JP2022084357A - Composite semi-permeable membrane having graphene oxide layer - Google Patents

Composite semi-permeable membrane having graphene oxide layer Download PDF

Info

Publication number
JP2022084357A
JP2022084357A JP2020196188A JP2020196188A JP2022084357A JP 2022084357 A JP2022084357 A JP 2022084357A JP 2020196188 A JP2020196188 A JP 2020196188A JP 2020196188 A JP2020196188 A JP 2020196188A JP 2022084357 A JP2022084357 A JP 2022084357A
Authority
JP
Japan
Prior art keywords
graphene oxide
membrane
oxide layer
film
porous substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020196188A
Other languages
Japanese (ja)
Inventor
秀人 松山
Hideto Matsuyama
敬三 中川
Keizo Nakagawa
昇 久保田
Noboru Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Kobe University NUC
Original Assignee
Asahi Kasei Corp
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Kobe University NUC filed Critical Asahi Kasei Corp
Priority to JP2020196188A priority Critical patent/JP2022084357A/en
Publication of JP2022084357A publication Critical patent/JP2022084357A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a new semi-permeable membrane which is useful for treatment (treatment such as separation, purification and concentration) of both liquids of a water-based liquid and an organic liquid.SOLUTION: A composite semi-permeable membrane has a graphene oxide layer on a porous base material membrane containing a polyketone resin. An amine compound is particularly preferably contained in the graphene oxide layer.SELECTED DRAWING: None

Description

特許法第30条第2項適用申請有り ウェブサイトのアドレス http://www3.scej.org/meeting/stu22w/index.html http://www3.scej.org/meeting/stu22w/abst/J11.pdf 掲載日:令和2年2月17日 [刊行物等] ウェブサイトのアドレス https://maku-jp.sakura.ne.jp/nenkai/42/ https://maku-jp.sakura.ne.jp/nenkai/42/42_all.pdf 掲載日:令和2年5月20日Patent Law Article 30, Paragraph 2 Application Applicable Website Address http: // www 3. scej. org / meeting / stu22w / index. html http: // www3. scej. org / meeting / stu22w / abst / J11. pdf Publication date: February 17, 2nd year of Reiwa [Publications, etc.] Website address https://maku-jp. sakura. ne. jp / nenkai / 42 / https: // maku-jp. sakura. ne. jp / nenkai / 42 / 42_all. pdf Publication date: May 20, 2nd year of Reiwa

本発明は、酸化グラフェン層を有する複合半透膜に関する。 The present invention relates to a composite semipermeable membrane having a graphene oxide layer.

逆浸透膜(RO膜)及びナノフィルター膜(NF膜)は、低分子量領域での分子篩機能(半透膜機能)を持つ分離膜として、海水の淡水化、排水の浄化、低分子量有価物の精製や濃縮等の水系の液処理に広く使われている。これらRO膜及びNF膜は、1960年代に発明された酢酸セルロースより成る非対称膜(俗に言う、Loeb膜)に起源を持つ。その後多くの改良が為され、現在では、ポリサルホン等の高強度樹脂より成る多孔性膜(限外濾過領域の孔径を持つ膜)を基材膜とし、その表面に界面重合法により形成された緻密なポリアミド層(低分子領域の分子篩機能を持つ)を持つ、複合半透膜が主流である。 Reverse osmosis membranes (RO membranes) and nanofilter membranes (NF membranes) are separation membranes that have a molecular sieving function (semipermeable membrane function) in the low molecular weight region, such as desalination of seawater, purification of wastewater, and low molecular weight valuable resources. It is widely used for water-based liquid treatment such as purification and concentration. These RO membranes and NF membranes have their origins in the asymmetric membranes made of cellulose acetate (so-called Loeb membranes) invented in the 1960s. Since then, many improvements have been made, and nowadays, a porous film made of a high-strength resin such as polysulfone (a film having a pore size in the ultrapermeable filtration region) is used as a base film, and the surface thereof is densely formed by an interfacial polymerization method. A composite semipermeable membrane having a solid polyamide layer (having a molecular sieve function in a low molecular weight region) is the mainstream.

膜分離の良さは、液体は液体のまま、気体は気体のまま、相変化(気体⇔液体⇔固体)を経ずに物質の分離ができる点にある。この点のため、膜分離は、相変化を伴う既存の分離技術(蒸留技術、再結晶技術等)に比べ、エネルギーロスの少ない分離技術であり、地球の持続的発展に重要な技術である。これらの観点より、水系で成功してきたRO膜やNF膜等技術(例えば海水淡水化は、以前は蒸留法が主流であったが、現在ではRO膜法が主流に変わり、消費エネルギーの低減に寄与している)を、有機液系にも適用して行こうという動きがある(非特許文献1、非特許文献2)。 The good point of membrane separation is that substances can be separated without undergoing a phase change (gas ⇔ liquid ⇔ solid) while the liquid remains a liquid and the gas remains a gas. For this reason, membrane separation is a separation technology with less energy loss than existing separation technologies (distillation technology, recrystallization technology, etc.) that involve phase changes, and is an important technology for the sustainable development of the earth. From these points of view, technologies such as RO membranes and NF membranes that have been successful in water systems (for example, the distillation method was the mainstream for seawater desalination before, but now the RO membrane method has changed to the mainstream, and energy consumption has been reduced. There is a movement to apply (contribution) to organic liquid systems (Non-Patent Document 1, Non-Patent Document 2).

しかしながら、水系で利用されているRO膜やNF膜は有機液系では強度の面(例えば基材膜であるポリスルホン多孔膜が有機液で溶解する等)、及び分離性能の面(例えば有機液中での膨潤や有機液との相互作用等)で、有機液系への適用には難がある。水系及び有機液系のどちらにも適用できる半透膜が存在すれば、膜の適用範囲の拡大(エネルギーロスの少ない分離技術の拡大)に有用と考えられる。 However, RO membranes and NF membranes used in water systems are strong in organic liquid systems (for example, the polysulfone porous membrane that is the base film dissolves in organic liquids) and separation performance (for example, in organic liquids). It is difficult to apply to organic liquid systems due to swelling and interaction with organic liquids. If there is a semipermeable membrane that can be applied to both water-based and organic liquid-based systems, it will be useful for expanding the scope of application of the membrane (expanding separation technology with less energy loss).

なお、膜素材技術の進歩は著しく、耐有機液性に優れるポリケトン素材の膜も報告されている(特許文献1~3)。また、新しい分離機能素材(分子篩機能素材)として、耐有機液性も期待可能な酸化グラフェン素材の研究も為されている(非特許文献3)。 The progress in membrane material technology is remarkable, and membranes made of polyketone material having excellent organic liquid resistance have been reported (Patent Documents 1 to 3). In addition, as a new separation functional material (molecular sieve functional material), research on a graphene oxide material that can be expected to have organic liquid resistance has also been conducted (Non-Patent Document 3).

特開2017-144390号公報Japanese Unexamined Patent Publication No. 2017-144390 特開2002-348401号公報Japanese Unexamined Patent Publication No. 2002-348401 特開平2-4431号公報Japanese Unexamined Patent Publication No. 2-4431

D.S.Sholl and R.P.Lively, Nature, 532 (2016) 435-438D.S.Sholl and R.P.Lively, Nature, 532 (2016) 435-438 A.G.Livingston et al., Chemical Reviews, 114 (2014) 10735-10806A.G.Livingston et al., Chemical Reviews, 114 (2014) 10735-10806 G. Liu, W. Jin and N. Xu, Chemical Society Reviews, 44 (2015) 5016-5030G. Liu, W. Jin and N. Xu, Chemical Society Reviews, 44 (2015) 5016-5030

本発明は、水系液及び有機系液のどちらの処理(分離、精製、濃縮等の処理)にも有用な、新しい複合半透膜を提供することを課題とする。 An object of the present invention is to provide a new composite semipermeable membrane useful for both water-based liquid and organic-based liquid treatment (treatment such as separation, purification, and concentration).

本願発明者らは、上記の課題を解決すべく鋭意研究し実験を重ねた結果、以下の構成により、上記の課題を解決しうることを見出し、本発明を完成するに至ったものである。すなわち、本発明は、以下のとおりである。 As a result of diligent research and experiments to solve the above-mentioned problems, the inventors of the present application have found that the above-mentioned problems can be solved by the following configurations, and have completed the present invention. That is, the present invention is as follows.

