JP2022084966A - Pharmaceutical composition for suppressing post-resuscitation neuropathy - Google Patents

Pharmaceutical composition for suppressing post-resuscitation neuropathy Download PDF

Info

Publication number
JP2022084966A
JP2022084966A JP2019071869A JP2019071869A JP2022084966A JP 2022084966 A JP2022084966 A JP 2022084966A JP 2019071869 A JP2019071869 A JP 2019071869A JP 2019071869 A JP2019071869 A JP 2019071869A JP 2022084966 A JP2022084966 A JP 2022084966A
Authority
JP
Japan
Prior art keywords
resuscitation
pharmaceutical composition
carbon dioxide
neuropathy
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019071869A
Other languages
Japanese (ja)
Inventor
康太郎 木田
Kotaro Kida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2019071869A priority Critical patent/JP2022084966A/en
Priority to PCT/JP2020/011569 priority patent/WO2020203235A1/en
Publication of JP2022084966A publication Critical patent/JP2022084966A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

To provide a pharmaceutical composition for suppressing post-resuscitation neuropathy and/or improving the post-resuscitation survival rate.SOLUTION: Provided is a gaseous pharmaceutical composition that contains carbon dioxide gas and that is for suppressing post-resuscitation neuropathy and/or improving the post-resuscitation survival rate.SELECTED DRAWING: None

Description

本発明は、蘇生後の神経障害を抑制する、及び/又は蘇生後の生存率を改善するための医薬組成物に関する。 The present invention relates to pharmaceutical compositions for suppressing post-resuscitation neuropathy and / or improving post-resuscitation survival.

突然の心停止は世界的に主要な死因の一つである。心停止後の蘇生技術については、近年自動体外式除細動器(Automated External Defibrillator;AED)等の開発が進歩著しいにもかかわらず、蘇生後の生存率は依然として低く、改善されるに至っていない。また、蘇生後に生存することができたとしても、全身性の虚血再灌流により引き起こされると考えられる重篤な神経障害、臓器障害等の後遺症が残ることが多い。 Sudden cardiac arrest is one of the leading causes of death worldwide. Regarding resuscitation technology after cardiac arrest, despite remarkable progress in the development of automated external defibrillators (AEDs) in recent years, the survival rate after resuscitation is still low and has not been improved. .. In addition, even if it is possible to survive after resuscitation, sequelae such as serious neuropathy and organ damage that are considered to be caused by systemic ischemia-reperfusion often remain.

特許文献1には、水素ガスを含む医薬組成物が、蘇生後における脳機能等の予後を改善できることが開示されている。 Patent Document 1 discloses that a pharmaceutical composition containing hydrogen gas can improve the prognosis such as brain function after resuscitation.

特許第5981017号公報Japanese Patent No. 5981017

特許文献1に記載の医薬組成物は爆発性を有する水素ガスを含んでおり、使用時に細心の注意が要求される。そのため、より安全かつ簡便に使用できる、蘇生後の神経保護効果を有する治療法の開発が強く望まれている。 The pharmaceutical composition described in Patent Document 1 contains explosive hydrogen gas, and meticulous care is required when using it. Therefore, there is a strong demand for the development of a therapeutic method having a neuroprotective effect after resuscitation that can be used more safely and easily.

本発明の課題は、安全かつ簡便に使用することのできる、蘇生後の神経障害を抑制する、及び/又は蘇生後の生存率を改善するための医薬組成物を提供することにある。 An object of the present invention is to provide a pharmaceutical composition that can be safely and conveniently used, suppresses post-resuscitation neuropathy, and / or improves post-resuscitation survival.

本発明者らは、マウス心停止モデルを用いた試験において、蘇生後の脳血流が血圧の回復後においても改善しないとの知見に着目し、蘇生後のマウスに二酸化炭素ガスを吸入させることにより、血圧の上昇を伴うことなく脳血流を改善できること、そして、蘇生後の神経障害の抑制や蘇生後の生存率を顕著に改善できることを見出した。 We focused on the finding that cerebral blood flow after resuscitation did not improve even after recovery of blood pressure in a test using a mouse cardiac arrest model, and let the resuscitated mice inhale carbon dioxide gas. It was found that cerebral blood flow can be improved without an increase in blood pressure, and that post-resuscitation neuropathy can be suppressed and post-resuscitation survival rate can be significantly improved.

