JP2022080585A - Rare-earth cobalt permanent magnet, manufacturing method for the same, and device - Google Patents

Rare-earth cobalt permanent magnet, manufacturing method for the same, and device Download PDF

Info

Publication number
JP2022080585A
JP2022080585A JP2020191730A JP2020191730A JP2022080585A JP 2022080585 A JP2022080585 A JP 2022080585A JP 2020191730 A JP2020191730 A JP 2020191730A JP 2020191730 A JP2020191730 A JP 2020191730A JP 2022080585 A JP2022080585 A JP 2022080585A
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
earth cobalt
powder
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020191730A
Other languages
Japanese (ja)
Other versions
JP7117359B2 (en
Inventor
浩明 町田
Hiroaki Machida
照彦 藤原
Teruhiko Fujiwara
裕和 幕田
Hirokazu Makuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2020191730A priority Critical patent/JP7117359B2/en
Publication of JP2022080585A publication Critical patent/JP2022080585A/en
Application granted granted Critical
Publication of JP7117359B2 publication Critical patent/JP7117359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a rare-earth cobalt permanent magnet of excellent magnetic property.SOLUTION: A rare-earth cobalt permanent magnet is an intermetallic compound including rare-earth cobalt which has R:23 to 27% (R is a sum of rare-earth elements including at least Sm), Cu:4.0 to 5.0%, Fe:22 to 27%, Zr:1.7% to 2.5% in mass percentage composition and has a remaining part composed of Co and inevitable impurities. It has a plurality of crystal grains and grain boundaries and the maximum diameter of its pore is 40 μm or less.SELECTED DRAWING: Figure 1

Description

本発明は希土類コバルト永久磁石及びその製造方法、並びにデバイスに関する。 The present invention relates to a rare earth cobalt permanent magnet, a method for producing the same, and a device.

希土類コバルト永久磁石は、磁気特性向上など、種々の観点から、例えばFe、Cu、Zr等を含有するものが知られている。 Rare earth cobalt permanent magnets are known to contain, for example, Fe, Cu, Zr, etc. from various viewpoints such as improvement of magnetic properties.

特許文献1には、質量%で、Smを含む希土類元素R:23~27%、Cu:3.5~5.0%、Fe:18~25%、Zr:1.5~3.0%を含み、残部がCo及び不可避的不純物からり、粒界部におけるCuとZrの含有量が前記結晶粒と比較して高濃度となる希土類コバルト永久磁石が開示されている。
また、特許文献2には、25~40質量%のFeと、Zr、Ti及びHfから選択される元素と、希土類元素と、Cuと、Coとを特定の割合で含有し、Cu濃度の高い相を有する永久磁石が開示されている。
Patent Document 1 describes rare earth elements R: 23 to 27%, Cu: 3.5 to 5.0%, Fe: 18 to 25%, Zr: 1.5 to 3.0% in mass%. A rare earth cobalt permanent magnet is disclosed in which the balance is composed of Co and unavoidable impurities, and the content of Cu and Zr in the grain boundary portion is higher than that of the crystal grains.
Further, Patent Document 2 contains 25 to 40% by mass of Fe, an element selected from Zr, Ti and Hf, a rare earth element, Cu and Co in a specific ratio, and has a high Cu concentration. Permanent magnets with phases are disclosed.

国際公開第2017/061126号International Publication No. 2017/061126 特開2014-103239号公報Japanese Unexamined Patent Publication No. 2014-103239

本発明者らは、希土類コバルト永久磁石の残留磁束密度Brや最大磁気エネルギー積(BH)mなど磁気特性向上の観点からFe含有濃度の高い希土類コバルト永久磁石を検討した。本発明者らは、Feの割合を高めて焼結処理を行ったところ、焼結体にポア(空隙)が生じる場合があるとの知見を得た。大きいポアの発生は焼結体の組織の均一化を阻害し、その結果、反磁界の影響が大きくなり磁気特性が低下することがあった。 The present inventors have studied rare earth cobalt permanent magnets having a high Fe content concentration from the viewpoint of improving magnetic characteristics such as residual magnetic flux density Br and maximum magnetic energy product (BH) m of rare earth cobalt permanent magnets. The present inventors have found that when the sintering treatment is performed by increasing the proportion of Fe, pores (voids) may occur in the sintered body. The generation of large pores hindered the homogenization of the structure of the sintered body, and as a result, the influence of the demagnetic field was increased and the magnetic properties were sometimes deteriorated.

本発明は上記の課題を解決するものであり、磁気特性の優れた希土類コバルト永久磁石、及び、ポアの発生及び肥大化が抑制できる希土類コバルト永久磁石の製造方法を提供する。 The present invention solves the above-mentioned problems, and provides a rare earth cobalt permanent magnet having excellent magnetic properties and a method for producing a rare earth cobalt permanent magnet capable of suppressing the generation and enlargement of pores.

本発明にかかる希土類コバルト永久磁石は、質量百分率組成で、R:23~27%(Rは少なくともSmを含む希土類元素の合計)、Cu:4.0~5.0%、Fe:22~27%、Zr:1.7%~2.5%、残部がCo及び不可避不純物からなる希土類コバルトを含む金属間化合物であって、複数の結晶粒と粒界部を有し、ポアの最大径が40μm以下である。 The rare earth cobalt permanent magnet according to the present invention has a mass percentage composition of R: 23 to 27% (R is the total of rare earth elements including at least Sm), Cu: 4.0 to 5.0%, and Fe: 22 to 27. %, Zr: 1.7% to 2.5%, an intermetallic compound containing rare earth cobalt consisting of Co and unavoidable impurities in the balance, having a plurality of crystal grains and grain boundaries, and having a maximum pore diameter. It is 40 μm or less.

上記希土類コバルト永久磁石の一実施形態は、比表面積が0.30m/g以上の粉末の焼結体を含む。 One embodiment of the rare earth cobalt permanent magnet includes a powder sintered body having a specific surface area of 0.30 m 2 / g or more.

上記希土類コバルト永久磁石の一実施形態は、焼結体密度が8.25g/cm以上、最大エネルギー積が260kJ/m以上、固有保磁力が1600kA/m以上、Brの90%を示すときの逆磁界の大きさをHkとしたとき、Hk/Hcjが65%以上である。 One embodiment of the rare earth cobalt permanent magnet has a sintered body density of 8.25 g / cm 3 or more, a maximum energy product of 260 kJ / m 3 or more, an intrinsic coercive force of 1600 kA / m or more, and 90% of Br. When the magnitude of the reverse magnetic field is Hk, Hk / Hcj is 65% or more.

本発明にかかる希土類コバルト永久磁石の製造方法は、
質量百分率組成で、R:23~27%(Rは少なくともSmを含む希土類元素の合計)、Cu:4.0~5.0%、Fe:22~27%、Zr:1.7%~2.5%、残部がCo及び不可避不純物からなる合金を準備する工程(I)と、
前記合金を、比表面積が0.30m/g以上の粉末とする粉砕工程(II)と、
前記粉末を成形体とする加圧成形工程(III)と、
前記成形体を焼結する工程(IV)と、
焼結後の成形体を溶体化処理する工程(V)と、
溶体化処理後の成形体を急冷する工程と(VI)、
溶体化処理後の成形体を熱処理する工程(VII)と、を有する。
The method for manufacturing a rare earth cobalt permanent magnet according to the present invention is as follows.
By mass percentage composition, R: 23 to 27% (R is the total of rare earth elements including at least Sm), Cu: 4.0 to 5.0%, Fe: 22 to 27%, Zr: 1.7% to 2 Step (I) of preparing an alloy consisting of 5.5%, the balance of Co and unavoidable impurities, and
In the pulverization step (II) in which the alloy is made into a powder having a specific surface area of 0.30 m 2 / g or more,
The pressure molding step (III) using the powder as a molded body and
The step (IV) of sintering the molded product and
The step (V) of solution-treating the sintered compact and
The step of quenching the molded product after the solution treatment (VI),
It has a step (VII) of heat-treating the molded product after the solution treatment.

また本発明にかかるデバイスは、上記希土類コバルト永久磁石を有することを特徴とする。 The device according to the present invention is characterized by having the rare earth cobalt permanent magnet.

本発明により、磁気特性の優れた希土類コバルト永久磁石、及び、ポアの発生及び肥大化が抑制できる希土類コバルト永久磁石の製造方法が提供される。 INDUSTRIAL APPLICABILITY The present invention provides a rare earth cobalt permanent magnet having excellent magnetic properties and a method for producing a rare earth cobalt permanent magnet capable of suppressing the generation and enlargement of pores.

実施例2の永久磁石の研磨面を示す光学顕微鏡像である。It is an optical microscope image which shows the polished surface of the permanent magnet of Example 2. 比較例3の永久磁石の研磨面を示す光学顕微鏡像である。It is an optical microscope image which shows the polished surface of the permanent magnet of the comparative example 3. FIG. 比較例5の永久磁石の研磨面を示す光学顕微鏡像である。It is an optical microscope image which shows the polished surface of the permanent magnet of the comparative example 5.

以下、本発明に係る希土類コバルト永久磁石について説明する。
なお、数値範囲を示す「~」は特に断りがない限り、その下限値及び上限値を含むものとする。
Hereinafter, the rare earth cobalt permanent magnet according to the present invention will be described.
Unless otherwise specified, "-" indicating a numerical range includes the lower limit value and the upper limit value.

[希土類コバルト永久磁石]
本実施形態の希土類コバルト永久磁石(以下、本永久磁石ともいう)は、質量百分率組成で、R:23~27%(Rは少なくともSmを含む希土類元素の合計)、Cu:4.0~5.0%、Fe:22~27%、Zr:1.7%~2.5%、残部がCo及び不可避不純物からなる希土類コバルトを含む金属間化合物であって、複数の結晶粒と粒界部を有し、ポアの最大径が40μm以下であることを特徴とする。
[Rare earth cobalt permanent magnet]
The rare earth cobalt permanent magnets of the present embodiment (hereinafter, also referred to as the permanent magnets) have a mass percentage composition of R: 23 to 27% (R is the total of rare earth elements including at least Sm) and Cu: 4.0 to 5. An intermetallic compound containing 0.0%, Fe: 22-27%, Zr: 1.7% -2.5%, and a rare earth cobalt composed of Co and unavoidable impurities, with a plurality of crystal grains and grain boundaries. The maximum diameter of the pore is 40 μm or less.

