JP2022084435A - Abnormality detection system, abnormality detection method, and program - Google Patents
Abnormality detection system, abnormality detection method, and program Download PDFInfo
- Publication number
- JP2022084435A JP2022084435A JP2020196311A JP2020196311A JP2022084435A JP 2022084435 A JP2022084435 A JP 2022084435A JP 2020196311 A JP2020196311 A JP 2020196311A JP 2020196311 A JP2020196311 A JP 2020196311A JP 2022084435 A JP2022084435 A JP 2022084435A
- Authority
- JP
- Japan
- Prior art keywords
- score
- parameter
- value
- abnormality detection
- abnormality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005856 abnormality Effects 0.000 title claims abstract description 208
- 238000001514 detection method Methods 0.000 title claims abstract description 147
- 238000004364 calculation method Methods 0.000 claims abstract description 48
- 238000012544 monitoring process Methods 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 35
- 230000002159 abnormal effect Effects 0.000 claims description 61
- 230000008569 process Effects 0.000 claims description 8
- 238000005259 measurement Methods 0.000 abstract description 7
- 238000003860 storage Methods 0.000 description 30
- 230000008859 change Effects 0.000 description 15
- 230000006399 behavior Effects 0.000 description 13
- 230000007704 transition Effects 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 10
- 230000006866 deterioration Effects 0.000 description 9
- 230000007774 longterm Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000003066 decision tree Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000010485 coping Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
Description
本開示は、異常検知システム、異常検知方法およびプログラムに関する。 The present disclosure relates to anomaly detection systems, anomaly detection methods and programs.
プラント、工場などの機械や設備の異常を検知するシステムが提案されている。例えば、特許文献1には、学習フェーズにて監視対象となる設備の稼動データを収集し、稼動データから異常検知モデルを構築し、監視フェーズでは、稼働データと異常検知モデルから、個々の稼動データに対して異常スコアを算出し、異常スコアが閾値を超過すると、異常が発生したと判断する異常検知システムが開示されている。
A system for detecting abnormalities in machines and equipment such as plants and factories has been proposed. For example, in
稼働データに含まれる温度や圧力などの1つの監視項目について異常スコアを算出し、その異常スコアを閾値によって判定する異常検知方法の場合、その監視項目の瞬時値で判断できる異常は検知することができる。しかし、例えば、設備の運転状態によっては、異常が発生していなくても監視項目の値が閾値を超過する場合があり、1つの監視項目の異常を1つの異常スコアにだけ注目して判定していては、異常検知の精度が低下してしまう可能性がある。 In the case of an abnormality detection method that calculates an abnormality score for one monitoring item such as temperature and pressure included in the operation data and determines the abnormality score by a threshold value, it is possible to detect an abnormality that can be judged by the instantaneous value of the monitoring item. can. However, for example, depending on the operating state of the equipment, the value of the monitoring item may exceed the threshold value even if no abnormality has occurred, and the abnormality of one monitoring item is determined by paying attention to only one abnormality score. If so, the accuracy of abnormality detection may decrease.
本開示は、上記課題を解決することができる異常検知システム、異常検知方法およびプログラムを提供する。 The present disclosure provides an abnormality detection system, an abnormality detection method and a program capable of solving the above problems.
本開示の異常検知システムは、監視対象の装置の稼働データを取得するデータ取得部と、前記稼働データに含まれる監視対象の計測値である第1パラメータの値について、当該値が観測される確率を、異なる方法を用いて複数種類算出し、複数種類の前記確率のそれぞれについて、異常の程度を示すスコアを算出するスコア算出部と、複数の前記スコアと、判定モデルと、に基づいて、複数の前記スコアそれぞれについて異常か否かを判定し、複数の前記判定の結果に基づいて、前記装置の異常を検知する異常検知部と、を備える。 In the abnormality detection system of the present disclosure, the probability that the data acquisition unit that acquires the operation data of the device to be monitored and the value of the first parameter, which is the measured value of the monitoring target included in the operation data, are observed. Based on a score calculation unit that calculates a plurality of types using different methods and calculates a score indicating the degree of abnormality for each of the plurality of types of probabilities, a plurality of the scores, and a determination model. It is provided with an abnormality detection unit for determining whether or not each of the above scores is abnormal and detecting an abnormality in the apparatus based on the results of the plurality of determinations.
本開示の異常検知方法では、異常検知システムが、監視対象の装置の稼働データを取得し、前記稼働データに含まれる監視対象の計測値である第1パラメータの値について、当該値が観測される確率を、異なる方法を用いて複数種類算出し、複数種類の前記確率のそれぞれについて、異常の程度を示すスコアを算出し、複数の前記スコアと、判定モデルと、に基づいて、複数の前記スコアそれぞれについて異常か否かを判定し、複数の前記判定の結果に基づいて、前記装置の異常を検知する。 In the abnormality detection method of the present disclosure, the abnormality detection system acquires the operation data of the device to be monitored, and the value is observed for the value of the first parameter which is the measured value of the monitoring target included in the operation data. A plurality of types of probabilities are calculated using different methods, a score indicating the degree of abnormality is calculated for each of the plurality of types of probabilities, and the plurality of said scores are calculated based on the plurality of said scores and a determination model. It is determined whether or not each of them is abnormal, and the abnormality of the apparatus is detected based on the results of the plurality of determinations.
本開示のプログラムは、コンピュータに、監視対象の装置の稼働データを取得し、前記稼働データに含まれる監視対象の計測値である第1パラメータの値について、当該値が観測される確率を、異なる方法を用いて複数種類算出し、複数種類の前記確率のそれぞれについて、異常の程度を示すスコアを算出し、複数の前記スコアと、判定モデルと、に基づいて、複数の前記スコアそれぞれについて異常か否かを判定し、複数の前記判定の結果に基づいて、前記装置の異常を検知する処理を実行させる。 The program of the present disclosure acquires the operation data of the device to be monitored by a computer, and differs in the probability that the value is observed for the value of the first parameter which is the measured value of the monitoring target included in the operation data. Multiple types are calculated using the method, a score indicating the degree of abnormality is calculated for each of the plurality of types of probabilities, and based on the plurality of the scores and the determination model, is the score abnormal for each of the plurality of types? It is determined whether or not the device is present, and based on the results of the plurality of determinations, a process for detecting an abnormality in the apparatus is executed.
上述の異常検知システム、異常検知方法およびプログラムによれば、異常検知の精度を保つことができる。 According to the above-mentioned abnormality detection system, abnormality detection method and program, the accuracy of abnormality detection can be maintained.
<実施形態>
以下、実施形態に係る異常検知システムについて、図1~図7を参照しながら詳しく説明する。
(構成)
図1は、実施形態に係る異常検知システムの構成例を示す機能ブロック図である。
異常検知システム10は、監視対象の装置20から稼働データを取得し、稼働データの挙動を監視することで装置20の異常を検知する。装置20とは、例えば、プラントのボイラ、コンプレッサ、タービンなどの設備や、生産工場の工作機械などである。異常検知システム10は、データ取得部11と、スコア算出部12と、設定受付部13と、学習部14と、異常検知部15と、記憶部16と、レポート作成部17と、出力部18と、を備える。
<Embodiment>
Hereinafter, the abnormality detection system according to the embodiment will be described in detail with reference to FIGS. 1 to 7.
(Constitution)
FIG. 1 is a functional block diagram showing a configuration example of an abnormality detection system according to an embodiment.
