JP2022080756A - Automatic groundwater environment prediction system, and automatic groundwater environment prediction method - Google Patents

Automatic groundwater environment prediction system, and automatic groundwater environment prediction method Download PDF

Info

Publication number
JP2022080756A
JP2022080756A JP2020191998A JP2020191998A JP2022080756A JP 2022080756 A JP2022080756 A JP 2022080756A JP 2020191998 A JP2020191998 A JP 2020191998A JP 2020191998 A JP2020191998 A JP 2020191998A JP 2022080756 A JP2022080756 A JP 2022080756A
Authority
JP
Japan
Prior art keywords
spring water
water amount
estimated
flow analysis
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020191998A
Other languages
Japanese (ja)
Other versions
JP7512176B2 (en
Inventor
毅 福田
Takeshi Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2020191998A priority Critical patent/JP7512176B2/en
Priority claimed from JP2020191998A external-priority patent/JP7512176B2/en
Publication of JP2022080756A publication Critical patent/JP2022080756A/en
Application granted granted Critical
Publication of JP7512176B2 publication Critical patent/JP7512176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

To provide an automatic groundwater environment prediction system that can promptly and automatically predict the groundwater environment during tunnel construction.SOLUTION: The inventive automatic groundwater environment prediction system comprises an estimated spring water amount acquisition unit that acquires the estimated spring water amount calculated based on reproduction conditions by an osmotic flow analysis system, a reproduction analysis instruction unit that causes the osmotic flow analysis system to perform osmotic flow analysis using different permeability coefficients when the estimated spring water amount is not within a predetermined range based on the spring water amount measurement value, and a learning unit that uses the permeability coefficients used as the reproduction condition and the estimated spring water amount obtained by using the water permeability coefficients as teacher data to learn the relationship between permeability coefficients and an estimated spring water amount, thus generating a trained model. The predicted position permeability coefficients obtained by using the trained model are set in the osmotic flow analysis system to perform osmotic flow analysis, thus obtaining the spring water amount to be generated when excavation is performed at the excavation position to be predicted.SELECTED DRAWING: Figure 1

Description

本発明は、地下水環境自動予測システム、地下水環境自動予測方法に関する。 The present invention relates to a groundwater environment automatic prediction system and a groundwater environment automatic prediction method.

山岳トンネルに代表される地下空洞を構築する場合には、少なからず地下水環境に影響を与えることになる。このため工事着手前、および施工中には、構造物の重要性に応じて地下水環境を予測する数値解析(シミュレーション)を実施することが一般的である。例えば、トンネル施工では、切羽からの湧水量等の各種測定や岩盤(地盤)の状態等を計測を行うことでこれらの情報を得て、これらの情報も踏まえて上述の数値解析を行い、その現場において次に掘削を進める際の施工に役立てる建設手法(地下水情報化施工)が適用される。
特許文献1には、日々のトンネルを掘削する場合において地山の湧水量を自動的に推定する技術について開示されている。
When constructing an underground cavity represented by a mountain tunnel, it will affect the groundwater environment in no small measure. For this reason, it is common to carry out numerical analysis (simulation) that predicts the groundwater environment according to the importance of the structure before and during the construction. For example, in tunnel construction, various measurements such as the amount of spring water from the face and the condition of the bedrock (ground) are obtained to obtain this information, and the above-mentioned numerical analysis is performed based on this information. A construction method (groundwater informatization construction) that will be useful for the next excavation work at the site will be applied.
Patent Document 1 discloses a technique for automatically estimating the amount of spring water in the ground when excavating a daily tunnel.

特許第4196279号公報Japanese Patent No. 4196279

しかしながら、地下水環境を予測することは、解析専門技術者の高度な知識・技能(たとえば、再現解析・予測解析結果の技術的評価、解析与条件の見直し方法など)を必要とし、さらには、多大な時間(例えば数日)を要する。特に、施工中において地下水環境予測を実施し、その予測結果を元に次の切羽の掘削を進める場合には、工事進捗に対し予測シミュレーションが追いつかない場合がある。そうすると、施工の進捗に影響が生じる場合がある。 However, predicting the groundwater environment requires advanced knowledge and skills of analysis specialists (for example, technical evaluation of reproducible analysis / predictive analysis results, review method of analysis conditions, etc.), and much more. It takes a lot of time (for example, several days). In particular, when the groundwater environment is predicted during construction and the excavation of the next face is proceeded based on the prediction result, the prediction simulation may not catch up with the progress of the construction. This may affect the progress of construction.

本発明は、このような事情に鑑みてなされたもので、その目的は、トンネル施工中に速やかに地下水環境予測を行うことが可能な地下水環境自動予測システム、地下水環境自動予測方法を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a groundwater environment automatic prediction system and a groundwater environment automatic prediction method capable of promptly predicting the groundwater environment during tunnel construction. It is in.

上述した課題を解決するために、本発明の一態様は、浸透流解析を行うことで推定された湧水量である推定湧水量を求める浸透流解析システム(10)に対して、透水係数を含む再現条件を設定する再現条件設定部(301)と、前記浸透流解析システム(10)によって前記再現条件に基づいて算出される推定湧水量を取得する推定湧水量取得部(302)と、前記浸透流解析を行う対象のトンネルの切羽に生じる湧水量を測定した結果である湧水量測定値を取得する湧水量測定値取得部(303)と、前記推定湧水量が前記湧水量測定値を基準とした所定範囲にあるか否かを判定する判定部(304)と、異なる透水係数を生成する透水係数生成部(306)と、前記推定湧水量が前記湧水量測定値を基準とした所定範囲ではない場合に、前記異なる透水係数を含む再現条件とした浸透流解析を前記浸透流解析システム(10)に行わせる再現解析指示部(307)と、前記再現条件として用いられた透水係数と、当該透水係数を用いて得られた推定湧水量とを教師データとして用い、前記透水係数と前記推定湧水量との関係を学習することで、学習済みモデルを生成する学習部(305)と、前記学習済みモデルに、湧水量を予測したい予測対象の掘削位置よりも坑口側において測定された湧水量測定値を入力することで、前記予測対象の掘削位置における透水係数である予測位置透水係数を得る透水係数取得部(308)と、前記予測対象の掘削位置における透水係数を含む予測条件を前記浸透流解析システム(10)に設定して浸透流解析を行わせることで、前記予測対象の掘削位置において掘削を行った場合に生じる湧水量である予測湧水量を得る予測解析部(309)とを有する。 In order to solve the above-mentioned problems, one aspect of the present invention includes a water permeation coefficient with respect to a permeation flow analysis system (10) for obtaining an estimated spring water amount which is an estimated spring water amount by performing a permeation flow analysis. The reproduction condition setting unit (301) for setting the reproduction condition, the estimated spring water amount acquisition unit (302) for acquiring the estimated spring water amount calculated based on the reproduction condition by the permeation flow analysis system (10), and the permeation. The spring water amount measurement value acquisition unit (303) that acquires the spring water amount measurement value that is the result of measuring the spring water amount generated at the face of the tunnel to be analyzed, and the estimated spring water amount are based on the spring water amount measurement value. A determination unit (304) that determines whether or not the data is within the predetermined range, a water permeability coefficient generation unit (306) that generates a different water permeability coefficient, and a predetermined range in which the estimated spring water amount is based on the spring water amount measurement value. If not, the reproduction analysis instruction unit (307) that causes the permeation flow analysis system (10) to perform permeation flow analysis under the reproduction conditions including the different water permeation coefficients, the water permeation coefficient used as the reproduction conditions, and the said. The learning unit (305) that generates a trained model by learning the relationship between the water permeability coefficient and the estimated spring water amount using the estimated spring water amount obtained by using the water permeation coefficient as teacher data, and the learning unit. By inputting the spring water volume measurement value measured at the wellhead side of the drilling position of the predicted target for which the spring water volume is to be predicted into the completed model, the predicted position water permeability coefficient, which is the water permeability coefficient at the drilling position of the predicted target, is obtained. By setting the coefficient acquisition unit (308) and the prediction conditions including the water permeability coefficient at the drilling position of the prediction target in the permeation flow analysis system (10) and performing the permeation flow analysis, the drilling position of the prediction target is subjected to. It has a predictive analysis unit (309) that obtains a predicted amount of spring water, which is the amount of spring water generated when excavation is performed.

