることなく、給湯需要が増大した場合においても、缶水用循環ポンプの流量を制御したり、バーナーの火力を制御したりすることによって、出湯温度を設定温度に調整することができ、さらに、設定温度までの調整時間を極めて短時間で行うことができる。 As described above, according to the boiler device of the present invention, the flow rate of the circulation pump for canned water can be controlled and the thermal power of the burner can be controlled even when the demand for hot water supply increases without using an expensive flow sensor. By doing so, the hot water temperature can be adjusted to the set temperature, and the adjustment time to the set temperature can be performed in an extremely short time.

複数台のボイラから構成されるボイラ装置に適用可能である。 It can be applied to a boiler device consisting of multiple boilers.

1 貯水缶
2 補給管
3 補給用電磁弁
4 熱媒流通管
5 循環用ポンプ
6 管水温度測定用温度センサ
7 熱交換器
8 バーナー
9 燃料供給管
10 燃料制御用電磁弁
11 給気管
12 給気用電磁弁
13 入水管
14 出湯管
15 出湯配管温度測定用の温度センサ
16 コントローラ
17 リモコン
18,22 外部電源
19 制御電源部
20 制御部
21 操作パネル
23 センサ接点
24 制御機器
A ボイラ(マスターボイラA1,スレーブボイラA2)
1 Water storage can 2 Replenishment pipe 3 Replenishment electromagnetic valve 4 Heat medium flow pipe 5 Circulation pump 6 Pipe Water temperature measurement temperature sensor 7 Heat exchanger 8 Burner 9 Fuel supply pipe 10 Fuel control electromagnetic valve 11 Air supply pipe 12 Air supply Electromagnetic valve 13 Water inlet pipe 14 Hot water pipe 15 Hot water pipe Temperature sensor for temperature measurement 16 Controller 17 Remote control 18, 22 External power supply 19 Control power supply unit 20 Control unit 21 Operation panel 23 Sensor contact 24 Control equipment A Boiler (master boiler A1, Slave boiler A2)

Claims (2)

缶水を貯水する缶体と、前記缶水を加熱するバーナーと、缶水を前記缶体と缶体外部に連結される熱媒流通管との間で循環させるポンプと、前記熱媒流通管内を流れる缶水温度を測定する缶水温度測定用温度センサと、前記熱媒流通管の途中に取り付けられる熱交換器と、該熱交換器を介して接続される入水管および出湯管と、該出湯管内の水温を測定する出湯配管用温度測定用温度センサと、前記缶水温度測定用温度センサおよび出湯配管用温度測定用温度センサから測定温度情報を検出して、前記バーナーへの火力指令および前記ポンプの駆動/停止を制御するコントローラを備えて構成されるボイラを複数備え、前記出湯管内を流れる出湯を当該複数のボイラによって温度制御する構成であり、当該複数のボイラの1つがマスタボイラとして機能し、その他のボイラがスレーブボイラとして機能し、前記出湯管内を流れる出湯温度が設定温度になるよう、最初に、前記マスタボイラによって出湯温度が設定温度となるよう前記バーナーへの火力指令を制御し、当該マスタボイラの火力指令が上限に達したら、前記スレーブボイラの火力指令を同時に制御して、出湯管を流れる出湯温度を設定温度に早期に到達させることを特徴とするボイラ装置。 A can body that stores can water, a burner that heats the can water, a pump that circulates the can water between the can body and a heat medium flow pipe connected to the outside of the can body, and a inside of the heat medium flow pipe. A temperature sensor for measuring the can water temperature that measures the temperature of the can water flowing through the boiler, a heat exchanger attached in the middle of the heat medium flow pipe, a water inlet pipe and a hot water outlet pipe connected via the heat exchanger, and the like. The measured temperature information is detected from the temperature sensor for measuring the temperature of the hot water pipe that measures the water temperature in the hot water pipe, the temperature sensor for measuring the can water temperature, and the temperature sensor for measuring the temperature of the hot water pipe, and the thermal power command to the burner is given. It is configured to have a plurality of boilers provided with a controller for controlling the drive / stop of the pump, and the temperature of the hot water flowing in the hot water discharge pipe is controlled by the plurality of boilers, and one of the plurality of boilers functions as a master boiler. Then, the other boiler functions as a slave boiler, and the master boiler first controls the thermal power command to the burner so that the hot water temperature becomes the set temperature so that the hot water temperature flowing in the hot water pipe becomes the set temperature. A boiler device characterized in that when the thermal power command of the master boiler reaches the upper limit, the thermal power command of the slave boiler is simultaneously controlled so that the hot water temperature flowing through the hot water pipe reaches the set temperature at an early stage. 前記出湯管内の出湯温度が設定温度に達した後は、前記スレーブボイラを運転台数を減少させて、出湯温度を設定温度に維持することを特徴とする請求項1記載のボイラ装置。 The boiler device according to claim 1, wherein after the hot water discharge temperature in the hot water discharge pipe reaches a set temperature, the number of operating slave boilers is reduced to maintain the hot water discharge temperature at the set temperature.
JP2020196540A 2020-11-27 2020-11-27 Boiler Equipment Active JP7470021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020196540A JP7470021B2 (en) 2020-11-27 2020-11-27 Boiler Equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020196540A JP7470021B2 (en) 2020-11-27 2020-11-27 Boiler Equipment

Publications (2)

Publication Number Publication Date
JP2022085059A true JP2022085059A (en) 2022-06-08
JP7470021B2 JP7470021B2 (en) 2024-04-17

Family

ID=81892287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020196540A Active JP7470021B2 (en) 2020-11-27 2020-11-27 Boiler Equipment

Country Status (1)

Country Link
JP (1) JP7470021B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4186363B2 (en) 1999-12-27 2008-11-26 株式会社ノーリツ Hot water system
JP4076488B2 (en) 2003-09-30 2008-04-16 株式会社ノーリツ Connected water heater
JP4444865B2 (en) 2005-03-24 2010-03-31 昭和鉄工株式会社 Heating device and atmospheric pressure boiler having the heating device
JP5796772B2 (en) 2011-06-29 2015-10-21 株式会社ノーリツ Hot water system

Also Published As

Publication number Publication date
JP7470021B2 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
CN112189118A (en) Boiler for both heating and hot water and control method thereof
KR101514896B1 (en) Heat pump heating system
JP3774615B2 (en) Test run control method for hot water heater
JP2022085059A (en) Boiler device
JP2001235144A (en) Combustion device
JP3773752B2 (en) Test run control method for hot water heater
KR100448521B1 (en) Apparatus for controlling hot water of boiler
JP2021032487A (en) Hot water supply device
JP2022107870A (en) Boiler device
JP2022091171A (en) Boiler device
KR20160132695A (en) Hot Water Heating Boiler with Improved Heat Flux
JP4994291B2 (en) Heat source machine
KR100243899B1 (en) Combustion control method of gas furnace
JP2008082633A (en) Hot water supply device and plate type heat exchanger
JP3822721B2 (en) One can two water bath hot water heater
KR100536942B1 (en) Hot Water Supply Adjustment Apparatus of Boiler
JP3848728B2 (en) One can two water bath hot water heater
JP4641277B2 (en) Linked hot water system
JP2022107871A (en) boiler equipment
JP3754537B2 (en) One can two water heater
JP2021021514A (en) Water heater
KR930010392B1 (en) Flow control method of hot-water supply apparatus
JP3935759B2 (en) Heat supply system
CN115493139A (en) Gas combustion device
JP3465586B2 (en) Hot water heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230928

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240405