JP2022081823A - X-ray diffraction measuring device - Google Patents

X-ray diffraction measuring device Download PDF

Info

Publication number
JP2022081823A
JP2022081823A JP2020193007A JP2020193007A JP2022081823A JP 2022081823 A JP2022081823 A JP 2022081823A JP 2020193007 A JP2020193007 A JP 2020193007A JP 2020193007 A JP2020193007 A JP 2020193007A JP 2022081823 A JP2022081823 A JP 2022081823A
Authority
JP
Japan
Prior art keywords
substrate
ray diffraction
measuring device
diffraction measuring
cooling member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020193007A
Other languages
Japanese (ja)
Inventor
典規 乾
Noriki Inui
敏彦 佐々木
Toshihiko Sasaki
真吾 三井
Shingo Mitsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Kanazawa University NUC
Original Assignee
Nachi Fujikoshi Corp
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, Kanazawa University NUC filed Critical Nachi Fujikoshi Corp
Priority to JP2020193007A priority Critical patent/JP2022081823A/en
Publication of JP2022081823A publication Critical patent/JP2022081823A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To suppress variations in measurement results of an X-ray diffraction measuring device 10.SOLUTION: An X-ray diffraction measuring device 10 for emitting an X-ray toward an object to be measured includes: a substrate 26 provided with a detection sensor 40 for detecting an X-ray diffracted by the object to be measured on one surface; and a cooling member 28 provided on an opposite surface side to the one surface of the substrate 26 and having a flow path for flowing cooling water formed therein to cool the substrate 26.SELECTED DRAWING: Figure 2

Description

本発明は、X線回折測定装置に関する。 The present invention relates to an X-ray diffraction measuring device.

従来から、X線出射器から測定対象物に対してX線を照射し、当該測定対象物で回折したX線を受光した検出センサの受光信号に基づき、当該測定対象物の残留応力等を測定するX線回折測定装置が知られている。 Conventionally, the residual stress of the measurement object is measured based on the light receiving signal of the detection sensor that irradiates the measurement object with X-rays from the X-ray emitter and receives the X-rays diffracted by the measurement object. X-ray diffraction measuring devices are known.

これに関し、特許文献1には、X線出射器の温度を一定に保つために冷却装置を備えることが開示されている。 In this regard, Patent Document 1 discloses that a cooling device is provided in order to keep the temperature of the X-ray emitter constant.

特開2013-113734号公報Japanese Unexamined Patent Publication No. 2013-113734

しかしながら、X線出射器の温度を一定に保っても、X線回折測定装置の測定結果にばらつきが生じるという問題があった。 However, even if the temperature of the X-ray emitter is kept constant, there is a problem that the measurement result of the X-ray diffraction measuring device varies.

本発明はこのような課題に鑑みてなされたものであり、その目的は、測定結果のばらつきを抑制できるX線回折測定装置を提供することにある。 The present invention has been made in view of such a problem, and an object of the present invention is to provide an X-ray diffraction measuring device capable of suppressing variations in measurement results.

発明者らは、各種実験を通して、基板に設けられた検出センサの発する熱が、測定結果のばらつきの原因となることを見出した。特に、検出センサをSOI(Silicon on Insulator)センサ等、測定対象物にて回折したX線を検出するセンサ部と、検出したX線を電気信号に変換する回路部とが一体化したセンサにした場合、測定結果のばらつきが顕著であったため、これを冷却することで測定結果のばらつきを抑制することを検討した。 Through various experiments, the inventors have found that the heat generated by the detection sensor provided on the substrate causes variations in the measurement results. In particular, the detection sensor is a sensor that integrates a sensor unit that detects X-rays diffracted by an object to be measured, such as an SOI (Silicon on Insulator) sensor, and a circuit unit that converts the detected X-rays into electrical signals. In this case, the variation in the measurement results was remarkable, so it was examined to suppress the variation in the measurement results by cooling this.

具体的には、上記課題を解決するために、本発明の第一態様におけるX線回折測定装置は、測定対象物に向けてX線を出射するX線回折測定装置であって、測定対象物にて回折したX線を検出する検出センサが一面に設けられた基板と、前記基板における前記一面と反対の他面側に設けられ、冷却水を流すための流路が内部に形成され、前記基板を冷却する冷却部材と、を備える。 Specifically, in order to solve the above problems, the X-ray diffraction measuring device according to the first aspect of the present invention is an X-ray diffraction measuring device that emits X-rays toward a measurement object, and is a measurement object. A substrate on which a detection sensor for detecting X-rays diffracted in the above is provided on one surface and a flow path on the other surface of the substrate opposite to the one surface are formed inside to allow cooling water to flow. A cooling member for cooling the substrate is provided.