<<態様1>>ポリケトン樹脂を含む多孔性基材膜上に酸化グラフェン層を有する、複合半透膜。
<<態様2>>前記酸化グラフェン層がアミン化合物を含む、態様1に記載の複合半透膜。
<< Aspect 1 >> A composite semipermeable membrane having a graphene oxide layer on a porous substrate membrane containing a polyketone resin.
<< Aspect 2 >> The composite semipermeable membrane according to Aspect 1, wherein the graphene oxide layer contains an amine compound.

本発明によれば、水系、有機液系どちらの処理にも有用な複合半透膜が得られる。 According to the present invention, a composite semipermeable membrane useful for both water-based and organic liquid-based treatments can be obtained.

実施例2で作製した、本発明による複合半透膜の膜断面(酸化グラフェン層近傍)の電子顕微鏡写真である。It is an electron micrograph of the membrane cross section (near the graphene oxide layer) of the composite semipermeable membrane according to the present invention produced in Example 2. 実施例5で作製したポリケトン樹脂を含む多孔性基材膜、実施例5で作製した、酸化グラフェン層が多孔性基材膜上に積層された膜、及び参考例1で作製した、酸化グラフェン層が多孔性基材膜上に積層された膜、の3つの膜の赤外線吸収法(FT-IR)の測定結果である。酸化グラフェン層が多孔性基材膜上に積層された膜に対しては、酸化グラフェン積層側に対し、FT-IRの測定を行った。The porous base film containing the polyketone resin prepared in Example 5, the film prepared in Example 5 in which the graphene oxide layer is laminated on the porous base film, and the graphene oxide layer prepared in Reference Example 1. Is the measurement result of the infrared absorption method (FT-IR) of the three films of the film laminated on the porous substrate film. For the film in which the graphene oxide layer was laminated on the porous substrate film, FT-IR was measured on the graphene oxide laminated side.

以下、本発明を実施するための例示の形態(以下、本実施形態ともいう。)について詳細に説明する。なお、本発明は、以下に記述する実施の形態に限定されるものではなく、その示す要旨の範囲内で種々変形して用いることができる。 Hereinafter, an exemplary embodiment for carrying out the present invention (hereinafter, also referred to as the present embodiment) will be described in detail. The present invention is not limited to the embodiments described below, and can be variously modified and used within the scope of the gist thereof.

本実施形態における複合半透膜は、概略的には、ポリケトン樹脂より成る多孔性基材膜と、酸化グラフェン層を有する。 The composite semipermeable membrane in the present embodiment generally has a porous substrate membrane made of a polyketone resin and a graphene oxide layer.

<酸化グラフェン>
酸化グラフェンは、グラファイト(黒鉛)の構成要素であるグラフェン(炭素六員環のsp2共役構造が平面状に発達した二次元(平板状)シート)の炭素の一部が酸化されて、水酸基、エポキシ基、カルボキシル基等の官能基が固定された二次元(平板状)シートである。極性の官能基(水酸基、カルボキシル基等)を有するため、水等の極性溶媒中に薄片状で分散しやすい性質を持つ。
<Graphene oxide>
Graphene oxide is a hydroxyl group formed by oxidizing a part of the carbon of graphene (a two-dimensional (flat) sheet in which the sp 2 -conjugated structure of a carbon six-membered ring is developed in a planar shape), which is a component of graphite. A two-dimensional (flat plate) sheet on which functional groups such as an epoxy group and a carboxyl group are fixed. Since it has a polar functional group (hydroxyl group, carboxyl group, etc.), it has the property of being flaky and easily dispersed in a polar solvent such as water.

この性質を利用し、酸化グラフェンの薄片(例えば厚み1nm程度、長さ1~数μm程度)を基材上に密に薄く積層(平板を積み重ねた層)することが可能になる。基材に透液性のある多孔性構造膜を用いた場合、極性溶媒中に酸化グラフェンの薄片を分散させた液体を多孔性構造膜上に濾過することで、多孔性構造膜上(表面)に酸化グラフェンを密に薄く積層することが可能である。 Utilizing this property, flakes of graphene oxide (for example, a thickness of about 1 nm and a length of about 1 to several μm) can be densely and thinly laminated (a layer in which flat plates are stacked) on a substrate. When a liquid-permeable porous structural membrane is used as the base material, a liquid in which graphene oxide flakes are dispersed in a polar solvent is filtered onto the porous structural membrane to form a porous structural membrane (surface). Graphene oxide can be densely and thinly laminated.

積層された酸化グラフェン薄片間の隙間(上下に存在する酸化グラフェン薄片との平板間の微小な隙間、横方向に隣接する酸化グラフェン薄片との薄片端部間の微小な隙間)が、液中の溶質分離を行うことが可能な分子篩としての機能(物理的サイズ分離及び/又は化学的相互作用(静電力、水素結合、疎水性相互作用等)による分離)を持ち得る。酸化グラフェン薄片は、例えば、Improved Hammer's法(D.C. Marcano et al., ACS Nano., 4 (2010) 4806-4814参照)により作製ができる。 The gaps between the laminated graphene oxide flakes (small gaps between the flat plates with the graphene oxide flakes existing above and below, and the minute gaps between the flanks with the horizontally adjacent graphene oxide flakes) are in the liquid. It may have a function as a molecular sieve capable of performing solute separation (separation by physical size separation and / or chemical interaction (electrostatic force, hydrogen bond, hydrophobic interaction, etc.)). Graphene oxide flakes can be prepared, for example, by the Improved Hammer's method (see D.C. Marcano et al., ACS Nano., 4 (2010) 4806-4814).

<ポリケトン樹脂>
ポリケトン樹脂は、一酸化炭素とオレフィンとの共重合体である。例えばパラジウムやニッケル等を触媒に用い、一酸化炭素とオレフィンを共重合させることにより得ることができる。オレフィンとしては、エチレン、プロピレン、ブテン、ヘキセン、オクテン、デセン等の鎖状オレフィン、スチレン、α―メチルスチレン等のアルケニル芳香族化合物、シクロペンテン、ノルボルネン、5-メチルノルボルネン、テトラシクロドデセン、トリシクロデセン、ペンタシクロペンタデセン、ペンタシクロヘキサデセン等の環状オレフィン、塩化ビニル、フッ化ビニル等のハロゲン化アルケン、エチルアクリレート、メチルメタクリレート等のアクリル酸エステル、及び酢酸ビニル等が挙げられる。好ましい態様において、ポリケトン樹脂は、下記式(1)で表される繰り返し単位を有する。
<Polyketone resin>
The polyketone resin is a copolymer of carbon monoxide and an olefin. For example, it can be obtained by copolymerizing carbon monoxide and an olefin using palladium, nickel or the like as a catalyst. Examples of the olefin include chain olefins such as ethylene, propylene, butene, hexene, octene and decene, alkenyl aromatic compounds such as styrene and α-methylstyrene, cyclopentene, norbornene, 5-methylnorbornene, tetracyclododecene and tricyclo. Examples thereof include cyclic olefins such as decene, pentacyclopentadecene and pentacyclohexadecene, alkene halides such as vinyl chloride and vinyl fluoride, acrylic acid esters such as ethyl acrylate and methyl methacrylate, and vinyl acetate. In a preferred embodiment, the polyketone resin has a repeating unit represented by the following formula (1).

-R-C(=O)- (1)
(式中、Rは、置換基を有しても良い炭素数2~20の炭化水素基である。)
-RC (= O)-(1)
(In the formula, R is a hydrocarbon group having 2 to 20 carbon atoms which may have a substituent.)

上記式(1)中のRに含まれる置換基としては、例えば、ハロゲン原子、水酸基、エーテル基、1級アミノ基、2級アミノ基、3級アミノ基、4級アンモニウム基、スルホン酸基、スルホン酸エステル基、カルボン酸基、カルボン酸エステル基、リン酸基、リン酸エステル基、チオール基、スルフィド基、アルコキシシリル基、およびシラノール基等を例示できる。 Examples of the substituent contained in R in the above formula (1) include a halogen atom, a hydroxyl group, an ether group, a primary amino group, a secondary amino group, a tertiary amino group, a quaternary ammonium group, and a sulfonic acid group. Examples thereof include a sulfonic acid ester group, a carboxylic acid group, a carboxylic acid ester group, a phosphoric acid group, a phosphoric acid ester group, a thiol group, a sulfide group, an alkoxysilyl group, and a silanol group.