すなわち、本発明は以下の[1]~[8]を提供する。
[1]二酸化炭素ガスを含有する、蘇生後の神経障害を抑制するための気体状医薬組成物。
[2]二酸化炭素ガスを含有する、蘇生後の生存率を改善するための気体状医薬組成物。
[3]前記医薬組成物中における二酸化炭素濃度が3%以上である、[1]又は[2]に記載の医薬組成物。
[4]前記医薬組成物の投与が蘇生後に開始される、[1]~[3]のいずれかに記載の医薬組成物。
[5]二酸化炭素ガスを、それを必要とする対象に投与することを含む、蘇生後の神経障害を抑制する方法。
[6]二酸化炭素ガスを、それを必要とする対象に投与することを含む、蘇生後の生存率を改善する方法。
[7]蘇生後の神経障害を抑制するための医薬組成物を製造するための、二酸化炭素ガスの使用。
[8]蘇生後の生存率を改善するための医薬組成物を製造するための、二酸化炭素ガスの使用。
That is, the present invention provides the following [1] to [8].
[1] A gaseous pharmaceutical composition containing carbon dioxide gas for suppressing post-resuscitation neuropathy.
[2] A gaseous pharmaceutical composition containing carbon dioxide gas for improving the survival rate after resuscitation.
[3] The pharmaceutical composition according to [1] or [2], wherein the carbon dioxide concentration in the pharmaceutical composition is 3% or more.
[4] The pharmaceutical composition according to any one of [1] to [3], wherein administration of the pharmaceutical composition is started after resuscitation.
[5] A method for suppressing post-resuscitation neuropathy, which comprises administering carbon dioxide gas to a subject in need thereof.
[6] A method for improving post-resuscitation survival, comprising administering carbon dioxide gas to a subject in need thereof.
[7] Use of carbon dioxide gas to produce a pharmaceutical composition for suppressing post-resuscitation neuropathy.
[8] Use of carbon dioxide gas to produce a pharmaceutical composition for improving survival after resuscitation.

本発明によれば、蘇生後の神経障害を抑制する、及び/又は蘇生後の生存率を改善するための医薬組成物を提供することができる。 According to the present invention, it is possible to provide a pharmaceutical composition for suppressing post-resuscitation neuropathy and / or improving post-resuscitation survival rate.

心停止モデルマウスにおいて、蘇生後の神経学的スコアを示すグラフである。(a)は自己心拍の再開から24時間経過後のマウスにおける神経学的スコアを示し、(b)は自己心拍の再開から48時間経過後のマウスにおける神経学的スコアを示す。It is a graph which shows the neurological score after resuscitation in the cardiac arrest model mouse. (A) shows the neurological score in the mouse 24 hours after the resumption of the self-heartbeat, and (b) shows the neurological score in the mouse 48 hours after the resumption of the self-heartbeat. 心停止モデルマウスにおいて、蘇生後の生存率を示すグラフである。It is a graph which shows the survival rate after resuscitation in a cardiac arrest model mouse.

以下に、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.

本明細書において、濃度の単位「%」は「v/v%」を意味する。 In the present specification, the unit of concentration "%" means "v / v%".

本実施形態に係る医薬組成物は、二酸化炭素ガスを有効成分として含有する気体状の医薬組成物であって、蘇生後の神経障害を抑制するための医薬組成物である。 The pharmaceutical composition according to the present embodiment is a gaseous pharmaceutical composition containing carbon dioxide gas as an active ingredient, and is a pharmaceutical composition for suppressing neuropathy after resuscitation.

本明細書において「蘇生後の神経障害」とは、心停止した後に蘇生処置を施すこと等によって蘇生(自己心拍再開)した後の患者において惹起される、脳障害、脊髄障害等の神経障害を意味する。脳障害としては、例えば、意識障害、構音障害、不完全麻痺(片麻痺)、てんかん、痙攣、失調、嚥下障害、記銘力障害、精神障害、痴呆、認識力の低下、“Locke-in”症候群(閉じ込め症候群)、脳死などが挙げられる。 In the present specification, "neuropathy after resuscitation" refers to neuropathy such as brain disorder and spinal cord disorder caused in a patient after resuscitation (resumption of self-heartbeat) by performing resuscitation treatment after cardiac arrest. means. Brain disorders include, for example, consciousness disorder, articulation disorder, incomplete paralysis (hemiplegia), epilepsy, spasm, ataxia, swallowing disorder, memorization disorder, mental disorder, dementia, cognitive decline, "Locked-in". Examples include syndrome (locked-in syndrome) and brain death.