また、本発明の第二態様におけるX線回折測定装置では、前記冷却部材は、熱伝導性を有するとともに電気伝導性を有し、前記基板と前記冷却部材の間に挟まれて前記基板と前記冷却部材と接触し、電気的絶縁性及び熱伝導性を有する絶縁部材、を更に備える。 Further, in the X-ray diffraction measuring device according to the second aspect of the present invention, the cooling member has both thermal conductivity and electrical conductivity, and is sandwiched between the substrate and the cooling member to the substrate and the cooling member. An insulating member that comes into contact with the cooling member and has electrical insulation and thermal conductivity is further provided.

また、本発明の第三態様におけるX線回折測定装置では、前記流路は、前記基板側から前記冷却部材側を半透明視したときに、前記検出センサを囲うように形成されている。 Further, in the X-ray diffraction measuring device according to the third aspect of the present invention, the flow path is formed so as to surround the detection sensor when the cooling member side is translucently viewed from the substrate side.

また、本発明の第四態様におけるX線回折測定装置では、前記検出センサは、前記測定対象物にて回折したX線を検出するセンサ部と、検出したX線を電気信号に変換する回路部とが一体化されている。 Further, in the X-ray diffraction measuring device according to the fourth aspect of the present invention, the detection sensor includes a sensor unit that detects X-rays diffracted by the measurement object and a circuit unit that converts the detected X-rays into an electric signal. And are integrated.

また、本発明の第五態様におけるX線回折測定装置では、前記検出センサは、SOI (Silicon on Insulator)センサを含む。 Further, in the X-ray diffraction measuring device according to the fifth aspect of the present invention, the detection sensor includes an SOI (Silicon on Insulator) sensor.

また、本発明の第六態様におけるX線回折測定装置では、測定対象物に向けてX線を出射するX線出射器を更に備え、前記X線出射器は、前記冷却部材に載置されている。 Further, the X-ray diffraction measuring apparatus according to the sixth aspect of the present invention further includes an X-ray emitter that emits X-rays toward the object to be measured, and the X-ray emitter is mounted on the cooling member. There is.

また、本発明の第七態様におけるX線回折測定装置では、前記流路を一方の流路としたとき、前記X線出射器には、冷却水を流すための他方の流路が形成されている。 Further, in the X-ray diffraction measuring device according to the seventh aspect of the present invention, when the flow path is one flow path, the X-ray emitter is formed with the other flow path for flowing cooling water. There is.

また、本発明の第八態様におけるX線回折測定装置では、前記冷却部材において前記絶縁部材とは反対側の面に取り付けられ、前記基板側に延伸し、前記X線の出射範囲を調整するコリメータ、を更に備える。 Further, in the X-ray diffraction measuring device according to the eighth aspect of the present invention, the collimator attached to the surface of the cooling member opposite to the insulating member and extended to the substrate side to adjust the X-ray emission range. , Are further provided.

また、本発明の第九態様におけるX線回折測定装置では、前記絶縁部材及び前記基板には、前記コリメータが突出する貫通穴が設けられている。 Further, in the X-ray diffraction measuring device according to the ninth aspect of the present invention, the insulating member and the substrate are provided with through holes from which the collimator protrudes.

本発明によれば、測定結果のばらつきを抑制できる。 According to the present invention, variations in measurement results can be suppressed.

X線回折測定システムの全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of an X-ray diffraction measurement system. X線回折測定装置の一部構成の一例を示す図である。It is a figure which shows an example of a partial structure of an X-ray diffraction measuring apparatus. 図2に示すX線回折測定装置の分解図である。It is an exploded view of the X-ray diffraction measuring apparatus shown in FIG. 図2に示すX線回折測定装置の底面図である。It is a bottom view of the X-ray diffraction measuring apparatus shown in FIG. 図4に示す底面図の一部拡大図である。It is a partially enlarged view of the bottom view shown in FIG.

以下、添付図面を参照しながら本発明の実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as possible in the drawings, and duplicate description is omitted.

<全体構成>
図1は、X線回折測定システム1の全体構成の一例を示す図である。
図1に示すように、X線回折測定システム1は、例えば、X線回折測定装置10と、扉ボックスBと、貯留タンク12と、コンピュータ14と、を備える。なお、図1では、X線回折測定装置10の図示は簡略化している。
<Overall configuration>
FIG. 1 is a diagram showing an example of the overall configuration of the X-ray diffraction measurement system 1.
As shown in FIG. 1, the X-ray diffraction measurement system 1 includes, for example, an X-ray diffraction measurement device 10, a door box B, a storage tank 12, and a computer 14. In FIG. 1, the illustration of the X-ray diffraction measuring device 10 is simplified.