また、本発明の一態様は、再現条件設定部(301)が、浸透流解析を行うことで推定された湧水量である推定湧水量を求める浸透流解析システム(10)に対して、透水係数を含む再現条件を設定し、推定湧水量取得部(302)が、前記浸透流解析システム(10)によって前記再現条件に基づいて算出される推定湧水量を取得し、湧水量測定値取得部(303)が、前記浸透流解析を行う対象のトンネルの切羽に生じる湧水量を測定した結果である湧水量測定値を取得し、判定部(304)が、前記推定湧水量が前記湧水量測定値を基準とした所定範囲にあるか否かを判定し、再現解析指示部(307)が、前記推定湧水量が前記湧水量測定値を基準とした所定範囲ではない場合に、異なる透水係数を含む再現条件とした浸透流解析を前記浸透流解析システム(10)に行わせ、学習部(305)が、前記再現条件として用いられた透水係数と、当該透水係数を用いて得られた推定湧水量とを教師データとして用い、前記透水係数と前記推定湧水量との関係を学習することで、学習済みモデルを生成し、透水係数取得部(308)が、前記学習済みモデルに、湧水量を予測したい予測対象の掘削位置よりも坑口側において測定された湧水量測定値を入力することで、前記予測対象の掘削位置における透水係数である予測位置透水係数を得て、予測解析部(309)が、前記予測対象の掘削位置における透水係数を含む予測条件を前記浸透流解析システム(10)に設定して浸透流解析を行わせることで、前記予測対象の掘削位置において掘削を行った場合に生じる湧水量である予測湧水量を得る地下水環境自動予測方法である。 Further, in one aspect of the present invention, the water permeability coefficient is relative to the permeation flow analysis system (10) in which the reproduction condition setting unit (301) obtains the estimated spring water amount, which is the spring water amount estimated by performing the permeation flow analysis. The reproduction condition including the above is set, and the estimated spring water amount acquisition unit (302) acquires the estimated spring water amount calculated based on the reproduction condition by the permeation flow analysis system (10), and the spring water amount measurement value acquisition unit ( 303) acquires the spring water amount measurement value which is the result of measuring the spring water amount generated in the face of the tunnel to be analyzed for the permeation flow analysis, and the determination unit (304) determines that the estimated spring water amount is the spring water amount measurement value. The reproduction analysis instruction unit (307) includes a different water permeation coefficient when the estimated spring water amount is not within the predetermined range based on the spring water amount measurement value. The permeation flow analysis as the reproduction condition was performed by the permeation flow analysis system (10), and the learning unit (305) used the water permeation coefficient as the reproduction condition and the estimated spring water amount obtained by using the water permeation coefficient. By learning the relationship between the water permeability coefficient and the estimated spring water amount, a trained model is generated, and the water permeability coefficient acquisition unit (308) predicts the spring water amount in the trained model. By inputting the spring water volume measurement value measured on the wellhead side of the drilling position of the predicted target, the predicted position water permeability coefficient, which is the water permeability coefficient at the drilling position of the predicted target, is obtained, and the prediction analysis unit (309) obtains the predicted position water permeability coefficient. , It occurs when excavation is performed at the excavation position of the prediction target by setting the prediction condition including the water permeability coefficient at the excavation position of the prediction target in the permeation flow analysis system (10) and causing the permeation flow analysis to be performed. This is an automatic groundwater environment prediction method that obtains the predicted amount of spring water.

以上説明したように、この発明によれば、トンネル施工中に速やかにかつ自動的に地下水環境予測を行うことが可能となる。 As described above, according to the present invention, it is possible to promptly and automatically predict the groundwater environment during tunnel construction.

この発明の一実施形態による地下水環境予測の全体の流れを説明する図である。It is a figure explaining the whole flow of the groundwater environment prediction by one Embodiment of this invention. 地下水環境自動予測システム1の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the groundwater environment automatic prediction system 1. 再現解析ループを実行する場合における地下水環境自動予測システム1における動作を説明するフローチャートである。It is a flowchart explaining the operation in the groundwater environment automatic prediction system 1 when the reproduction analysis loop is executed. 予測解析ループを実行する場合における地下水環境自動予測システム1における動作を説明するフローチャートである。It is a flowchart explaining the operation in the groundwater environment automatic prediction system 1 when the prediction analysis loop is executed. 施工対象の地山を三次元形状を表した三次元地質構造モデルに対し、予測解析ループによって得られた予測湧水量を考慮した全水頭の分布状況を示す図である。It is a figure which shows the distribution state of the total head considering the predicted amount of spring water obtained by the predictive analysis loop with respect to the 3D geological structure model which represented the 3D shape of the ground to be constructed.

以下、本発明の一実施形態による地下水環境自動予測システムについて図面を参照して説明する。
図1は、この発明の一実施形態による地下水環境予測の全体の流れを説明する図である。
本実施形態において、地下水環境予測は、浸透流解析システムを用いて、浸透流解析を行い、湧水量を求めることで、地下水環境を予測する。
本実施形態において浸透流解析システムを用いる場合、大きく分けて「再現解析ループ」と「予測解析ループ」との2つの処理(解析ループ)がある。
Hereinafter, the groundwater environment automatic prediction system according to the embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating an overall flow of groundwater environment prediction according to an embodiment of the present invention.
In the present embodiment, the groundwater environment prediction predicts the groundwater environment by performing the seepage flow analysis using the seepage flow analysis system and obtaining the amount of spring water.
When the permeation flow analysis system is used in the present embodiment, it is roughly divided into two processes (analysis loop) of "reproduction analysis loop" and "predictive analysis loop".

《再現解析ループ》
再現解析ループは、施工対象のトンネルの掘削状況をシミュレーション上において再現する処理である。再現解析ループでは、浸透流解析システムに対し、(1)岩盤(地盤)の浸透特性、(2)降雨量、地下水位等、(3)地質構造、(4)止水・排水対策等のこれら4つに関する再現条件を入力する。浸透流解析システムは、この再現条件に基づいて浸透流解析を行う。再現条件に基づく浸透流解析を行うことで、施工対象のトンネルの切羽における湧水量を推定した湧水量の推定値を得ることができる。この再現解析ループでは、施工対象のトンネルの切羽において実際に測定された湧水量と概ね一致するような再現条件を求める。
再現条件を求めるにあたり、(2)降雨量、地下水位等、(3)地質構造、(4)止水・排水対策等については、ある程度の事前調査や観測地等を用いる。(1)岩盤(地盤)の浸透特性については、切羽における岩盤(地盤)の種類、亀裂の大きさ、亀裂の方向等について、切羽の面においてどのような分布となっているかも考慮して決める必要があり、定めることが容易ではない。そのため、岩盤(地盤)の浸透特性を設定するためには、通常、解析専門技術者の高度な判断が求められる。この実施形態においては、岩盤(地盤)の浸透特性(特に透水係数)を地下水環境自動予測装置30を用いて求めることで、解析専門技術者が浸透特性を判断しなくてすむようになり、予測解析にかかる時間の短縮と解析専門技術者の労力を軽減することができる。
<< Reproduction analysis loop >>
The reproduction analysis loop is a process of reproducing the excavation status of the tunnel to be constructed on a simulation. In the reproduction analysis loop, for the infiltration flow analysis system, (1) infiltration characteristics of rock (ground), (2) rainfall, groundwater level, etc., (3) geological structure, (4) water stoppage / drainage measures, etc. Enter the reproduction conditions for the four. The osmotic flow analysis system performs osmotic flow analysis based on this reproduction condition. By performing osmotic flow analysis based on the reproduction conditions, it is possible to obtain an estimated value of the amount of spring water that is estimated at the face of the tunnel to be constructed. In this reproduction analysis loop, the reproduction conditions that roughly match the amount of spring water actually measured at the face of the tunnel to be constructed are obtained.
In determining the reproduction conditions, some preliminary surveys and observation sites will be used for (2) rainfall, groundwater level, etc., (3) geological structure, and (4) water stoppage / drainage measures. (1) The infiltration characteristics of the bedrock (ground) are determined by considering the type of bedrock (ground) in the face, the size of the crack, the direction of the crack, and the distribution on the surface of the face. It is necessary and not easy to determine. Therefore, in order to set the infiltration characteristics of the bedrock (ground), a high degree of judgment by an analysis specialist is usually required. In this embodiment, by obtaining the infiltration characteristics (particularly the permeability coefficient) of the bedrock (ground) using the groundwater environment automatic prediction device 30, the analysis expert does not have to judge the infiltration characteristics, and the prediction analysis is performed. It is possible to reduce the time required for analysis and the labor of analysis specialists.