上記式(1)中のRの炭素数は、好ましくは2以上8以下であり、より好ましくは、2以上3以下であり、2が最も好ましい。 The carbon number of R in the above formula (1) is preferably 2 or more and 8 or less, more preferably 2 or more and 3 or less, and 2 is most preferable.

特に、ポリケトン樹脂は、下記式(2)で表される1-オキソトリメチレンの繰り返し単位を多く含むことが、ポリケトン多孔性基材膜の機械的強度を確保する観点から好ましい。具体的には、ポリケトン樹脂の全繰り返し単位における1-オキソトリメチレンの繰り返し単位の割合が、70モル%以上であることが好ましく、90モル%以上であることがより好ましく、95モル%以上であることがさらに好ましく、100モル%でも良い。 In particular, it is preferable that the polyketone resin contains a large number of repeating units of 1-oxotrimethylene represented by the following formula (2) from the viewpoint of ensuring the mechanical strength of the polyketone porous base film. Specifically, the ratio of the repeating unit of 1-oxotrimethylene to all the repeating units of the polyketone resin is preferably 70 mol% or more, more preferably 90 mol% or more, and 95 mol% or more. It is more preferably present, and may be 100 mol%.

-CH2-CH2-C(=O)- (2) -CH 2 -CH 2 -C (= O)-(2)

ポリケトン樹脂の分子量は、特に制限は無いが、多孔性膜への成形のしやすさや機械的強度の観点から、極限粘度にて0.5dL/g以上、5dL/g以下が好ましい。ポリケトン樹脂の極限粘度は、例えば特許第6210925号公報記載の方法にて測定できる。 The molecular weight of the polyketone resin is not particularly limited, but is preferably 0.5 dL / g or more and 5 dL / g or less in the ultimate viscosity from the viewpoint of ease of molding into a porous membrane and mechanical strength. The ultimate viscosity of the polyketone resin can be measured, for example, by the method described in Japanese Patent No. 6210925.

<多孔性基材膜>
多孔性基材膜は、分子篩機能を持つ緻密な薄膜層(本実施形態の場合は、酸化グラフェン層)を乗せる基材となる膜で、複合半透膜の機械的強度を支える、重要な機能を持つ。その一方で、液体の透過抵抗を低減することが好ましいため、多孔性構造膜が用いられる。
<Polish substrate film>
The porous substrate membrane is a membrane on which a dense thin film layer having a molecular sieving function (in this embodiment, a graphene oxide layer) is placed, and is an important function that supports the mechanical strength of the composite semipermeable membrane. have. On the other hand, since it is preferable to reduce the permeation resistance of the liquid, a porous structural membrane is used.

多孔性基材膜は、その表面に分子篩機能を持つ緻密な薄膜層を欠陥なく乗せるため、分子篩機能を持つ緻密な薄膜層と接する部分(多孔性基材膜にとっての表面部分)の孔径は、ある程度小さい、すなわち、数ナノメートルから数百ナノメートルの範囲が好ましい。なお、多孔性基材膜全体としては液体の透過抵抗を低減することが好ましいため、分子篩機能を持つ緻密な薄膜層と接していない部分(多孔性基材膜にとっての断面部分の大部分)の孔径は、数ナノメートルから数百ナノメートルの範囲よりも大きい孔径も許容される。多孔性基材膜断面の巨視的構造は、スポンジ状構造でもボイドを含む構造でも許容される。このような構造の多孔性基材膜は限外濾過膜および精密濾過膜として知られる範疇の多孔性膜に該当する。多孔性基材膜の各部分の孔径は、例えば電子顕微鏡観察により確認することができる。 Since a dense thin film layer having a molecular sieving function is placed on the surface of the porous substrate film without defects, the pore size of the portion in contact with the dense thin film layer having a molecular sieving function (the surface portion for the porous substrate film) is set. It is preferably small to some extent, that is, in the range of several nanometers to several hundreds of nanometers. Since it is preferable to reduce the permeation resistance of the liquid as a whole of the porous substrate membrane, the portion not in contact with the dense thin film layer having the molecular sieving function (most of the cross-sectional portion for the porous substrate membrane). Pore diameters larger than those ranging from a few nanometers to a few hundred nanometers are also acceptable. The macroscopic structure of the cross section of the porous substrate membrane is acceptable, whether it is a sponge-like structure or a structure containing voids. A porous substrate membrane having such a structure corresponds to a category of porous membranes known as ultrafiltration membranes and microfiltration membranes. The pore size of each portion of the porous substrate film can be confirmed, for example, by observing with an electron microscope.

多孔性基材膜の空隙率は特に限定されないが、液体の透過抵抗を低減する観点から、および機械的強度を確保する観点から、50%~95%が好ましく、60%~90%がより好ましく、70%~85%がさらに好ましい。多孔性基材膜の空隙率は、下記数式(1)式により算出される。
空隙率(%)=(1-G・ρ-1・V-1)×100 (1)
(数式(1)中、Gは支持層の質量(g)であり、ρは支持層の質量平均密度(g/cm3)であり、Vは支持層の体積(cm3)である。)
The porosity of the porous substrate membrane is not particularly limited, but is preferably 50% to 95%, more preferably 60% to 90%, from the viewpoint of reducing the permeation resistance of the liquid and ensuring the mechanical strength. , 70% to 85% is more preferable. The porosity of the porous substrate film is calculated by the following mathematical formula (1).
Porosity (%) = (1-G ・ ρ -1・ V -1 ) × 100 (1)
(In the formula (1), G is the mass (g) of the support layer, ρ is the mass average density of the support layer (g / cm 3 ), and V is the volume of the support layer (cm 3 ).)

多孔性基材膜の形状は、平膜状や中空糸膜状等、既存に知られている限外濾過膜あるいは精密濾過膜の形状が用いられる。なお、平膜状の場合は、既存のRO膜で知られているように、平膜状の多孔性基材膜のさらにその下地としてポリエステル等の不織布を用いることも可能である。 As the shape of the porous substrate membrane, an existing known ultrafiltration membrane or microfiltration membrane such as a flat membrane or a hollow fiber membrane is used. In the case of a flat film, as is known from existing RO films, it is also possible to use a non-woven fabric such as polyester as a base of the flat film-like porous substrate film.

多孔性基材膜の厚みは、例えば、複合半透膜の断面を光学顕微鏡や電子顕微鏡で観察することにより、測定することができる。多孔性基材膜の厚みは、分子篩層を支える機械的強度(耐圧強度等)の確保の観点からは厚い方が好ましく、一方、透液性を高める(不必要に透過抵抗を高めない)観点からは薄い方が好ましい。具体的には、30μm以上900μm未満が好ましく、50μm以上500μm以下がより好ましく、100μm以上250μm以下がさらに好ましい。多孔性基材膜が薄くなると、膜体積が小さくなることで膜運転装置の小型化も可能となる。 The thickness of the porous substrate membrane can be measured, for example, by observing the cross section of the composite semipermeable membrane with an optical microscope or an electron microscope. The thickness of the porous substrate membrane is preferably thick from the viewpoint of ensuring the mechanical strength (compressive strength, etc.) that supports the molecular sieve layer, while increasing the liquid permeability (does not unnecessarily increase the permeation resistance). It is preferable that it is thin. Specifically, it is preferably 30 μm or more and less than 900 μm, more preferably 50 μm or more and 500 μm or less, and further preferably 100 μm or more and 250 μm or less. When the porous base film becomes thinner, the membrane volume becomes smaller, which makes it possible to reduce the size of the membrane operating device.

ポリケトン樹脂より成る多孔性基材膜は、既知の方法によって作製することができ、例えば、特許文献2に開示されている方法等を参考にして作製することができる。すなわち、ポリケトン樹脂を溶媒(例えばレゾルシノール水溶液)に溶解して溶液を調整し、この溶液をポリケトン樹脂の非溶媒(例えばメタノール水溶液)中に含浸して凝固させ、多孔性基材膜を得る方法である。 The porous base film made of a polyketone resin can be produced by a known method, and can be produced by referring to, for example, the method disclosed in Patent Document 2. That is, a method in which a polyketone resin is dissolved in a solvent (for example, an aqueous solution of resorcinol) to prepare a solution, and this solution is impregnated in a non-solvent (for example, an aqueous solution of methanol) of the polyketone resin and coagulated to obtain a porous substrate film. be.