The
データ取得部11は、装置20の稼働データを取得する。稼働データとは、温度、圧力、流量、振動、電流、電力量、回転数など装置20に設けられたセンサが計測した計測値や計測値に基づいて算出された値である。データ取得部11は、稼働データとその稼働データの計測時刻とを装置20から取得する。以下、稼働データに含まれる計測値や計測値に基づいて算出された値をパラメータと記載する。
The
スコア算出部12は、データ取得部11が取得した稼働データについて異常の程度を示すスコアを算出する。スコア算出部12は、第1スコア算出部121と、第2スコア算出部122と、第3スコア算出部123と、第4スコア算出部124と、を備える。スコア算出部12は、監視対象のパラメータにのみ注目したスコアを算出するだけではなく、他のパラメータとの関係性を考慮したスコアを算出する。
The
具体的には、第1スコア算出部121は、ある1つの監視対象パラメータαについて、パラメータαにのみ注目したときのスコアである第1スコアを算出する。例えば、第1スコア算出部121は、パラメータαの確率密度P(α)を算出し、その値に基づいて第一スコアを算出する。例えば、パラメータαの確率密度P(α)のマイナスの常用対数(例えば、-log10(P(α)))を第1スコアとして算出する。つまり、パラメータαについて、確率密度が小さい値が計測されると、そのときの第1スコアは大きな値となる。簡単な例では、パラメータαの値が1000個得られ、そのうちの999個の値が“1”で1個が“10”であったとすると、計測値“10”の確率密度は、1÷1000=0.001、第1スコアは3.0となる。
Specifically, the first
第2スコア算出部122は、監視対象のパラメータαについて、装置20の運転状態を反映する他のパラメータとの関係を考慮したスコアである第2スコアを算出する。例えば、装置20がガスタービン等の発電設備の場合、装置20の運転状態とは、装置20が定格出力で運転しているのか、部分負荷で運転しているのかといった運転モードのことであり、この場合、装置20の運転状態を反映する他のパラメータとは、例えば、発電設備の負荷である。装置20の運転状態を反映する他のパラメータをパラメータβ、データ取得部11が取得した稼働データに含まれるパラメータβの値をβ1、パラメータαの値をα1とした場合、例えば、第2スコア算出部122は、パラメータβの値がβ1となる条件で、パラメータαの値がα1となる確率、つまり、条件付き確率P(α1|β1)を算出し、条件付き確率P(α1|β1)のマイナスの常用対数を第2スコアとして算出する。つまり、小さい値の条件付き確率P(α1|β1)が観測されると、そのときの第2スコアは大きな値となる。このことは、以下の第3スコア、第4スコアでも同様である。なお、装置20の運転状態を反映する他のパラメータの数は2個以上であってもよい。
The second
第3スコア算出部123は、監視対象のパラメータαについて、パラメータαと関係性が強い他のパラメータとの関係を考慮したスコアである第3スコアを算出する。関係性が強いパラメータとは、例えば、同じ設備の稼働系の温度データと、冗長系の温度データのようなものである。あるいは、例えば、発電設備の場合、負荷の上昇に伴い、タービンの回転数や燃料ガスの温度が上昇すれば、これらは関係性が強いパラメータである可能性がある。パラメータαと関係性が強い他のパラメータは、例えば、決定木などの機械学習により選定することができる。あるいは、知見を有するユーザが、パラメータαと関係性が強い他のパラメータを設定してもよい。パラメータαと関係性が強い他のパラメータをパラメータγ、データ取得部11が取得した稼働データに含まれるパラメータγの値をγ1、パラメータαの値をα1とした場合、例えば、第3スコア算出部123は、パラメータγの値がγ1となる条件で、パラメータαの値がα1となる確率、つまり、条件付き確率P(α1|γ1)を算出し、条件付き確率P(α1|γ1)のマイナスの常用対数を第3スコアとして算出する。なお、パラメータαと関係性が強い他のパラメータは2個以上であってもよい。
The third
第4スコア算出部124は、監視対象のパラメータαについて、パラメータα以外の他の全てのパラメータとの関係を考慮したスコアである第4スコアを算出する。例えば、データ取得部11が取得した稼働データに含まれる他の全てパラメータの値の組み合せをδ1、パラメータαの値をα1としたときに、第4スコア算出部124は、他の全てパラメータの値の組み合せがδ1となる条件で、パラメータαの値がα1となる確率、つまり、条件付き確率P(α1|δ1)を算出する。第4スコア算出部124は、条件付き確率P(α1|δ1)のマイナスの常用対数を第4スコアとして算出する。
The fourth
設定受付部13は、各種設定を受け付ける。例えば、設定受付部13は、運転状態を反映するパラメータβの設定を受け付ける。また、設定受付部13は、パラメータαと関係性が強いパラメータγの設定や異常を判定するための閾値の設定などを受け付けてもよい。例えば、設定受付部13は、現場作業者の知見として、負荷や気温といった状態を定義する指標や冗長系の設備の設定を受け付ける。
The
学習部14は、第1スコア算出部121~第4スコア算出部124が算出した各スコアに基づいて、装置20に異常が発生したかどうか、あるいは異常の予兆があるかどうかを判定する判定モデルを作成する。例えば、学習部14は、過去に装置20が正常に稼働していたときの稼働データを収集し、収集した稼働データに含まれるパラメータαの第1スコアを学習して、第1スコアがどのような値であれば正常であるかを示す判定モデル1を作成する。また、学習部14は、正常な稼働データに含まれるパラメータαとパラメータβに基づいて算出された第2スコアを学習して、第2スコアがどのような値であれば正常であるかを示す判定モデル2を作成する。学習部14は、第3スコア、第4スコアについても、同様に、判定モデル3、判定モデル4を作成する。
The
また、例えば、学習部14は、過去に装置20で異常が生じたときに採取された正常時と異常時の両方を含む稼働データからパラメータαを抽出し、パラメータαに関する正常時の第1スコアと異常時の第1スコアとを学習して、第1スコアがどのような値となると、異常が発生するかを判定するための閾値(判定モデル1)を算出してもよい。同様に、学習部14は、正常時と異常時の両方を含む装置20の稼働データに基づいて算出された正常時の第2スコアと異常時の第2スコアを学習して、第2スコアがどのような値となると、異常が発生するかを判定するための判定モデル2を作成してもよい。同様に、学習部14は、第3スコアに基づく正常と異常を判別するための判定モデル3、第4スコアに基づく正常と異常を判別するための判定モデル4を作成してもよい。
Further, for example, the
また、学習部14は、更に、第1スコア~第4スコアに依らない異常判定モデルを1つ又は複数、作成してもよい。例えば、装置20の正常な稼働データを収集して、稼働データに含まれるパラメータαについて、k近傍法などによるクラスタやMT(マハラノビス・タグチ)法における単位空間を判定モデルとして作成してもよい。
Further, the
異常検知部15は、スコア算出部12が算出したスコア(第1スコア~第4スコア)と学習部14が作成した判定モデル(判定モデル1~4)とに基づいて、装置20の異常を検知する。異常検知部15は、第1スコア~第4スコアのうち、複数のスコアを用いて異常検知を行う。例えば、正常な稼働データから算出した第1スコア~第4スコアに基づいて判定モデル1~4を作成した場合、異常検知部15は、スコア算出部12が算出した第1スコアの値と、判定モデル1が示す正常な第1スコアの差が閾値以上であれば、パラメータαの第1スコアについて異常であると判定する。同様に異常検知部15は、第2スコアの値を判定モデル2と比較して第2スコアが異常か否かを判定し、第3スコア、第4スコアについても、それぞれ判定モデル3、4に基づいて正常か否かを判定する。
また、例えば、学習部14が、第1スコア~第4スコアの各々について異常判定のための閾値を算出した場合、異常検知部15は、スコア算出部12が算出した第1スコアの値が、学習部14によって算出された閾値を超過していれば、パラメータαの第1スコアについて異常であると判定する。異常検知部15は、第2スコア~第4スコアについても同様に、それぞれの閾値に基づいて異常か否かの判定を行う。
そして、異常検知部15は、各スコアについて判定した異常か否かの判定結果および各スコアに基づいて、装置20の異常検知を行う。例えば、異常検知部15は、異常と判定されたスコアの中で最も大きなスコアを選択し、選択したスコアが示す値を異常検知結果として出力する。
The
Further, for example, when the
Then, the
記憶部16は、データ取得部11が取得した稼働データ、設定受付部13が受け付けた各種設定、第1スコア~第4スコア、判定モデル1~4、異常検知部15による検知結果などの情報を記憶する。
レポート作成部17は、所定期間における稼働データの推移や、第1スコア~第4スコアの推移などを記載したレポートを作成する。レポートについては、後に図4を参照して説明する。
The
The
出力部18は、スコア算出部12が算出した第1スコア~第4スコアの推移を示すグラフ、異常検知部15による異常検知結果などを表示装置に出力する。また、出力部18は、レポート作成部17が作成したレポートを表示装置に表示したり、電子ファイルへ出力したりする。
The
(4つのスコア)
次に図2A~図2D、図3を参照して、第1スコア~第4スコアを用いた異常検知の方法について説明する。
パラメータαの推移の一例を図2Aに示す。第1スコアは、単一のパラメータαに注目して算出した確率密度である。例えば、パラメータαが図2Aに示すように変動すれば、第1スコアも同様に変動する。第1スコアの変動を監視することによって、パラメータαの変動を把握することができる。例えば、パラメータαの値がQ1のときの第1スコアが閾値を超過していれば、異常検知部15は、第1スコアが異常であると判定する。
(4 scores)
Next, an abnormality detection method using the first score to the fourth score will be described with reference to FIGS. 2A to 2D and FIG.