永久磁石の磁気特性の一項目として残留磁束密度(Br)が挙げられる。Brは単位面積あたりを貫く磁束の量と定義される。永久磁石にポアが存在することは、当該永久磁石中の磁性体量が少なくなることを意味し、当該永久磁石全体を貫く磁束量が減少してしまう。また、ポアの周りは組成やセルが目的とする構造から乱れるため、逆磁区が発生しやすい。従って、可能な限り磁束量を増やし永久磁石としての高機能特性を発現させるためには、高密度な試料を作製することが重要である。
本永久磁石は、Feを22%と比較的多く含有しながら、ポアの最大径が40μm以下に抑制されているため、最大エネルギー積(BH)mや角形比(Hk/Hcj)などの磁気特性に優れている。
Residual magnetic flux density (Br) is one of the magnetic characteristics of permanent magnets. Br is defined as the amount of magnetic flux penetrating per unit area. The presence of pores in the permanent magnet means that the amount of magnetic material in the permanent magnet is reduced, and the amount of magnetic flux penetrating the entire permanent magnet is reduced. In addition, since the composition and the structure of the cell are disturbed around the pores, reverse magnetic domains are likely to occur. Therefore, it is important to prepare a high-density sample in order to increase the amount of magnetic flux as much as possible and to exhibit high-performance characteristics as a permanent magnet.
This permanent magnet contains a relatively large amount of Fe (22%), but the maximum diameter of the pores is suppressed to 40 μm or less. Therefore, magnetic characteristics such as maximum energy product (BH) m and square ratio (Hk / Hcj). Is excellent.

図1を参照して、ポアの観察方法を説明する。図1は実施例2の永久磁石の研磨面を示す光学顕微鏡像である。顕微鏡像は、測定対象とする永久磁石(焼結体)を鏡面研磨した後、酸溶媒に含侵させてエッチングする。このとき粒界部分が結晶粒本体部分より速く腐食されるため、粒界がはっきりと現れ、一つ一つの結晶粒を明瞭に観察することができる。
図1に示される通り、本永久磁石は、複数の結晶粒1と、当該各結晶粒1の境界となる結晶粒界2を有する。図1中の黒色の箇所がポア4に相当する。なお、図1中の3で示す灰色の箇所は希土類元素の酸化物でありポア4とは異なるものである。本永久磁石においてポア4の最大径は、当該光学顕微鏡像の中から最大径を有するポアを決定し当該ポアの径を最大径とする。ポアが円でない不定型の場合には最長となる幅を最大径とする。
結晶粒の大きさやポアの大きさは画像処理ソフトを用いるとより正確に把握することができる。
A method of observing pores will be described with reference to FIG. FIG. 1 is an optical microscope image showing a polished surface of the permanent magnet of Example 2. The microscope image is etched by mirror-polishing the permanent magnet (sintered body) to be measured and then impregnating it with an acid solvent. At this time, since the grain boundary portion is corroded faster than the crystal grain main body portion, the grain boundary appears clearly and each crystal grain can be clearly observed.
As shown in FIG. 1, the permanent magnet has a plurality of crystal grains 1 and a crystal grain boundary 2 that is a boundary between the crystal grains 1. The black part in FIG. 1 corresponds to the pore 4. The gray part shown by 3 in FIG. 1 is an oxide of a rare earth element and is different from Pore 4. For the maximum diameter of the pore 4 in this permanent magnet, the pore having the maximum diameter is determined from the optical microscope image, and the diameter of the pore is set as the maximum diameter. If the pore is not a circle and is an indefinite type, the longest width is the maximum diameter.
The size of crystal grains and the size of pores can be grasped more accurately by using image processing software.

本発明者らは、Feの濃度が高い場合に当該ポアが大きくなりやすいとの知見を得た。ポアは焼結処理時において脱ガス等によって生じるものと考えられる。本発明者らはFeの濃度が高い場合には、拡散速度や濡れ性が比較的低く、焼結処理時においてポアが埋まりにくいのではないかと推定する。本永久磁石は、例えば後述する製造方法などにより、ポアが発生しても焼結処理時に金属成分が当該ポアを埋めやすく、最大径が40μm以下の焼結体が得られるものと推定される。 The present inventors have found that the pores tend to increase when the concentration of Fe is high. Pore is considered to be generated by degassing or the like during the sintering process. The present inventors presume that when the concentration of Fe is high, the diffusion rate and the wettability are relatively low, and it is difficult for the pores to be filled during the sintering process. It is presumed that the permanent magnet can easily fill the pores with a metal component during the sintering process even if pores are generated by a manufacturing method described later, and a sintered body having a maximum diameter of 40 μm or less can be obtained.

ポアの最大径は40μm以下であればよい。中でも、本永久磁石を高密度化し、より良好な磁気特性を得る点からは、ポアの最大径は20μm以下が好ましい。また、本永久磁石を高密度化し、より良好な磁気特性を得る点から、光学顕微鏡像内のポアの存在比率(面積比)は、10%以下が好ましく、5%以下がより好ましい。 The maximum diameter of the pore may be 40 μm or less. Above all, the maximum diameter of the pore is preferably 20 μm or less from the viewpoint of increasing the density of the permanent magnet and obtaining better magnetic characteristics. Further, the abundance ratio (area ratio) of the pores in the optical microscope image is preferably 10% or less, more preferably 5% or less, from the viewpoint of increasing the density of the permanent magnet and obtaining better magnetic characteristics.

本永久磁石の組成は、質量百分率で、Smを含む希土類元素R:23~27%、Cu:4.0~5.0%、Fe:22~27%、Zr:1.7%~2.5%、残部がCo及び不可避不純物からなる。本永久磁石は、このような組成を有することにより、セル構造内にて同一の組成変動傾向を示し、目的とする磁区構造や磁気特性が得られ、優れた磁気特性を有する。 The composition of this permanent magnet is mass percentage, rare earth element R including Sm: 23 to 27%, Cu: 4.0 to 5.0%, Fe: 22 to 27%, Zr: 1.7% to 2. 5%, the balance consists of Co and unavoidable impurities. By having such a composition, the permanent magnet shows the same composition fluctuation tendency in the cell structure, the desired magnetic domain structure and magnetic characteristics can be obtained, and the permanent magnet has excellent magnetic characteristics.

本実施形態において、希土類元素Rとは、Sc、Y、及びランタノイド(原子番号57~71の元素)の総称である。本永久磁石は、希土類元素Rとして少なくともSmを含む。希土類元素RはSmのみ単独で用いてもよく、Smと、1種又は2種以上の他の希土類元素との組み合わせであってもよい。他の希土類元素としては、磁気特性の観点から、中でもPr、Nd、Ce、Laが好ましい。また、磁気特性の観点から、希土類元素R全体に対してSmは80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましい。
本永久磁石中、質量百分率で希土類元素Rは23~27%含有する。上記割合で含有することにより、磁気異方性が高く、且つ、高い保磁力を有する永久磁石が得られる。中でも、磁気特性が向上する点から23.5~26.5%が好ましい。
In the present embodiment, the rare earth element R is a general term for Sc, Y, and lanthanoids (elements having atomic numbers 57 to 71). This permanent magnet contains at least Sm as a rare earth element R. The rare earth element R may be used alone for Sm, or may be a combination of Sm and one or more other rare earth elements. As the other rare earth elements, Pr, Nd, Ce, and La are particularly preferable from the viewpoint of magnetic properties. Further, from the viewpoint of magnetic properties, Sm is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more with respect to the entire rare earth element R.
The permanent magnet contains 23 to 27% of the rare earth element R by mass percentage. By containing the magnet in the above ratio, a permanent magnet having high magnetic anisotropy and high coercive force can be obtained. Above all, 23.5 to 26.5% is preferable from the viewpoint of improving the magnetic characteristics.

本永久磁石は、Feを22~27%含有する。Feを22%以上含有することにより飽和磁化が向上する。また、Feの含有量が27%以下であることにより高い保磁力を有する永久磁石となる。本永久磁石は、後述する製造方法によりFeが22%以上であってもポアの肥大化が抑制され、ポアの最大径が40μm以下となる。磁気特性が向上する点からFeの含有割合は22.5~26.5%が好ましい。 This permanent magnet contains 22 to 27% of Fe. Saturation magnetization is improved by containing 22% or more of Fe. Further, when the Fe content is 27% or less, the permanent magnet has a high coercive force. In this permanent magnet, the enlargement of the pores is suppressed even if Fe is 22% or more by the manufacturing method described later, and the maximum diameter of the pores is 40 μm or less. The Fe content is preferably 22.5 to 26.5% from the viewpoint of improving the magnetic properties.

本永久磁石は、Cuを4.0~5.0%含有する。Cuを4.0%以上含有することにより高い保磁力を有する永久磁石となる。また、Cuの含有量が5.0%以下であることにより磁化の低下が抑制される。磁気特性が向上する点からCuの含有割合は4.0~4.5%が好ましい。 This permanent magnet contains 4.0 to 5.0% of Cu. By containing 4.0% or more of Cu, it becomes a permanent magnet having a high coercive force. Further, when the Cu content is 5.0% or less, the decrease in magnetization is suppressed. The Cu content is preferably 4.0 to 4.5% from the viewpoint of improving the magnetic properties.

本永久磁石は、Zrを1.7%~2.5%含有する。Zrを上記範囲内で含有することにより、磁石が保持できる最大の静磁エネルギーである最大エネルギー積(BH)mの高い永久磁石が得られる。磁気特性が向上する点からZrの含有割合は1.7%~2.3%が好ましい。 This permanent magnet contains 1.7% to 2.5% of Zr. By containing Zr within the above range, a permanent magnet having a high maximum energy product (BH) m, which is the maximum static energy that the magnet can hold, can be obtained. The Zr content is preferably 1.7% to 2.3% from the viewpoint of improving the magnetic properties.

また、本永久磁石は、残部(すなわち、38.5%~49.3%)がCo(コバルト)及び不可避不純物からなる。Coを含有することにより、永久磁石の熱安定性が向上する。一方、Coの含有量が過剰となると相対的にFeの含有割合が低下する。
不可避不純物は、原料や製造工程から不可避的に混入する元素であって、具体的には、例えば、C、N、P、S、Al、Ti、Cr、Mn、Ni、Hf、Sn、Wなどが挙げられるが、これらに限定されない。本永久磁石において不可避不純物の含有割合は、本永久磁石全量に対し、質量百分率で、合計で5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.1質量%以下であることが更に好ましい。
Further, in this permanent magnet, the balance (that is, 38.5% to 49.3%) is composed of Co (cobalt) and unavoidable impurities. By containing Co, the thermal stability of the permanent magnet is improved. On the other hand, when the Co content is excessive, the Fe content ratio is relatively low.
Inevitable impurities are elements that are inevitably mixed from raw materials and manufacturing processes, and specifically, for example, C, N, P, S, Al, Ti, Cr, Mn, Ni, Hf, Sn, W and the like. However, it is not limited to these. The content ratio of unavoidable impurities in the permanent magnet is preferably 5% by mass or less in total, more preferably 1% by mass or less, and 0.1% by mass, in terms of mass percentage with respect to the total amount of the permanent magnet. The following is more preferable.

本永久磁石中の各元素の含有割合は、例えば、エネルギー分散型X線分析(EDX:Energy dispersive X-ray spectrometry)を用いて測定することができる。 The content ratio of each element in the permanent magnet can be measured by using, for example, energy dispersive X-ray spectroscopy (EDX).