《予測解析ループ》
予測解析ループは、再現解析ループによって施工対象のトンネルについて一定の再現性が得られた再現条件(特に透水係数)を用いて、次に掘削を進めた場合(例えば10m掘削を行った場合)に生じる湧水量を浸透流解析システムを用いて予測する処理である。
このように、再現解析ループを実行することで再現性の高い透水係数を求め、この求められた透水係数を用いて予測解析ループを実行することで、予測対象の位置を掘削した場合における湧水量を精度よく予測することができる。
《Predictive analytics loop》
The predictive analysis loop is used when the next excavation is carried out (for example, when excavation is performed for 10 m) using the reproduction conditions (especially the water permeability coefficient) in which a certain reproducibility is obtained for the tunnel to be constructed by the reproduction analysis loop. It is a process to predict the amount of spring water generated using a permeation flow analysis system.
In this way, by executing the reproduction analysis loop, a highly reproducible permeability coefficient is obtained, and by executing the prediction analysis loop using this obtained permeability coefficient, the amount of spring water when the position of the prediction target is excavated. Can be predicted accurately.

予測解析ループによって得られた湧水量の予測値は、現場事務所や詰所に設置された現場端末に表示される。この湧水量の予測値は、例えば、1日1回などのタイミングで計算され表示される。これにより、現場における技術者や作業者は、トンネルの掘削を進めることに応じて逐次更新された湧水量の予測値を、従来に比べて短い間隔で把握することができる。これにより危険予知活動(KY活動)や、排水計画の見直し等に活用することができる。 The predicted value of the amount of spring water obtained by the predictive analysis loop is displayed on the field terminal installed in the field office or the station. The predicted value of the amount of spring water is calculated and displayed at a timing such as once a day. As a result, on-site technicians and workers can grasp the predicted value of the amount of spring water that is sequentially updated according to the progress of excavation of the tunnel at shorter intervals than in the past. This can be utilized for danger prediction activities (KY activities) and review of drainage plans.

次に、図2は、地下水環境自動予測システム1の構成を示す概略ブロック図である。
地下水環境自動予測システム1は、浸透流解析システム10、再現条件記憶部20、地下水環境自動予測装置30、現場端末40を含む。
Next, FIG. 2 is a schematic block diagram showing the configuration of the groundwater environment automatic prediction system 1.
The groundwater environment automatic prediction system 1 includes a permeation flow analysis system 10, a reproduction condition storage unit 20, a groundwater environment automatic prediction device 30, and a field terminal 40.

浸透流解析システム10は、浸透流解析を行うための数値解析モデルを記憶している。浸透流解析システム10は、この数値解析モデルに対し、上述した再現条件を入力し、施工対象のトンネルを掘削する際の地山について、トンネル掘削等による地下水の挙動を予測する浸透流解析を行うことで、湧水量を求める。ここで、上述の(3)地質構造については、三次元地質モデルによって表される。浸透流解析システム10は、この三次元地質モデルにおける各地層に相当する要素には、(1)岩盤(地盤)の浸透特性に基づいて、この地層に対応する物性値(例えば、透水係数など物性値)を割り当てる。
ここで、地層を構成する構成物には、その構成物の種類に応じた透水係数がある。このような透水係数は、構成物の種類毎に、典型的な値の範囲があることが知られている。浸透流解析システム10は、再現条件として入力された(1)岩盤(地盤)の浸透特性に基づいて、透水係数の典型的な値の範囲を基に、三次元地質モデルにおける各地層に相当する要素に対して透水係数を割り当てる。そして、浸透流解析システム10は、数値解析モデル上においてトンネルの掘削施工を行うことで、湧水量を求めることができる。この浸透流解析システム10は、浸透特性(特に透水係数)を適切に割り当てることで、高い精度で湧水量を求めることができる。この浸透流解析システム10は、一般に用いられている既存のシステム(ソフトウェア)を適用することができる。
The osmotic flow analysis system 10 stores a numerical analysis model for performing osmotic flow analysis. The permeation flow analysis system 10 inputs the above-mentioned reproduction conditions to this numerical analysis model, and performs permeation flow analysis for predicting the behavior of groundwater due to tunnel excavation or the like for the ground when excavating the tunnel to be constructed. By doing so, the amount of spring water is calculated. Here, the above-mentioned (3) geological structure is represented by a three-dimensional geological model. In the infiltration flow analysis system 10, the elements corresponding to each layer in this three-dimensional geological model include (1) physical properties corresponding to this layer (for example, physical properties such as permeability coefficient) based on the infiltration characteristics of the bedrock (ground). Value).
Here, the constituents constituting the stratum have a hydraulic conductivity according to the type of the constituents. It is known that such a hydraulic conductivity has a range of typical values for each type of constituent. The infiltration flow analysis system 10 corresponds to each layer in the three-dimensional geological model based on the range of typical values of the permeability coefficient based on (1) the infiltration characteristics of the rock (ground) input as the reproduction conditions. Assign a hydraulic conductivity to the element. Then, the seepage flow analysis system 10 can obtain the amount of spring water by excavating a tunnel on the numerical analysis model. The osmotic flow analysis system 10 can obtain the amount of spring water with high accuracy by appropriately assigning the osmotic characteristics (particularly the hydraulic conductivity). The existing system (software) generally used can be applied to the permeation flow analysis system 10.

再現条件記憶部20は、浸透流解析を行う対象の地山を表すモデルとして再現する再現条件データを記憶する。再現条件データに含まれる項目としては、上述したように、(1)岩盤(地盤)の浸透特性、(2)降雨量、地下水位等、(3)地質構造、(4)止水・排水対策等がある。
(1)岩盤(地盤)の浸透特性は、岩盤(地盤)がその種類別に水をどの程度浸透するかの特性を表すデータである。一般には、解析を専門に行う技術者が、知識や技能等を基に岩盤(地盤)の浸透特性を設定するが、本実施形態においては、地下水環境自動予測装置30によって設定することが可能となっている。
(2)降雨量、地下水位等は、解析対象の領域にどの程度の降雨があるか、地下水位がどの程度の高さにあるか等を表すデータであり、技術者が設定する。(3)地質構造は、トンネルを施工する地域の地質構造が三次元的にどのように分布しているかを表す三次元地質モデルであり、トンネルの施工対象の領域について現地調査や、ボーリングによる詳細調査等を事前に行われた結果、トンネル掘削過程で得られる地質情報、および地質調査結果を基に、技術者が設定する。(4)止水・排水対策等は、トンネルの施工条件に基づくものであり、湧水が生じないような対策が行われている場合には、その対策の方法や条件等を表す。この止水・排水対策等は、技術者によって設定されるデータである。
The reproduction condition storage unit 20 stores the reproduction condition data to be reproduced as a model representing the ground of the target for which the infiltration flow analysis is performed. As mentioned above, the items included in the reproduction condition data include (1) infiltration characteristics of rock (ground), (2) rainfall, groundwater level, etc., (3) geological structure, and (4) water stoppage / drainage measures. And so on.
(1) The infiltration characteristics of the bedrock (ground) are data showing the characteristics of how much water the bedrock (ground) infiltrates according to the type. Generally, a technician who specializes in analysis sets the infiltration characteristics of rock (ground) based on knowledge, skills, etc., but in this embodiment, it is possible to set by the groundwater environment automatic prediction device 30. It has become.
(2) The amount of rainfall, the groundwater level, etc. are data indicating how much rainfall there is in the area to be analyzed, how high the groundwater level is, etc., and are set by the engineer. (3) The geological structure is a three-dimensional geological model that shows how the geological structure of the area where the tunnel is constructed is distributed three-dimensionally. It is set by the engineer based on the geological information obtained in the tunnel excavation process and the geological survey results as a result of conducting the survey in advance. (4) Water stoppage / drainage measures, etc. are based on the construction conditions of the tunnel, and if measures are taken to prevent spring water from occurring, the methods and conditions of the measures are shown. This water stoppage / drainage measures, etc. are data set by engineers.