本実施形態に係る医薬組成物中における二酸化炭素濃度は、蘇生後の神経障害を抑制する効果を発揮できる濃度を下限値として設定することができる。二酸化炭素濃度の下限値としては、3~20%の任意の濃度、例えば、3%、5%、7%、10%、15%、又は20%とすることができる。また、本実施形態に係る医薬組成物中における二酸化炭素濃度は、二酸化炭素による副作用が発現しない濃度を上限値として設定することができる。二酸化炭素濃度の上限値としては、例えば、20%、15%、又は10%とすることができる。したがって、本実施形態に係る医薬組成物中における二酸化炭素濃度は、上述の下限値及び上限値を組み合わせた範囲内で設定することができる。 The carbon dioxide concentration in the pharmaceutical composition according to the present embodiment can be set with a concentration at which the effect of suppressing neuropathy after resuscitation can be exerted as a lower limit value. The lower limit of the carbon dioxide concentration can be any concentration of 3 to 20%, for example, 3%, 5%, 7%, 10%, 15%, or 20%. Further, the carbon dioxide concentration in the pharmaceutical composition according to the present embodiment can be set with a concentration at which side effects due to carbon dioxide do not occur as an upper limit value. The upper limit of the carbon dioxide concentration can be, for example, 20%, 15%, or 10%. Therefore, the carbon dioxide concentration in the pharmaceutical composition according to the present embodiment can be set within a range in which the above-mentioned lower limit value and upper limit value are combined.

本実施形態に係る医薬組成物は、酸素ガス、不活性ガス(例えば、窒素ガス、アルゴンガス、ネオンガス、ヘリウムガス)、水素ガス、一酸化窒素、空気等の二酸化炭素ガス以外のガスを更に含有してもよい。本実施形態に係る医薬組成物に含まれる二酸化炭素ガス以外のガスは1種であってもよく、複数種であってもよい。また、二酸化炭素ガス以外のガスは、あらかじめ二酸化炭素ガスと混合された混合ガスの形態であってもよく、投与直前又は投与時に二酸化炭素ガスと混合されてもよい。 The pharmaceutical composition according to the present embodiment further contains a gas other than carbon dioxide gas such as oxygen gas, inert gas (for example, nitrogen gas, argon gas, neon gas, helium gas), hydrogen gas, nitrogen monoxide, and air. You may. The gas other than the carbon dioxide gas contained in the pharmaceutical composition according to the present embodiment may be one kind or a plurality of kinds. Further, the gas other than the carbon dioxide gas may be in the form of a mixed gas previously mixed with the carbon dioxide gas, or may be mixed with the carbon dioxide gas immediately before or at the time of administration.

一実施形態では、本実施形態に係る医薬組成物は、二酸化炭素ガス及び酸素ガスを含有する。この場合、医薬組成物中における酸素濃度は、例えば、21%~97%、21%~90%、21%~85%、又は21%~80%とすることができる。 In one embodiment, the pharmaceutical composition according to this embodiment contains carbon dioxide gas and oxygen gas. In this case, the oxygen concentration in the pharmaceutical composition can be, for example, 21% to 97%, 21% to 90%, 21% to 85%, or 21% to 80%.

本発明の一実施形態において、本実施形態に係る医薬組成物は、対象にそのまま投与し得る形態で提供される。具体的には、本実施形態に係る医薬組成物は、二酸化炭素ガスそのものの形態、又は二酸化炭素及び酸素ガス等の二酸化炭素ガス以外のガスが混合された混合ガスの形態で提供される。 In one embodiment of the present invention, the pharmaceutical composition according to the present embodiment is provided in a form that can be directly administered to a subject. Specifically, the pharmaceutical composition according to the present embodiment is provided in the form of carbon dioxide gas itself or in the form of a mixed gas in which a gas other than carbon dioxide gas such as carbon dioxide and oxygen gas is mixed.