本永久磁石は、ThZn17型構造の結晶相(図1の結晶粒1。以下、2-17相ということがある)を主相として有している。ThZn17型構造はR-3m型の空間群を有する結晶構造であり、本永久磁石においては、通常、Th部位を希土類元素及びZrが占め、Zn部位にCo、Cu、Fe、及びZrが占めている。また、本永久磁石は、RCo型構造の結晶相(図1の結晶粒界2。以下、1-5相ということがある)を有している。なお、当該1-5相は、通常、R部位を希土類元素及びZrが占め、Co部位にCo、Cu、Feが占めている。また、本永久磁石は、TbCu型構造の結晶相(以下、1-7相ということがある)を有していてもよい。当該1-7相は、通常、Tb部位を希土類元素及びZrが占め、Cu部位にCo、Cu、Feが占めている。結晶構造は、X線回折法により決定できる。
本発明の永久磁石は、磁壁移動時に2-17相と1-5相の2相間で磁壁がピンニングされることにより、保磁力が発現すると推定される。また、2相分離時にFeとCuそれぞれ2-17相と1-5相に濃縮することによって角形性が向上し、(BH)mが大きくなることから、磁気特性と組成比が大きく関与することが特徴である。さらに、2-17相と1-5相の組成比が試料全体にわたって一定であるほど良好な磁気特性を得ることができ、さらに、細かく加工した場合には歩留まりを向上させることができる。
This permanent magnet has a crystal phase having a Th 2 Zn 17 -type structure (crystal grain 1 in FIG. 1; hereinafter, may be referred to as 2-17 phase) as a main phase. The Th 2 Zn 17 -type structure is a crystal structure having an R-3m-type space group. In this permanent magnet, the Th site is usually occupied by rare earth elements and Zr, and the Zn site is Co, Cu, Fe, and Zr. Is occupied. Further, the permanent magnet has a crystal phase having an RCo5 type structure (crystal grain boundary 2 in FIG. 1, hereinafter may be referred to as 1-5 phase). In the 1-5 phase, the R moiety is usually occupied by rare earth elements and Zr, and the Co moiety is occupied by Co, Cu, and Fe. Further, the permanent magnet may have a crystal phase having a TbCu 7 type structure (hereinafter, may be referred to as 1-7 phase). In the 1-7 phase, the Tb moiety is usually occupied by rare earth elements and Zr, and the Cu moiety is occupied by Co, Cu, and Fe. The crystal structure can be determined by the X-ray diffraction method.
In the permanent magnet of the present invention, it is presumed that the coercive force is exhibited by pinning the domain wall between the two phases of 2-17 phase and 1-5 phase when the domain wall moves. In addition, when Fe and Cu are concentrated into 2-17 phase and 1-5 phase, respectively, during the two-phase separation, the squareness is improved and (BH) m becomes large, so that the magnetic properties and composition ratio are greatly involved. Is a feature. Further, the more the composition ratio of the 2-17 phase and the 1-5 phase is constant over the entire sample, the better the magnetic characteristics can be obtained, and further, the yield can be improved when finely processed.

本永久磁石は、特に残留磁束密度や角形などの磁気特性に優れる点から、緻密化していることが好ましく、具体的には、本永久磁石の密度(焼結体密度)が8.25g/cm以上であることが好ましい。一方、当該密度の上限は特に限定されないが、本永久磁石の組成から、通常、8.40g/cm以下となる。なお、本永久磁石の高密度化は、ポアの最大径や、ポアの存在比率を低減させることにより達成することが好ましく、本永久磁石は密度が高いCuの含有割合が低い場合であっても上記密度を達成することができる。 The permanent magnet is preferably densified because it has excellent magnetic characteristics such as residual magnetic flux density and square shape. Specifically, the density of the permanent magnet (sintered body density) is 8.25 g / cm. It is preferably 3 or more. On the other hand, the upper limit of the density is not particularly limited, but is usually 8.40 g / cm 3 or less due to the composition of the permanent magnet. It is preferable that the density of the permanent magnet is increased by reducing the maximum diameter of the pores and the abundance ratio of the pores, and the permanent magnet has a high density even when the content ratio of Cu is low. The above density can be achieved.

本永久磁石は、一例として、焼結体密度が8.25g/cm以上、最大エネルギー積が260kJ/m以上、固有保磁力が1600kA/m以上、Brの90%を示すときの逆磁界の大きさをHkとしたとき、Hk/Hcjが65%以上の優れた磁気特性が達成可能である。なお、Hcjは保磁力を示す。 As an example, this permanent magnet has a sintered body density of 8.25 g / cm 3 or more, a maximum energy product of 260 kJ / m 3 or more, an intrinsic coercive force of 1600 kA / m or more, and a reverse magnetic field showing 90% of Br. When the magnitude of Hk is Hk, excellent magnetic properties with Hk / Hcj of 65% or more can be achieved. Hcj indicates a coercive force.

[希土類コバルト永久磁石の製造方法]
本実施形態の希土類コバルト永久磁石の製造方法(以下、本製造方法ともいう)は、質量百分率組成で、R:23~27%(Rは少なくともSmを含む希土類元素の合計)、Cu:4.0~5.0%、Fe:22~27%、Zr:1.7%~2.5%、残部がCo及び不可避不純物からなる合金を準備する工程(I)と、
前記合金を、比表面積が0.30m/g以上の粉末とする粉砕工程(II)と、
前記粉末を成形体とする加圧成形工程(III)と、
前記成形体を焼結する工程(IV)と、
焼結後の成形体を溶体化処理する工程(V)と、
溶体化処理後の成形体を急冷する工程と(VI)、
溶体化処理後の成形体を熱処理する工程(VII)と、を有する。
[Manufacturing method of rare earth cobalt permanent magnet]
The method for producing a rare earth cobalt permanent magnet of the present embodiment (hereinafter, also referred to as the present production method) has a mass percentage composition, R: 23 to 27% (R is the total of rare earth elements including at least Sm), Cu: 4. Step (I) of preparing an alloy consisting of 0 to 5.0%, Fe: 22 to 27%, Zr: 1.7% to 2.5%, and the balance of Co and unavoidable impurities.
In the pulverization step (II) in which the alloy is made into a powder having a specific surface area of 0.30 m 2 / g or more,
The pressure molding step (III) using the powder as a molded body and
The step (IV) of sintering the molded product and
The step (V) of solution-treating the sintered compact and
The step of quenching the molded product after the solution treatment (VI),
It has a step (VII) of heat-treating the molded product after the solution treatment.

本製造方法により、大きなポアが生じることを抑制でき、磁気特性に優れた、上記本希土類コバルト永久磁石が製造できる。 By this manufacturing method, it is possible to suppress the generation of large pores, and it is possible to manufacture the above-mentioned rare earth cobalt permanent magnet having excellent magnetic properties.

まず、質量百分率組成で、R:23~27%(Rは少なくともSmを含む希土類元素の合計)、Cu:4.0~5.0%、Fe:22~27%、Zr:1.7%~2.5%、残部がCo及び不可避不純物からなる合金を準備する(工程(I))。当該合金の準備方法は、所望の組成を有する合金の市販品を入手することにより準備してもよく、各元素を所望の組成となるように配合することにより合金を準備してもよい。
以下、各元素を配合する具体例について説明するが、本発明はこの方法に限定されるものではない。
まず原料として、所望の希土類元素、Fe、Cu、Coの各金属元素と、母合金を準備する。ここで、母合金として共晶温度の低い組成のものを選択することが、得られる合金の組成の均一化を図りやすい点から好ましい。本発明においては、母合金として、FeZr又はCuZrを選択して用いることが好ましい。FeZrとしては、一例としてFe20%Zr80%前後のものが好適である。また、CuZrとしては、一例としてCu50%Zr50%前後のものが好適である。
これらの原料を所望の組成となるように配合し、Al等の坩堝にいれ、1×10-2torr以下の真空中または不活性ガス雰囲気において高周波溶解炉により溶解することで、均一化した合金が得られる。更に、本発明においては当該溶解した合金を金型により鋳造して合金インゴットとする工程を含んでいてもよい。また、別法として、溶解した合金を銅ロールに滴下することにより1mm厚程度のフレーク上の合金を製造してもよい(ストリップキャスト法)。
また前記鋳造により合金インゴットとした場合、当該合金インゴットの溶体化温度で1~20時間熱処理してもよい。当該熱処理により、組成をより均一化し、最終製品のFe/Cu比のばらつきをより抑制することができる。なお、合金インゴットの溶体化温度は、合金の組成等に応じて適宜調整すればよい。
First, in terms of mass percentage composition, R: 23 to 27% (R is the total of rare earth elements including at least Sm), Cu: 4.0 to 5.0%, Fe: 22 to 27%, Zr: 1.7%. Prepare an alloy of ~ 2.5%, the balance of which is Co and unavoidable impurities (step (I)). The method for preparing the alloy may be prepared by obtaining a commercially available alloy having a desired composition, or the alloy may be prepared by blending each element so as to have a desired composition.
Hereinafter, specific examples of blending each element will be described, but the present invention is not limited to this method.
First, as raw materials, a desired rare earth element, each metal element of Fe, Cu, and Co, and a mother alloy are prepared. Here, it is preferable to select an alloy having a composition having a low eutectic temperature as the mother alloy from the viewpoint that it is easy to make the composition of the obtained alloy uniform. In the present invention, it is preferable to select and use FeZr or CuZr as the mother alloy. As the FeZr, as an example, a FeZr of around 20% Zr80% is suitable. Further, as CuZr, as an example, CuZr of around 50% Zr50% is suitable.
A uniform alloy is prepared by blending these raw materials so as to have a desired composition, putting them in a crucible such as Al, and dissolving them in a vacuum of 1 × 10-2 torr or less or in an inert gas atmosphere with a high-frequency melting furnace. Is obtained. Further, the present invention may include a step of casting the melted alloy with a mold to form an alloy ingot. Alternatively, an alloy on flakes having a thickness of about 1 mm may be produced by dropping the melted alloy onto a copper roll (strip cast method).
Further, when the alloy ingot is obtained by the casting, heat treatment may be performed at the solution temperature of the alloy ingot for 1 to 20 hours. By the heat treatment, the composition can be made more uniform and the variation in the Fe / Cu ratio of the final product can be further suppressed. The solution temperature of the alloy ingot may be appropriately adjusted according to the composition of the alloy and the like.