再現条件記憶部20は、記憶媒体、例えば、HDD(Hard Disk Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access read/write Memory)、ROM(Read Only Memory)、またはこれらの記憶媒体の任意の組み合わせによって構成される。この再現条件記憶部20は、例えば、不揮発性メモリを用いることができる。 The reproduction condition storage unit 20 is a storage medium, for example, an HDD (Hard Disk Drive), a flash memory, an EEPROM (Electrically Erasable Programmable ReadOnly Memory), a RAM (Random Access read / maid) It is composed of any combination of these storage media. For the reproduction condition storage unit 20, for example, a non-volatile memory can be used.

地下水環境自動予測装置30は、再現条件設定部301、推定湧水量取得部302、湧水量測定値取得部303、判定部304、学習部305、透水係数生成部306、再現解析指示部307、透水係数取得部308、予測解析部309、予測情報提供部310を有する。 The groundwater environment automatic prediction device 30 includes a reproduction condition setting unit 301, an estimated spring water amount acquisition unit 302, a spring water amount measurement value acquisition unit 303, a determination unit 304, a learning unit 305, a permeability coefficient generation unit 306, a reproduction analysis instruction unit 307, and water permeability. It has a coefficient acquisition unit 308, a prediction analysis unit 309, and a prediction information providing unit 310.

再現条件設定部301は、再現条件記憶部20に記憶された、透水係数を含む再現条件データを読み出し、読み出した再現条件データを浸透流解析システム10に対して出力することで設定する。 The reproduction condition setting unit 301 reads the reproduction condition data including the hydraulic conductivity stored in the reproduction condition storage unit 20, and outputs the read reproduction condition data to the permeation flow analysis system 10.

推定湧水量取得部302は、再現条件設定部301によって設定された再現条件を基に浸透流解析システム10から得られる湧水量を推定湧水量として取得する。すなわち、推定湧水量取得部302は、再現解析ループにおいて浸透流解析システム10によって求められた湧水量を取得する。 The estimated spring water amount acquisition unit 302 acquires the spring water amount obtained from the infiltration flow analysis system 10 as the estimated spring water amount based on the reproduction conditions set by the reproduction condition setting unit 301. That is, the estimated spring water amount acquisition unit 302 acquires the spring water amount obtained by the infiltration flow analysis system 10 in the reproduction analysis loop.

湧水量測定値取得部303は、浸透流解析を行う対象の施工現場におけるトンネルの切羽に生じる湧水量を測定した結果である湧水量測定値を取得する。湧水量測定値取得部303は、キーボードやマウス等の入力装置を介して、オペレータの操作に基づいて入力される湧水量測定値を取得する。
また、湧水量測定値取得部303は、オペレータによる操作入力ではなく、センサ等によって測定された結果を取得することもできる。例えば、切羽で発生する湧水は、一度大きな容器(例えば釜等)に溜められた後、ポンプで坑外へ排出される。このときの排出量をセンサによって湧水量として測定し、この測定結果を、湧水量測定値取得部303が取得することができる。これにより、切羽における湧水量を自動的に取得することもできる。
The spring water amount measurement value acquisition unit 303 acquires the spring water amount measurement value which is the result of measuring the spring water amount generated at the face of the tunnel at the construction site to be subjected to the infiltration flow analysis. The spring water amount measurement value acquisition unit 303 acquires the spring water amount measurement value input based on the operation of the operator via an input device such as a keyboard or a mouse.
Further, the spring water amount measurement value acquisition unit 303 can also acquire the result measured by a sensor or the like instead of the operation input by the operator. For example, the spring water generated in the face is once stored in a large container (for example, a kettle) and then discharged to the outside of the mine by a pump. The discharge amount at this time is measured as a spring water amount by a sensor, and this measurement result can be acquired by the spring water amount measurement value acquisition unit 303. This makes it possible to automatically acquire the amount of spring water in the face.

判定部304は、推定湧水量が湧水量測定値を基準とした所定範囲にあるか否かを判定する。所定範囲は、予め定められていてもよい。
推定湧水量が湧水量測定値を基準とした所定範囲内にある場合には、推定湧水量と実際の切羽において生じた湧水量とがほぼ一致している(類似度合いが高い)といえる。この場合、設定された再現条件データは、切羽周辺の領域の実際の状況に対する再現性が高いといえるため、予測解析ループに用いることができる。この場合、透水係数についても、再現性が高いと考えられる。
一方、推定湧水量が湧水量測定値を基準とした所定範囲にない場合には、推定湧水量と実際の切羽において生じた湧水量とが乖離している。この場合、後述する学習部305は推定湧水量が湧水量測定値を基準とした所定範囲に収まるような透水係数が得られるように学習することで、透水係数を再設定・変更する。
The determination unit 304 determines whether or not the estimated spring water amount is within a predetermined range based on the spring water amount measurement value. The predetermined range may be predetermined.
When the estimated amount of spring water is within a predetermined range based on the measured value of the amount of spring water, it can be said that the estimated amount of spring water and the amount of spring water generated in the actual face are almost the same (high degree of similarity). In this case, it can be said that the set reproduction condition data has high reproducibility with respect to the actual situation of the region around the face, and therefore can be used in the predictive analysis loop. In this case, the hydraulic conductivity is also considered to be highly reproducible.
On the other hand, when the estimated amount of spring water is not within the predetermined range based on the measured value of the amount of spring water, the estimated amount of spring water and the amount of spring water generated in the actual face deviate from each other. In this case, the learning unit 305, which will be described later, resets / changes the hydraulic conductivity by learning so that the hydraulic conductivity is within a predetermined range based on the measured spring water volume.

学習部305は、透水係数と推定湧水量とを教師データとして用い、透水係数と推定湧水量との関係を学習することで、推定湧水量が湧水量測定値を基準とした所定範囲に収まるような透水係数が得られるような学習済みモデルを生成する。
例えば学習部305は、予め理想的なトンネルモデルを使って(1)岩盤(地盤)の浸透特性、(2)降雨量、地下水位、(3)地質構造、(4)止水・排水対策について学習済である。そして、学習部305は、予め学習された学習済モデルに加えて、施工対象のトンネルの施工過程で得られる教師データをもとに追加学習をする。学習部305は、追加学習を行うことで、推定湧水量が湧水量測定値を基準とした所定範囲に収まるような透水係数が得られるような学習を進め、学習済みモデルを最適化していく。
学習済みモデルが最適化されることで、推定湧水量が湧水量測定値を基準とした所定範囲に収まるような透水係数を得ることが可能な学習済みモデルが得られる。
The learning unit 305 uses the hydraulic conductivity and the estimated spring water amount as teacher data, and learns the relationship between the hydraulic conductivity and the estimated spring water volume so that the estimated spring water volume falls within a predetermined range based on the spring water volume measurement value. Generate a trained model that gives a good hydraulic conductivity.
For example, the learning unit 305 uses an ideal tunnel model in advance to discuss (1) rock (ground) infiltration characteristics, (2) rainfall, groundwater level, (3) geological structure, and (4) water stoppage / drainage measures. It has been learned. Then, the learning unit 305 performs additional learning based on the teacher data obtained in the construction process of the tunnel to be constructed, in addition to the trained model learned in advance. The learning unit 305 proceeds with learning so that the estimated spring water amount falls within a predetermined range based on the spring water amount measurement value by performing additional learning, and optimizes the trained model.
By optimizing the trained model, it is possible to obtain a trained model capable of obtaining a hydraulic conductivity such that the estimated spring water amount falls within a predetermined range based on the spring water amount measurement value.