別の態様において、本実施形態に係る医薬組成物は、対象への投与直前又は投与時に調製される形態で提供される。具体的には、本実施形態に係る医薬組成物は、二酸化炭素ガスを収容した容器、及び必要に応じて酸素ガス等の二酸化炭素ガス以外のガスを収容した容器が配管を介して吸入手段(吸入マスク等)に接続され、二酸化炭素ガス、及び必要に応じて酸素ガス等の二酸化炭素以外のガスを適切な濃度となるように流量を調節して吸入手段に送気することで提供される。ガスを収容する容器としては、例えばガスボンベが挙げられる。また、ガスは圧縮ガスの形態で容器に収容されてもよく、液化ガスの形態で容器に収容されてもよい。 In another embodiment, the pharmaceutical composition according to this embodiment is provided in a form prepared immediately before or at the time of administration to a subject. Specifically, the pharmaceutical composition according to the present embodiment has a container containing carbon dioxide gas and, if necessary, a container containing a gas other than carbon dioxide gas such as oxygen gas as an inhalation means via a pipe. It is provided by being connected to an inhalation mask, etc.) and supplying carbon dioxide gas and, if necessary, a gas other than carbon dioxide such as oxygen gas to the inhalation means by adjusting the flow rate so as to have an appropriate concentration. .. Examples of the container for accommodating gas include a gas cylinder. Further, the gas may be contained in a container in the form of a compressed gas, or may be contained in a container in the form of a liquefied gas.

別の態様において、本実施形態に係る医薬組成物は、対象が存在する密閉された空間に二酸化炭素ガスを供給することによって提供される。具体的には、本実施形態に係る医薬組成物は、対象が存在する密閉された空間に、前記空間中の二酸化炭素濃度が適切な濃度となるように流量を調節して、二酸化炭素ガス、及び必要に応じて酸素ガス等の二酸化炭素ガス以外のガスを供給することによって提供される。 In another embodiment, the pharmaceutical composition according to this embodiment is provided by supplying carbon dioxide gas to an enclosed space in which a subject is present. Specifically, the pharmaceutical composition according to the present embodiment is prepared by adjusting the flow rate of carbon dioxide gas in a closed space in which a target exists so that the carbon dioxide concentration in the space becomes an appropriate concentration. And, if necessary, provided by supplying a gas other than carbon dioxide gas such as oxygen gas.

本実施形態に係る医薬組成物の投与は、心停止後であれば蘇生前、蘇生中又は蘇生後のいずれの時点においても開始することができる。中でも、神経障害を抑制する効果をより顕著に発揮できることから、蘇生後に投与を開始することが好ましい。また、蘇生後に投与を開始する場合、蘇生後から投与開始までの時間は、心停止後に続く蘇生後の神経障害を抑制する効果を発揮できる時間であれば、特に制限されず、患者の重症度、年齢、性別等に応じて、適宜設定することができる。蘇生後から投与開始までの時間としては、例えば、蘇生直後(0分)~4時間、3分~2時間、又は5分~1時間であってよい。なお、本実施形態に係る医薬組成物は、蘇生前、蘇生中又は蘇生後のいずれの時点においても投与することができる。 Administration of the pharmaceutical composition according to this embodiment can be initiated at any time after resuscitation, during or after resuscitation, as long as it is after cardiac arrest. Above all, it is preferable to start administration after resuscitation because the effect of suppressing neuropathy can be exerted more remarkably. When administration is started after resuscitation, the time from resuscitation to the start of administration is not particularly limited as long as it can exert an effect of suppressing post-resuscitation neuropathy following cardiac arrest, and the severity of the patient is not particularly limited. , Age, gender, etc. can be set as appropriate. The time from resuscitation to the start of administration may be, for example, immediately after resuscitation (0 minutes) to 4 hours, 3 minutes to 2 hours, or 5 minutes to 1 hour. The pharmaceutical composition according to this embodiment can be administered at any time before, during or after resuscitation.

本実施形態に係る医薬組成物の投与回数は特に制限されず、患者の重症度、性別、年齢等に応じて、単回又は複数回投与することができる。 The number of administrations of the pharmaceutical composition according to the present embodiment is not particularly limited, and can be administered once or multiple times depending on the severity, gender, age, etc. of the patient.

本実施形態に係る医薬組成物の一回あたりの投与時間(投与開始から投与終了までの時間)は、蘇生後の神経障害を抑制する効果を発揮できる時間であれば、特に制限されず、患者の重症度、年齢、性別等に応じて、適宜設定することができる。一回あたりの投与時間としては、例えば、5分~24時間、10分~12時間、20分~6時間、又は30分~3時間であってよい。 The administration time (time from the start of administration to the end of administration) per administration of the pharmaceutical composition according to the present embodiment is not particularly limited as long as it can exert the effect of suppressing neuropathy after resuscitation, and the patient. It can be appropriately set according to the severity, age, gender, etc. of the patient. The administration time per administration may be, for example, 5 minutes to 24 hours, 10 minutes to 12 hours, 20 minutes to 6 hours, or 30 minutes to 3 hours.