An example of the transition of the parameter α is shown in FIG. 2A. The first score is the probability density calculated by focusing on a single parameter α. For example, if the parameter α fluctuates as shown in FIG. 2A, the first score also fluctuates. By monitoring the fluctuation of the first score, the fluctuation of the parameter α can be grasped. For example, if the first score when the value of the parameter α is Q1 exceeds the threshold value, the
監視対象のパラメータαおよび運転状態を示すパラメータβの推移の一例を図2Bに示す。第2スコアは、そのときの運転状態におけるパラメータαの変動を示す。例えば、正常運転時において、パラメータαとパラメータβの挙動が正の相関を有しているとする。Q2に示すようにパラメータβが一定(運転状態が一定)であるにもかかわらず、パラメータαの値だけが低下すれば、第2スコアも変動する。第2スコアの変動を監視することによって、パラメータαの変動が、現在の運転状態において異常か否かを判定することができる。更に第1スコアと第2スコアを監視対象とすると、パラメータαについて、第1スコアだけが変動する場合と、第2スコアだけが変動する場合と、第1スコアと第2スコアが共に変動する場合を想定することができるが、複数のスコアに基づいて異常検知を行うことで誤検知を抑制することができる。例えば、第1スコアだけが変動する場合、運転状態の変化によって、パラメータαの値が変動し、運転状態の変化を考慮すれば、パラメータαの変動は正常な範囲のものである状況が考えられるが、第1スコアだけを監視している場合、第1スコアの変動により、異常が発生したと誤検知する可能性がある。第1スコアと第2スコアに基づいて異常検知を行うことにより、このような誤検知を抑制することができる。また、第1スコアはパラメータαの単純な変動を示す値であり、第2スコアは運転状態を考慮したパラメータαの変動を示す値である。ユーザは、それぞれのスコアの算出方法を把握することにより、各スコアが変動したときにその意味を理解することができる。これにより、異常の発生個所や原因の特定、異常に対する対処を迅速に行うことができる。 FIG. 2B shows an example of the transition of the parameter α to be monitored and the parameter β indicating the operating state. The second score indicates the fluctuation of the parameter α in the operating state at that time. For example, it is assumed that the behaviors of the parameter α and the parameter β have a positive correlation during normal operation. As shown in Q2, even though the parameter β is constant (the operating state is constant), if only the value of the parameter α decreases, the second score also fluctuates. By monitoring the fluctuation of the second score, it can be determined whether or not the fluctuation of the parameter α is abnormal in the current operating state. Further, when the first score and the second score are monitored, the case where only the first score fluctuates, the case where only the second score fluctuates, and the case where both the first score and the second score fluctuate with respect to the parameter α. However, it is possible to suppress erroneous detection by performing abnormality detection based on a plurality of scores. For example, when only the first score fluctuates, the value of the parameter α fluctuates due to the change in the operating state, and if the change in the operating state is taken into consideration, it is conceivable that the fluctuation of the parameter α is within the normal range. However, when only the first score is monitored, it may be erroneously detected that an abnormality has occurred due to the fluctuation of the first score. By performing abnormality detection based on the first score and the second score, such false detection can be suppressed. The first score is a value indicating a simple fluctuation of the parameter α, and the second score is a value indicating a fluctuation of the parameter α in consideration of the operating state. By understanding the calculation method of each score, the user can understand the meaning when each score fluctuates. As a result, it is possible to quickly identify the location and cause of the abnormality and deal with the abnormality.
パラメータαおよび関係性が強いパラメータγ1、γ2の推移の一例を図2Cに示す。第3スコアは、関係性が強いパラメータγ1、γ2に対するパラメータαの変動を示す。例えば、正常運転時において、パラメータαとパラメータγ1、γ2の挙動が正の相関を有しているとする。Q3に示すようにパラメータγ1、γ2が低下しているにもかかわらず、パラメータαの値だけが上昇すれば、第3スコアも変動する。第3スコアの変動を監視することによって、パラメータαの変動が、他のパラメータγ1、γ2に比べて異常か否か(又は、パラメータγ1、γ2の変動がパラメータαに比べて異常か否か)を判定することができる。更に、第1スコア、第2スコアと組み合わせて監視することにより、異常検知の精度を向上させることができる。例えば、第1スコアが上昇しても、第3スコアが上昇しないような場合、何らかの要因で関係性が強いパラメータが同時に変動し、またその変動が珍しい事象ではないことを意味する可能性がある。これにより、第1スコアだけを監視していた場合に生じる誤検知を抑制することができる。また、第3スコアの算出方法を把握することによって、ユーザは、第3スコアが示す挙動の意味を理解することができる。例えば、第3スコアが上昇せずに、第2スコアが上昇する場合、関係性が強いパラメータ群の変動を引き起こし、現在の運転状態では生じない事象が発生していること、第3スコアが上昇しないことから、その事象は、(他の運転状態では)しばしば発生する事象である可能性があること、などを推定することができる。 FIG. 2C shows an example of the transition of the parameters α and the parameters γ1 and γ2 having a strong relationship. The third score indicates the variation of the parameter α with respect to the parameters γ1 and γ2, which are strongly related. For example, it is assumed that the behaviors of the parameters α and the parameters γ1 and γ2 have a positive correlation during normal operation. Even though the parameters γ1 and γ2 are decreasing as shown in Q3, if only the value of the parameter α is increased, the third score also fluctuates. By monitoring the fluctuation of the third score, whether the fluctuation of the parameter α is abnormal compared to the other parameters γ1 and γ2 (or whether the fluctuation of the parameters γ1 and γ2 is abnormal compared to the parameter α). Can be determined. Further, by monitoring in combination with the first score and the second score, the accuracy of abnormality detection can be improved. For example, if the 1st score increases but the 3rd score does not increase, it may mean that the parameters with strong relationship fluctuate at the same time for some reason, and that the fluctuation is not a rare event. .. As a result, it is possible to suppress false detection that occurs when only the first score is monitored. Further, by understanding the calculation method of the third score, the user can understand the meaning of the behavior indicated by the third score. For example, if the 3rd score does not increase and the 2nd score increases, it causes fluctuations in the parameter group with strong relationship, and an event that does not occur in the current driving state has occurred, and the 3rd score increases. Since it does not, it can be inferred that the event may be an event that occurs frequently (in other operating conditions), and so on.
全パラメータの推移の一例を図2Dに示す。第4スコアは、全パラメータδ1~δ3が示す状態におけるパラメータαの変動を示す。例えば、他の全パラメータの挙動に対して、パラメータαだけが特殊な挙動を示していれば、第4スコアも変動する。第4スコアの変動を監視することによって、パラメータαの変動が、他の全パラメータδ1~δ3に比べて異常か否かを判定することができる。更に、第1スコア~第3スコアと組み合わせて監視することにより、異常検知の精度向上を図ることができる。 An example of the transition of all parameters is shown in FIG. 2D. The fourth score indicates the variation of the parameter α in the state indicated by all the parameters δ1 to δ3. For example, if only the parameter α shows a special behavior with respect to the behavior of all the other parameters, the fourth score also fluctuates. By monitoring the fluctuation of the fourth score, it can be determined whether or not the fluctuation of the parameter α is abnormal as compared with all the other parameters δ1 to δ3. Further, by monitoring in combination with the first score to the third score, the accuracy of abnormality detection can be improved.
一般に異常検知システムでは、センサの計測値等に統計処理を施した値がスコアとしてユーザへ提示されることがあるが、統計処理に不慣れなユーザにとっては、その値が異常であることを認識することができたとしても、その意味を理解することが難しい。これに対し、本実施形態の第1スコア~第4スコアであれば、各スコアの算出方法を事前に把握しておくことで、各スコアの値がどのような意味であるかを理解したり、装置20にどのような事象が生じているかを推定したりすることができる。例えば、第1スコアであれば、そのパラメータが示す値の中でどれぐらい珍しい値が観測されたかを示す。第2スコアであれば、その運転状態の中で、どれぐらい珍しい値が観測されたかを示す。第3スコアであれば、同調した振る舞いをする関係性が高いパラメータ群によって示される状態で、どれぐらい珍しい値が観測されたかを示す。第4スコアであれば、全パラメータが示す状態で、どれぐらい珍しい値が観測されたかを示す。ユーザは、各スコアの意味を理解し、異常が検知された際に事象の理解や対処に役立てることができる。また、ユーザは、各スコアを監視することで、監視対象のパラメータαの挙動に、突変、劣化、乖離、振動の何れが生じているかを判断することができる。
Generally, in an abnormality detection system, a value obtained by subjecting a sensor measurement value or the like to statistical processing may be presented to the user as a score, but a user who is unfamiliar with statistical processing recognizes that the value is abnormal. Even if it can be done, it is difficult to understand its meaning. On the other hand, in the case of the first score to the fourth score of the present embodiment, by grasping the calculation method of each score in advance, it is possible to understand what the value of each score means. , It is possible to estimate what kind of event is occurring in the
次に図3を参照して、第1スコア~第4スコアを用いて、突変、劣化、乖離、振動の4つの指標を判断する方法について説明する。突変とは、監視対象のパラメータαの値が時間的に急峻な変化をすることである。劣化とは、パラメータαの値が時間的に漸減・漸増する等の変化をすることである。乖離とは、パラメータαの値が、類似する他のパラメータの値から乖離することである。振動とは、パラメータαの変動の周波数成分が急に早くなる等の変化をすることである。熟練した監視員は、これら4つの指標に基づいて、パラメータαの挙動を監視し、異常検知を行うことが多い。図3に示す表中の二重丸の印は、指標の判断に最も適したスコアであることを示し、一重丸の印は、そのスコアによっても検知可能であることを示し、三角の印は、そのスコアでは検知できない可能性があることを示し、×印はそのスコアによっては検知できないことを示している。 Next, with reference to FIG. 3, a method of determining four indexes of sudden change, deterioration, deviation, and vibration will be described using the first score to the fourth score. Sudden change means that the value of the parameter α to be monitored changes suddenly in time. Deterioration means that the value of the parameter α changes with time, such as gradually decreasing or increasing. Dissociation means that the value of the parameter α deviates from the value of another similar parameter. Vibration is a change such that the frequency component of the fluctuation of the parameter α suddenly becomes faster. Skilled observers often monitor the behavior of the parameter α and detect anomalies based on these four indicators. The double circle mark in the table shown in FIG. 3 indicates that the score is most suitable for the judgment of the index, the single circle mark indicates that the score can also be detected, and the triangular mark indicates that the score can also be detected. , Indicates that the score may not be detected, and a cross indicates that the score cannot be detected.