X線回折測定装置10は、歯車やシャフト等の測定対象物に向けてX線を出射し、当該測定対象物から回折したX線の回折強度を測定する機能を有する。 The X-ray diffraction measuring device 10 has a function of emitting X-rays toward a measurement object such as a gear or a shaft and measuring the diffraction intensity of the X-rays diffracted from the measurement object.

扉ボックスBは、X線回折測定装置10を取り囲んでいる。扉ボックスBは、扉を有し、ユーザがその扉を開けることで測定対象物をX線回折測定装置10にセットできる。 The door box B surrounds the X-ray diffraction measuring device 10. The door box B has a door, and the user can set the object to be measured in the X-ray diffraction measuring device 10 by opening the door.

貯留タンク12は、冷却水を貯留可能に構成されている。なお、この貯留タンク12は、複数存在してもよい。 The storage tank 12 is configured to be able to store cooling water. There may be a plurality of the storage tanks 12.

コンピュータ14は、X線回折測定装置10に接続され、当該X線回折測定装置10を制御する機能を有する。また、コンピュータ14は、X線回折測定装置10から回折強度の測定結果(電気信号)を受信し、当該測定結果に基づき、測定対象物の構造や特性の分析・測定を行う。本実施形態では、測定結果に基づき、測定対象物の残留応力を分析・測定する。 The computer 14 is connected to the X-ray diffraction measuring device 10 and has a function of controlling the X-ray diffraction measuring device 10. Further, the computer 14 receives the measurement result (electric signal) of the diffraction intensity from the X-ray diffraction measuring device 10, and analyzes and measures the structure and characteristics of the object to be measured based on the measurement result. In this embodiment, the residual stress of the object to be measured is analyzed and measured based on the measurement result.

<X線回折測定装置10の構成>
図2は、X線回折測定装置10の一部構成の一例を示す図である。また、図3は、図2に示すX線回折測定装置10の分解図である。
図2及び図3に示すように、X線回折測定装置10は、例えば、管球20と、コリメータ22と、他方の流路としての第一冷却流路24と、基板26と、冷却部材28と、絶縁部材30と、を備える。
<Structure of X-ray diffraction measuring device 10>
FIG. 2 is a diagram showing an example of a partial configuration of the X-ray diffraction measuring device 10. Further, FIG. 3 is an exploded view of the X-ray diffraction measuring device 10 shown in FIG.
As shown in FIGS. 2 and 3, the X-ray diffraction measuring device 10 includes, for example, a tube 20, a collimator 22, a first cooling flow path 24 as the other flow path, a substrate 26, and a cooling member 28. And an insulating member 30.

管球20は、X線を生成し、生成したX線を測定対象物に向けて出射するX線出射器としての機能を有する。この管球20は、冷却部材28に載置される。 The tube 20 has a function as an X-ray emitter that generates X-rays and emits the generated X-rays toward an object to be measured. The tube 20 is placed on the cooling member 28.

コリメータ22は、冷却部材28において絶縁部材30とは反対側の面に取り付けられ(図3参照)、基板26側に延伸し、管球20によるX線の出射範囲を調整する機能を有する。このコリメータ22の先端は、基板26から下側に突出している(図2参照)。 The collimator 22 is attached to the surface of the cooling member 28 opposite to the insulating member 30 (see FIG. 3), extends to the substrate 26 side, and has a function of adjusting the X-ray emission range by the tube 20. The tip of the collimator 22 projects downward from the substrate 26 (see FIG. 2).

第一冷却流路24には、貯留タンク12に接続されており、不図示のポンプにより貯留タンク12から吸い上げられた冷却水が循環している。これにより、第一冷却流路24は、管球20を冷却している。 The first cooling flow path 24 is connected to the storage tank 12, and the cooling water sucked up from the storage tank 12 by a pump (not shown) circulates. As a result, the first cooling flow path 24 cools the tube 20.

基板26の一面(図2及び図3では下面)には、測定対象物にて回折したX線を検出する検出センサ40が設けられている。検出センサ40としては、測定対象物にて回折したX線を検出するセンサ部と、検出したX線を電気信号に変換する回路部とが一体化されているものが好ましい。このような検出センサ40としては、例えば、SOI (Silicon on Insulator)センサが挙げられる。 A detection sensor 40 for detecting X-rays diffracted by an object to be measured is provided on one surface (lower surface in FIGS. 2 and 3) of the substrate 26. As the detection sensor 40, it is preferable that the sensor unit that detects the X-rays diffracted by the object to be measured and the circuit unit that converts the detected X-rays into an electric signal are integrated. Examples of such a detection sensor 40 include an SOI (Silicon on Insulator) sensor.