ポリケトン樹脂より成る多孔性基材膜は、適宜改質を行っても良い。例えば、シランカップリング剤を用いた各種官能基の導入、カルボキシル基の導入(C. Liu et al., J. Colloid interface Sci., 544 (2019) 230-240記載の方法)等である。シランカップリング剤等によりアミノ基を多孔性基材膜に導入することにより、多孔性基材膜と、酸化グラフェン中のカルボキシル基との相互作用により、積層した酸化グラフェン層と多孔性基材膜との間の固定の強化等の効果が期待できる。また、カルボキシル基を多孔性基材膜に導入することで、多孔性基材膜と、同じくカルボキシル基を持つとされる酸化グラフェンとの、例えばアミン化合物を介した相互作用により、積層した酸化グラフェン層と多孔性基材膜との間の固定の強化等の効果が期待できる。 The porous base film made of a polyketone resin may be appropriately modified. For example, introduction of various functional groups using a silane coupling agent, introduction of a carboxyl group (method described in C. Liu et al., J. Colloid interface Sci., 544 (2019) 230-240) and the like. By introducing an amino group into the porous base film with a silane coupling agent or the like, the porous base film and the laminated graphene oxide layer and the porous base film are formed by the interaction of the carboxyl groups in the graphene oxide. It can be expected to have effects such as strengthening the fixation between and. Further, by introducing a carboxyl group into the porous base film, graphene oxide laminated by the interaction between the porous base film and graphene oxide, which is also considered to have a carboxyl group, via, for example, an amine compound. Effects such as strengthening the fixation between the layer and the porous base film can be expected.

多孔性基材膜の改質に用いるシランカップリング剤は、以下に限定されるものではないが、例えば、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシキシラン、3-(6-アミノヘキシル)アミノプロピルトリエトキシシラン、3-(N,N-ジメチルアミノ)プロピルトリエトキシシラン、N-フェニルアミノメチルトリエトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン等のアミノシラン類が挙げられ、好ましくは、3-アミノプロピルトリエトキシシランである。アミノシラン類は、ポリケトン樹脂を含む多孔性基材膜表面のカルボニル基との間で水素結合等により結合し(アミノシラン類のアミノ基とポリケトンのカルボニル基との間の水素結合等)、さらにエトキシ基やメトキシ基が加水分解によりヒドロキシル基に転化後に酸化グラフェン表面の水酸基等と反応(脱水縮合等)あるいは酸化グラフェン表面のヒドロキシル基やカルボキシル基やカルボニル基等と水素結合し、酸化グラフェン層の安定性を高めることに寄与すると推定される。 The silane coupling agent used for modifying the porous substrate film is not limited to the following, and is, for example, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-amino). Ethyl) Aminopropyltriethoxyxylan, 3- (6-aminohexyl) aminopropyltriethoxysilane, 3- (N, N-dimethylamino) propyltriethoxysilane, N-phenylaminomethyltriethoxysilane, N-phenyl- Examples thereof include aminosilanes such as 3-aminopropyltriethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, and N-cyclohexylaminomethyltriethoxysilane, and 3-aminopropyltriethoxysilane is preferable. Aminosilanes are bonded to the carbonyl group on the surface of the porous substrate film containing the polyketone resin by a hydrogen bond or the like (hydrogen bond between the amino group of the aminosilanes and the carbonyl group of the polyketone, etc.), and further an ethoxy group. After the methoxy group is converted to a hydroxyl group by hydrolysis, it reacts with the hydroxyl group on the surface of graphene oxide (dehydration condensation, etc.) or hydrogen-bonds with the hydroxyl group, carboxyl group, carbonyl group, etc. on the surface of graphene oxide, and the stability of the graphene oxide layer. It is presumed that it contributes to the enhancement of.

多孔性基材膜へカルボキシル基を導入するために使用する多価カルボン酸またはその酸無水物、或いは酸クロライドは、公知慣用のもので良く、特に制約はないが、例えば、コハク酸、無水コハク酸、アジピン酸、セバシン酸、テレフタル酸、無水フタル酸、トリメリット酸、無水トリメリット酸、ピロメリット酸、無水ピロメリット酸、テトラヒドロフランのテトラカルボン酸、テトラヒドロフランのテトラカルボン酸無水物、コハク酸ジクロライド、アジピン酸ジクロライド、セバシン酸ジクロライド、テレフタル酸ジクロライド、2-クロロ-テレフタル酸ジクロライド、イソフタル酸ジクロライド、2,6-ナフタレンジカルボン酸ジクロライド、4,4’-ビフェニルジカルボニルクロライド、1,4-シクロヘキサンジカルボン酸ジクロライド、1,3-シクロヘキサンジカルボン酸ジクロライド、1,1‘-ビシクロヘキサン-4,4’-ジカルボン酸ジクロライド等が挙げられ、好ましくは、セバシン酸ジクロライドである。 The polyvalent carboxylic acid or its acid anhydride or acid chloride used for introducing a carboxyl group into the porous substrate film may be a known and commonly used one, and is not particularly limited, but for example, succinic acid and anhydrous succinic acid. Acid, adipic acid, sebacic acid, terephthalic acid, phthalic anhydride, trimellitic acid, trimellitic anhydride, pyromellitic acid, pyromellitic anhydride, tetracarboxylic acid of tetrahydrofuran, tetracarboxylic acid anhydride of tetrahydrofuran, dichloride succinate , Adipic acid dichloride, sebacic acid dichloride, terephthalic acid dichloride, 2-chloro-terephthalic acid dichloride, isophthalic acid dichloride, 2,6-naphthalenedicarboxylic acid dichloride, 4,4'-biphenyldicarbonyl chloride, 1,4-cyclohexanedicarboxylic Examples thereof include acid dichloride, 1,3-cyclohexanedicarboxylic acid dichloride, 1,1'-bicyclohexane-4,4'-dicarboxylic acid dichloride, and the like, preferably sebacic acid dichloride.

<酸化グラフェン層>
ポリケトン樹脂より成る多孔性基材膜表面には、酸化グラフェンの薄片(例えば厚み1nm程度、長さ1~数μm程度)が薄く積層されている。酸化グラフェン層の厚みは、欠陥(酸化グラフェン薄片の無い部分)が生じない程度に厚く、液体の透過抵抗にならない程度に薄いことが望ましく、数nm~1μmが好ましい。より好ましくは、酸化グラフェン層の厚みは、10nm~500nmであり、さらに好ましくは20nm~300nmである。酸化グラフェン層の厚みは、例えば、複合半透膜の断面を電子顕微鏡で観察することによって測定することができる。
<Graphene oxide layer>
Thin sections of graphene oxide (for example, a thickness of about 1 nm and a length of about 1 to several μm) are thinly laminated on the surface of a porous base film made of a polyketone resin. The thickness of the graphene oxide layer is preferably thick enough not to cause defects (parts without graphene oxide flakes) and thin enough not to cause permeation resistance of the liquid, preferably several nm to 1 μm. More preferably, the graphene oxide layer has a thickness of 10 nm to 500 nm, and more preferably 20 nm to 300 nm. The thickness of the graphene oxide layer can be measured, for example, by observing the cross section of the composite semipermeable membrane with an electron microscope.

多孔性基材膜表面への積層は、例えば、酸化グラフェン薄片の懸濁液を、多孔性基材膜上に濾過することで行うことができる。酸化グラフェン層の厚みは、濾過する酸化グラフェン薄片の懸濁液中の酸化グラフェン薄片濃度及び濾過液量により制御可能である。濾過方法としては、例えば、吸引濾過及び加圧濾過を選択することができる。 Lamination on the surface of the porous substrate membrane can be performed, for example, by filtering a suspension of graphene oxide flakes onto the porous substrate membrane. The thickness of the graphene oxide layer can be controlled by the concentration of graphene oxide in the suspension of the graphene oxide to be filtered and the amount of the filtrate. As the filtration method, for example, suction filtration and pressure filtration can be selected.

酸化グラフェン層中には、アミン化合物が含有されていることが好ましい。アミン化合物は、酸化グラフェン薄片に存在するカルボキシル基等との静電相互作用や酸素含有官能基との水素結合や共有結合により、酸化グラフェン薄片の積層構造を安定化する効果があることが推察される。アミン化合物としては、トリエタノールアミン、エチレンジアミン、ブチレンジアミン、1,3-プロパンジアミン、ヘキサメチレンジアミン、p-フェニレンジアミン、m-フェニレンジアミン、m-キシリレンジアミン、ポリエチレンイミン、ポリアリルアミン塩酸塩等を挙げることができる。アミン化合物としては、一官能(モノアミン)より多官能(ジアミン、トリアミン、ポリアミン)がより好ましい。 It is preferable that the graphene oxide layer contains an amine compound. It is speculated that the amine compound has the effect of stabilizing the laminated structure of the graphene oxide pieces by the electrostatic interaction with the carboxyl group and the like present in the graphene oxide pieces and the hydrogen bond and the covalent bond with the oxygen-containing functional group. To. Examples of the amine compound include triethanolamine, ethylenediamine, butylenediamine, 1,3-propanediamine, hexamethylenediamine, p-phenylenediamine, m-phenylenediamine, m-xylylenediamine, polyethyleneimine, polyallylamine hydrochloride and the like. Can be mentioned. As the amine compound, polyfunctional (diamine, triamine, polyamine) is more preferable than monoamine.