突変については、第1スコアの監視によって検知が可能であるが、第2スコア~第4スコアによっても突変の検知が可能である。例えば、異常検知部15が第1スコアについて異常と判定すると、ユーザは、異常と判定されたパラメータについて突変が生じていると判断する。
The sudden change can be detected by monitoring the first score, but the sudden change can also be detected by the second score to the fourth score. For example, when the
劣化については、第2スコアが最も適しているが、第1スコアの監視によっても劣化の検知が可能である。例えば、異常検知部15が第2スコアについて異常と判定すると、ユーザは、異常と判定されたパラメータについて劣化が生じていると判断する。
Regarding deterioration, the second score is the most suitable, but deterioration can also be detected by monitoring the first score. For example, when the
乖離については、第3スコアを監視することにより検知が可能である。例えば、異常検知部15が第3スコアについて異常と判定すると、ユーザは、異常と判定されたパラメータについて乖離が生じていると判断する。
The divergence can be detected by monitoring the third score. For example, when the
振動については、第4スコアによって検知することができる。例えば、全パラメータが一定の周期で振動しているときにパラメータαの周期が変動すれば、第4スコアに変動が生じる。この性質を利用すると、第4スコアによって振動を検知することができる。また、第2スコアによっても振動を検知することができる。例えば、異常検知部15が第4スコアについて異常と判定すると、ユーザは、異常と判定されたパラメータについて振動が生じていると判断する。
Vibration can be detected by the fourth score. For example, if the cycle of the parameter α fluctuates while all the parameters vibrate at a constant cycle, the fourth score fluctuates. By utilizing this property, vibration can be detected by the fourth score. Vibration can also be detected by the second score. For example, when the
また、例えば、出力部18が、パラメータαについて、数分前から現在までの第1スコア~第4スコアの推移を示すグラフを表示装置へ出力し、ユーザが、各スコアの変動を確認して、突変、劣化、乖離、振動の判断を行ってもよい。あるいは、異常検知部15に突変、劣化、乖離、振動を判断する基準を与えて、異常検知部15に判定させてもよい。例えば、突変の場合、監視対象のパラメータごとに第1スコアの変動量の閾値を定義し、所定時間内にこの閾値を超える変動があると、異常検知部15は、突変が発生したと判定する。本実施形態に係る第1スコア~第4スコアを用いることによって、従来は、熟練した監視員が、各パラメータの挙動を監視して判断していた4つの指標の判断が容易となる。
Further, for example, the
(レポート)
図4にレポート作成部17が作成するレポートの一例を示す。
レポート100は、例えば、月次の定期レポートであって、1カ月ごとに直前の1か月間に計測された各パラメータの計測値、第1スコア~第4スコアの値が記載される。レポート100は、データ関係性を表示する領域101と、スコア上位ランキングを表示する領域102と、1か月間のトレンドを表示する領域103と、長期トレンドを表示する領域104と、を含む。
(Report)
FIG. 4 shows an example of a report created by the
The
領域101には、パラメータ間の関係性が表示される。例えば、計測点の列には、パラメータの種類が示される。計測点の列のパラメータは、全てが監視対象のパラメータであってもよいし、一部が監視対象のパラメータであってもよい。設備状態の列には、運転状態を示すパラメータに丸印が記載される。相関の列には、関係性の強いパラメータに同じアルファベットが表示される。図4のレポート100の場合、計測点としてPara1~Para3が記載され、Para1とPara2の関係性が強く(相関の列の“A”)、Para3が運転状態を示すパラメータ(設備状態の列の丸印)である。従って、例えば、Para1が監視対象のパラメータの場合、Para1の確率密度が第1スコア、条件付き確率P(Para1|Para3)が第2スコア、条件付き確率P(Para1|Para2)が第3スコア・・・等となる。領域101を参照することにより、ユーザは、第2スコアに関して運転状態を示すパラメータを確認することができ、第3スコアに関して関係性の強いパラメータを確認することができる。
In the
領域102には、各パラメータについて観測された1か月間の第1スコア~第4スコアのうち値が大きいものから順に20個程度が表示される。Noの列には順位が表示され、時刻の列には、そのスコアが観測された時刻が表示され、スコアの列にはスコアの値が表示され、監視項目の列には監視対象のパラメータの種類が表示され、スコア種類の列には、そのスコアが第1スコア~第4スコアの何れであるかが表示される。図4のレポート100の場合、最も値が大きかったのは“Y/M/D hh:m1”に観測されたPara1の第1スコアの値“X1”、2番目に値が大きかったのは“Y/M/D hh:m2”に観測されたPara2の第2スコアの値“X2”、3番目に値が大きかったのは“Y/M/D hh:m3”に観測されたPara2の第1スコアの値“X3”である。領域102を参照することにより、ユーザは、過去の1カ月において高い値を示したパラメータの情報を確認することができる。
In the
領域103には、1か月間の各パラメータの計測値および第1スコア~第4スコアの値の推移が示される。領域104には、各パラメータの計測値および第1スコア~第4スコアの値の長期(例えば、過去5年)における推移が示される。ユーザは、領域103、104を参照することにより、各パラメータについて算出された第1スコア~第4スコアのトレンドを確認することができる。異常検知には、短期的評価を行うニーズと、中長期的評価を行うニーズの2つが存在する。短期的評価は、現在を基準とする短期間における異常の発生状況に基づいて、例えば、現在、装置20に生じている故障や異常を把握するために必要である。一方、中長期的評価とは、過去から現在へ至るまでの間に検知される異常や異常予兆の傾向(頻度などの発生状況やスコアの大きさ)に基づいて、装置20の劣化や故障を予測するために必要となる。ユーザは、領域103,104を参照することで、装置20の中長期的評価を行うことができる。装置20の異常は、突発的な故障に至る前に何らかの兆候を示すケースが多い。レポート100を活用することにより、異常の兆候を確認することができる。また、時系列的に将来発生しうる異常の予測に活用することができる。
The
例えば、ユーザは、レポート100を用いて以下のような手順により、第1スコア~第4スコアの確認、計測値の確認を行うことで、従来の事後保全中心の設備運用から予防保全的設備管理をサポートするための仕組みを整えることができる。
(1)データの関係性を把握する。
ユーザは、領域101を参照して、具体的なスコアの値を参照する前に各パラメータの関係性、組合せを確認しておく。これにより、第1スコア~第4スコアが意味する内容を把握することができる。
(2)スコアの上昇箇所を確認する。
ユーザは、領域102~104を参照し、第1スコア~第4スコアの値が高かった箇所や時刻を確認する。
For example, the user can confirm the first score to the fourth score and the measured value by the following procedure using the
(1) Understand the relationship between data.
The user refers to the
(2) Check where the score has risen.
The user refers to the
(3)関連パラメータを確認する。
ユーザは、(2)で確認した高いスコアが観測されたパラメータを確認する。ユーザは、以下の観点で対象とするパラメータを確認する。
(3-1)第1スコアが上昇している。
対象のパラメータのみに着目し、そのパラメータの計測値が突変していないか、通常ではあり得ないレンジの値となっていないか等を確認する。
(3-2)第2スコアが上昇している。
対象のパラメータ、あるいは運転状態パラメータに着目する。その片方、あるいは両方が異常な値となっていないかを確認する。運転状態パラメータは領域101の設備状態に丸印が付いているパラメータである。
(3-3)第3スコアが上昇している。
対象のパラメータ、あるいは対象のパラメータと関係性が強いパラメータに注目する。何れかが異常な値となっていないかを、各パラメータのトレンド(領域103)で確認する。関係性が強いパラメータは領域101の相関の欄に示されている。例えば、図4の例の場合、Para1の第3スコアが上昇した場合は、Para2も併せて注目する必要がある。
(3) Check the related parameters.