図4は、図2に示すX線回折測定装置10の底面図である。
図4に示すように、検出センサ40は、基板26の一面において左右に2つ設けられている。また、2つの検出センサ40の間には、コリメータ22が突出している。また、基板26の一面には、検出センサ40が変換した電気信号をコンピュータ14に送信するためのコネクタ42等が設けられている。
FIG. 4 is a bottom view of the X-ray diffraction measuring device 10 shown in FIG.
As shown in FIG. 4, two detection sensors 40 are provided on the left and right sides of one surface of the substrate 26. Further, a collimator 22 protrudes between the two detection sensors 40. Further, on one surface of the substrate 26, a connector 42 or the like for transmitting an electric signal converted by the detection sensor 40 to the computer 14 is provided.

図2及び図3に戻って、冷却部材28は、基板26における一面と反対の他面側(管球20側)に設けられ、一方の流路として冷却水を流すための第二冷却流路32が内部に形成され、基板26を冷却する機能を有する。この第二冷却流路32には、貯留タンク12又は他の貯留タンクに接続されており、不図示のポンプにより貯留タンク12から吸い上げられた冷却水が循環している。これにより、第二冷却流路32は、冷却部材28を冷却し、ひいては、絶縁部材30を介して基板26の検出センサ40を冷却する。言い換えると、検出センサ40の熱が、基板26及び絶縁部材30を介して冷却部材28に移動して検出センサ40を冷却する。 Returning to FIGS. 2 and 3, the cooling member 28 is provided on the other side (tube 20 side) opposite to one side of the substrate 26, and is a second cooling flow path for flowing cooling water as one flow path. 32 is formed inside and has a function of cooling the substrate 26. The second cooling flow path 32 is connected to the storage tank 12 or another storage tank, and the cooling water sucked up from the storage tank 12 by a pump (not shown) circulates. As a result, the second cooling flow path 32 cools the cooling member 28, and by extension, the detection sensor 40 of the substrate 26 via the insulating member 30. In other words, the heat of the detection sensor 40 moves to the cooling member 28 via the substrate 26 and the insulating member 30 to cool the detection sensor 40.

図5は、図4に示す底面図の一部拡大図である。
図5に示すように、第二冷却流路32は、基板26側から冷却部材28側を半透明視したときに、2つの検出センサ40を囲うように形成されている。具体的には、冷却部材28が直方体であるとき、第二冷却流路32は、冷却部材28の長手方向の一端から他端まで延伸する冷却流路32Aと、当該冷却流路32Aに接続され、冷却部材28の短手方向の一端から他端まで延伸する冷却流路32Bと、当該冷却流路32Bに接続され、冷却部材28の長手方向の他端から一端まで延伸する冷却流路32Cと、を含む。そして、2つの検出センサ40は、冷却流路32Aと、冷却流路32Bと、冷却流路32Cとに間で近接して設けられている。
FIG. 5 is a partially enlarged view of the bottom view shown in FIG.
As shown in FIG. 5, the second cooling flow path 32 is formed so as to surround the two detection sensors 40 when the cooling member 28 side is translucently viewed from the substrate 26 side. Specifically, when the cooling member 28 is a rectangular body, the second cooling flow path 32 is connected to the cooling flow path 32A extending from one end to the other end in the longitudinal direction of the cooling member 28 and the cooling flow path 32A. , A cooling flow path 32B extending from one end to the other end of the cooling member 28 in the lateral direction, and a cooling flow path 32C connected to the cooling flow path 32B and extending from the other end to one end in the longitudinal direction of the cooling member 28. ,including. The two detection sensors 40 are provided close to each other between the cooling flow path 32A, the cooling flow path 32B, and the cooling flow path 32C.