酸化グラフェン層中へのアミン化合物の存在化は、例えば、多孔性基材膜表面に酸化グラフェン薄片を積層させるとき(多孔性基材膜上に酸化グラフェン薄片の懸濁液を濾過するとき)に、酸化グラフェン薄片の懸濁液中にアミン化合物を添加溶解し、アミン化合物を含む酸化グラフェン薄片懸濁液を多孔性基材膜上に濾過することで、行うことが可能である。 The presence of the amine compound in the graphene oxide layer is, for example, when the graphene oxide flakes are laminated on the surface of the porous substrate film (when the suspension of the graphene oxide flakes is filtered on the porous substrate film). This can be done by adding and dissolving an amine compound in a suspension of graphene oxide flakes and filtering the graphene oxide flakes suspension containing the amine compound onto a porous substrate membrane.

酸化グラフェン層中のアミン化合物の存在の確認は、例えばX線光電子分光法(XPS)にて、窒素原子の検出を行うことでできる。XPS分析による酸化グラフェン層中の窒素原子の量は、炭素原子との原子数比(N/C)にて、0.01~0.2程度が好ましく、より好ましくは0.05~0.15である。 The presence of the amine compound in the graphene oxide layer can be confirmed by detecting nitrogen atoms by, for example, X-ray photoelectron spectroscopy (XPS). The amount of nitrogen atoms in the graphene oxide layer by XPS analysis is preferably about 0.01 to 0.2, more preferably 0.05 to 0.15, in terms of the atomic number ratio (N / C) with carbon atoms. Is.

アミン化合物は、酸化グラフェン薄片に存在するカルボキシル基等との静電相互作用や酸素含有官能基との水素結合や共有結合により、酸化グラフェン薄片の積層構造を安定化する効果があることが推察され、ある程度以上の量が酸化グラフェン層中に存在することが好ましいが、一方で、酸化グラフェンの層の層間に入り込んだアミン化合物は液透過の抵抗になること等が考えられ、酸化グラフェン層中のアミン化合物の存在量には、適正範囲が存在することが考えられる。 It is speculated that the amine compound has the effect of stabilizing the laminated structure of the graphene oxide pieces by the electrostatic interaction with the carboxyl group and the like present in the graphene oxide pieces and the hydrogen bond and the covalent bond with the oxygen-containing functional group. It is preferable that a certain amount or more is present in the graphene oxide layer, but on the other hand, it is considered that the amine compound that has entered between the layers of the graphene oxide layer becomes a resistance to liquid permeation, and the amine compound has become a resistance to liquid permeation. It is considered that the abundance of the amine compound has an appropriate range.

また、赤外線吸収分析法(FT-IR法等)により、N-H結合に基づく波長1500~1600cm-1の吸収の存在からアミン化合物の存在を確認することも可能である。 It is also possible to confirm the presence of the amine compound from the presence of absorption at a wavelength of 1500 to 1600 cm -1 based on the NH bond by an infrared absorption analysis method (FT-IR method or the like).

<複合半透膜の用途>
本実施形態における複合半透膜は、水系液及び有機系液中において、分離、精製、及び濃縮等の処理に好適に使用することができる。ここで、水系液とは、広く水溶液を指し、また、有機系液とは、一般的な有機溶媒に溶質が溶解している溶液を指すものであり、溶媒は特定の種類に限定されない。
<Use of composite semipermeable membrane>
The composite semipermeable membrane in the present embodiment can be suitably used for treatments such as separation, purification, and concentration in an aqueous liquid and an organic liquid. Here, the aqueous solution broadly refers to an aqueous solution, and the organic solution refers to a solution in which a solute is dissolved in a general organic solvent, and the solvent is not limited to a specific type.

<膜性能評価>
複合半透膜の性能は、透水量、透液量、及び、阻止率によって評価することができる。ここで、透水量及び透液量とは、加圧濾過における、例えば2気圧~5気圧の範囲で加圧した種々の溶液の膜面積あたりの透水量又は透液量(単位:L・m-2・h-1・気圧-1)である。阻止率は、上記の塩化ナトリウム水溶液の加圧濾過において、1-(供給液濃度/透過液濃度)で算出される値(単位:%)である。
<Membrane performance evaluation>
The performance of the composite semipermeable membrane can be evaluated by the amount of water permeation, the amount of liquid permeation, and the blocking rate. Here, the water permeation amount and the liquid permeation amount are the water permeation amount or the liquid permeation amount per membrane area of various solutions pressurized in the range of, for example, 2 atm to 5 atm in pressure filtration (unit: Lm- . 2・ h -1・ Atmospheric pressure -1 ). The blocking rate is a value (unit:%) calculated by 1- (supply liquid concentration / permeate liquid concentration) in the above-mentioned pressure filtration of the sodium chloride aqueous solution.

逆浸透処理試験に用いる溶液は、水系液では硫酸ナトリウム、エバンスブルー(分子量961)、及び、ポリエチレングリコールの水溶液から選択した。また、有機系液では、メチルオレンジ(分子量327)、アシッドレッド265(分子量636)、及び、エバンスブルー(分子量961)のメタノール溶液から選択した。 The solution used for the reverse osmosis treatment test was selected from an aqueous solution of sodium sulfate, Evans blue (molecular weight 961), and polyethylene glycol as an aqueous solution. The organic solution was selected from a methanol solution of methyl orange (molecular weight 327), acid red 265 (molecular weight 636), and Evans blue (molecular weight 961).

複合半透膜の耐有機液性は、有機液中に浸漬したときの膜形状の目視での変化(膨潤等による寸法変化の有無等)により、簡易的には確認することができる。 The organic liquid resistance of the composite semipermeable membrane can be easily confirmed by the visual change in the film shape (whether or not there is a dimensional change due to swelling or the like) when immersed in the organic liquid.

以下、本発明の実施の形態を実施例及び比較例によってさらに具体的に説明するが、本発明の実施の形態は、これらの実施例にのみ限定されるものではない。以下、ppmとは質量ppmのことを指す。 Hereinafter, embodiments of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the embodiments of the present invention are not limited to these Examples. Hereinafter, ppm refers to mass ppm.

(実施例1)
一酸化炭素とエチレンとが完全交互共重合した、ポリケトン樹脂(極限粘度3.0dL/g)を、10重量%になるように、65重量%のレゾルシノール水溶液に溶解した。このポリケトン溶液を、ガラス板上に0.4ミリメートル厚みで流延した後、30重量%のメタノール水溶液の浴中に浸漬し、さらにアセトン及びヘキサンで洗浄し、ポリケトン樹脂より成る平膜状の多孔性基材膜を得た。この多孔性基材膜を、2.5容量%の3-アミノプロピルトリエトキシシラン水溶液に常温で2時間浸漬し、次いで純水で洗浄することでポリケトン樹脂より成る多孔性基材膜を得た。
(Example 1)
A polyketone resin (extreme viscosity 3.0 dL / g) in which carbon monoxide and ethylene were completely alternately copolymerized was dissolved in a 65% by weight aqueous solution of resorcinol so as to have a thickness of 10% by weight. This polyketone solution was cast on a glass plate to a thickness of 0.4 mm, then immersed in a bath of a 30% by weight aqueous methanol solution, washed with acetone and hexane, and made into a flat film-like porous material made of a polyketone resin. A polyketone base film was obtained. This porous substrate membrane was immersed in a 2.5% by volume 3-aminopropyltriethoxysilane aqueous solution at room temperature for 2 hours and then washed with pure water to obtain a porous substrate membrane made of a polyketone resin. ..