本実施形態に係る医薬組成物の投与対象は特に制限されないが、好適にはヒトである。 The administration target of the pharmaceutical composition according to this embodiment is not particularly limited, but is preferably human.

本実施形態に係る医薬組成物は、二酸化炭素ガスを有効成分として含有することで、蘇生後の神経障害を抑制できることに加えて、蘇生後の生存率を顕著に改善することができる。したがって、本発明の一実施形態として、二酸化炭素ガスを含有する、蘇生後の予後を改善するための気体状医薬組成物が提供される。 By containing carbon dioxide gas as an active ingredient, the pharmaceutical composition according to the present embodiment can suppress neuropathy after resuscitation and can significantly improve the survival rate after resuscitation. Therefore, as an embodiment of the present invention, there is provided a gaseous pharmaceutical composition containing carbon dioxide gas for improving the prognosis after resuscitation.

以下に、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

(1)心停止モデルマウスの作製
心停止モデルマウスの作製には、8~12週齢の雄性マウスを使用した。マウスをイソフルランの吸入による麻酔下に、気管内挿管し、左大動静脈にカニュレーションを行なった。大腿静脈から塩化カリウムを投与し、心停止を起した。心停止後7分30秒より人工呼吸とアドレナリンの持続投与を開始した。心停止後8分より胸骨圧迫を行って蘇生させ、自己心拍の再開を確認し、心停止モデルマウスを作製した。
(1) Preparation of cardiac arrest model mouse A male mouse aged 8 to 12 weeks was used to prepare a cardiac arrest model mouse. Mice were intubated intratracheally under anesthesia by inhalation of isoflurane, and the left aorta and vein were cannulated. Potassium chloride was administered from the femoral vein, causing cardiac arrest. From 7 minutes and 30 seconds after cardiac arrest, artificial respiration and continuous administration of adrenaline were started. Chest compressions were performed 8 minutes after cardiac arrest to revive the mice, and the resumption of self-heartbeat was confirmed, and a cardiac arrest model mouse was prepared.

(2)神経障害抑制及び生存率改善についての評価
心停止モデルマウスの自己心拍再開後10分より、10%の二酸化炭素ガスの吸入を開始し、自己心拍再開後120分まで継続した。公知(市瀬ら Anestheology, 120(4):890-9,2014)の方法に従い、自己心拍の再開から24時間、及び48時間経過後のマウスにおいて、マウスの意識、角膜反射、呼吸様態、協調運動、活動性の5項目についてそれぞれ0、1又は2の点数を付け、合計点を神経学的スコア(Neurological score)とした。当該神経学的スコアが高いほど神経障害が抑制されたことを意味する。その結果を図1に示す。また、当該心停止モデルマウスについて、蘇生後の生存率を10日間調査した。その結果を図2に示す。なお、自己心拍再開後10分より、空気を吸入させた心停止モデルマウスをコントロールとした。
(2) Evaluation of suppression of neuropathy and improvement of survival rate From 10 minutes after resumption of self-heartbeat in cardiac arrest model mice, inhalation of 10% carbon dioxide gas was started and continued until 120 minutes after resumption of self-heartbeat. Mice consciousness, corneal reflex, respiratory mode, coordinated movement in mice 24 hours after resumption of self-heartbeat and 48 hours after resumption of self-heartbeat according to a known method (Ichise et al. Neurology, 120 (4): 890-9, 2014). , 0, 1 or 2 were given to each of the 5 items of activity, and the total score was taken as a neurological score. The higher the neurological score, the more the neurological disorder was suppressed. The results are shown in FIG. In addition, the survival rate after resuscitation of the cardiac arrest model mice was investigated for 10 days. The results are shown in FIG. From 10 minutes after the resumption of self-heartbeat, a cardiac arrest model mouse inhaled with air was used as a control.

図1より、蘇生後に二酸化炭素ガスを吸入したマウスでは、コントロールと比較して多くのマウスで神経学的スコアが改善し、神経障害が抑制されることが確認された。また、図2より、蘇生後に二酸化炭素ガスを吸入したマウスでは、コントロールと比較して生存率が大きく改善されることが確認された。 From FIG. 1, it was confirmed that in the mice inhaled carbon dioxide gas after resuscitation, the neurological score was improved and the neuropathy was suppressed in many mice as compared with the control. In addition, from FIG. 2, it was confirmed that the survival rate of the mice inhaled with carbon dioxide gas after resuscitation was significantly improved as compared with the control.