なお、学習部305は、判定部304によって推定湧水量が湧水量測定値を基準とした所定範囲にあると判定されるまで、繰り返して学習を行う。 The learning unit 305 repeatedly learns until the determination unit 304 determines that the estimated spring water amount is within a predetermined range based on the spring water amount measurement value.

学習部305が行う学習は、AI(artificial intelligence:人工知能)を用いた学習であり、機械学習、深層学習、深層強化学習のいずれであってもよい。また、エキスパートシステム等のルールベースAIであってもよい。 The learning performed by the learning unit 305 is learning using AI (artificial intelligence), and may be any of machine learning, deep learning, and deep reinforcement learning. Further, it may be a rule-based AI such as an expert system.

透水係数生成部306は、再現条件設定部301によって浸透流解析システム10に設定したことがある透水係数とは異なる透水係数を生成する。透水係数生成部306は、透水係数を生成する場合に、学習部305の学習状況に基づく推定湧水量と湧水量測定値との差分に応じて、推定湧水量が湧水量測定値に近くなると考えられる透水係数を生成するようにしてもよい。 The permeability coefficient generation unit 306 generates a permeability coefficient different from the permeability coefficient that has been set in the permeation flow analysis system 10 by the reproduction condition setting unit 301. When the hydraulic conductivity generation unit 306 generates the hydraulic conductivity, the water permeability coefficient generation unit 306 considers that the estimated spring water amount becomes close to the spring water amount measurement value according to the difference between the estimated spring water amount based on the learning status of the learning unit 305 and the spring water amount measurement value. It may be made to generate a hydraulic conductivity to be obtained.

再現解析指示部307は、推定湧水量が湧水量測定値を基準とした所定範囲ではない場合に、透水係数生成部306によって生成された透水係数を再現条件として再現条件記憶部20に書き込むことで、浸透流解析システムに浸透流解析を行わせる。ここでは、再現条件設定部301によって新たな透水係数が再現条件記憶部20に書き込まれると、再現条件設定部301は、再現解析の指示があったとし、この新たな透水係数を含む再現条件データを浸透流解析システム10に入力することで、浸透流解析を行わせることができる。 When the estimated spring water amount is not within a predetermined range based on the spring water amount measurement value, the reproduction analysis instruction unit 307 writes the water permeability coefficient generated by the water permeability coefficient generation unit 306 to the reproduction condition storage unit 20 as a reproduction condition. , Have the permeability analysis system perform permeability analysis. Here, when a new water permeability coefficient is written in the reproduction condition storage unit 20 by the reproduction condition setting unit 301, it is assumed that the reproduction condition setting unit 301 has been instructed to perform reproduction analysis, and the reproduction condition data including the new water permeability coefficient is included. Can be input to the osmotic flow analysis system 10 to perform osmotic flow analysis.

透水係数取得部308は、推定湧水量が湧水量測定値を基準とした所定範囲に収まるような透水係数が得られるように最適化された学習済みモデルに、湧水量を予測したい掘削位置(切羽周辺)あるいは坑外において測定された湧水量測定値を入力することで、予測対象の掘削位置における透水係数である予測位置透水係数を得る。
ここでは、湧水量を予測したい位置は、現在の切羽から一定距離だけ掘削を進めた位置である。この距離は、例えば1回の掘削を行う施工過程において進む距離であり、岩盤(地盤)の状態がある程度同じであれば、現在の切羽における透水係数と、予測したい位置における岩盤(地盤)の透水係数は、概ね一致していると考えられる。
The hydraulic conductivity acquisition unit 308 wants to predict the spring water volume in a trained model optimized so that the hydraulic conductivity can be obtained so that the estimated spring water volume falls within a predetermined range based on the spring water volume measurement value. By inputting the measured value of the amount of spring water measured in the vicinity) or outside the mine, the predicted hydraulic conductivity at the drilling position to be predicted is obtained.
Here, the position where the amount of spring water is to be predicted is the position where excavation is advanced by a certain distance from the current face. This distance is, for example, the distance traveled in the construction process of one excavation, and if the rock (ground) condition is the same to some extent, the permeability coefficient at the current face and the permeability of the rock (ground) at the desired position The coefficients are considered to be in good agreement.

予測解析部309は、予測位置透水係数を含む予測条件を浸透流解析システム10に設定して浸透流解析を行わせることで、予測対象の掘削位置において掘削を行った場合に生じる湧水量である予測湧水量を得る。予測解析部309は、判定部304において、推定湧水量が湧水量測定値を基準とした所定範囲であると判定されるまで学習部305において学習された学習済みモデルを用いて、予測位置透水係数を取得し、この予測位置透水係数を予測条件として浸透流解析システム10に出力することで、浸透流解析を行わせる。
例えば、予測解析部309は、浸透流解析システム10に予測位置透水係数を出力し、施工現場における現在の切羽の位置よりも一定程度の距離まで掘削した場合(例えば10m掘削した場合)における湧水量を予測湧水量として得る。
The prediction analysis unit 309 sets the prediction conditions including the prediction position permeability coefficient in the seepage flow analysis system 10 and causes the seepage flow analysis to perform the infiltration flow analysis, so that the amount of spring water generated when excavation is performed at the excavation position to be predicted. Get the predicted amount of spring water. The predictive analysis unit 309 uses the trained model trained in the learning unit 305 until the determination unit 304 determines that the estimated spring water volume is within a predetermined range based on the spring water volume measurement value, and the predicted position permeability coefficient. Is acquired, and the permeation flow analysis is performed by outputting the predicted position permeability coefficient to the permeation flow analysis system 10 as a prediction condition.
For example, the predictive analysis unit 309 outputs the predicted position permeability coefficient to the seepage flow analysis system 10, and the amount of spring water when excavated to a certain distance from the current face position at the construction site (for example, when excavated 10 m). Is obtained as the predicted amount of spring water.

予測情報提供部310は、予測解析部309が浸透流解析システム10から得た予測湧水量を現場端末40に出力する。 The prediction information providing unit 310 outputs the predicted spring water amount obtained from the permeation flow analysis system 10 by the prediction analysis unit 309 to the on-site terminal 40.

現場端末40は、トンネルを施工する現場の詰所や、現場事務所などのいずれかに設けられ、技術者および作業者等によって利用される。現場端末40は、複数台であってもよい。現場端末40は、コンピュータ、タブレット、スマートフォンなどのうち少なくともいずれか1つが用いられてもよい。 The site terminal 40 is provided at either a station where a tunnel is constructed, a site office, or the like, and is used by engineers, workers, and the like. The number of field terminals 40 may be plurality. As the field terminal 40, at least one of a computer, a tablet, a smartphone, and the like may be used.