図2及び図3に戻って、冷却部材28は、冷却性能を高めるという観点から、熱伝導性を有することが好ましい。具体的には、冷却部材28は、水よりも高い熱伝導率を有することが好ましい。また、冷却部材28は、石英ガラスよりも高い熱伝導率を有することが好ましい。また、冷却部材28は、基板26との接触面積を大きくするという観点から、板材であることが好ましい。また、冷却部材28は、基板26がショートすることを回避するため、電気伝導性を有さないことが好ましい。しかしながら、本実施形態では、冷却部材28が、熱伝導性を有するだけでなく電気伝導性も有する銅板である場合を説明する。この場合、以下のように、基板26と冷却部材28の間に絶縁部材30を設ける。 Returning to FIGS. 2 and 3, the cooling member 28 preferably has thermal conductivity from the viewpoint of enhancing the cooling performance. Specifically, the cooling member 28 preferably has a higher thermal conductivity than water. Further, the cooling member 28 preferably has a higher thermal conductivity than quartz glass. Further, the cooling member 28 is preferably a plate material from the viewpoint of increasing the contact area with the substrate 26. Further, the cooling member 28 preferably does not have electrical conductivity in order to prevent the substrate 26 from being short-circuited. However, in the present embodiment, the case where the cooling member 28 is a copper plate having not only thermal conductivity but also electrical conductivity will be described. In this case, the insulating member 30 is provided between the substrate 26 and the cooling member 28 as follows.

絶縁部材30は、基板26と冷却部材28の間に挟まれて基板26と冷却部材28とに接触し、電気的絶縁性及び熱伝導性を有する。このような絶縁部材30としては、例えば、シリコンシートが挙げられる。なお、絶縁部材30及び基板26には、コリメータ22が突出する貫通穴30A、26Aが設けられている。 The insulating member 30 is sandwiched between the substrate 26 and the cooling member 28 and comes into contact with the substrate 26 and the cooling member 28, and has electrical insulation and thermal conductivity. Examples of such an insulating member 30 include a silicon sheet. The insulating member 30 and the substrate 26 are provided with through holes 30A and 26A from which the collimator 22 protrudes.

以上、図2及び図3に示すように、X線回折測定装置10は、基板26の上に、絶縁部材30、冷却部材28、及び、管球20が順に積層された構成になっている。 As described above, as shown in FIGS. 2 and 3, the X-ray diffraction measuring device 10 has a configuration in which an insulating member 30, a cooling member 28, and a tube 20 are sequentially laminated on a substrate 26.

<効果>
以上、本実施形態では、測定対象物に向けてX線を出射するX線回折測定装置10が、測定対象物にて回折したX線を検出する検出センサ40が一面に設けられた基板26と、基板26における一面と反対の他面側に設けられ、冷却水を流すための流路が内部に形成され、基板26を冷却する冷却部材28と、を備える。
この構成によれば、検出センサ40の駆動時に熱が発生しても、冷却部材28により検出センサ40が冷却されるので、検出センサ40による測定結果のばらつきを抑えることができる。また、冷却部材28が基板26の他面側に設けられているため、検出センサ40付近まで冷却部材28を設けることができ、冷却効率を高めることができる。
<Effect>
As described above, in the present embodiment, the X-ray diffraction measuring device 10 that emits X-rays toward the object to be measured has the substrate 26 provided with the detection sensor 40 that detects the X-rays diffracted by the object to be measured. A cooling member 28 is provided on the other side of the substrate 26 opposite to one surface, a flow path for flowing cooling water is formed inside, and the substrate 26 is cooled.
According to this configuration, even if heat is generated when the detection sensor 40 is driven, the detection sensor 40 is cooled by the cooling member 28, so that the variation in the measurement result by the detection sensor 40 can be suppressed. Further, since the cooling member 28 is provided on the other surface side of the substrate 26, the cooling member 28 can be provided up to the vicinity of the detection sensor 40, and the cooling efficiency can be improved.

また、本実施形態では、冷却部材28は、熱伝導性を有するとともに電気伝導性を有し、基板26と冷却部材28の間に挟まれて基板26と冷却部材28と接触し、電気的絶縁性及び熱伝導性を有する絶縁部材30、を更に備える。
この構成によれば、熱伝導性を有する冷却部材28が、熱伝導性を有する絶縁部材30を介して基板26を冷却することができるとともに、冷却部材28が電気伝導性を有していても絶縁部材30で絶縁されているので、検出センサ40を含む基板26の電子回路がショートすることを抑制することができる。また、直接、基板26と冷却部材28を接触させる場合に比べて、基板26が結露することを抑制することができる。
Further, in the present embodiment, the cooling member 28 has both thermal conductivity and electrical conductivity, is sandwiched between the substrate 26 and the cooling member 28, and comes into contact with the substrate 26 and the cooling member 28 to be electrically insulated. Further, an insulating member 30 having properties and thermal conductivity is provided.
According to this configuration, the cooling member 28 having thermal conductivity can cool the substrate 26 via the insulating member 30 having thermal conductivity, and even if the cooling member 28 has electrical conductivity. Since it is insulated by the insulating member 30, it is possible to prevent the electronic circuit of the substrate 26 including the detection sensor 40 from being short-circuited. Further, as compared with the case where the substrate 26 and the cooling member 28 are brought into direct contact with each other, it is possible to suppress dew condensation on the substrate 26.