次いで、前記合金を粉砕して比表面積が0.30m/g以上の粉末とする(工程(II))。比表面積の大きい粉末を用いることで、後述する焼結時に焼結体が緻密化しポアの最大径が40μm以下に抑制される。
本実施形態において比表面積は、単位質量当たりの比表面積を表し、下記式(1)で表すことができる。
比表面積=表面積(m)/質量(g) :式(1)
Next, the alloy is pulverized to obtain a powder having a specific surface area of 0.30 m 2 / g or more (step (II)). By using a powder having a large specific surface area, the sintered body becomes densified during sintering, which will be described later, and the maximum diameter of the pores is suppressed to 40 μm or less.
In the present embodiment, the specific surface area represents the specific surface area per unit mass and can be expressed by the following formula (1).
Specific surface area = surface area (m 2 ) / mass (g): equation (1)

比表面積が0.30m/g以上とするために、粉末の表面積を増大させることが好ましい。比表面積が0.30m/g以上とする方法は、粉末に十分な凹凸形状を付与する方法であれば任意の方法を採用することができる。製造の容易性の点から、粉砕条件を調整することで粉砕時に表面積を増大させることが好ましい。一例として、まず、合金インゴット又はフレーク状の合金を、公知の粉砕機により100~500μm程度の大きさに粗粉砕し、次いで、微粉砕する際に比表面積を増大させる。比表面積を増大させるために、湿式粉砕法を用いることが好ましい。湿式粉砕法としては、ボールミル法、ジェットミル法、遊星ミル法、アトライター法などが挙げられ、ボールミル法又はジェットミル法が好ましい。
湿式粉砕法は、まず粗粉砕した合金に溶媒を添加しスラリー状とする。当該スラリーの粘度を低く調整することで、湿式粉砕後の微粉末の比表面積が増大する傾向にある。またボールミル法を用いる場合はボールの量を少なめに調整することが好ましい。これらの調整により合金粉末の流動性が高くなり、その結果剪断力が大きくなり、比表面積が大きくなるものと推定される。
微粉砕後の粉体の平均粒径は、後述する焼結工程の焼結時間を短縮することを可能とし、また、均一な永久磁石を製造する点から、平均粒径は1~10μmが好ましい。
It is preferable to increase the surface area of the powder so that the specific surface area is 0.30 m 2 / g or more. As a method for setting the specific surface area to 0.30 m 2 / g or more, any method can be adopted as long as it is a method for imparting a sufficient uneven shape to the powder. From the viewpoint of ease of production, it is preferable to increase the surface area at the time of pulverization by adjusting the pulverization conditions. As an example, first, an alloy ingot or a flake-shaped alloy is roughly pulverized to a size of about 100 to 500 μm by a known pulverizer, and then the specific surface area is increased when finely pulverized. In order to increase the specific surface area, it is preferable to use a wet grinding method. Examples of the wet pulverization method include a ball mill method, a jet mill method, a planetary mill method, an attritor method, and the like, and a ball mill method or a jet mill method is preferable.
In the wet pulverization method, a solvent is first added to the coarsely pulverized alloy to form a slurry. By adjusting the viscosity of the slurry to a low level, the specific surface area of the fine powder after wet pulverization tends to increase. When the ball mill method is used, it is preferable to adjust the amount of balls to be small. It is presumed that these adjustments increase the fluidity of the alloy powder, resulting in an increase in shearing force and an increase in specific surface area.
The average particle size of the powder after fine grinding makes it possible to shorten the sintering time in the sintering step described later, and the average particle size is preferably 1 to 10 μm from the viewpoint of producing a uniform permanent magnet. ..

なお、粉末の比表面積は、測定対象となる粉末を比表面積測定装置の器具に封入し、加熱しながら真空引きして脱ガスを行う。脱ガス後、室温まで冷却し、さらに液体窒素を入れた容器に器具を含侵し、さらに冷却する。液体窒素温度まで冷却後、圧力を段階的に変えながらガスを器具に封入する。窒素ガス等温吸着曲線を測定し、当該等温吸着曲線からBET式(下式(2))を用いて比表面積を計算する。等温吸着曲線の測定は、例えば、全自動比表面積測定装置を用いることができる。 The specific surface area of the powder is degassed by enclosing the powder to be measured in an instrument of the specific surface area measuring device and evacuating while heating. After degassing, the mixture is cooled to room temperature, and the container containing liquid nitrogen is impregnated with the instrument to further cool it. After cooling to the temperature of liquid nitrogen, the gas is sealed in the instrument while changing the pressure step by step. The nitrogen gas isotherm adsorption curve is measured, and the specific surface area is calculated from the isotherm adsorption curve using the BET equation (formula (2) below). For the measurement of the isotherm adsorption curve, for example, a fully automatic specific surface area measuring device can be used.

Figure 2022080585000002
ここで、Vmは窒素ガスの単分子層吸着量(第1層に吸着した窒素ガスの容量)、Vは吸着した窒素ガスの容量、Pはサンプル内の圧力、Poは飽和蒸気圧、Cは吸着熱などに関する定数である。
横軸にP/Po、縦軸にP/V(Po-P)を取りプロットすると直線(BETプロット)が得られる。この直線の切片と傾きからVmが求められ、比表面積Sは下式(3)にから計算する。
S=Vm×N×Am
ここで、Sは比表面積、Nはアボガドロ数であり、Amは窒素ガス1分子の占める面積(0.162nm2)である。
Figure 2022080585000002
Here, Vm is the amount of nitrogen gas adsorbed in the single molecule layer (capacity of nitrogen gas adsorbed on the first layer), V is the capacity of adsorbed nitrogen gas, P is the pressure in the sample, Po is the saturated vapor pressure, and C is. It is a constant related to heat of adsorption.
A straight line (BET plot) can be obtained by plotting P / Po on the horizontal axis and P / V (Po-P) on the vertical axis. Vm is obtained from the intercept and slope of this straight line, and the specific surface area S is calculated from the following equation (3).
S = Vm x N x Am
Here, S is the specific surface area, N is the Avogadro's number, and Am is the area occupied by one molecule of nitrogen gas (0.162 nm 2 ).

次に、得られた粉体を、加圧成形して所望の形状の成形体とする(工程(III))。本発明においては、粉体の結晶方位を揃えて磁気特性を向上する点から、一定の磁場中で加圧成形することが好ましい。磁場の方向と、プレス方向との関係は特に限定されず、製品の形状等に応じて適宜選択すればよい。例えば、リング磁石や、薄板状の磁石を製造する場合には、プレス方向に対して、平行方向に磁場を印加する並行磁場プレスとすることができる。一方、磁気特性に優れる点からは、プレス方向に対して、直角に磁場を印加する直角磁場プレスとすることが好ましい。 Next, the obtained powder is pressure-molded to obtain a molded product having a desired shape (step (III)). In the present invention, it is preferable to perform pressure molding in a constant magnetic field from the viewpoint of aligning the crystal orientations of the powders and improving the magnetic properties. The relationship between the direction of the magnetic field and the pressing direction is not particularly limited, and may be appropriately selected according to the shape of the product and the like. For example, in the case of manufacturing a ring magnet or a thin plate magnet, a parallel magnetic field press in which a magnetic field is applied in a direction parallel to the pressing direction can be used. On the other hand, from the viewpoint of excellent magnetic characteristics, it is preferable to use a right-angled magnetic field press in which a magnetic field is applied at right angles to the pressing direction.

磁場の大きさは特に限定されず、製品の用途等に応じて、例えば15kOe以下の磁場であってもよく、15kOe以上の磁場であってもよい。中でも磁気特性に優れる点からは、15kOe以上の磁場中で加圧成形することが好ましい。また、加圧成形の際の圧力は、製品の大きさ、形状等に応じて適宜調整すればよい。一例として、0.5~2.0ton/cmの圧力とすることができる。すなわち本発明の希土類コバルト永久磁石の製造方法においては、磁気特性の観点から、前記粉体を15kOe以上の磁場中で、磁場に垂直に0.5~2.0ton/cm以下の圧力で加圧成形することが特に好ましい。 The magnitude of the magnetic field is not particularly limited, and may be, for example, a magnetic field of 15 kOe or less, or a magnetic field of 15 kOe or more, depending on the intended use of the product. Above all, from the viewpoint of excellent magnetic characteristics, pressure molding in a magnetic field of 15 kOe or more is preferable. Further, the pressure at the time of pressure molding may be appropriately adjusted according to the size, shape and the like of the product. As an example, the pressure can be 0.5 to 2.0 ton / cm 2 . That is, in the method for producing a rare earth cobalt permanent magnet of the present invention, from the viewpoint of magnetic properties, the powder is applied in a magnetic field of 15 kOe or more at a pressure of 0.5 to 2.0 ton / cm 2 or less perpendicular to the magnetic field. Pressure molding is particularly preferred.

次に、前記成形体を1180~1220℃で、20~240分加熱することにより焼結体とする(工程(IV))。1180℃以上で20分以上焼結を行うことにより、得られる焼結体の緻密化が十分となる。また、1220℃以下で240分以下の加熱とすることにより、希土類元素、特にSmの蒸発が抑制されて、磁気特性に優れた永久磁石を製造することができる。焼結時間は中でも30~180分が好ましい。また、酸化を抑制する観点から、上記焼結工程は1000Pa以下の真空中または不活性ガス雰囲気下で行うことが好ましく、更に、焼結体の密度を大きくする点から1000Pa以下、好ましくは100Pa以下の真空中で焼結することが好ましい。 Next, the molded product is heated at 1180 to 1220 ° C. for 20 to 240 minutes to obtain a sintered body (step (IV)). Sintering at 1180 ° C. or higher for 20 minutes or longer sufficiently densifies the obtained sintered body. Further, by heating at 1220 ° C. or lower for 240 minutes or less, evaporation of rare earth elements, particularly Sm, is suppressed, and a permanent magnet having excellent magnetic properties can be manufactured. The sintering time is preferably 30 to 180 minutes. Further, from the viewpoint of suppressing oxidation, the sintering step is preferably performed in a vacuum of 1000 Pa or less or in an inert gas atmosphere, and further, from the viewpoint of increasing the density of the sintered body, 1000 Pa or less, preferably 100 Pa or less. It is preferable to sinter in the vacuum of.

次に、前記焼結体を1120~1170℃で、5~120時間加熱する溶体化処理(工程(V))を行う。1120℃以上で加熱することにより、成形体中の組成が均一化されると共に、後述する熱処理工程(工程(VII))時にThZn17型構造の結晶相を主相とするための前駆体である前記1-7相を形成することができる。また、加熱温度を1170℃以下とすることで、希土類元素の蒸発が抑制される。中でも溶体化温度は1130~1160℃が好ましい。また、溶体化時間は中でも10~100時間が好ましい。焼結体の最適な溶体化温度は焼結体の組成に応じて変化するため、上記温度範囲内で適宜調整することが好ましい。 Next, a solution treatment (step (V)) is performed in which the sintered body is heated at 1120 to 1170 ° C. for 5 to 120 hours. By heating at 1120 ° C. or higher, the composition in the molded body is made uniform, and a precursor for using the crystal phase of Th 2 Zn 17 type structure as the main phase during the heat treatment step (step (VII)) described later. The 1-7 phase can be formed. Further, by setting the heating temperature to 1170 ° C. or lower, evaporation of rare earth elements is suppressed. Above all, the solution temperature is preferably 1130 to 1160 ° C. The solutionization time is preferably 10 to 100 hours. Since the optimum solution temperature of the sintered body changes depending on the composition of the sintered body, it is preferable to appropriately adjust the temperature within the above temperature range.