The user confirms the parameter in which the high score confirmed in (2) is observed. The user confirms the target parameter from the following viewpoints.
(3-1) The first score is increasing.
Focus only on the target parameter, and check whether the measured value of that parameter has changed suddenly, or whether the value is in a range that is not normally possible.
(3-2) The second score is increasing.
Focus on the target parameter or operating condition parameter. Check if one or both of them have abnormal values. The operating state parameter is a parameter in which the equipment state of the
(3-3) The third score is increasing.
Focus on the parameter of interest or the parameter that is closely related to the parameter of interest. Check the trend (region 103) of each parameter to see if any of them has an abnormal value. The strongly related parameters are shown in the correlation column of
レポート作成部17は、例えば、月に一度、レポート100を作成し、出力部18がレポート100を電子ファイル等として出力する。ユーザは、出力されたレポート100に基づいて、上記の手順で設備20の異常に関する中長期的評価を行うことができる。また、ユーザは、レポート100に基づいて、図3を用いて説明した4つの指標の観点から設備20の状態に対する評価を行うことができる。
For example, the
(動作)
次に図5、図6を参照して、異常検知システム10の動作について説明する。
まず、図5を参照して、学習フェーズの動作の一例について説明する。
図5は、実施形態に係る異常検知モデル作成処理の一例を示すフローチャートである。
まず、設定受付部13が、各種設定を受け付ける(ステップS11)。例えば、ユーザが、監視対象のパラメータの設定、運転状態を示すパラメータの設定、関係性の強いパラメータの設定を異常検知システム10に入力する。設定受付部13は、これらの設定を受け付け、記憶部16に書き込んで保存する。関係性の強いパラメータは、予め機械学習などにより、関係性が強いことが解析されたパラメータである。
(motion)
Next, the operation of the
First, an example of the operation of the learning phase will be described with reference to FIG.
FIG. 5 is a flowchart showing an example of the abnormality detection model creation process according to the embodiment.
First, the
次にデータ取得部11が、装置20が正常な運転状態で運転しているときに計測された稼働データを収集する(ステップS12)。収集する稼働データは、異常判定モデルの学習データとなる為、様々な条件下で稼働しているときに計測された稼働データをなるべく多く収集することが好ましい。また、第2スコアの評価のためには、装置20の全ての運転状態における稼働データを収集することが好ましい。データ取得部11は、収集した稼働データを、記憶部16に書き込んで保存する。
Next, the
次にスコア算出部12が、第1スコア~第4スコアを算出する(ステップS13)。例えば、第1スコア算出部121が、記憶部16が記憶する学習データとして収集された稼働データの中から監視対象として設定されたパラメータのデータを読み出し、各時刻のパラメータについて確率密度を算出する。例えば、パラメータαについて1万個の計測値が収集されていれば、1万個の計測値のそれぞれについて、1万個の計測値の中での確率密度(第1スコア)を算出する。第1スコア算出部121は、算出した第1スコアを記憶部16に書き込んで保存する。同様に、第2スコア算出部122が、監視対象として設定されたパラメータのデータと、運転状態を示すものとして設定されたパラメータのデータの組み合せを収集された稼働データの中から読み出し、運転状態を示すパラメータの値が示す運転状態ごとに監視対象パラメータのデータを分類し、分類したデータごとに同じ分類の中でその値が観測される確率(第2スコア)を算出する。第2スコア算出部122は、算出した第2スコアを記憶部16に書き込んで保存する。第3スコア算出部123は、監視対象パラメータのデータと、関係性が強いパラメータのデータの組み合せを収集された稼働データの中から読み出し、関係性が強いパラメータの値が観測されることを条件とする、監視対象パラメータの値が観測される確率(第3スコア)を算出し、第3スコアを記憶部16に書き込んで保存する。第4スコア算出部124は、監視対象パラメータの値のそれぞれについて、同時刻に計測された他の全パラメータの値の組み合せが観測されることを条件とする、監視対象パラメータの値が観測される確率(第4スコア)を算出し、第4スコアを記憶部16に書き込んで保存する。
Next, the
次に学習部14が、判定モデル1~4を作成する(ステップS14)。例えば、学習部14は、ステップS13にて算出された第1スコアに基づいて、判定モデル1を作成する。例えば、学習部14は、第1スコアの平均値を判定モデル1としてもよいし、第1スコアの最小値と最大値の範囲を正常とみなす判定モデル1を作成してもよいし、第1スコアをk近傍法によりクラスタリングして作成したクラスタを判定モデル1としてもよい。学習部14は、第2スコア、第3スコア、第4スコアについても、それぞれ、各スコアの正常な範囲を示す判定モデル2、判定モデル3、判定モデル4を作成する。学習部14は、作成した判定モデル1~4を記憶部16に書き込んで保存する。
Next, the
又は、学習部14は、正常と異常を判別する閾値を算出してもよい。例えば、データ取得部11は、装置20が正常な状態で運転しているときに計測された稼働データと異常が生じたときに計測された稼働データを取得し、記憶部16に保存する。次にスコア算出部12が、収集された稼働データに含まれる監視対象のパラメータの計測値について第1スコア~第4スコアを算出し、記憶部16に保存する。次に、学習部14が、算出された第1スコア~第4スコアの各々について、そのスコアが装置20の正常時に計測されたパラメータに基づいて算出された第1スコア~第4スコアであるか、又は、異常時に計測されたパラメータに基づいて算出された第1スコア~第4スコアであるか、を示すラベル情報を付す。次に学習部14は、ラベル情報を付加した第1スコアを学習データとして、所定の手法により、第1スコアの値に基づいて異常の有無を判定するための判定モデル1を作成する。例えば、学習部14は、SVM(Support Vector Machine)、決定木などを用いることにより、判定モデル1を作成する。学習部14は、同様の手法により、判定モデル2~4を作成する。
Alternatively, the
このように本実施形態では、稼働データを確率密度や条件付き確率に変換して、判定モデル1~4を作成する。これにより、第1スコア~第4スコアに基づいて異常検知を行うことができる。また、後述するようにアンサンブル学習を用いて異常検知を行うことができる。学習部14は、アンサンブル学習用に、第1スコア~第4スコアでは無く、例えば、パラメータの値を学習データとして判定モデル1~4とは異なる判定モデルを作成してもよい。
As described above, in the present embodiment, the operation data is converted into the probability density and the conditional probability to create the
次に、図6を参照して、監視フェーズの動作の一例について説明する。
図6は、実施形態に係る異常検知処理の一例を示すフローチャートである。
前提として、記憶部16には、作成済みの判定モデル1~4と、異常判定用の閾値が予め登録されているとする。例えば、監視対象のパラメータαの第1スコアについて判定するための閾値1、第2スコアについて判定するための閾値2、第3スコアについて判定するための閾値3、第4スコアについて判定するための閾値4が記憶部16に登録されているとする。
Next, an example of the operation of the monitoring phase will be described with reference to FIG.
FIG. 6 is a flowchart showing an example of the abnormality detection process according to the embodiment.