また、本実施形態では、第二冷却流路32は、基板26側から冷却部材28側を半透明視したときに、検出センサ40を囲うように形成されている。
この構成によれば、検出センサ40の冷却効率を高めることができるので、検出センサ40による測定結果のばらつきを一層抑えることができる。
Further, in the present embodiment, the second cooling flow path 32 is formed so as to surround the detection sensor 40 when the cooling member 28 side is translucently viewed from the substrate 26 side.
According to this configuration, the cooling efficiency of the detection sensor 40 can be improved, so that the variation in the measurement result by the detection sensor 40 can be further suppressed.

また、本実施形態では、検出センサ40は、測定対象物にて回折したX線を検出するセンサ部と、検出したX線を電気信号に変換する回路部とが一体化されている。
この構成によれば、センサ部と回路部が一体化されているため検出センサ40に熱が発生し易いが、冷却部材28によって、検出センサ40の発熱により生じる測定結果のばらつきを抑えることができる。
Further, in the present embodiment, the detection sensor 40 integrates a sensor unit that detects X-rays diffracted by the object to be measured and a circuit unit that converts the detected X-rays into an electric signal.
According to this configuration, since the sensor unit and the circuit unit are integrated, heat is likely to be generated in the detection sensor 40, but the cooling member 28 can suppress the variation in the measurement result caused by the heat generation of the detection sensor 40. ..

また、本実施形態では、検出センサ40は、SOI (Silicon on Insulator)センサを含む。
この構成によれば、検出センサ40に熱が一層発生し易いが、冷却部材28によって、検出センサ40の発熱により生じる測定結果のばらつきを抑えることができる。
Further, in the present embodiment, the detection sensor 40 includes an SOI (Silicon on Insulator) sensor.
According to this configuration, heat is more likely to be generated in the detection sensor 40, but the cooling member 28 can suppress variations in the measurement results caused by the heat generated by the detection sensor 40.

また、本実施形態では、測定対象物に向けてX線を出射するX線出射器(管球20)を更に備え、管球20は、冷却部材28に載置されている。
この構成によれば、管球20の位置を安定させることができる。
Further, in the present embodiment, an X-ray emitter (tube 20) that emits X-rays toward the object to be measured is further provided, and the tube 20 is mounted on the cooling member 28.
According to this configuration, the position of the tube 20 can be stabilized.

また、本実施形態では、管球20には、冷却水を流すための第一冷却流路24が形成されている。
この構成によれば、管球20を冷却させることができるとともに、冷却部材28と接触している箇所から、管球20側から検出センサ40側に熱が伝わることを抑制できる。
Further, in the present embodiment, the tube 20 is formed with a first cooling flow path 24 for flowing cooling water.
According to this configuration, the tube 20 can be cooled, and heat can be suppressed from being transferred from the tube 20 side to the detection sensor 40 side from the portion in contact with the cooling member 28.

また、本実施形態では、冷却部材28において絶縁部材30とは反対側の面に取り付けられ、基板26側に延伸し、X線の出射範囲を調整するコリメータ22、を更に備える。
この構成によれば、冷却部材28において絶縁部材30側の面にコリメータ22が取り付けられる場合と比べて、冷却部材28と絶縁部材30との密着性を高めることができるため、冷却効率を高めることができる。
Further, in the present embodiment, the collimator 22 which is attached to the surface of the cooling member 28 opposite to the insulating member 30 and extends to the substrate 26 side to adjust the X-ray emission range is further provided.
According to this configuration, the adhesion between the cooling member 28 and the insulating member 30 can be improved as compared with the case where the collimator 22 is attached to the surface of the cooling member 28 on the insulating member 30 side, so that the cooling efficiency can be improved. Can be done.

また、本実施形態では、絶縁部材30及び基板26には、コリメータ22が突出する貫通穴30A、26Aが設けられている。
この構成によれば、コリメータ22が電気伝導性を有していても、基板26の電子回路がショートすることを回避することができる。また、左右に配置した検出センサ40の中間からX線を照射することで、回折X線が形成する回折環の撮像範囲を拡大できる。
Further, in the present embodiment, the insulating member 30 and the substrate 26 are provided with through holes 30A and 26A from which the collimator 22 protrudes.
According to this configuration, even if the collimator 22 has electrical conductivity, it is possible to prevent the electronic circuit of the substrate 26 from being short-circuited. Further, by irradiating X-rays from the middle of the detection sensors 40 arranged on the left and right, the imaging range of the diffraction ring formed by the diffracted X-rays can be expanded.