1-7相を十分に形成させる点、及び各元素を均一化する点から、溶体化処理時間は20時間以上とする。また、希土類元素、特にSmの蒸発を抑制する点から、溶体化処理時間は100時間以下であることが好ましい。酸化を抑制する観点から、上記溶体化処理は1×10-2torr以下の真空中または不活性ガス雰囲気下で行うことが好ましい。 The solution treatment time is set to 20 hours or more from the viewpoint of sufficiently forming the 1-7 phase and homogenizing each element. Further, the solution treatment time is preferably 100 hours or less from the viewpoint of suppressing evaporation of rare earth elements, particularly Sm. From the viewpoint of suppressing oxidation, the solution treatment is preferably carried out in a vacuum of 1 × 10-2 torr or less or in an atmosphere of an inert gas.

また、生産性向上の観点から、前記焼結工程(IV)と前記溶体化処理工程(V)とは一連の工程とすることが好ましい。すなわち、前記成形体を1190℃以上1225℃以下で、0.5時間以上3.0時間以下加熱した後、室温まで冷却せずに、1120℃以上1180℃以下に調整し、続けて好ましくは30~100時間、より好ましくは50~100時間の溶体化処理を行うことが好ましい。溶体化時間を30時間以上、好ましくは50時間以上とすることでより組織の均一化を図ることができる。 Further, from the viewpoint of improving productivity, it is preferable that the sintering step (IV) and the solution treatment step (V) are a series of steps. That is, after heating the molded product at 1190 ° C. or higher and 1225 ° C. or lower for 0.5 hours or longer and 3.0 hours or lower, the temperature is adjusted to 1120 ° C. or higher and 1180 ° C. or lower without cooling to room temperature, and then preferably 30. It is preferable to carry out the solution treatment for about 100 hours, more preferably 50 to 100 hours. By setting the solution formation time to 30 hours or more, preferably 50 hours or more, more uniform structure can be achieved.

次に、前記溶体化処理工程(V)後の冷却過程において、少なくとも1000℃から600℃までの間、冷却速度を60℃/min以上で急冷する(工程(VI))。このように急冷するのは、前記溶体化処理工程(V)で得られた、1-7相の結晶構造を維持するためであり、急冷が不十分な場合には、1-7相が変化する恐れがある。特に溶体化温度から600℃までの時間を短くすることにより、1-7相の結晶構造を維持することができる。中でも冷却速度は80℃/min以上が好ましい。一方、冷却速度の上限は、成形体の形状にもよるが、一例として250℃/min以下が好ましい。 Next, in the cooling step after the solution treatment step (V), the cooling rate is rapidly cooled at 60 ° C./min or more from at least 1000 ° C. to 600 ° C. (step (VI)). The reason for quenching in this way is to maintain the crystal structure of the 1-7 phase obtained in the solution treatment step (V), and if the quenching is insufficient, the 1-7 phase changes. There is a risk of doing. In particular, by shortening the time from the solution temperature to 600 ° C., the crystal structure of the 1-7 phase can be maintained. Above all, the cooling rate is preferably 80 ° C./min or more. On the other hand, the upper limit of the cooling rate depends on the shape of the molded product, but is preferably 250 ° C./min or less as an example.

次に、急冷工程後の成形体を時効処理して、2-17相と1-5相とを形成する(工程(VII))。時効温度は特に限定されないが、2-17相を主相とし、2-17相と1-5相とを均質に有する希土類コバルト永久磁石を得るために、700~900℃の温度で2~20時間保持し、その後、少なくとも400℃まで冷却するまでの間、冷却速度を2℃/min以下とする方法とすることが好ましい。700℃~900℃の温度で2~20時間保持することにより、2-17相と1-5相とを均質に形成することができる。中でも800~850℃の温度範囲で時効処理することが好ましい。また、良好な磁気特性を得る点から、冷却速度を2℃/min以下とすることが好ましく、0.5℃/min以下とすることがより好ましい。冷却速度が速すぎると各元素の2-17相および1-5相への濃縮が行われず、良好な磁気特性を得ることができない。 Next, the molded product after the quenching step is aged to form a 2-17 phase and a 1-5 phase (step (VII)). The aging temperature is not particularly limited, but in order to obtain a rare earth cobalt permanent magnet having 2-17 phase as the main phase and 2-17 phase and 1-5 phase homogeneously, 2 to 20 at a temperature of 700 to 900 ° C. It is preferable to use a method in which the cooling rate is set to 2 ° C./min or less until the temperature is maintained for a long time and then cooled to at least 400 ° C. By holding at a temperature of 700 ° C. to 900 ° C. for 2 to 20 hours, the 2-17 phase and the 1-5 phase can be uniformly formed. Above all, aging treatment is preferable in the temperature range of 800 to 850 ° C. Further, from the viewpoint of obtaining good magnetic characteristics, the cooling rate is preferably 2 ° C./min or less, and more preferably 0.5 ° C./min or less. If the cooling rate is too fast, the elements will not be concentrated in the 2-17 phase and the 1-5 phase, and good magnetic properties cannot be obtained.

[デバイス]
本発明は、更に前記本永久磁石を有するデバイスを提供することができる。このようなデバイスの具体例としては、例えば、時計、電動モータ、各種計器、通信機、コンピューター端末機、スピーカー、ビデオディスク、センサなどが挙げられる。また、本発明の希土類コバルト永久磁石は、高い環境温度にあっても磁力を劣化しにくいため、自動車のエンジンルームで使用される角度センサ、イグニッションコイル、HEV(Hybrid electric vehicle)などの駆動モータ等にも好適に用いることができる。
[device]
The present invention can further provide a device having the present permanent magnet. Specific examples of such devices include watches, electric motors, various instruments, communication devices, computer terminals, speakers, video discs, sensors, and the like. Further, since the rare earth cobalt permanent magnet of the present invention does not easily deteriorate its magnetic force even in a high environmental temperature, an angle sensor, an ignition coil, a drive motor such as an HEV (Hybrid electric vehicle) used in an automobile engine room, etc. Can also be suitably used.

以下、実施例および比較例を挙げて本発明を具体的に説明する。なお、これらの記載により本発明を制限するものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. It should be noted that these descriptions do not limit the present invention.

(実施例1~4)
表1の実施例1~4の組成になるように、各々Fe20%Zr80%の母合金及び各原料を調整し、高周波溶解炉により溶解し、鋳造して、合金インゴットを得た。
得られた母合金を不活性ガス中で平均約100~500μmになるように粗粉砕し、次いでボールミルを用いて不活性ガス中で粉末の比表面積が0.30m/g、0.40m/g、及び0.50m/gになるように各々微粉砕を行った。
これらの粉末を各々15kOeの磁場中で1ton/cmの圧力でプレスすることにより成形体を得た。
この成形体を0.001Paの真空中において1210℃で80分焼結した後、1145℃で50時間溶体化を行い、1000~600℃までを80℃/minの冷却速度で急冷した。急冷後、850℃で12時間保持し、続いて0.5℃/minの冷却速度で350℃まで徐冷する条件で時効し、実施例1~4の永久磁石を得た。得られた永久磁石の磁気特性を測定し、次いで組織観察を行った。得られた永久磁石の密度、(BH)m、Hcj、Hk/Hcj、ポアの最大径の評価結果を表1に示す。また、図1に実施例2の永久磁石の組織観察に用いた光学顕微鏡像を示す。
(Examples 1 to 4)
A mother alloy of 20% Fe and 80% Zr and each raw material were prepared so as to have the compositions of Examples 1 to 4 in Table 1, melted in a high-frequency melting furnace, and cast to obtain an alloy ingot.
The obtained mother alloy is coarsely pulverized in an inert gas to an average of about 100 to 500 μm, and then the specific surface area of the powder is 0.30 m 2 / g, 0.40 m 2 in the inert gas using a ball mill. Fine pulverization was performed so as to be / g and 0.50 m 2 / g, respectively.
Each of these powders was pressed in a magnetic field of 15 kOe at a pressure of 1 ton / cm 2 to obtain a molded product.
This molded product was sintered at 1210 ° C. for 80 minutes in a vacuum of 0.001 Pa, solutioned at 1145 ° C. for 50 hours, and rapidly cooled from 1000 to 600 ° C. at a cooling rate of 80 ° C./min. After quenching, the magnets were kept at 850 ° C. for 12 hours, and then aged under the condition of slowly cooling to 350 ° C. at a cooling rate of 0.5 ° C./min to obtain permanent magnets of Examples 1 to 4. The magnetic properties of the obtained permanent magnets were measured, and then the structure was observed. Table 1 shows the evaluation results of the density of the obtained permanent magnets, (BH) m, Hcj, Hk / Hcj, and the maximum diameter of the pores. Further, FIG. 1 shows an optical microscope image used for observing the structure of the permanent magnet of Example 2.

<ポアの最大径の評価基準>
◎:20μm未満であった。
〇:20~40μmであった。
×:40μm超過であった。
<Evaluation criteria for maximum pore diameter>
⊚: It was less than 20 μm.
〇: It was 20 to 40 μm.
X: It was over 40 μm.

(比較例1~4)
上記実施例1~4において、比表面積が0.10m/g、0.20m/g、及び0.25m/gになるように微粉砕を行った以外は実施例1~4と同様にして、比較例1~4の永久磁石を得た。得られた永久磁石は、実施例1~4と同様に測定を行った。結果を表1に示す。また、図2に比較例3の永久磁石の組織観察に用いた光学顕微鏡像を示す。
(Comparative Examples 1 to 4)
In Examples 1 to 4, the same as in Examples 1 to 4 except that fine pulverization was performed so that the specific surface areas were 0.10 m 2 / g, 0.20 m 2 / g, and 0.25 m 2 / g. Then, the permanent magnets of Comparative Examples 1 to 4 were obtained. The obtained permanent magnets were measured in the same manner as in Examples 1 to 4. The results are shown in Table 1. Further, FIG. 2 shows an optical microscope image used for observing the structure of the permanent magnet of Comparative Example 3.