As a premise, it is assumed that the created
まず、データ取得部11が、装置20から最新の稼働データを取得する(ステップS21)。データ取得部11は、最新の稼働データをスコア算出部12へ出力する。次にスコア算出部12(第1スコア算出部121~第4スコア算出部124)が、最新の稼働データについて、第1スコア~第4スコアを算出する(ステップS22)。記憶部16には学習フェーズにて収集された稼働データが蓄積されているので、例えば、スコア算出部12は、蓄積された稼働データと最新の稼働データを用いて、第1スコア~第4スコアを算出する。スコア算出部12は、第1スコア~第4スコアを異常検知部15へ出力する。次に異常検知部15は、判定モデル1~4に基づいて異常の判定を行う(ステップS23)。まず、異常検知部15は、第1スコアと判定モデル1に基づいて、第1スコアが異常か否かの判定を行う。例えば、判定モデル1が正常時の第1スコアの平均値として作成された場合、異常検知部15は、最新の稼働データに基づく第1スコアと、第1スコアの平均値(判定モデル1)との差が閾値1を超過していれば、最新の第1スコアは異常であると判定してもよい。例えば、判定モデル1が正常時の第1スコアの最大値と最小値によって作成された場合、異常検知部15は、最新の稼働データに基づく第1スコアが、最大値および最小値によって示される範囲から閾値1以上乖離していれば、最新の第1スコアは異常であると判定してもよい。例えば、判定モデル1が正常時の第1スコアのクラスタの場合、異常検知部15は、最新の稼働データに基づく第1スコアと、クラスタの重心との距離が閾値1以上であれば、最新の第1スコアは異常であると判定してもよい。異常検知部15は、最新の稼働データに基づく第2スコア~第4スコアについても、同様の方法で異常か否かを判定する。
First, the
また、学習フェーズにて、正常と異常を判別する判定モデル1~4が作成されている場合、異常検知部15は、最新の稼働データに基づく第1スコアの値を判定モデル1に入力する。判定モデル1は、正常または異常を判別し、その判別結果を出力する。異常検知部15は、判定モデル1が出力した判別結果が異常の場合、最新の第1スコアは異常であると判定する。異常検知部15は、最新の稼働データに基づく第2スコア~第4スコアについても、それぞれ、判定モデル2~4に基づいて、同様の方法で異常か否かを判定する。また、アンサンブル学習を行った場合、異常検知部15は、学習フェーズで作成した判定モデルを用いて、最新の稼働データが異常か否かを判定する。
Further, when the
次に異常検知部15は、各スコアによる判定結果を分析する(ステップS24)。具体的には、異常検知部15は、異常と判定されたスコアのうち、スコアの値が最大のものを選択する。例えば、第1スコアの値が“5”、第2スコアの値が“10”、第3スコアの値が“0.5”、第4スコアの値が“0.5”で、第1スコアと第2スコアが異常と判定された場合、異常検知部15は、第2スコアを装置20で生じている異常を、最も端的に示すスコアとして選択する。
Next, the
また、アンサンブル学習を行う場合であって、アンサンブル学習用に作成した判定モデルによって異常と判定された場合、異常検知部15は、稼働データが示す異常度を所定の方法で算出する。算出された異常度は、第1スコア~第4スコアと比較可能な値である。異常検知部15は、第1スコア~第4スコアおよびアンサンブル学習用に算出された異常度の中から最大値を選択する。
異常検知部15は、第1スコア~第4スコアおよび各スコアの判定結果、判定時刻、最も高い値を示すスコアの情報を出力部18へ出力するとともに記憶部16に書き込んで保存する。この情報は、レポート作成部17がレポート100を作成する際に用いられる。
Further, in the case of performing ensemble learning and when an abnormality is determined by the determination model created for ensemble learning, the
The
次に出力部18が、異常検知結果を表示装置等へ出力する(ステップS25)。例えば、出力部18は、異常検知部15から、第1スコア~第4スコアの値、各スコアについての判定結果(異常か否か)および判定時刻、異常検知部15が選択した最大値を示すスコアの情報を取得して、これらを表示する。異常検知部15は、例えば、第1スコア~第4スコアの値について、所定期間前からの推移を示すグラフを作成して表示してもよい。例えば、ユーザは、異常検知部15によって選択された最大値を示すスコアに注目することで、突変、劣化、乖離、振動の発生を確認し、装置20の異常検知を行うことができる。出力部18は、異常検知部15が第1スコア~第4スコアの中から選択した最大値を表示する。これにより、ユーザに対して、複数の手法による判定結果(第1スコア~第4スコアそれぞれに対する判定結果)の中からから最良の結果を伝えることができ、異常検知の精度度を向上することができる。また、第1スコア~第4スコアを表示することで、ユーザは、複数のスコアを確認することができ、誤検知を防止や、各スコアが意味する内容から、装置20に生じている異常の原因や内容を推定することができる。
Next, the
上記の実施形態では、異常検知部15によって異常を検知する処理を例に説明を行ったが、単に異常を検知するだけではなく、第1スコア~第4スコアの値に基づいて、装置20の状態監視を行ってもよい。例えば、異常検知システム10は、複数のスコア(第1スコア~第4スコア、又は第1スコア~第3スコア)と、判定モデルと、に基づいて、複数のスコアそれぞれについて稼働状態を検知し、複数の前記稼働状態の結果に基づいて装置20の状態を判定する状態判定部をさらに備えていてもよい。または、異常検知部15が、上記の状態判定部を備えていてもよい。例えば、予め第1スコア~第4スコアのうちの一つ又は複数の値や値の傾向と対応付けた状態を示す指標が定義されていて(例えば、状態A、状態B・・・、又は、良好、通常、異常ではないがXXの傾向がある等)、状態判定部は、第1スコア~第4スコアに基づいて、予め定義された状態を示す指標の何れであるかを判定する処理を行う。更に、状態判定部は、判定した1つ又は複数の状態を示す指標に基づいて、装置20の状態を判定してもよい。
また、出力部18は、状態判定部が判定した状態を示す指標や状態判定部が判定した状態をリアルタイムに出力してもよい。
In the above embodiment, the process of detecting an abnormality by the
Further, the
(効果)
以上説明したように、本実施形態によれば、1つのスコアだけでなく、複数の観点から算出されたスコアを用いて異常検知を行う。これにより、機器ごとの状態を定義する指標に基づいて、その指標が一定の条件となるように調整したうえで、異常度を評価できるため、誤検知を防ぎ、異常検知の精度を向上することができる。より具体的には、一般的な教師なしの異常検知手法であるMT法、k近傍法、LOFといったデータの分布に基づき異常度を評価する手法やそれらに寄与した指標を提示するだけの手法と異なり、データ確率密度を推定し、複数の条件における条件付き確率から総合的に異常度を評価できるため、誤検知を防ぎ、異常検知の精度を向上することができる。また、第1スコア~第4スコアは、監視対象のパラメータが観測される様々な確率に基づく値である。各スコアの背景となっている確率の内容を把握することができる。つまり、本実施形態によれば、各スコアの意味についてユーザへの説明性を向上することができる。スコアの意味を把握することにより異常箇所の特定や異常時の対処、ユーザによる監視業務の質、精度を高めることができる。また、レポート100によれば、第1スコア~第4スコアの長期トレンドを確認することができる。これにより、装置20の中長期的評価が可能になり、その評価結果を予防保全に活用することができる。
また、本実施形態によれば、1つのスコアだけでなく、複数の観点から算出されたスコアを用いて状態監視を行うことができる。
(effect)
As described above, according to the present embodiment, abnormality detection is performed using not only one score but also scores calculated from a plurality of viewpoints. As a result, based on the index that defines the state of each device, the degree of abnormality can be evaluated after adjusting the index so that it becomes a certain condition, so that false detection can be prevented and the accuracy of abnormality detection can be improved. Can be done. More specifically, there are methods for evaluating the degree of anomaly based on data distribution such as MT method, k-nearest neighbor method, and LOF, which are general unsupervised anomaly detection methods, and methods that only present indicators that contribute to them. Unlike, since the data probability density can be estimated and the degree of abnormality can be comprehensively evaluated from the conditional probabilities under a plurality of conditions, false detection can be prevented and the accuracy of abnormality detection can be improved. Further, the first score to the fourth score are values based on various probabilities that the parameter to be monitored is observed. It is possible to grasp the content of the probability that is the background of each score. That is, according to the present embodiment, it is possible to improve the explanation to the user about the meaning of each score. By grasping the meaning of the score, it is possible to identify the abnormal part, deal with the abnormality, and improve the quality and accuracy of the monitoring work by the user. Further, according to the
Further, according to the present embodiment, it is possible to monitor the state using not only one score but also scores calculated from a plurality of viewpoints.
図7は、実施形態に係る予測システムのハードウェア構成の一例を示す図である。
コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、入出力インタフェース904、通信インタフェース905を備える。
上述の異常検知システム10は、コンピュータ900に実装される。そして、上述した各機能は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。また、CPU901は、プログラムに従って、記憶領域を主記憶装置902に確保する。また、CPU901は、プログラムに従って、処理中のデータを記憶する記憶領域を補助記憶装置903に確保する。
FIG. 7 is a diagram showing an example of the hardware configuration of the prediction system according to the embodiment.
The
The above-mentioned
なお、異常検知システム10の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各機能部による処理を行ってもよい。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、CD、DVD、USB等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また、このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行しても良い。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
異常検知システム10は、複数のコンピュータ900によって構成されていても良い。
By recording a program for realizing all or part of the functions of the
The
以上のとおり、本開示に係るいくつかの実施形態を説明したが、これら全ての実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。例えば、第4スコアを採用せずに、第1スコア~第3スコアの3つのスコアを算出したうえで、これらのスコアのうち値が最も大きいスコアに基づいて異常を検知してもよい。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態及びその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As described above, some embodiments according to the present disclosure have been described, but all of these embodiments are presented as examples and are not intended to limit the scope of the invention. For example, instead of adopting the fourth score, three scores of the first score to the third score may be calculated, and then the abnormality may be detected based on the score having the largest value among these scores. These embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope of the invention described in the claims and the equivalent scope thereof, as are included in the scope and gist of the invention.