Improved Hammer's法により作製した酸化グラフェン薄片を濃度5ppmで純水中に分散させた分散液を作製した(動的光散乱法(大塚電子株式会社製、Photal ELSZ-1000を用いて測定)により測定した平均粒子径1μm)。この分散液を、上記の多孔性基材膜に、膜面積当たり7mL/cm2の量の濾過(吸引濾過)を行い、その後80℃で1時間加熱を行い、酸化グラフェン層がポリケトン樹脂より成る多孔性基材膜上に積層されて成る膜を得た。 A dispersion was prepared by dispersing graphene oxide flakes prepared by the Improved Hammer's method in pure water at a concentration of 5 ppm (measured by the dynamic light scattering method (measured using Photal ELSZ-1000, manufactured by Otsuka Electronics Co., Ltd.)). Average particle size 1 μm). This dispersion is filtered (suction filtration) in an amount of 7 mL / cm 2 per membrane area on the above-mentioned porous substrate membrane, and then heated at 80 ° C. for 1 hour, and the graphene oxide layer is made of a polyketone resin. A film formed by laminating on a porous substrate film was obtained.

得られた膜を用い、水系液での性能を確認するために、500ppmの硫酸ナトリウム水溶液、及び10ppmのエバンスブルー(分子量961)水溶液の加圧濾過を、どちらの液に対しても、2気圧、25℃で行ったところ、透水量は21L・m-2・h-1・気圧-1、硫酸ナトリウムの阻止率はゼロ、エバンスブルーの阻止率は65%であった。 Using the obtained film, in order to confirm the performance in an aqueous solution, pressure filtration of 500 ppm sodium sulfate aqueous solution and 10 ppm Evans blue (molecular weight 961) aqueous solution was performed at 2 atm for both solutions. At 25 ° C., the water permeation amount was 21 L, m -2 , h -1 , atmospheric pressure -1 , the inhibition rate of sodium sulfate was zero, and the inhibition rate of Evans blue was 65%.

また、有機系液での性能を確認するために、エバンスブルー(分子量961)の10 ppmのメタノール溶液の加圧濾過を5気圧、25℃で行ったところ、透液量は3.1L・m-2・h-1・気圧-1、阻止率は50%であった。 In addition, in order to confirm the performance of the organic liquid, pressure filtration of a 10 ppm methanol solution of Evans blue (molecular weight 961) was performed at 5 atm and 25 ° C., and the liquid permeation amount was 3.1 Lm. -2 , h -1 , atmospheric pressure -1 , and the blocking rate was 50%.

(実施例2)
Improved Hammer's法により作製した酸化グラフェン薄片の分散液に、トリエタノールアミンを液中の酸化グラフェンと同重量溶解した以外は、実施例1と同様にして酸化グラフェン層がポリケトン樹脂より成る多孔性基材膜上に積層されて成る膜を得た。得られた膜の電子顕微鏡写真(酸化グラフェン層近傍の膜断面)(日本電子株式会社製、JSM-7500Fを用いて測定)を図1に示す。多孔性基材膜の厚みは約150μm、酸化グラフェン層の厚みは約150nmであった。
(Example 2)
A porous substrate in which the graphene oxide layer is made of a polyketone resin in the same manner as in Example 1 except that triethanolamine is dissolved in a dispersion of graphene oxide flakes prepared by the Improved Hammer's method by the same weight as the graphene oxide in the solution. A film laminated on the film was obtained. An electron micrograph (cross section of the membrane near the graphene oxide layer) (measured using JSM-7500F manufactured by JEOL Ltd.) of the obtained membrane is shown in FIG. The thickness of the porous substrate film was about 150 μm, and the thickness of the graphene oxide layer was about 150 nm.

得られた膜を用い、水系液での性能を確認するために、500ppmの硫酸ナトリウム水溶液、及び10ppmのエバンスブルー(分子量961)水溶液の加圧濾過を2気圧、25℃で行ったところ、透水量は4L・m-2・h-1・気圧-1、硫酸ナトリウムの阻止率は70%、エバンスブルーの阻止率は98%であった。 Using the obtained film, in order to confirm the performance in an aqueous solution, a 500 ppm sodium sulfate aqueous solution and a 10 ppm Evans blue (molecular weight 961) aqueous solution were pressure-filtered at 2 atm and 25 ° C. to allow water to pass through. The molecular weight was 4 L, m -2 , h -1 , atmospheric pressure -1 , the inhibition rate of sodium sulfate was 70%, and the inhibition rate of Evans blue was 98%.

また、有機系液での性能を確認するために、メチルオレンジ(分子量327)、アシッドレッド265(分子量636)、エバンスブルー(分子量961)の10ppmのメタノール溶液の加圧濾過を2気圧、25℃で行ったところ、透液量は1L・m-2・h-1・気圧-1、阻止率はそれぞれ、30%、80%、99%であった。 In addition, in order to confirm the performance in the organic liquid, pressure filtration of a 10 ppm methanol solution of methyl orange (molecular weight 327), acid red 265 (molecular weight 636) and Evans blue (molecular weight 961) was performed at 2 atm and 25 ° C. The liquid permeation amount was 1 L, m -2 , h -1 , atmospheric pressure -1 , and the blocking rates were 30%, 80%, and 99%, respectively.

(実施例3)
一酸化炭素とエチレンとが完全交互共重合したポリケトン樹脂(極限粘度3.0dL/g)を、10重量%になるように、65重量%のレゾルシノール水溶液に溶解した。このポリケトン溶液を、ガラス板上に0.4ミリメートル厚みで流延した後、30重量%のメタノール水溶液の浴中に浸漬し、さらにアセトン及びヘキサンで洗浄し、ポリケトン樹脂より成る平膜状の多孔性基材膜を得た。この多孔性基材膜を、0.5重量%の水素化ホウ素ナトリウム水溶液に室温で5分間浸漬し、次いで1重量%のセバシン酸ジクロライドのヘキサン溶液に室温で10分間し、カルボキシル基を導入した、ポリケトン樹脂より成る多孔性基材膜を得た。
(Example 3)
A polyketone resin (extreme viscosity 3.0 dL / g) in which carbon monoxide and ethylene were completely alternately copolymerized was dissolved in a 65% by weight aqueous solution of resorcinol so as to have a thickness of 10% by weight. This polyketone solution was cast on a glass plate to a thickness of 0.4 mm, then immersed in a bath of a 30% by weight aqueous methanol solution, washed with acetone and hexane, and made into a flat film-like porous material made of a polyketone resin. A polyketone base film was obtained. This porous substrate film was immersed in a 0.5 wt% sodium hydride aqueous solution at room temperature for 5 minutes, and then in a hexane solution of 1 wt% sebacic acid dichloride at room temperature for 10 minutes to introduce a carboxyl group. , A porous base film made of a polyketone resin was obtained.

Improved Hammer's法により作製した酸化グラフェン薄片を濃度5ppmで純水中に分散させ、さらにエチレンジアミンを濃度2ppmで添加溶解させた分散液を作製した(動的光散乱法(大塚電子株式会社製、Photal ELSZ-1000を用いて測定)により測定した平均粒子径1μm)。この分散液を、上記の多孔性基材膜に、膜面積当たり7mL/cm2の量の濾過(吸引濾過)を行い、その後80℃で1時間加熱を行うことで、酸化グラフェン層がポリケトン樹脂より成る多孔性基材膜上に積層されて成る膜を得た。 Graphene oxide flakes prepared by the Improved Hammer's method were dispersed in pure water at a concentration of 5 ppm, and then ethylenediamine was added and dissolved at a concentration of 2 ppm to prepare a dispersion (dynamic light scattering method (Otsuka Electronics Co., Ltd., Photal ELSZ). Average particle size 1 μm measured by -1000). This dispersion is filtered (suction filtration) in an amount of 7 mL / cm 2 per membrane area on the above-mentioned porous substrate membrane, and then heated at 80 ° C. for 1 hour to form a graphene oxide layer of a polyketone resin. A film formed by laminating on a porous substrate film made of the above was obtained.

得られた膜の酸化グラフェン層の原子組成分析をXPS(日本電子株式会社製、JPS-9010MCを用いて測定)にて行ったところ、炭素、酸素、窒素のそれぞれの原子の数としての存在量はそれぞれ、59.9%、36.7%、3.27%であり、窒素原子と炭素原子との原子数比(N/C)は、0.055であった。 When the atomic composition analysis of the graphene oxide layer of the obtained film was performed by XPS (measured using JPS-9010MC manufactured by Nippon Denshi Co., Ltd.), the abundance of carbon, oxygen, and nitrogen as the number of atoms of each was performed. Was 59.9%, 36.7%, and 3.27%, respectively, and the atomic number ratio (N / C) of the nitrogen atom to the carbon atom was 0.055.