(実施例5~8)
表2の実施例5~8の組成になるように、各々Fe20%Zr80%の母合金及び各原料を調整し、高周波溶解炉により溶解し、鋳造して、合金インゴットを得た。
得られた母合金を不活性ガス中で平均約100~500μmになるように粗粉砕し、次いでボールミルを用いて不活性ガス中で粉末の比表面積が0.30m/g、及び0.35m/gになるように各々微粉砕を行った。
これらの粉末を各々15kOeの磁場中で1ton/cmの圧力でプレスすることにより成形体を得た。
この成形体を0.01Paの真空中において、各々1180℃、1200℃、又は1220℃で120分焼結した後、1130℃で90時間溶体化を行い、1000~600℃までを80℃/minの冷却速度で急冷した。急冷後、850℃で12時間保持し、続いて0.5℃/minの冷却速度で350℃まで徐冷する条件で時効し、実施例5~8の永久磁石を得た。得られた永久磁石は、実施例1~4と同様に測定を行った。結果を表2に示す。
(Examples 5 to 8)
A mother alloy of 20% Fe and 80% Zr and each raw material were prepared so as to have the compositions of Examples 5 to 8 in Table 2, melted in a high-frequency melting furnace, and cast to obtain an alloy ingot.
The obtained mother alloy is coarsely pulverized in an inert gas to an average of about 100 to 500 μm, and then the specific surface area of the powder is 0.30 m 2 / g and 0.35 m in the inert gas using a ball mill. Each was finely pulverized to 2 / g.
Each of these powders was pressed in a magnetic field of 15 kOe at a pressure of 1 ton / cm 2 to obtain a molded product.
This molded product was sintered in a vacuum of 0.01 Pa at 1180 ° C., 1200 ° C., or 1220 ° C. for 120 minutes, and then solution-dissolved at 1130 ° C. for 90 hours, and the temperature was 80 ° C./min from 1000 to 600 ° C. It was rapidly cooled at the cooling rate of. After quenching, the magnets were kept at 850 ° C. for 12 hours, and then aged under the condition of slowly cooling to 350 ° C. at a cooling rate of 0.5 ° C./min to obtain permanent magnets of Examples 5 to 8. The obtained permanent magnets were measured in the same manner as in Examples 1 to 4. The results are shown in Table 2.

(比較例5~7)
表2の比較例5~7の組成になるように、各々Fe20%Zr80%の母合金及び各原料を調整し、高周波溶解炉により溶解し、鋳造して、合金インゴットを得た。
得られた母合金を不活性ガス中で平均約100~500μmになるように粗粉砕し、次いでボールミルを用いて不活性ガス中で粉末の比表面積が0.25m/gになるように各々微粉砕を行った。
これらの粉末を各々15kOeの磁場中で1ton/cmの圧力でプレスすることにより成形体を得た。
この成形体を0.01Paの真空中において、各々1180℃、1200℃、又は1220℃で120分焼結した後、1130℃で90時間溶体化を行い、1000~600℃までを80℃/minの冷却速度で急冷した。急冷後、850℃で12時間保持し、続いて0.5℃/minの冷却速度で350℃まで徐冷する条件で時効し、比較例5~7の永久磁石を得た。得られた永久磁石は、実施例1~4と同様に測定を行った。結果を表2に示す。また、図3に比較例5の永久磁石の組織観察に用いた光学顕微鏡像を示す。
(Comparative Examples 5 to 7)
A mother alloy of 20% Fe and 80% Zr and each raw material were prepared so as to have the compositions of Comparative Examples 5 to 7 in Table 2, melted in a high-frequency melting furnace, and cast to obtain an alloy ingot.
The obtained mother alloy is coarsely pulverized in an inert gas so as to have an average of about 100 to 500 μm, and then using a ball mill, the powder has a specific surface area of 0.25 m 2 / g in the inert gas. Fine grinding was performed.
Each of these powders was pressed in a magnetic field of 15 kOe at a pressure of 1 ton / cm 2 to obtain a molded product.
This molded product was sintered in a vacuum of 0.01 Pa at 1180 ° C., 1200 ° C., or 1220 ° C. for 120 minutes, and then solution-dissolved at 1130 ° C. for 90 hours, and the temperature was 80 ° C./min from 1000 to 600 ° C. It was rapidly cooled at the cooling rate of. After quenching, the magnets were kept at 850 ° C. for 12 hours, and then aged under the condition of slowly cooling to 350 ° C. at a cooling rate of 0.5 ° C./min to obtain permanent magnets of Comparative Examples 5 to 7. The obtained permanent magnets were measured in the same manner as in Examples 1 to 4. The results are shown in Table 2. Further, FIG. 3 shows an optical microscope image used for observing the structure of the permanent magnet of Comparative Example 5.

(実施例9~13)
表3の実施例9~13の組成になるように、各々Fe20%Zr80%の母合金及び各原料を調整し、高周波溶解炉により溶解し、鋳造して、合金インゴットを得た。
得られた母合金を不活性ガス中で平均約100~500μmになるように粗粉砕し、次いでボールミルを用いて不活性ガス中で粉末の比表面積が0.30m/g、及び0.45m/gになるように各々微粉砕を行った。
これらの粉末を各々15kOeの磁場中で1ton/cmの圧力でプレスすることにより成形体を得た。
この成形体を0.1Paの真空中において、1215℃で、各々20分、130分、又は240分焼結した後、1160℃で70時間溶体化を行い、1000~600℃までを80℃/minの冷却速度で急冷した。急冷後、850℃で12時間保持し、続いて0.5℃/minの冷却速度で350℃まで徐冷する条件で時効し、実施例9~13の永久磁石を得た。得られた永久磁石は、実施例1~4と同様に測定を行った。結果を表3に示す。
(Examples 9 to 13)
A mother alloy of 20% Fe and 80% Zr and each raw material were prepared so as to have the compositions of Examples 9 to 13 in Table 3, melted in a high-frequency melting furnace, and cast to obtain an alloy ingot.
The obtained mother alloy is coarsely pulverized in an inert gas to an average of about 100 to 500 μm, and then the specific surface area of the powder is 0.30 m 2 / g and 0.45 m in the inert gas using a ball mill. Each was finely pulverized to 2 / g.
Each of these powders was pressed in a magnetic field of 15 kOe at a pressure of 1 ton / cm 2 to obtain a molded product.
This molded product was sintered in a vacuum of 0.1 Pa at 1215 ° C. for 20 minutes, 130 minutes, or 240 minutes, respectively, and then solutioned at 1160 ° C. for 70 hours, and the temperature was 1000 to 600 ° C. at 80 ° C./. It was rapidly cooled at a cooling rate of min. After quenching, the magnets were kept at 850 ° C. for 12 hours, and then aged under the condition of slowly cooling to 350 ° C. at a cooling rate of 0.5 ° C./min to obtain permanent magnets of Examples 9 to 13. The obtained permanent magnets were measured in the same manner as in Examples 1 to 4. The results are shown in Table 3.

(比較例8~10)
表3の比較例8~10の組成になるように、各々Fe20%Zr80%の母合金及び各原料を調整し、高周波溶解炉により溶解し、鋳造して、合金インゴットを得た。
得られた母合金を不活性ガス中で平均約100~500μmになるように粗粉砕し、次いでボールミルを用いて不活性ガス中で粉末の比表面積が0.25m/gになるように各々微粉砕を行った。
これらの粉末を各々15kOeの磁場中で1ton/cmの圧力でプレスすることにより成形体を得た。
この成形体を0.1Paの真空中において、1215℃で、各々20分、130分、又は240分焼結した後、1160℃で70時間溶体化を行い、1000~600℃までを80℃/minの冷却速度で急冷した。急冷後、850℃で12時間保持し、続いて0.5℃/minの冷却速度で350℃まで徐冷する条件で時効し、比較例8~10の永久磁石を得た。得られた永久磁石は、実施例1~4と同様に測定を行った。結果を表3に示す。
(Comparative Examples 8 to 10)
A mother alloy of 20% Fe and 80% Zr and each raw material were prepared so as to have the compositions of Comparative Examples 8 to 10 in Table 3, melted in a high-frequency melting furnace, and cast to obtain an alloy ingot.
The obtained mother alloy is coarsely pulverized in an inert gas so as to have an average of about 100 to 500 μm, and then using a ball mill, the powder has a specific surface area of 0.25 m 2 / g in the inert gas. Fine grinding was performed.
Each of these powders was pressed in a magnetic field of 15 kOe at a pressure of 1 ton / cm 2 to obtain a molded product.
This molded product was sintered in a vacuum of 0.1 Pa at 1215 ° C. for 20 minutes, 130 minutes, or 240 minutes, respectively, and then solutioned at 1160 ° C. for 70 hours, and the temperature was 1000 to 600 ° C. at 80 ° C./. It was rapidly cooled at a cooling rate of min. After quenching, the magnets were kept at 850 ° C. for 12 hours, and then aged under the condition of slowly cooling to 350 ° C. at a cooling rate of 0.5 ° C./min to obtain permanent magnets of Comparative Examples 8 to 10. The obtained permanent magnets were measured in the same manner as in Examples 1 to 4. The results are shown in Table 3.

(実施例14~17)
表4の実施例14~17の組成になるように、各々Fe20%Zr80%の母合金及び各原料を調整し、高周波溶解炉により溶解し、鋳造して、合金インゴットを得た。
得られた母合金を不活性ガス中で平均約100~500μmになるように粗粉砕し、次いでボールミルを用いて不活性ガス中で粉末の比表面積が0.30m/g、及び0.60m/gになるように各々微粉砕を行った。
これらの粉末を各々15kOeの磁場中で1ton/cmの圧力でプレスすることにより成形体を得た。
この成形体を1Paの真空中において、1190℃で200分焼結した後、各々1120℃、1155℃及び1180℃で40時間溶体化を行い、1000~600℃までを80℃/minの冷却速度で急冷した。急冷後、850℃で12時間保持し、続いて0.5℃/minの冷却速度で350℃まで徐冷する条件で時効し、実施例14~17の永久磁石を得た。得られた永久磁石は、実施例1~4と同様に測定を行った。結果を表4に示す。
(Examples 14 to 17)
A mother alloy of 20% Fe and 80% Zr and each raw material were prepared so as to have the compositions of Examples 14 to 17 in Table 4, melted in a high-frequency melting furnace, and cast to obtain an alloy ingot.
The obtained mother alloy is coarsely pulverized in an inert gas to an average of about 100 to 500 μm, and then the specific surface area of the powder is 0.30 m 2 / g and 0.60 m in the inert gas using a ball mill. Each was finely pulverized to 2 / g.
Each of these powders was pressed in a magnetic field of 15 kOe at a pressure of 1 ton / cm 2 to obtain a molded product.
This molded product was sintered in a vacuum of 1 Pa at 1190 ° C. for 200 minutes, then solutioned at 1120 ° C., 1155 ° C. and 1180 ° C. for 40 hours, respectively, and cooled at a cooling rate of 80 ° C./min from 1000 to 600 ° C. It was cooled rapidly. After quenching, the magnets were kept at 850 ° C. for 12 hours, and then aged under the condition of slowly cooling to 350 ° C. at a cooling rate of 0.5 ° C./min to obtain permanent magnets of Examples 14 to 17. The obtained permanent magnets were measured in the same manner as in Examples 1 to 4. The results are shown in Table 4.