<付記>
各実施形態に記載の異常検知システム10、異常検知方法およびプログラムは、例えば以下のように把握される。
<Additional Notes>
The
(1)第1の態様に係る異常検知システム10は、監視対象の装置の稼働データを取得するデータ取得部11と、前記稼働データに含まれる監視対象の計測値である第1パラメータの値について、当該値が観測される確率を、異なる方法を用いて複数種類算出し、複数種類の前記確率のそれぞれについて、異常の程度を示すスコアを算出するスコア算出部12と、複数の前記スコアと、判定モデルと、に基づいて、複数の前記スコアそれぞれについて異常か否かを判定し、複数の前記判定の結果に基づいて、前記装置の異常を検知する異常検知部15と、を備える。
複数のスコアに基づいて、異常検知を行うことにより、誤検知を防ぎ、検知精度を向上することができる。複数のスコアは、監視対象のパラメータが観測される複数種類の確率に基づく値であるので、ユーザは、複数種類の確率の算出内容を把握することで、各スコアの意味を理解することができる。つまり、スコアの説明性を向上することができる。
(1) The
By performing anomaly detection based on a plurality of scores, false detection can be prevented and detection accuracy can be improved. Since the plurality of scores are values based on the plurality of types of probabilities in which the monitored parameter is observed, the user can understand the meaning of each score by grasping the calculation contents of the plurality of types of probabilities. .. That is, the explanation of the score can be improved.
(2)第2の態様に係る異常検知システム10は、(1)の異常検知システム10であって、複数の前記スコアのうちの1つに係る前記確率は、前記稼働データに含まれる前記装置の運転状態に関係する計測値である第2パラメータが示す運転状態において、当該稼働データに含まれる前記第1パラメータの値が観測される確率である。
これにより、現在の運転状態において第1パラメータの値が観測される確率を算出し、例えば、この確率が低い値が観測された場合に、現在の運転状態において異常な値が観測されたと判定することができる。また、当該確率に基づく第2スコアを監視することにより、パラメータが示す挙動のうち“劣化”を判断することができる。
(2) The
As a result, the probability that the value of the first parameter is observed in the current operating state is calculated, and for example, when a value with a low probability is observed, it is determined that an abnormal value is observed in the current operating state. be able to. Further, by monitoring the second score based on the probability, it is possible to determine "deterioration" among the behaviors indicated by the parameters.
(3)第3の態様に係る異常検知システム10は、(1)~(2)の異常検知システム10であって、複数の前記スコアのうちの1つに係る前記確率は、前記第1パラメータとの関係性が強い所定の計測値である第3パラメータについて、前記稼働データに含まれる前記第3パラメータの値が観測されたときに、当該稼働データに含まれる前記第1パラメータの値が観測される確率である。
これにより、関係性が強い他のパラメータの値に対して第1パラメータの値が観測される確率を算出し、例えば、この確率が低い値が観測された場合に、第1パラメータ又は関係性が強いパラメータにおいて異常な値が観測されたと判定することができる。また、当該確率に基づく第3スコアを監視することにより、パラメータが示す挙動のうち“乖離”を判断することができる。
(3) The
As a result, the probability that the value of the first parameter is observed with respect to the value of another parameter with a strong relationship is calculated. For example, when a value with a low probability is observed, the first parameter or the relationship is determined. It can be determined that an abnormal value was observed with a strong parameter. Further, by monitoring the third score based on the probability, it is possible to determine "dissociation" among the behaviors indicated by the parameters.
(4)第4の態様に係る異常検知システム10は、(1)~(3)の異常検知システム10であって、複数の前記スコアのうちの1つに係る前記確率は、前記第1パラメータを除く複数の他の計測値である第4パラメータについて、前記稼働データに含まれる第4パラメータの値が観測されたときに、当該稼働データに含まれる前記第1パラメータの値が観測される確率である。
これにより、他のパラメータの値に対して第1パラメータの値が観測される確率を算出し、例えば、この確率が低い値が観測された場合に、第1パラメータ又は他のパラメータにおいて異常な値が観測されたと判定することができる。また、当該確率に基づく第4スコアを監視することにより、パラメータが示す挙動のうち“振動”を判断することができる。
(4) The
As a result, the probability that the value of the first parameter is observed with respect to the value of the other parameter is calculated. For example, when a value with a low probability is observed, an abnormal value in the first parameter or another parameter is calculated. Can be determined to have been observed. Further, by monitoring the fourth score based on the probability, it is possible to determine "vibration" among the behaviors indicated by the parameters.
(5)第5の態様に係る異常検知システム10は、(1)~(4)の異常検知システム10であって、複数の前記スコアのうちの1つに係る前記確率は、前記稼働データに含まれる前記第1パラメータの値が観測される確率密度である。
これにより、第1パラメータがとりうる値の中で今回の第1パラメータの値が観測される確率を算出し、例えば、この確率が低い値が観測された場合に、第1パラメータについて異常な値が観測されたと判定することができる。また、当該確率に基づく第1スコアを監視することにより、パラメータが示す挙動のうち“突変”を判断することができる。
(5) The
As a result, the probability that the value of the first parameter will be observed this time is calculated among the values that the first parameter can take. For example, when a value with a low probability is observed, an abnormal value for the first parameter is calculated. Can be determined to have been observed. Further, by monitoring the first score based on the probability, it is possible to determine "sudden change" among the behaviors indicated by the parameters.
(6)第6の態様に係る異常検知システム10は、(1)~(5)の異常検知システム10であって、前記異常検知部15は、複数の前記スコアのうち値が最も大きいスコアに基づいて異常を検知する。
これにより、異常を最も端的に表すスコアをユーザへ通知することができ、異常の判断に役立てることができる。
(6) The
As a result, the score that most clearly represents the abnormality can be notified to the user, which can be useful for determining the abnormality.
(7)第7の態様に係る異常検知システム10は、(1)~(6)の異常検知システム10であって、前記異常検知部15が検知した異常を出力する出力部18、をさらに備える。
(7) The
(8)第8の態様に係る異常検知システム10は、(1)~(7)の異常検知システム10であって、前記装置20が正常な運転状態にあるときの前記稼働データに基づいて、前記スコア算出部12が算出した複数種類の前記スコアのそれぞれについて、前記スコアが正常である範囲を示す前記判定モデル1~4を作成する判定モデル作成部(学習部14)、をさらに備える。
これにより、スコア算出部が算出したスコアについて異常か否かの評価を行うことができる。
(8) The
As a result, it is possible to evaluate whether or not the score calculated by the score calculation unit is abnormal.
(9)第8の態様に係る異常検知システム10は、(1)~(8)の異常検知システム10であって、複数種類の前記スコアの推移を示すグラフを含むレポートを作成するレポート作成部17をさらに備える。
スコアの推移を確認することで、装置20の異常について経時的な変化の評価を行うことができる。グラフに示す推移の範囲を例えば1年以上とすることで、装置20の中長期的な評価を行うことができる。
(9) The
By confirming the transition of the score, it is possible to evaluate the change over time for the abnormality of the
(10)第10の態様に係る予測方法では、異常検知システムが、監視対象の装置の稼働データを取得し、前記稼働データに含まれる監視対象の計測値である第1パラメータの値について、当該値が観測される確率を、異なる方法を用いて複数種類算出し、複数種類の前記確率のそれぞれについて、異常の程度を示すスコアを算出し、複数の前記スコアと、判定モデルと、に基づいて、複数の前記スコアそれぞれについて異常か否かを判定し、複数の前記判定の結果に基づいて、前記装置の異常を検知する。 (10) In the prediction method according to the tenth aspect, the abnormality detection system acquires the operation data of the device to be monitored, and the value of the first parameter, which is the measured value of the monitoring target included in the operation data, is concerned. Multiple types of probabilities of observing values are calculated using different methods, and for each of the multiple types of probabilities, a score indicating the degree of abnormality is calculated, based on the plurality of scores and a determination model. , It is determined whether or not each of the plurality of scores is abnormal, and the abnormality of the apparatus is detected based on the results of the plurality of determinations.
(11)第11の態様に係るプログラムは、コンピュータに、監視対象の装置の稼働データを取得し、前記稼働データに含まれる監視対象の計測値である第1パラメータの値について、当該値が観測される確率を、異なる方法を用いて複数種類算出し、複数種類の前記確率のそれぞれについて、異常の程度を示すスコアを算出し、複数の前記スコアと、判定モデルと、に基づいて、複数の前記スコアそれぞれについて異常か否かを判定し、複数の前記判定の結果に基づいて、前記装置の異常を検知する処理を実行させる。 (11) The program according to the eleventh aspect acquires the operation data of the device to be monitored by the computer, and observes the value of the first parameter which is the measured value of the monitoring target included in the operation data. A plurality of types of probabilities are calculated using different methods, a score indicating the degree of abnormality is calculated for each of the plurality of types of probabilities, and a plurality of scores are calculated based on the plurality of scores and a determination model. It is determined whether or not each of the scores is abnormal, and a process for detecting an abnormality in the apparatus is executed based on the results of the plurality of determinations.
10・・・異常検知システム
11・・・データ取得部
12・・・スコア算出部
13・・・設定受付部
14・・・学習部
15・・・異常検知部
16・・・記憶部
17・・・レポート作成部
18・・・出力部
20・・・装置
900・・・コンピュータ
901・・・CPU
902・・・主記憶装置
903・・・補助記憶装置
904・・・入出力インタフェース
905・・・通信インタフェース
10 ...
902 ...