<変形例>
なお、本発明は上記の実施形態に限定されるものではない。すなわち、上記の実施形態に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。また、上記の実施形態及び後述する変形例が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
<Modification example>
The present invention is not limited to the above embodiment. That is, those skilled in the art with appropriate design changes to the above embodiments are also included in the scope of the present invention as long as they have the features of the present invention. Further, the elements included in the above-described embodiment and the modifications described later can be combined as much as technically possible, and the combination thereof is also included in the scope of the present invention as long as the features of the present invention are included. ..

例えば、上記実施形態では、基板26に送風手段を設けていないが、基板26が結露することを抑制するために送風手段を設けてもよい。特に、送風手段は、検出センサ40が設けられた基板26の一面に設けることが好ましい。更に、検出センサ40に向けて送風手段を送風させることが好ましい。これにより、結露を抑制するだけでなく、検出センサ40の冷却効率を一層高めることができる。 For example, in the above embodiment, the substrate 26 is not provided with the blowing means, but the substrate 26 may be provided with the blowing means in order to prevent dew condensation. In particular, it is preferable that the blowing means is provided on one surface of the substrate 26 provided with the detection sensor 40. Further, it is preferable to blow the air blowing means toward the detection sensor 40. As a result, not only the dew condensation can be suppressed, but also the cooling efficiency of the detection sensor 40 can be further improved.

また、上記実施形態では、絶縁部材30の厚みについては言及していないが、冷却部材28による基板26の冷却効率を高めるため、薄くすることが好ましい。例えば、絶縁部材30は、冷却部材28及び基板26より薄い方が好ましい。 Further, although the thickness of the insulating member 30 is not mentioned in the above embodiment, it is preferable to make the thickness thinner in order to improve the cooling efficiency of the substrate 26 by the cooling member 28. For example, the insulating member 30 is preferably thinner than the cooling member 28 and the substrate 26.

また、上記実施形態では、冷却部材28が銅板である場合を説明したが、アルミニウム板や、シリコン板であってもよい。ここで、シリコン板のように、冷却部材28が絶縁性を有している場合、絶縁部材30を省略することもできる。ただし、基板26の他面には、はんだ付け等により凹凸があり、それを吸収して基板26との接触面積を高めるという観点から、柔軟性を有する部材を、基板26と冷却部材28の間に設けることが好ましい。 Further, in the above embodiment, the case where the cooling member 28 is a copper plate has been described, but an aluminum plate or a silicon plate may be used. Here, when the cooling member 28 has an insulating property like a silicon plate, the insulating member 30 can be omitted. However, the other surface of the substrate 26 has irregularities due to soldering or the like, and from the viewpoint of absorbing the irregularities and increasing the contact area with the substrate 26, a flexible member is provided between the substrate 26 and the cooling member 28. It is preferable to provide it in.

10:X線回折測定装置、26:基板、28:冷却部材、40:検出センサ 10: X-ray diffraction measuring device, 26: substrate, 28: cooling member, 40: detection sensor

Claims (9)