(比較例11~13)
表4の比較例11~13の組成になるように、各々Fe20%Zr80%の母合金及び各原料を調整し、高周波溶解炉により溶解し、鋳造して、合金インゴットを得た。
得られた母合金を不活性ガス中で平均約100~500μmになるように粗粉砕し、次いでボールミルを用いて不活性ガス中で粉末の比表面積が0.20m/g、及び0.25m/gになるように各々微粉砕を行った。
これらの粉末を各々15kOeの磁場中で1ton/cmの圧力でプレスすることにより成形体を得た。
この成形体を1Paの真空中において、1190℃で200分焼結した後、各々1120℃、及び1180℃で40時間溶体化を行い、1000~600℃までを80℃/minの冷却速度で急冷した。急冷後、850℃で12時間保持し、続いて0.5℃/minの冷却速度で350℃まで徐冷する条件で時効し、比較例11~13の永久磁石を得た。得られた永久磁石は、実施例1~4と同様に測定を行った。結果を表4に示す。
(Comparative Examples 11 to 13)
A mother alloy of 20% Fe and 80% Zr and each raw material were prepared so as to have the compositions of Comparative Examples 11 to 13 in Table 4, melted in a high-frequency melting furnace, and cast to obtain an alloy ingot.
The obtained mother alloy is coarsely pulverized in an inert gas to an average of about 100 to 500 μm, and then the specific surface area of the powder is 0.20 m 2 / g and 0.25 m in the inert gas using a ball mill. Each was finely pulverized to 2 / g.
Each of these powders was pressed in a magnetic field of 15 kOe at a pressure of 1 ton / cm 2 to obtain a molded product.
This molded product was sintered at 1190 ° C. for 200 minutes in a vacuum of 1 Pa, then solutioned at 1120 ° C. and 1180 ° C. for 40 hours, and rapidly cooled from 1000 to 600 ° C. at a cooling rate of 80 ° C./min. did. After quenching, the magnets were kept at 850 ° C. for 12 hours, and then aged under the condition of slowly cooling to 350 ° C. at a cooling rate of 0.5 ° C./min to obtain permanent magnets of Comparative Examples 11 to 13. The obtained permanent magnets were measured in the same manner as in Examples 1 to 4. The results are shown in Table 4.

(実施例18~21)
表5の実施例18~21の組成になるように、各々Fe20%Zr80%の母合金及び各原料を調整し、高周波溶解炉により溶解し、鋳造して、合金インゴットを得た。
得られた母合金を不活性ガス中で平均約100~500μmになるように粗粉砕し、次いでボールミルを用いて不活性ガス中で粉末の比表面積が0.30m/g、及び0.55m/gになるように各々微粉砕を行った。
これらの粉末を各々15kOeの磁場中で1ton/cmの圧力でプレスすることにより成形体を得た。
この成形体を50Paの真空中において、1205℃で150分焼結した後、各々1150℃で5時間、65時間又は120時間溶体化を行い、1000~600℃までを80℃/minの冷却速度で急冷した。急冷後、850℃で12時間保持し、続いて0.5℃/minの冷却速度で350℃まで徐冷する条件で時効し、実施例18~21の永久磁石を得た。得られた永久磁石は、実施例1~4と同様に測定を行った。結果を表5に示す。
(Examples 18 to 21)
A mother alloy of 20% Fe and 80% Zr and each raw material were prepared so as to have the compositions of Examples 18 to 21 in Table 5, melted in a high-frequency melting furnace, and cast to obtain an alloy ingot.
The obtained mother alloy is coarsely pulverized in an inert gas to an average of about 100 to 500 μm, and then the specific surface area of the powder is 0.30 m 2 / g and 0.55 m in the inert gas using a ball mill. Each was finely pulverized to 2 / g.
Each of these powders was pressed in a magnetic field of 15 kOe at a pressure of 1 ton / cm 2 to obtain a molded product.
This molded product was sintered at 1205 ° C. for 150 minutes in a vacuum of 50 Pa, and then solutioned at 1150 ° C. for 5 hours, 65 hours or 120 hours, respectively, and cooled at a cooling rate of 80 ° C./min from 1000 to 600 ° C. It was cooled rapidly. After quenching, the magnets were kept at 850 ° C. for 12 hours, and then aged under the condition of slowly cooling to 350 ° C. at a cooling rate of 0.5 ° C./min to obtain permanent magnets of Examples 18 to 21. The obtained permanent magnets were measured in the same manner as in Examples 1 to 4. The results are shown in Table 5.

(比較例14~16)
表5の比較例14~16の組成になるように、各々Fe20%Zr80%の母合金及び各原料を調整し、高周波溶解炉により溶解し、鋳造して、合金インゴットを得た。
得られた母合金を不活性ガス中で平均約100~500μmになるように粗粉砕し、次いでボールミルを用いて不活性ガス中で粉末の比表面積が0.15m/g、及び0.25m/gになるように各々微粉砕を行った。
これらの粉末を各々15kOeの磁場中で1ton/cmの圧力でプレスすることにより成形体を得た。
この成形体を50Paの真空中において、1205℃で150分焼結した後、各々1150℃で5時間、又は120時間溶体化を行い、1000~600℃までを80℃/minの冷却速度で急冷した。急冷後、850℃で12時間保持し、続いて0.5℃/minの冷却速度で350℃まで徐冷する条件で時効し、実施例14~16の永久磁石を得た。得られた永久磁石は、実施例1~4と同様に測定を行った。結果を表5に示す。
(Comparative Examples 14 to 16)
A mother alloy of 20% Fe and 80% Zr and each raw material were prepared so as to have the compositions of Comparative Examples 14 to 16 in Table 5, melted in a high-frequency melting furnace, and cast to obtain an alloy ingot.
The obtained mother alloy is coarsely pulverized in an inert gas to an average of about 100 to 500 μm, and then the specific surface area of the powder is 0.15 m 2 / g and 0.25 m in the inert gas using a ball mill. Each was finely pulverized to 2 / g.
Each of these powders was pressed in a magnetic field of 15 kOe at a pressure of 1 ton / cm 2 to obtain a molded product.
This molded product is sintered at 1205 ° C. for 150 minutes in a vacuum of 50 Pa, then melted at 1150 ° C. for 5 hours or 120 hours, and rapidly cooled from 1000 to 600 ° C. at a cooling rate of 80 ° C./min. did. After quenching, the magnets were kept at 850 ° C. for 12 hours, and then aged under the condition of slowly cooling to 350 ° C. at a cooling rate of 0.5 ° C./min to obtain permanent magnets of Examples 14 to 16. The obtained permanent magnets were measured in the same manner as in Examples 1 to 4. The results are shown in Table 5.

(実施例22~25)
表6の実施例22~25の組成になるように、各々Fe20%Zr80%の母合金及び各原料を調整し、高周波溶解炉により溶解し、鋳造して、合金インゴットを得た。
得られた母合金を不活性ガス中で平均約100~500μmになるように粗粉砕し、次いでボールミルを用いて不活性ガス中で粉末の比表面積が0.30m/g、及び0.70m/gになるように各々微粉砕を行った。
これらの粉末を各々15kOeの磁場中で1ton/cmの圧力でプレスすることにより成形体を得た。
この成形体を各々0.001Pa、1Pa、又は1000Paの真空中において、1185℃で210分焼結した後、1140℃で100時間溶体化を行い、1000~600℃までを80℃/minの冷却速度で急冷した。急冷後、850℃で12時間保持し、続いて0.5℃/minの冷却速度で350℃まで徐冷する条件で時効し、実施例22~25の永久磁石を得た。得られた永久磁石は、実施例1~4と同様に測定を行った。結果を表6に示す。
(Examples 22 to 25)
A mother alloy of 20% Fe and 80% Zr and each raw material were prepared so as to have the compositions of Examples 22 to 25 in Table 6, melted in a high-frequency melting furnace, and cast to obtain an alloy ingot.
The obtained mother alloy is coarsely pulverized in an inert gas to an average of about 100 to 500 μm, and then the specific surface area of the powder is 0.30 m 2 / g and 0.70 m in the inert gas using a ball mill. Each was finely pulverized to 2 / g.
Each of these powders was pressed in a magnetic field of 15 kOe at a pressure of 1 ton / cm 2 to obtain a molded product.
This molded product was sintered at 1185 ° C. for 210 minutes in a vacuum of 0.001 Pa, 1 Pa, or 1000 Pa, respectively, and then melted at 1140 ° C. for 100 hours, and cooled to 80 ° C./min at 1000 to 600 ° C. Quenched at speed. After quenching, the magnets were kept at 850 ° C. for 12 hours, and then aged under the condition of slowly cooling to 350 ° C. at a cooling rate of 0.5 ° C./min to obtain permanent magnets of Examples 22 to 25. The obtained permanent magnets were measured in the same manner as in Examples 1 to 4. The results are shown in Table 6.

(比較例17~18)
表6の比較例17~18の組成になるように、各々Fe20%Zr80%の母合金及び各原料を調整し、高周波溶解炉により溶解し、鋳造して、合金インゴットを得た。
得られた母合金を不活性ガス中で平均約100~500μmになるように粗粉砕し、次いでボールミルを用いて不活性ガス中で粉末の比表面積が0.25m/gになるように各々微粉砕を行った。
これらの粉末を各々15kOeの磁場中で1ton/cmの圧力でプレスすることにより成形体を得た。
この成形体を各々0.001Pa又は1000Paの真空中において、1185℃で210分焼結した後、1140℃で100時間溶体化を行い、1000~600℃までを80℃/minの冷却速度で急冷した。急冷後、850℃で12時間保持し、続いて0.5℃/minの冷却速度で350℃まで徐冷する条件で時効し、比較例17~18の永久磁石を得た。得られた永久磁石は、実施例1~4と同様に測定を行った。結果を表6に示す。
(Comparative Examples 17-18)
A mother alloy of 20% Fe and 80% Zr and each raw material were prepared so as to have the compositions of Comparative Examples 17 to 18 in Table 6, melted in a high-frequency melting furnace, and cast to obtain an alloy ingot.
The obtained mother alloy is coarsely pulverized in an inert gas so as to have an average of about 100 to 500 μm, and then using a ball mill, the powder has a specific surface area of 0.25 m 2 / g in the inert gas. Fine grinding was performed.
Each of these powders was pressed in a magnetic field of 15 kOe at a pressure of 1 ton / cm 2 to obtain a molded product.
This molded product was sintered at 1185 ° C. for 210 minutes in a vacuum of 0.001 Pa or 1000 Pa, respectively, then solution-dissolved at 1140 ° C. for 100 hours, and rapidly cooled from 1000 to 600 ° C. at a cooling rate of 80 ° C./min. did. After quenching, the magnets were kept at 850 ° C. for 12 hours, and then aged under the condition of slowly cooling to 350 ° C. at a cooling rate of 0.5 ° C./min to obtain permanent magnets of Comparative Examples 17 to 18. The obtained permanent magnets were measured in the same manner as in Examples 1 to 4. The results are shown in Table 6.