次に、地下水環境自動予測システム1の動作を説明する。
図3は、再現解析ループを実行する場合における地下水環境自動予測システム1における動作を説明するフローチャートである。
まず地下水環境自動予測システム1は、再現解析ループ処理を行う。再現解析ループ処理では、山岳トンネルを掘削する岩盤(地盤)モデルを作成し(ステップS101)、作成された岩盤(地盤)モデルを(3)地質構造として再現条件記憶部20に記憶する。また、浸透特性に関するパラメータ(例えば、透水係数)を(1)岩盤(地盤)の浸透特性として再現条件記憶部20に記憶する(ステップS102)。この浸透特性に関するパラメータは、予め複数種類を準備して、それぞれ再現条件記憶部20に記憶しておくようにしてもよい。また、この他に、(2)降雨量、地下水位等、(3)地質構造、(4)止水・排水対策等についても、再現条件記憶部20に記憶する。
再現条件記憶部20に各種パラメータが記憶されると、再現条件設定部301は、再現条件20に記憶された再現条件データを浸透流解析システム10に設定する。浸透流解析システム10は、再現条件データが設定されると、浸透流解析(順解析)を実施する(ステップS103)。
Next, the operation of the groundwater environment automatic prediction system 1 will be described.
FIG. 3 is a flowchart illustrating the operation in the groundwater environment automatic prediction system 1 when the reproduction analysis loop is executed.
First, the groundwater environment automatic prediction system 1 performs a reproduction analysis loop process. In the reproduction analysis loop processing, a rock (ground) model for excavating a mountain tunnel is created (step S101), and the created rock (ground) model is stored in the reproduction condition storage unit 20 as (3) a geological structure. Further, the parameters related to the infiltration characteristics (for example, the permeability coefficient) are stored in the reproduction condition storage unit 20 as (1) the infiltration characteristics of the bedrock (ground) (step S102). A plurality of types of parameters related to the permeation characteristics may be prepared in advance and stored in the reproduction condition storage unit 20. In addition to this, (2) rainfall, groundwater level, etc., (3) geological structure, (4) water stoppage / drainage measures, etc. are also stored in the reproduction condition storage unit 20.
When various parameters are stored in the reproduction condition storage unit 20, the reproduction condition setting unit 301 sets the reproduction condition data stored in the reproduction condition 20 in the permeation flow analysis system 10. When the reproduction condition data is set, the permeation flow analysis system 10 performs permeation flow analysis (forward analysis) (step S103).

推定湧水量取得部302は、浸透流解析によって求められた湧水量を推定湧水量として取得する(ステップS104)。判定部304は、推定湧水量と、湧水量測定値取得部303によって取得された湧水量測定値とを比較する(ステップS105)。
学習部305は、推定湧水量と湧水量測定値との乖離が大きい(推定湧水量が湧水量測定値を基準とした所定範囲内にない)場合、浸透流解析によって得られた推定湧水量と、透水係数とを教師データとして学習を行い(ステップS106)、学習済モデルを最適化していく。この学習は、推定湧水量と湧水量測定値との乖離が大きくない(推定湧水量が湧水量測定値を基準とした所定範囲内にある)と判定されるまで、ステップS102に移行し、異なる透水係数を用いて浸透流解析を行う。
一方、ステップS105において、判定部304によって、推定湧水量と湧水量測定値との乖離が大きくない(推定湧水量が湧水量測定値を基準とした所定範囲内にある)と判定されると、予測解析ループの実行に移行する(ステップS107)。
上述のような再現解析ループをトンネルの施工中に繰り返し行うことで学習をすることができ、その現場に対応した学習効果が蓄積され、掘削の進行にともなってより精度の高い判断ができる学習済みモデルを構築することができる。
The estimated spring water amount acquisition unit 302 acquires the spring water amount obtained by the osmotic flow analysis as the estimated spring water amount (step S104). The determination unit 304 compares the estimated spring water amount with the spring water amount measurement value acquired by the spring water amount measurement value acquisition unit 303 (step S105).
When the deviation between the estimated spring water amount and the spring water amount measurement value is large (the estimated spring water amount is not within the predetermined range based on the spring water amount measurement value), the learning unit 305 sets the estimated spring water amount obtained by the permeation flow analysis. , The water permeability coefficient is learned as teacher data (step S106), and the trained model is optimized. This learning proceeds to step S102 until it is determined that the discrepancy between the estimated spring water amount and the spring water amount measurement value is not large (the estimated spring water amount is within a predetermined range based on the spring water amount measurement value), and is different. Osmotic flow analysis is performed using the permeability coefficient.
On the other hand, in step S105, when the determination unit 304 determines that the discrepancy between the estimated spring water amount and the spring water amount measurement value is not large (the estimated spring water amount is within a predetermined range based on the spring water amount measurement value). The process proceeds to the execution of the predictive analysis loop (step S107).
Learning can be performed by repeating the above-mentioned reproduction analysis loop during tunnel construction, learning effects corresponding to the site are accumulated, and more accurate judgment can be made as excavation progresses. You can build a model.

ここで、トンネルの掘削を進めていくと、再現条件として記憶された(3)地質構造と、現在の切羽において観察される地質構造とが一致しない場合がある。このような場合には、現在の切羽を観察した結果、あるいは切羽前方探査等、トンネル施工中に得られた地質調査結果に基づいて、(3)地質構造を修正する。これにより、三次元地質モデルも更新される。そして、更新された地質構造を基に、再現解析ループを実行することができる。 Here, as the excavation of the tunnel proceeds, the (3) geological structure stored as a reproduction condition may not match the geological structure observed in the current face. In such a case, (3) the geological structure will be modified based on the results of observing the current face or the results of the geological survey obtained during tunnel construction such as forward exploration of the face. As a result, the 3D geological model is also updated. Then, a reproduction analysis loop can be executed based on the updated geological structure.

図4は、予測解析ループを実行する場合における地下水環境自動予測システム1における動作を説明するフローチャートである。
予測解析ループにおいて、透水係数取得部308は、最適化された学習済みモデルに、切羽の現場において測定され湧水量測定値取得部303によって得られた湧水量測定値を入力し(ステップS201)、この湧水量測定値が得られるような岩盤(地盤)の浸透特性に応じた透水係数を取得する(ステップS202)。
予測解析部309は、得られた透水係数を浸透流解析システム10に入力することで浸透流解析を行わせ(ステップS203)、予測対象の掘削位置において掘削を行った場合に生じる湧水量である予測湧水量を得る(ステップS204)。
予測情報提供部310は、現場端末40に対して、予測湧水量を出力する(ステップS205)。
FIG. 4 is a flowchart illustrating the operation in the groundwater environment automatic prediction system 1 when the prediction analysis loop is executed.
In the predictive analysis loop, the water permeability coefficient acquisition unit 308 inputs the spring water amount measurement value measured at the face site and obtained by the spring water amount measurement value acquisition unit 303 into the optimized trained model (step S201). The water permeability coefficient corresponding to the infiltration characteristics of the bedrock (ground) from which the measured value of the amount of spring water can be obtained is obtained (step S202).
The predictive analysis unit 309 inputs the obtained permeability coefficient to the permeation flow analysis system 10 to perform permeation flow analysis (step S203), and is the amount of spring water generated when excavation is performed at the excavation position to be predicted. Obtain the predicted amount of spring water (step S204).
The prediction information providing unit 310 outputs the predicted spring water amount to the on-site terminal 40 (step S205).

図5は、施工対象の地山の地形および地質構造を三次元的に表した三次元地質構造モデルに対し、予測解析ループによって得られた予測湧水量を考慮した全水頭の分布状況を示す図である。現場端末40には、例えば、この図に示すような結果が出力される。この図に示すような結果が得られた場合、例えば、トンネルを掘削したことで、切羽を基準にして掘削する進行方向において、地下水位が低下していることを把握することができる。このような解析を日々実施することで、近い将来発生する湧水量を予測し、安全に施工を行うことができる。 FIG. 5 is a diagram showing the distribution of all heads in consideration of the predicted amount of spring water obtained by the predictive analysis loop for a three-dimensional geological structure model that three-dimensionally represents the topography and geological structure of the ground to be constructed. Is. For example, the result shown in this figure is output to the field terminal 40. When the result shown in this figure is obtained, for example, by excavating a tunnel, it can be grasped that the groundwater level is lowered in the traveling direction of excavation with reference to the face. By conducting such analysis on a daily basis, it is possible to predict the amount of spring water that will occur in the near future and carry out construction safely.