Claims (4)

二酸化炭素ガスを含有する、蘇生後の神経障害を抑制するための気体状医薬組成物。 A gaseous pharmaceutical composition containing carbon dioxide gas for suppressing post-resuscitation neuropathy. 二酸化炭素ガスを含有する、蘇生後の生存率を改善するための気体状医薬組成物。 A gaseous pharmaceutical composition containing carbon dioxide gas to improve survival after resuscitation. 前記医薬組成物中における二酸化炭素濃度が3%以上である、請求項1又は2に記載の医薬組成物。 The pharmaceutical composition according to claim 1 or 2, wherein the carbon dioxide concentration in the pharmaceutical composition is 3% or more. 前記医薬組成物の投与が蘇生後に開始される、請求項1~3のいずれか一項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 3, wherein administration of the pharmaceutical composition is started after resuscitation.
JP2019071869A 2019-04-04 2019-04-04 Pharmaceutical composition for suppressing post-resuscitation neuropathy Pending JP2022084966A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019071869A JP2022084966A (en) 2019-04-04 2019-04-04 Pharmaceutical composition for suppressing post-resuscitation neuropathy
PCT/JP2020/011569 WO2020203235A1 (en) 2019-04-04 2020-03-16 Pharmaceutical composition for suppressing post-resuscitation neuropathy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019071869A JP2022084966A (en) 2019-04-04 2019-04-04 Pharmaceutical composition for suppressing post-resuscitation neuropathy

Publications (1)

Publication Number Publication Date
JP2022084966A true JP2022084966A (en) 2022-06-08

Family

ID=72668564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019071869A Pending JP2022084966A (en) 2019-04-04 2019-04-04 Pharmaceutical composition for suppressing post-resuscitation neuropathy

Country Status (2)

Country Link
JP (1) JP2022084966A (en)
WO (1) WO2020203235A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5981017B1 (en) * 2015-12-28 2016-08-31 学校法人慶應義塾 Pharmaceutical composition for improving prognosis after resumption of self-beat

Also Published As

Publication number Publication date
WO2020203235A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
Nims et al. The compliance of the human thorax in anesthetized patients
JP5581500B2 (en) Treatment agent and treatment apparatus for reducing ischemia / reperfusion injury
JP2021509109A (en) Pulsed inhaled nitric oxide for the treatment of pulmonary hypertension
Yurino et al. Vital capacity breath technique for rapid anaesthetic induction: comparison of sevoflurane and isoflurane
JP2002102351A (en) Ventilator
Branson et al. What is the evidence base for the newer ventilation modes?
JP2021509108A (en) Use of inhaled nitric oxide and oxygen for the treatment of pulmonary hypertension
Zeineddine et al. Oxygen therapy in sleep-disordered breathing
Sadeghi et al. Comparison of comfort and effectiveness of total face mask and oronasal mask in noninvasive positive pressure ventilation in patients with acute respiratory failure: a clinical trial
Tønnesen et al. Bronchodilating effect of terbutaline powder in acute severe bronchial obstruction
JP2020037519A (en) Hydrogen-containing composition for improving depressive symptom
Schmiesing et al. Laparoscopic diaphragmatic pacer placement–a potential new treatment for ALS patients: a brief description of the device and anesthetic issues
Leikin et al. Methylene chloride: report of five exposures and two deaths
Sharma et al. Sleep disordered breathing in patients with heart failure: pathophysiology and management
WO2020203235A1 (en) Pharmaceutical composition for suppressing post-resuscitation neuropathy
Çağlar et al. Efficacy of early noninvasive ventilation in three cases of nonfatal drowning with pulmonary oedema in the paediatric emergency department
JP2001055337A (en) Binary system gas mixture comprising helium and oxygen and its use
Greenwood et al. Management of specific medical emergencies in dental practice
Hostetler Use of noninvasive positive-pressure ventilation in the emergency department
Limsuwat et al. Effect of non-invasive mechanical ventilation with average volume assured pressure support (AVAPS) in patients with chronic obstructive pulmonary disease with acute exacerbation: a randomized pilot trial
Salama et al. Intelligent volume assured pressure support (iVAPS) vs. spontaneous/timed mode as a weaning strategy for intubated COPD patients with acute exacerbation
Demoule et al. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease
Gur et al. The Application of Biphasic Extrathoracic Cuirass-Assisted Ventilation in Normal Subjects Wearing Chemical–Biological–Radiological–Nuclear (CBRN) Gas Masks
Johnstone The cardiology of anaesthesia.
Eremenko et al. AND INTENSIVE CARE IN RESPIRATORY FAILURE