Figure 2022080585000003
Figure 2022080585000003

Figure 2022080585000004
Figure 2022080585000004

Figure 2022080585000005
Figure 2022080585000005

Figure 2022080585000006
Figure 2022080585000006

Figure 2022080585000007
Figure 2022080585000007

Figure 2022080585000008
Figure 2022080585000008

表1~5が示すように微粉末の比表面積が0.30m/g以上の粉末を使用し、且つ、所定の熱処理条件で作製された実施例1~21永久磁石は、密度≧8.25g/cm、(BH)m≧260kJ/m、Hcj≧1600A/m、Hk/Hcj≧65%の全条件を満たし、ポアの最大径が40μm未満であった。
一方、微粉末の比表面積が0.30m/g未満の粉末を使用した比較例1~16の永久磁石は実施例と同じ熱処理条件であっても、密度≧8.25g/cm、(BH)m≧260kJ/m、Hcj≧1600A/m、Hk/Hcj≧65%の全条件を満足するものではなく、ポアの最大径も40μm以上であった。
As shown in Tables 1 to 5, the permanent magnets of Examples 1 to 21 produced by using a powder having a specific surface area of 0.30 m 2 / g or more and under predetermined heat treatment conditions have a density ≧ 8. All the conditions of 25 g / cm 3 , (BH) m ≧ 260 kJ / m 3 , Hcj ≧ 1600 A / m, and Hk / Hcj ≧ 65% were satisfied, and the maximum diameter of the pore was less than 40 μm.
On the other hand, the permanent magnets of Comparative Examples 1 to 16 using the powder having a specific surface area of less than 0.30 m 2 / g of the fine powder have a density ≧ 8.25 g / cm 3 , even under the same heat treatment conditions as those of the examples. BH) m ≧ 260 kJ / m 3 , Hcj ≧ 1600 A / m, Hk / Hcj ≧ 65% did not satisfy all the conditions, and the maximum diameter of the pore was 40 μm or more.

表6が示すように微粉末の比表面積が0.30m/g以上の粉末を使用し、且つ、1000Pa以下の真空度において所定の熱処理条件で作製された実施例22~25の永久磁石は、密度≧8.25g/cm、(BH)m≧260kJ/m、Hcj≧1600A/m、Hk/Hcj≧65%の全条件を満たし、ポアの最大径が40μm未満であった。
一方、微粉末の比表面積が0.30m/g未満の粉末を使用した比較例17~18永久磁石は実施例と同じ熱処理条件であっても、密度≧8.25g/cm、(BH)m≧260kJ/m、Hcj≧1600A/m、Hk/Hcj≧65%の全条件を満足するものではなく、ポアの最大径も40μm以上であった。
As shown in Table 6, the permanent magnets of Examples 22 to 25 produced by using a powder having a specific surface area of 0.30 m 2 / g or more and having a vacuum degree of 1000 Pa or less under predetermined heat treatment conditions are used. , Density ≧ 8.25 g / cm 3 , (BH) m ≧ 260 kJ / m 3 , Hcj ≧ 1600 A / m, Hk / Hcj ≧ 65%, and the maximum pore diameter was less than 40 μm.
On the other hand, the permanent magnets of Comparative Examples 17 to 18 using the powder having a specific surface area of less than 0.30 m 2 / g of the fine powder have a density ≧ 8.25 g / cm 3 , (BH) even under the same heat treatment conditions as those of the examples. ) M ≧ 260 kJ / m 3 , Hcj ≧ 1600 A / m, Hk / Hcj ≧ 65% did not satisfy all the conditions, and the maximum diameter of the pore was 40 μm or more.

1 結晶粒
2 結晶粒界
3 酸化物
4 ポア
1 Crystal grain 2 Grain boundary 3 Oxide 4 Pore

Claims (5)

質量百分率組成で、R:23~27%(Rは少なくともSmを含む希土類元素の合計)、Cu:4.0~5.0%、Fe:22~27%、Zr:1.7%~2.5%、残部がCo及び不可避不純物からなる希土類コバルトを含む金属間化合物であって、
複数の結晶粒と粒界を有し、ポアの最大径が40μm以下である、希土類コバルト永久磁石。
By mass percentage composition, R: 23 to 27% (R is the total of rare earth elements including at least Sm), Cu: 4.0 to 5.0%, Fe: 22 to 27%, Zr: 1.7% to 2 An intermetallic compound containing 5.5%, a rare earth cobalt consisting of Co and unavoidable impurities in the balance.
A rare earth cobalt permanent magnet having a plurality of crystal grains and grain boundaries and having a maximum pore diameter of 40 μm or less.
比表面積が0.3m/g以上の粉末の焼結体を含む、請求項1に記載の希土類コバルト永久磁石。 The rare earth cobalt permanent magnet according to claim 1, which comprises a powder sintered body having a specific surface area of 0.3 m 2 / g or more. 焼結体密度が8.25g/cm以上、最大エネルギー積が260kJ/m以上、固有保磁力が1600kA/m以上、Brの90%を示すときの逆磁界の大きさをHkとしたとき、Hk/Hcjが65%以上である、請求項1又は2に記載の希土類コバルト永久磁石。 When the size of the reverse magnetic field when the sintered body density is 8.25 g / cm 3 or more, the maximum energy product is 260 kJ / m 3 or more, the intrinsic coercive force is 1600 kA / m or more, and 90% of Br is shown, is Hk. The rare earth cobalt permanent magnet according to claim 1 or 2, wherein Hk / Hcj is 65% or more. 質量百分率組成で、R:23~27%(Rは少なくともSmを含む希土類元素の合計)、Cu:4.0~5.0%、Fe:22~27%、Zr:1.7%~2.5%、残部がCo及び不可避不純物からなる合金を準備する工程(I)と、
前記合金を、比表面積が0.3m/g以上の粉末とする粉砕工程(II)と、
前記粉末を成形体とする加圧成形工程(III)と、
前記成形体を焼結する工程(IV)と、
焼結後の成形体を溶体化処理する工程(V)と、
溶体化処理後の成形体を急冷する工程と(VI)、
溶体化処理後の成形体を熱処理する工程(VII)と、を有する、
希土類コバルト永久磁石の製造方法。
By mass percentage composition, R: 23 to 27% (R is the total of rare earth elements including at least Sm), Cu: 4.0 to 5.0%, Fe: 22 to 27%, Zr: 1.7% to 2 Step (I) of preparing an alloy consisting of 5.5%, the balance of Co and unavoidable impurities, and
In the pulverization step (II) in which the alloy is made into a powder having a specific surface area of 0.3 m 2 / g or more,
The pressure molding step (III) using the powder as a molded body and
The step (IV) of sintering the molded product and
The step (V) of solution-treating the sintered compact and
The step of quenching the molded product after the solution treatment (VI),
It has a step (VII) of heat-treating a molded product after a solution treatment.
A method for manufacturing rare earth cobalt permanent magnets.
請求項1~3のいずれか一項に記載の希土類コバルト永久磁石を有する、デバイス。 A device having the rare earth cobalt permanent magnet according to any one of claims 1 to 3.
JP2020191730A 2020-11-18 2020-11-18 Rare earth cobalt permanent magnet, manufacturing method thereof, and device Active JP7117359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020191730A JP7117359B2 (en) 2020-11-18 2020-11-18 Rare earth cobalt permanent magnet, manufacturing method thereof, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020191730A JP7117359B2 (en) 2020-11-18 2020-11-18 Rare earth cobalt permanent magnet, manufacturing method thereof, and device

Publications (2)

Publication Number Publication Date
JP2022080585A true JP2022080585A (en) 2022-05-30
JP7117359B2 JP7117359B2 (en) 2022-08-12

Family

ID=81756928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020191730A Active JP7117359B2 (en) 2020-11-18 2020-11-18 Rare earth cobalt permanent magnet, manufacturing method thereof, and device

Country Status (1)

Country Link
JP (1) JP7117359B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04157101A (en) * 1990-10-19 1992-05-29 Sumitomo Metal Mining Co Ltd Rare earth metal-cobalt 1-5 base alloy powder for sintered magnet
JPH0822909A (en) * 1994-07-07 1996-01-23 Isuzu Motors Ltd Permanent magnet having sufficient mechanical strength
WO2017061126A1 (en) * 2015-10-08 2017-04-13 国立大学法人九州工業大学 Rare-earth cobalt-based permanent magnet
JP2018047211A (en) * 2016-09-15 2018-03-29 株式会社三洋物産 Game machine
JP2018170483A (en) * 2017-03-30 2018-11-01 Tdk株式会社 R-t-b based rare earth sintered magnet alloy, and method for manufacturing r-t-b based rare earth sintered magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04157101A (en) * 1990-10-19 1992-05-29 Sumitomo Metal Mining Co Ltd Rare earth metal-cobalt 1-5 base alloy powder for sintered magnet
JPH0822909A (en) * 1994-07-07 1996-01-23 Isuzu Motors Ltd Permanent magnet having sufficient mechanical strength
WO2017061126A1 (en) * 2015-10-08 2017-04-13 国立大学法人九州工業大学 Rare-earth cobalt-based permanent magnet
JP2018047211A (en) * 2016-09-15 2018-03-29 株式会社三洋物産 Game machine
JP2018170483A (en) * 2017-03-30 2018-11-01 Tdk株式会社 R-t-b based rare earth sintered magnet alloy, and method for manufacturing r-t-b based rare earth sintered magnet

Also Published As

Publication number Publication date
JP7117359B2 (en) 2022-08-12

Similar Documents

Publication Publication Date Title
KR102394072B1 (en) R-Fe-B TYPE SINTERED MAGNET AND METHOD FOR MAKING THE SAME
CN105957680B (en) Rare earth cobalt permanent magnet
JP6488976B2 (en) R-T-B sintered magnet
JP4702549B2 (en) Rare earth permanent magnet
JP2018504769A (en) Manufacturing method of RTB permanent magnet
EP2141710A1 (en) Rare earth magnet and production process thereof
KR20160117364A (en) R-Fe-B TYPE SINTERED MAGNET AND METHOD FOR MAKING THE SAME
KR20160117365A (en) R-Fe-B TYPE SINTERED MAGNET AND METHOD FOR MAKING THE SAME
JPH0521218A (en) Production of rare-earth permanent magnet
JP6451900B2 (en) R-Fe-B sintered magnet and method for producing the same
JP2019169542A (en) Method for manufacturing r-t-b based sintered magnet
JP7010884B2 (en) Rare earth cobalt permanent magnets, their manufacturing methods, and devices
JPH0574618A (en) Manufacture of rare earth permanent magnet
JP5757394B2 (en) Rare earth permanent magnet manufacturing method
US11915861B2 (en) Method for manufacturing rare earth permanent magnet
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP4449900B2 (en) Method for producing rare earth alloy powder and method for producing rare earth sintered magnet
JP7001721B2 (en) Rare earth cobalt permanent magnets, their manufacturing methods, and devices
JP7117359B2 (en) Rare earth cobalt permanent magnet, manufacturing method thereof, and device
JP7179799B2 (en) R-Fe-B system sintered magnet
JP2014112624A (en) R-t-b-based sinter magnet and manufacturing method therefor
JP7192069B1 (en) permanent magnets and devices
US20240047104A1 (en) Permanent magnet and device
JP6811120B2 (en) Rare earth cobalt permanent magnet manufacturing method
CN117095891A (en) Rare earth cobalt permanent magnet, method and apparatus for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220308

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220801

R150 Certificate of patent or registration of utility model

Ref document number: 7117359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150