得られた膜を用い、水系液での性能を確認するために、500ppmの硫酸ナトリウム水溶液、及び10ppmのエバンスブルー(分子量961)水溶液の加圧濾過を2気圧、25℃で行ったところ、透水量は2.1L・m-2・h-1・気圧-1、硫酸ナトリウムの阻止率は90%、エバンスブルーの阻止率は98%であった。 Using the obtained film, in order to confirm the performance in an aqueous solution, a 500 ppm sodium sulfate aqueous solution and a 10 ppm Evans blue (molecular weight 961) aqueous solution were pressure-filtered at 2 atm and 25 ° C. to allow water to pass through. The molecular weight was 2.1 L, m -2 , h -1 , atmospheric pressure -1 , the inhibition rate of sodium sulfate was 90%, and the inhibition rate of Evans blue was 98%.

また、有機系液での性能を確認するために、メチルオレンジ(分子量327)、アシッドレッド265(分子量636)、エバンスブルー(分子量961)の10ppmのメタノール溶液の加圧濾過を2気圧、25℃で行ったところ、透液量は0.75L・m-2・h-1・気圧-1、阻止率はそれぞれ、60%、80%、99%であった。 In addition, in order to confirm the performance in the organic liquid, pressure filtration of a 10 ppm methanol solution of methyl orange (molecular weight 327), acid red 265 (molecular weight 636) and Evans blue (molecular weight 961) was performed at 2 atm and 25 ° C. The liquid permeation amount was 0.75 L, m -2 , h -1 , atmospheric pressure -1 , and the blocking rates were 60%, 80%, and 99%, respectively.

(実施例4)
Improved Hammer's法により作製した酸化グラフェン薄片の分散液に、エチレンジアミンを添加しなかった以外は、実施例3と同様にして酸化グラフェン層がポリケトン樹脂より成る多孔性基材膜上に積層されて成る膜を得た。
(Example 4)
A film formed by laminating a graphene oxide layer on a porous substrate film made of a polyketone resin in the same manner as in Example 3 except that ethylenediamine was not added to the dispersion of graphene oxide flakes prepared by the Improved Hammer's method. Got

得られた膜の酸化グラフェン層の原子組成分析をXPS(日本電子株式会社製、JPS-9010MCを用いて測定)にて行ったところ、炭素、酸素、窒素のそれぞれの原子の数としての存在量はそれぞれ、56.1%、43.0%、0.0%であり、窒素原子と炭素原子との原子数比(N/C)は、ゼロであった。 When the atomic composition analysis of the graphene oxide layer of the obtained film was performed by XPS (measured using JPS-9010MC manufactured by Nippon Denshi Co., Ltd.), the abundance of carbon, oxygen, and nitrogen as the number of atoms of each was performed. Was 56.1%, 43.0%, and 0.0%, respectively, and the atomic number ratio (N / C) between the nitrogen atom and the carbon atom was zero.

得られた膜を用い、水系液での性能を確認するために、500ppmの硫酸ナトリウム水溶液、及び10ppmのエバンスブルー(分子量961)水溶液の加圧濾過を2気圧、25℃で行ったところ、透水量は7.3L・m-2・h-1・気圧-1、硫酸ナトリウムの阻止率は20%、エバンスブルーの阻止率は75%であった。 Using the obtained film, in order to confirm the performance in an aqueous solution, a 500 ppm sodium sulfate aqueous solution and a 10 ppm Evans blue (molecular weight 961) aqueous solution were pressure-filtered at 2 atm and 25 ° C. to allow water to pass through. The molecular weight was 7.3 L, m -2 , h -1 , atmospheric pressure -1 , the inhibition rate of sodium sulfate was 20%, and the inhibition rate of Evans blue was 75%.

また、有機系液での性能を確認するために、メチルオレンジ(分子量327)、アシッドレッド265(分子量636)、エバンスブルー(分子量961)の10ppmのメタノール溶液の加圧濾過を2気圧、25℃で行ったところ、透液量は1.7L・m-2・h-1・気圧-1、阻止率はそれぞれ、25%、35%、60%であった。 In addition, in order to confirm the performance in the organic liquid, pressure filtration of a 10 ppm methanol solution of methyl orange (molecular weight 327), acid red 265 (molecular weight 636) and Evans blue (molecular weight 961) was performed at 2 atm and 25 ° C. The liquid permeation amount was 1.7 L, m -2 , h -1 , atmospheric pressure -1 , and the blocking rates were 25%, 35%, and 60%, respectively.

(実施例5)
一酸化炭素とエチレンとが完全交互共重合したポリケトン樹脂(極限粘度3.0dL/g)を、10重量%になるように、65重量%のレゾルシノール水溶液に溶解した。このポリケトン溶液を、ガラス板上に0.4ミリメートル厚みで流延した後、25重量%のメタノール水溶液の浴中に浸漬し、さらにアセトン及びヘキサンで洗浄し、ポリケトン樹脂より成る平膜状の多孔性基材膜を得た。
(Example 5)
A polyketone resin (extreme viscosity 3.0 dL / g) in which carbon monoxide and ethylene were completely alternately copolymerized was dissolved in a 65% by weight aqueous solution of resorcinol so as to have a thickness of 10% by weight. This polyketone solution was cast on a glass plate to a thickness of 0.4 mm, then immersed in a bath of a 25 wt% methanol aqueous solution, further washed with acetone and hexane, and a flat film-like porous material made of a polyketone resin. A polyketone base film was obtained.

Improved Hammer's法により作製した酸化グラフェン薄片を濃度400ppmで純水中に分散させ、さらにエチレンジアミンを濃度6000ppmに添加溶解させ、その後80℃にて1時間加熱し、酸化グラフェンの分散液を得た。この分散液に純水を加えて80倍に希釈し、酸化グラフェン薄片濃度を5ppm、エチレンジアミン濃度を75ppmに調節した。この分散液を、上記の多孔性基材膜に、膜面積当たり7mL/cm2の量の濾過(1気圧での加圧濾過)を行い、その後80℃で1時間加熱を行うことで、酸化グラフェン層がポリケトン樹脂より成る多孔性基材膜上に積層されて成る膜を得た。 Graphene oxide flakes prepared by the Improved Hammer's method were dispersed in pure water at a concentration of 400 ppm, ethylenediamine was further added and dissolved at a concentration of 6000 ppm, and then heated at 80 ° C. for 1 hour to obtain a dispersion of graphene oxide. Pure water was added to this dispersion and diluted 80-fold to adjust the graphene oxide flake concentration to 5 ppm and the ethylenediamine concentration to 75 ppm. This dispersion is oxidized by filtering the above-mentioned porous substrate membrane in an amount of 7 mL / cm 2 per membrane area (pressure filtration at 1 atm) and then heating at 80 ° C. for 1 hour. A film formed by laminating a graphene layer on a porous substrate film made of a polyketone resin was obtained.

得られた膜の酸化グラフェン層の原子組成分析をXPS(日本電子株式会社製、JPS-9010MCを用いて測定)にて行ったところ、炭素、酸素、窒素のそれぞれの原子の数としての存在量はそれぞれ、75.9%、18.5%、5.59%であり、窒素原子と炭素原子との原子数比(N/C)は、0.074であった。 When the atomic composition analysis of the graphene oxide layer of the obtained film was performed by XPS (measured using JPS-9010MC manufactured by Nippon Denshi Co., Ltd.), the abundance of carbon, oxygen, and nitrogen as the number of atoms of each was performed. Was 75.9%, 18.5%, and 5.59%, respectively, and the atomic number ratio (N / C) of the nitrogen atom to the carbon atom was 0.074.

得られた膜の酸化グラフェン積層面、及びポリケトン樹脂より成る多孔性基材膜、の赤外線吸収分析結果(FT-IR法)(サーモフィッシャーサイエンティフィック株式会社製、Nicolet iS5を用いて測定)を図2に示す。得られた膜は、波数1500~1600cm-1の領域に、アミン化合物のN-H結合に帰属できる吸収が観測できた。 Infrared absorption analysis results (FT-IR method) (measured using Nicolet iS5 manufactured by Thermo Fisher Scientific Co., Ltd.) of the graphene oxide laminated surface of the obtained film and the porous substrate film made of polyketone resin. It is shown in FIG. In the obtained membrane, absorption that could be attributed to the NH bond of the amine compound was observed in the region of wave number 1500 to 1600 cm -1 .