なお、上述した実施形態において、工事が始まる前(一回目の浸透流解析)の段階においては、掘削を行っていないため、湧水量測定値を得ることができない。すなわち、学習から得られる情報がない。このような場合には、予め岩種と透水係数との関係を対応付けて記憶した岩種・透水係数データベースをもとに、再現解析ループは実施せず、予測解析ループのみ実施し、地山の中の地下水環境を予測する。その上で、予測解析ループの結果から湧水量を得るようにしてもよい。 In the above-described embodiment, the measured value of the amount of spring water cannot be obtained because the excavation is not performed at the stage before the construction starts (the first infiltration flow analysis). That is, there is no information obtained from learning. In such a case, based on the rock type / permeability coefficient database stored in advance by associating the relationship between the rock type and the permeability coefficient, the reproduction analysis loop is not executed, only the predictive analysis loop is executed, and the groundwater is grounded. Predict the groundwater environment inside. Then, the amount of spring water may be obtained from the result of the predictive analysis loop.

以上説明した実施形態によれば、以下のような効果が得られる。
(a)本来、解析専門技術者が透水係数に関して行う判断をルール化することができ、指標化し、AI技術としてシステムに実装することで再現解析および予測解析に必要とする解析的判断を自動化することができる。これにより、システム全体が完全に自動化するこができる。
(b)完全自動化されるため、解析専門技術者が通常作業ができない業務時間外であっても、シミュレーション作業に充てることができ、リアルタイムの予測が可能となる。
(c)「再現解析ループ」において、コア技術であるAIの判断により、解析与条件である(1)~(4)の再現条件(特に(1)岩盤(地盤)の浸透特性)を逐次更新する仕組みを導入する。これにより、精度の高い再現解析を実現するだけでなく、確度の高い予測結果を出力することが可能となる。
(d)完全自動化することで、予測解析など地下水情報化施工を運用する上での作業量を大幅に削減することができる。
(e)解析専門技術者の数を削減できるとともに、専門技術者はより専門性の高い業務に注力することができる。
(f)解析専門技術者が測定されている湧水量に則した最適な岩盤(地盤)の透水係数について、経験的な判断を行うこととなく、地下水環境自動予測装置30において定めることができるため、常時、予測することが可能となる。これにより、リアルタイム性を向上させることができ、近い将来発生する湧水に対して、速やかに対策工を計画・協議することができる。
(g)湧水に起因したトンネル切羽災害を削減できる。
(h)従来以上に合理的な排水設備の計画を実行できる。
According to the embodiment described above, the following effects can be obtained.
(A) Originally, the judgments made by analysis specialists regarding the water permeability coefficient can be ruled, indexed, and implemented in the system as AI technology to automate the analytical judgments required for reproduction analysis and predictive analysis. be able to. This allows the entire system to be fully automated.
(B) Since it is fully automated, it can be used for simulation work even outside business hours when analysis specialists cannot perform normal work, and real-time prediction is possible.
(C) In the "reproduction analysis loop", the reproduction conditions (1) to (4) (especially (1) infiltration characteristics of the bedrock (ground)), which are the analysis conditions, are sequentially updated based on the judgment of AI, which is the core technology. Introduce a mechanism to do. This not only realizes highly accurate reproduction analysis, but also makes it possible to output highly accurate prediction results.
(D) By fully automating, it is possible to significantly reduce the amount of work involved in operating groundwater computerized construction such as predictive analysis.
(E) The number of analysis specialists can be reduced, and the specialists can focus on more specialized work.
(F) Because the groundwater environment automatic prediction device 30 can determine the optimum hydraulic conductivity of the bedrock (ground) according to the amount of spring water measured by an analysis expert without making an empirical judgment. , It is always possible to predict. As a result, real-time performance can be improved, and countermeasures can be promptly planned and discussed for spring water that will occur in the near future.
(G) It is possible to reduce tunnel face disasters caused by spring water.
(H) It is possible to carry out a more rational drainage plan than before.

上述した実施形態における地下水環境自動予測装置30をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 The groundwater environment automatic prediction device 30 in the above-described embodiment may be realized by a computer. In that case, a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed. The term "computer system" as used herein includes hardware such as an OS and peripheral devices. Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system. Further, a "computer-readable recording medium" is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized by using a programmable logic device such as FPGA (Field Programmable Gate Array).

以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes designs and the like within a range that does not deviate from the gist of the present invention.

1…地下水環境自動予測システム、10…浸透流解析システム、20…再現条件記憶部、30…地下水環境自動予測装置、40…現場端末、301…再現条件設定部、302…推定湧水量取得部、303…湧水量測定値取得部、304…判定部、305…学習部、306…透水係数生成部、307…再現解析指示部、308…透水係数取得部、309…予測解析部、310…予測情報提供部 1 ... Groundwater environment automatic prediction system, 10 ... Permeability analysis system, 20 ... Reproduction condition storage unit, 30 ... Groundwater environment automatic prediction device, 40 ... On-site terminal, 301 ... Reproduction condition setting unit, 302 ... Estimated spring water amount acquisition unit, 303 ... Spring water volume measurement value acquisition unit, 304 ... Judgment unit, 305 ... Learning unit, 306 ... Water permeability coefficient generation unit, 307 ... Reproduction analysis instruction unit, 308 ... Water permeability coefficient acquisition unit, 309 ... Prediction analysis unit, 310 ... Prediction information Providing department

Claims (4)