Claims (11)
前記稼働データに含まれる監視対象の計測値である第1パラメータの値について、当該値が観測される確率を、異なる方法を用いて複数種類算出し、複数種類の前記確率のそれぞれについて、異常の程度を示すスコアを算出するスコア算出部と、
複数の前記スコアと、判定モデルと、に基づいて、複数の前記スコアそれぞれについて異常か否かを判定し、複数の前記判定の結果に基づいて、前記装置の異常を検知する異常検知部と、
を備える異常検知システム。 The data acquisition unit that acquires the operation data of the device to be monitored, and
For the value of the first parameter, which is the measured value of the monitoring target included in the operation data, the probability of the value being observed is calculated for multiple types using different methods, and each of the multiple types of probabilities is abnormal. A score calculation unit that calculates the score indicating the degree, and
An abnormality detection unit that determines whether or not each of the plurality of scores is abnormal based on the plurality of the scores and the determination model, and detects the abnormality of the apparatus based on the results of the plurality of determinations.
Anomaly detection system with.
請求項1に記載の異常検知システム。 The probability pertaining to one of the plurality of scores is included in the operation data in the operation state indicated by the second parameter which is a measured value related to the operation state of the apparatus included in the operation data. The probability that the value of one parameter will be observed,
The abnormality detection system according to claim 1.
請求項1または請求項2に記載の異常検知システム。 The probability related to one of the plurality of scores is observed by the value of the third parameter included in the operation data for the third parameter, which is a predetermined measured value having a strong relationship with the first parameter. This is the probability that the value of the first parameter included in the operation data will be observed.
The abnormality detection system according to claim 1 or 2.
請求項1から請求項3の何れか1項に記載の異常検知システム。 The probability pertaining to one of the plurality of scores is when the value of the fourth parameter included in the operation data is observed for the fourth parameter which is a plurality of other measured values excluding the first parameter. In addition, it is the probability that the value of the first parameter included in the operation data is observed.
The abnormality detection system according to any one of claims 1 to 3.
請求項1から請求項4の何れか1項に記載の異常検知システム。 The probability pertaining to one of the plurality of scores is the probability density at which the value of the first parameter included in the operation data is observed.
The abnormality detection system according to any one of claims 1 to 4.
請求項1から請求項5の何れか1項に記載の異常検知システム。 The abnormality detection unit detects an abnormality based on the score having the largest value among the plurality of scores.
The abnormality detection system according to any one of claims 1 to 5.
をさらに備える請求項1から請求項6の何れか1項に記載の異常検知システム。 An output unit that outputs an abnormality detected by the abnormality detection unit,
The abnormality detection system according to any one of claims 1 to 6, further comprising.
をさらに備える請求項1から請求項7の何れか1項に記載の異常検知システム。 A determination to create a determination model indicating a range in which the score is normal for each of a plurality of types of scores calculated by the score calculation unit based on the operation data when the device is in a normal operating state. Modeling department,
The abnormality detection system according to any one of claims 1 to 7, further comprising.
監視対象の装置の稼働データを取得し、
前記稼働データに含まれる監視対象の計測値である第1パラメータの値について、当該値が観測される確率を、異なる方法を用いて複数種類算出し、複数種類の前記確率のそれぞれについて、異常の程度を示すスコアを算出し、
複数の前記スコアと、判定モデルと、に基づいて、複数の前記スコアそれぞれについて異常か否かを判定し、複数の前記判定の結果に基づいて、前記装置の異常を検知する、
異常検知方法。 The anomaly detection system
Acquire the operation data of the device to be monitored and
For the value of the first parameter, which is the measured value of the monitoring target included in the operation data, the probability of the value being observed is calculated for multiple types using different methods, and each of the multiple types of probabilities is abnormal. Calculate a score that indicates the degree,
Based on the plurality of the scores and the determination model, it is determined whether or not each of the plurality of scores is abnormal, and the abnormality of the apparatus is detected based on the results of the plurality of determinations.
Anomaly detection method.
監視対象の装置の稼働データを取得し、
前記稼働データに含まれる監視対象の計測値である第1パラメータの値について、当該値が観測される確率を、異なる方法を用いて複数種類算出し、複数種類の前記確率のそれぞれについて、異常の程度を示すスコアを算出し、
複数の前記スコアと、判定モデルと、に基づいて、複数の前記スコアそれぞれについて異常か否かを判定し、複数の前記判定の結果に基づいて、前記装置の異常を検知する処理、
を実行させるプログラム。 On the computer
Acquire the operation data of the device to be monitored and
For the value of the first parameter, which is the measured value of the monitoring target included in the operation data, the probability of the value being observed is calculated for multiple types using different methods, and each of the multiple types of probabilities is abnormal. Calculate a score that indicates the degree,
A process of determining whether or not each of the plurality of scores is abnormal based on the plurality of the scores and the determination model, and detecting the abnormality of the apparatus based on the results of the plurality of determinations.
A program to execute.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020196311A JP2022084435A (en) | 2020-11-26 | 2020-11-26 | Abnormality detection system, abnormality detection method, and program |
PCT/JP2021/034889 WO2022113501A1 (en) | 2020-11-26 | 2021-09-22 | Anomaly detection system, anomaly detection method, and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020196311A JP2022084435A (en) | 2020-11-26 | 2020-11-26 | Abnormality detection system, abnormality detection method, and program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022084435A true JP2022084435A (en) | 2022-06-07 |
JP2022084435A5 JP2022084435A5 (en) | 2023-10-25 |
Family
ID=81755510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020196311A Pending JP2022084435A (en) | 2020-11-26 | 2020-11-26 | Abnormality detection system, abnormality detection method, and program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022084435A (en) |
WO (1) | WO2022113501A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023170715A (en) * | 2022-05-19 | 2023-12-01 | 株式会社日立製作所 | System analysis apparatus and system analysis method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115577813B (en) * | 2022-12-07 | 2023-05-23 | 常州金坛金能电力有限公司 | Substation management system and method |
CN117909692B (en) * | 2024-03-18 | 2024-05-31 | 山东海纳智能装备科技股份有限公司 | Intelligent analysis method for operation data of double-disc motor bearing |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7119349B2 (en) * | 2017-11-22 | 2022-08-17 | 富士通株式会社 | Determination device, determination program, determination method |
CN112041771A (en) * | 2019-03-26 | 2020-12-04 | 东芝三菱电机产业系统株式会社 | Abnormality determination support device |
-
2020
- 2020-11-26 JP JP2020196311A patent/JP2022084435A/en active Pending
-
2021
- 2021-09-22 WO PCT/JP2021/034889 patent/WO2022113501A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023170715A (en) * | 2022-05-19 | 2023-12-01 | 株式会社日立製作所 | System analysis apparatus and system analysis method |
Also Published As
Publication number | Publication date |
---|---|
WO2022113501A1 (en) | 2022-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022113501A1 (en) | Anomaly detection system, anomaly detection method, and program | |
US10719577B2 (en) | System analyzing device, system analyzing method and storage medium | |
JP4832609B1 (en) | Abnormal sign diagnosis device and abnormality sign diagnosis method | |
JP5375829B2 (en) | Operation management apparatus, operation management method, and operation management program | |
US7398184B1 (en) | Analyzing equipment performance and optimizing operating costs | |
JPWO2019142331A1 (en) | Failure prediction system and failure prediction method | |
US20080167842A1 (en) | Method and system for detecting, analyzing and subsequently recognizing abnormal events | |
WO2016147657A1 (en) | Information processing device, information processing method, and recording medium | |
CN110321352A (en) | Production line monitoring method and device, electronic equipment and readable storage medium | |
JP2019133212A (en) | Abnormality detection system, abnormality detection method, and program | |
JP5768983B2 (en) | Contract violation prediction system, contract violation prediction method, and contract violation prediction program | |
JP2013008098A (en) | Method for display of abnormality sign diagnostic result | |
US11480948B2 (en) | Monitoring target selecting device, monitoring target selecting method, and program | |
US9860109B2 (en) | Automatic alert generation | |
JP2016081482A (en) | Plant monitoring assist system and plant monitoring assist method | |
JPWO2020003460A1 (en) | Anomaly detection device | |
EP3287960B1 (en) | Computer system and method to process alarm signals | |
CN112286771A (en) | Alarm method for monitoring global resources | |
US10318364B2 (en) | Methods and systems for problem-alert aggregation | |
JP2006276924A (en) | Equipment diagnostic device and equipment diagnostic program | |
US20160299966A1 (en) | System and Method for Creation and Detection of Process Fingerprints for Monitoring in a Process Plant | |
JP2010276339A (en) | Method and device for diagnosis sensor | |
JP2014153736A (en) | Fault symptom detection method, program and device | |
JP2007164346A (en) | Decision tree changing method, abnormality determination method, and program | |
CN113642618A (en) | Method and equipment for state prediction model training of screw device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231017 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231017 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20241001 |