得られた膜を用い、水系液での性能を確認するために、分子量200、600及び1000のポリエチレングリコールの0.1重量%水溶液の加圧濾過を2気圧、25℃で行ったところ、透液量は0.25L・m-2・h-1・気圧-1、阻止率はそれぞれ、60%、85%、98%であった。 Using the obtained film, in order to confirm the performance in an aqueous solution, pressure filtration of a 0.1 wt% aqueous solution of polyethylene glycol having a molecular weight of 200, 600 and 1000 was performed at 2 atm and 25 ° C. The liquid volume was 0.25 L, m -2 , h -1 , atmospheric pressure -1 , and the blocking rates were 60%, 85%, and 98%, respectively.

また、有機系液での性能を確認するために、メチルオレンジ(分子量327)、アシッドレッド265(分子量636)、エバンスブルー(分子量961)の10ppmのメタノール溶液の加圧濾過を2気圧、25℃で行ったところ、透液量は0.06L・m-2・h-1・気圧-1、阻止率はそれぞれ、90%、99%以上、99%以上であった。 In addition, in order to confirm the performance in the organic liquid, pressure filtration of a 10 ppm methanol solution of methyl orange (molecular weight 327), acid red 265 (molecular weight 636) and Evans blue (molecular weight 961) was performed at 2 atm and 25 ° C. The liquid permeation amount was 0.06 L, m -2 , h -1 , atmospheric pressure -1 , and the blocking rates were 90%, 99% or more, and 99% or more, respectively.

(参考例1)
Improved Hammer's法により作製した酸化グラフェン薄片の分散液に、エチレンジアミンを添加しなかった以外は、実施例5と同様にして酸化グラフェン層がポリケトン樹脂より成る多孔性基材膜上に積層されて成る膜を得た。
(Reference example 1)
A film formed by laminating a graphene oxide layer on a porous substrate film made of a polyketone resin in the same manner as in Example 5 except that ethylenediamine was not added to the dispersion of graphene oxide flakes prepared by the Improved Hammer's method. Got

得られた膜の酸化グラフェン積層面の赤外線吸収分析結果(FT-IR法)(サーモフィッシャーサイエンティフィック株式会社製、Nicolet iS5を用いて測定)を図2に示す。 FIG. 2 shows the infrared absorption analysis results (FT-IR method) (measured using Nicolet iS5 manufactured by Thermo Fisher Scientific Co., Ltd.) on the graphene oxide laminated surface of the obtained film.

(比較例1)
多孔性基材膜として、ニトロセルロースより成る孔径50nmの多孔膜(メルク社製VMWP04700)を用いた以外は、実施例2と同様にして酸化グラフェン層が多孔性基材膜上に積層されて成る膜を得た。実施例2と同様にして有機系液での性能を確認しようとしたところ、膜が液によって膨潤するため、測定が不可であった。
(Comparative Example 1)
The graphene oxide layer is laminated on the porous substrate film in the same manner as in Example 2 except that a porous film having a pore size of 50 nm made of nitrocellulose (VMWP04700 manufactured by Merck Group) is used as the porous substrate film. Obtained a membrane. When an attempt was made to confirm the performance of the organic liquid in the same manner as in Example 2, the film was swollen by the liquid, so that the measurement was impossible.

本発明は、排水浄化等の水処理の分野、及び化学工業や医薬工業等での各種水系液や有機系液における有価物等の分離精製や濃縮等、幅広い産業分野で利用が可能である。 The present invention can be used in a wide range of industrial fields such as the field of water treatment such as wastewater purification, and the separation and purification and concentration of valuable resources in various water-based liquids and organic-based liquids in the chemical industry and the pharmaceutical industry.

Claims (2)

ポリケトン樹脂を含む多孔性基材膜上に酸化グラフェン層を有する、複合半透膜。 A composite semipermeable membrane having a graphene oxide layer on a porous substrate membrane containing a polyketone resin. 前記酸化グラフェン層がアミン化合物を含む、請求項1に記載の複合半透膜。 The composite semipermeable membrane according to claim 1, wherein the graphene oxide layer contains an amine compound.
JP2020196188A 2020-11-26 2020-11-26 Composite semi-permeable membrane having graphene oxide layer Pending JP2022084357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020196188A JP2022084357A (en) 2020-11-26 2020-11-26 Composite semi-permeable membrane having graphene oxide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020196188A JP2022084357A (en) 2020-11-26 2020-11-26 Composite semi-permeable membrane having graphene oxide layer

Publications (1)

Publication Number Publication Date
JP2022084357A true JP2022084357A (en) 2022-06-07

Family

ID=81868205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020196188A Pending JP2022084357A (en) 2020-11-26 2020-11-26 Composite semi-permeable membrane having graphene oxide layer

Country Status (1)

Country Link
JP (1) JP2022084357A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117000045A (en) * 2023-06-01 2023-11-07 贵州省材料产业技术研究院 Loose nanofiltration membrane for removing heavy metals and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117000045A (en) * 2023-06-01 2023-11-07 贵州省材料产业技术研究院 Loose nanofiltration membrane for removing heavy metals and preparation method thereof
CN117000045B (en) * 2023-06-01 2024-02-20 贵州省材料产业技术研究院 Loose nanofiltration membrane for removing heavy metals and preparation method thereof

Similar Documents

Publication Publication Date Title
Yong et al. Properties of polyvinyl chloride (PVC) ultrafiltration membrane improved by lignin: Hydrophilicity and antifouling
Zhao et al. A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination
Wang et al. Second interfacial polymerization on polyamide surface using aliphatic diamine with improved performance of TFC FO membranes
Wang et al. Nanofibrous ultrafiltration membranes containing cross-linked poly (ethylene glycol) and cellulose nanofiber composite barrier layer
Qin et al. Design of a novel interfacial enhanced GO-PA/APVC nanofiltration membrane with stripe-like structure
US9914099B2 (en) Self-assembled block copolymer membrane
Wang et al. Positively charged nanofiltration membranes mediated by a facile polyethyleneimine-Noria interlayer deposition strategy
Vatanpour et al. A melamine‐based covalent organic framework nanomaterial as a nanofiller in polyethersulfone mixed matrix membranes to improve separation and antifouling performance
JP6018790B2 (en) Separation membrane, manufacturing method thereof, and water treatment apparatus including separation membrane
Heo et al. Highly permeable graphene oxide/polyelectrolytes hybrid thin films for enhanced CO2/N2 separation performance
US20200122092A1 (en) Composite reverse osmosis membrane and preparation method thereof
Wu et al. Efficient removal of anionic dye by constructing thin-film composite membrane with high perm-selectivity and improved anti-dye-deposition property
US9975092B2 (en) Gas separation membrane and gas separation membrane module
Wang et al. Improved surface hydrophilicity and antifouling property of polysulfone ultrafiltration membrane with poly (ethylene glycol) methyl ether methacrylate grafted graphene oxide nanofillers
Vatanpour et al. A novel antifouling ultrafiltration membranes prepared from percarboxylic acid functionalized SiO2 bound Fe3O4 nanoparticle (SCMNP‐COOOH)/polyethersulfone nanocomposite for BSA separation and dye removal
JP6729725B2 (en) Reverse osmosis membrane protective layer forming composition, method for producing reverse osmosis membrane using the same, reverse osmosis membrane and water treatment module
Mahmoudian et al. The performance of polyethersulfone nanocomposite membrane in the removal of industrial dyes
Tang et al. Preparation of hollow-fiber nanofiltration membranes of high performance for effective removal of PFOA and high resistance to BSA fouling
Zhu et al. Fabrication of high-performance ultrafiltration membranes using zwitterionic carbon nanotubes and polyethersulfone
Huang et al. Zwitterionic poly (sulfobetaine methacrylate-co-acrylic acid) assisted simultaneous anti-wetting and anti-fouling membranes for membrane distillation
Zhang et al. Surfactant-induced intervention in interfacial polymerization to develop highly-selective thin-film composite membrane for forward osmosis process
Wei et al. Fabrication of surface microstructure for the ultrafiltration membrane based on “active–passive” synergistic antifouling and its antifouling mechanism of protein
JP2022084357A (en) Composite semi-permeable membrane having graphene oxide layer
Zhang et al. In-situ formation of epoxy derived polyethylene glycol crosslinking network on polyamide nanofiltration membrane with enhanced antifouling performance
Ma et al. A cross-linking modification toward a high-performance polyimide nanofiltration membrane for efficient desalination

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20201225