浸透流解析を行うことで推定された湧水量である推定湧水量を求める浸透流解析システムに対して、透水係数を含む再現条件を設定する再現条件設定部と、
前記浸透流解析システムによって前記再現条件に基づいて算出される推定湧水量を取得する推定湧水量取得部と、
前記浸透流解析を行う対象のトンネルの切羽に生じる湧水量を測定した結果である湧水量測定値を取得する湧水量測定値取得部と、
前記推定湧水量が前記湧水量測定値を基準とした所定範囲にあるか否かを判定する判定部と、
異なる透水係数を生成する透水係数生成部と、
前記推定湧水量が前記湧水量測定値を基準とした所定範囲ではない場合に、前記異なる透水係数を含む再現条件とした浸透流解析を前記浸透流解析システムに行わせる再現解析指示部と、
前記再現条件として用いられた透水係数と、当該透水係数を用いて得られた推定湧水量とを教師データとして用い、前記透水係数と前記推定湧水量との関係を学習することで、学習済みモデルを生成する学習部と、
前記学習済みモデルに、湧水量を予測したい予測対象の掘削位置よりも坑口側において測定された湧水量測定値を入力することで、前記予測対象の掘削位置における透水係数である予測位置透水係数を得る透水係数取得部と、
前記予測対象の掘削位置における透水係数を含む予測条件を前記浸透流解析システムに設定して浸透流解析を行わせることで、前記予測対象の掘削位置において掘削を行った場合に生じる湧水量である予測湧水量を得る予測解析部と
を有する地下水環境自動予測システム。
A reproduction condition setting unit that sets reproduction conditions including the permeability coefficient for an osmotic flow analysis system that obtains an estimated spring water amount that is an estimated spring water amount by performing osmotic flow analysis.
An estimated spring water amount acquisition unit that acquires an estimated spring water amount calculated based on the reproduction conditions by the osmotic flow analysis system, and an estimated spring water amount acquisition unit.
A spring water volume measurement value acquisition unit that acquires a spring water volume measurement value that is the result of measuring the spring water volume generated at the face of the tunnel to be subjected to the osmotic flow analysis, and a spring water volume measurement value acquisition unit.
A determination unit for determining whether or not the estimated spring water amount is within a predetermined range based on the spring water amount measurement value, and a determination unit.
A permeability coefficient generator that generates different permeability coefficients,
A reproduction analysis instruction unit that causes the osmotic flow analysis system to perform osmotic flow analysis under the reproduction conditions including the different permeability coefficients when the estimated spring water amount is not within a predetermined range based on the spring water amount measurement value.
A trained model by learning the relationship between the hydraulic conductivity and the estimated hydraulic conductivity by using the hydraulic conductivity used as the reproduction condition and the estimated hydraulic conductivity obtained by using the hydraulic conductivity as teacher data. And the learning department to generate
By inputting the spring water volume measurement value measured at the wellhead side of the excavation position of the prediction target for which the spring water amount is to be predicted into the trained model, the predicted position permeability coefficient, which is the permeability coefficient at the excavation position of the prediction target, can be obtained. The hydraulic conductivity acquisition unit to be obtained and
It is the amount of spring water generated when excavation is performed at the excavation position of the prediction target by setting the prediction condition including the water permeability coefficient at the excavation position of the prediction target in the permeation flow analysis system and performing the permeation flow analysis. An automatic groundwater environment prediction system with a prediction analysis unit that obtains the predicted amount of spring water.
前記学習部は、前記判定部によって前記推定湧水量が前記湧水量測定値を基準とした所定範囲にあると判定されるまで、繰り返して学習を行う
請求項1に記載の地下水環境自動予測システム。
The groundwater environment automatic prediction system according to claim 1, wherein the learning unit repeatedly learns until the determination unit determines that the estimated spring water amount is within a predetermined range based on the spring water amount measurement value.
前記予測解析部によって得られた予測湧水量を現場端末に出力する予測情報提供部
を有する請求項1または請求項2に記載の地下水環境自動予測システム。
The groundwater environment automatic prediction system according to claim 1 or 2, further comprising a prediction information providing unit that outputs the predicted spring water amount obtained by the prediction analysis unit to a site terminal.
再現条件設定部が、浸透流解析を行うことで推定された湧水量である推定湧水量を求める浸透流解析システムに対して、透水係数を含む再現条件を設定し、
推定湧水量取得部が、前記浸透流解析システムによって前記再現条件に基づいて算出される推定湧水量を取得し、
湧水量測定値取得部が、前記浸透流解析を行う対象のトンネルの切羽に生じる湧水量を測定した結果である湧水量測定値を取得し、
判定部が、前記推定湧水量が前記湧水量測定値を基準とした所定範囲にあるか否かを判定し、
再現解析指示部が、前記推定湧水量が前記湧水量測定値を基準とした所定範囲ではない場合に、異なる透水係数を含む再現条件とした浸透流解析を前記浸透流解析システムに行わせ、
学習部が、前記再現条件として用いられた透水係数と、当該透水係数を用いて得られた推定湧水量とを教師データとして用い、前記透水係数と前記推定湧水量との関係を学習することで、学習済みモデルを生成し、
透水係数取得部が、前記学習済みモデルに、湧水量を予測したい予測対象の掘削位置よりも坑口側において測定された湧水量測定値を入力することで、前記予測対象の掘削位置における透水係数である予測位置透水係数を得て、
予測解析部が、前記予測対象の掘削位置における透水係数を含む予測条件を前記浸透流解析システムに設定して浸透流解析を行わせることで、前記予測対象の掘削位置において掘削を行った場合に生じる湧水量である予測湧水量を得る
地下水環境自動予測方法。
The reproduction condition setting unit sets the reproduction conditions including the permeability coefficient for the osmotic flow analysis system that obtains the estimated spring water amount, which is the estimated spring water amount by performing the osmotic flow analysis.
The estimated spring water amount acquisition unit acquires the estimated spring water amount calculated based on the reproduction conditions by the osmotic flow analysis system.
The spring water amount measurement value acquisition unit acquires the spring water amount measurement value which is the result of measuring the spring water amount generated at the face of the tunnel to be analyzed for the infiltration flow.
The determination unit determines whether or not the estimated spring water amount is within a predetermined range based on the spring water amount measurement value, and determines whether or not the estimated spring water amount is within a predetermined range.
The reproduction analysis instruction unit causes the osmotic flow analysis system to perform osmotic flow analysis under the reproduction conditions including different hydraulic conductivity when the estimated spring water amount is not within a predetermined range based on the spring water amount measurement value.
The learning unit uses the permeability coefficient used as the reproduction condition and the estimated spring water amount obtained by using the water permeability coefficient as teacher data, and learns the relationship between the permeability coefficient and the estimated spring amount. , Generate a trained model,
The permeability coefficient acquisition unit inputs the measured value of the spring water amount measured at the wellhead side of the excavation position of the prediction target for which the spring water amount is to be predicted into the trained model, so that the permeability coefficient at the excavation position of the prediction target is obtained. Obtaining a certain predicted position permeability coefficient,
When the prediction analysis unit sets the prediction conditions including the hydraulic conductivity at the excavation position of the prediction target in the permeation flow analysis system and causes the permeation flow analysis to perform excavation at the excavation position of the prediction target. An automatic groundwater environment prediction method that obtains the predicted amount of spring water that will be generated.
JP2020191998A 2020-11-18 Automatic prediction system for groundwater environment, automatic prediction method for groundwater environment Active JP7512176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020191998A JP7512176B2 (en) 2020-11-18 Automatic prediction system for groundwater environment, automatic prediction method for groundwater environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020191998A JP7512176B2 (en) 2020-11-18 Automatic prediction system for groundwater environment, automatic prediction method for groundwater environment

Publications (2)

Publication Number Publication Date
JP2022080756A true JP2022080756A (en) 2022-05-30
JP7512176B2 JP7512176B2 (en) 2024-07-08

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115979900A (en) * 2022-12-29 2023-04-18 中国地质科学院岩溶地质研究所 Underground water circulation factor monitoring method based on northern full-drainage karst springs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115979900A (en) * 2022-12-29 2023-04-18 中国地质科学院岩溶地质研究所 Underground water circulation factor monitoring method based on northern full-drainage karst springs
CN115979900B (en) * 2022-12-29 2024-04-02 中国地质科学院岩溶地质研究所 Underground water circulation element monitoring method based on northern full-row karst springs

Similar Documents

Publication Publication Date Title
RU2462755C2 (en) Predicting properties of underground formation
JP7219180B2 (en) Creation method of excavation prediction model in shield excavation method
US11137514B2 (en) Method for determining a drilling plan for a plurality of new wells in a reservoir
CN104854482A (en) Rock facies prediction in non-cored wells from cored wells
US11143775B2 (en) Automated offset well analysis
Ghorbani et al. Determination of initial stress state and rock mass deformation modulus at Lavarak HEPP by back analysis using ant colony optimization and multivariable regression analysis
Phoon What geotechnical engineers want to know about reliability
KR20210076376A (en) System and method for managing earthwork data, and a recording medium having computer readable program for executing the method
US20210382198A1 (en) Uncertainty-aware modeling and decision making for geomechanics workflow using machine learning approaches
Wu et al. A dynamic decision approach for risk analysis in complex projects
Hassan et al. Predictive models to evaluate the interaction effect of soil-tunnel interaction parameters on surface and subsurface settlement
Tsiaousi et al. Machine learning applications for site characterization based on CPT data
Paraskevopoulou et al. Assessing the failure potential of tunnels and the impacts on cost overruns and project delays
Cao et al. Quantitative evaluation of imputation methods using bounds estimation of the coefficient of determination for data-driven models with an application to drilling logs
Han et al. Technical comparisons of simulation-based productivity prediction methodologies by means of estimation tools focusing on conventional earthmovings
KR102229423B1 (en) Appearance survey network construction system and coded expression method with the characteristics of the appearance network damage, 3D position and size information as parameters grafted with the 3D BIM model
JP2022080756A (en) Automatic groundwater environment prediction system, and automatic groundwater environment prediction method
JP7512176B2 (en) Automatic prediction system for groundwater environment, automatic prediction method for groundwater environment
Yogatama et al. Python application in geotechnical engineering practices
Špačková et al. Tunnel construction time and costs estimates: from deteministic to probabilistic approaches
Brinkgreve et al. Automatic Finite Element Modelling and Parameter Determination for Geotechnical Design
JP2023013056A (en) Groundwater field prediction system, and groundwater field prediction method
Kvartsberg Review of the use of engineering geological information and design methods in underground rock construction
Park et al. Settlement prediction in a vertical drainage-installed soft clay deposit using the genetic algorithm (GA) back-analysis
JP2024013759A (en) Water permeability coefficient parameter identification support device, water permeability coefficient parameter identification support method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240611