測定対象物に向けてX線を出射するX線回折測定装置であって、
前記測定対象物にて回折したX線を検出する検出センサが一面に設けられた基板と、
前記基板における前記一面と反対の他面側に設けられ、冷却水を流すための流路が内部に形成され、前記基板を冷却する冷却部材と、
を備えるX線回折測定装置。
An X-ray diffraction measuring device that emits X-rays toward an object to be measured.
A substrate provided with a detection sensor on one surface for detecting X-rays diffracted by the measurement object, and a substrate.
A cooling member provided on the other side of the substrate opposite to the one surface, a flow path for flowing cooling water is formed inside, and the substrate is cooled.
An X-ray diffraction measuring device comprising.
前記冷却部材は、熱伝導性を有するとともに電気伝導性を有し、
前記基板と前記冷却部材の間に挟まれて前記基板と前記冷却部材と接触し、電気的絶縁性及び熱伝導性を有する絶縁部材、
を更に備える請求項1に記載のX線回折測定装置。
The cooling member has both thermal conductivity and electrical conductivity.
An insulating member that is sandwiched between the substrate and the cooling member and comes into contact with the substrate and the cooling member to have electrical insulation and thermal conductivity.
The X-ray diffraction measuring apparatus according to claim 1.
前記流路は、前記基板側から前記冷却部材側を半透明視したときに、前記検出センサを囲うように形成されている、
請求項1又は2に記載のX線回折測定装置。
The flow path is formed so as to surround the detection sensor when the cooling member side is translucently viewed from the substrate side.
The X-ray diffraction measuring device according to claim 1 or 2.
前記検出センサは、前記測定対象物にて回折したX線を検出するセンサ部と、検出したX線を電気信号に変換する回路部とが一体化されている、
請求項1乃至3の何れか1項に記載のX線回折測定装置。
The detection sensor integrates a sensor unit that detects X-rays diffracted by the measurement object and a circuit unit that converts the detected X-rays into an electric signal.
The X-ray diffraction measuring device according to any one of claims 1 to 3.
前記検出センサは、SOI (Silicon on Insulator)センサを含む、
請求項4に記載のX線回折測定装置。
The detection sensor includes an SOI (Silicon on Insulator) sensor.
The X-ray diffraction measuring device according to claim 4.
前記測定対象物に向けてX線を出射するX線出射器を更に備え、
前記X線出射器は、前記冷却部材に載置されている、
請求項1乃至5の何れか1項に記載のX線回折測定装置。
An X-ray emitter that emits X-rays toward the object to be measured is further provided.
The X-ray emitter is mounted on the cooling member.
The X-ray diffraction measuring device according to any one of claims 1 to 5.
前記流路を一方の流路としたとき、
前記X線出射器には、冷却水を流すための他方の流路が形成されている、
請求項6に記載のX線回折測定装置。
When the flow path is one of the flow paths
The X-ray emitter is formed with the other flow path for flowing cooling water.
The X-ray diffraction measuring device according to claim 6.
前記冷却部材において前記絶縁部材とは反対側の面に取り付けられ、前記基板側に延伸し、前記X線の出射範囲を調整するコリメータ、
を更に備える請求項2に記載のX線回折測定装置。
A collimator, which is attached to a surface of the cooling member opposite to the insulating member and extends to the substrate side to adjust the X-ray emission range.
The X-ray diffraction measuring apparatus according to claim 2.
前記絶縁部材及び前記基板には、前記コリメータが突出する貫通穴が設けられている、
請求項8に記載のX線回折測定装置。

The insulating member and the substrate are provided with through holes from which the collimator protrudes.
The X-ray diffraction measuring device according to claim 8.

JP2020193007A 2020-11-20 2020-11-20 X-ray diffraction measuring device Pending JP2022081823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020193007A JP2022081823A (en) 2020-11-20 2020-11-20 X-ray diffraction measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020193007A JP2022081823A (en) 2020-11-20 2020-11-20 X-ray diffraction measuring device

Publications (1)

Publication Number Publication Date
JP2022081823A true JP2022081823A (en) 2022-06-01

Family

ID=81801795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020193007A Pending JP2022081823A (en) 2020-11-20 2020-11-20 X-ray diffraction measuring device

Country Status (1)

Country Link
JP (1) JP2022081823A (en)

Similar Documents

Publication Publication Date Title
JP5292002B2 (en) Measuring device
WO2011046163A1 (en) Infrared sensor and circuit substrate equipped therewith
ES2488094T3 (en) Sampling unit of a position measurement facility
JP5289062B2 (en) Sensor and temperature measuring instrument
JP5395187B2 (en) Length measuring device
JP6545991B2 (en) Light source module
JPWO2019117276A1 (en) Radiation detector and radiation detector
JP6063160B2 (en) Radiation detector
JP2022081823A (en) X-ray diffraction measuring device
JP2004079304A (en) X-ray tube
JP2019015628A (en) Radiation imaging device
JP2000292480A (en) Thermostatic bath
JP2012103062A (en) Radiation detector
JP2009264744A (en) Measuring instrument of surface plasmon resonance
US7069768B2 (en) Method and apparatus for eliminating and compensating thermal transients in gas analyzer
JP2006066888A (en) Container for laser diode module
JP7090572B2 (en) Semiconductor laser equipment and analyzer
KR20180114043A (en) Infrared sensor device
US10132941B2 (en) Radiation detector and radiation detection apparatus
JP6723806B2 (en) Radiation detector and radiation detector
KR101204885B1 (en) The apparatus and method for measurement of generated heat from LED
WO2018179408A1 (en) Temperature measurement device
JP5218188B2 (en) Temperature sensor
JP6120733B2 (en) Imaging apparatus and endoscope
JP2014239089A (en) Electronic circuit and heat sink attachment detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231003